
Distributed platforms for
Big Data

Prof. Carlo Ferrari
Michele Stecca, Ph.D.

a.y. 2023-2024

Data, data, data

Vertical vs. Horizontal scalability

Design principles

(Data) Partitioning

Design principles

(Data) Replication

An architecture for Big Data

Distributed Filesystem

HDFS

HaDoop FileSystem Architecture

• Files are splitted into
>64MB blocks

• Throughput optimized
• Write once – read many
• Failure resistant: manages

failures using block
replication

HDFS

Master & Slave
architecture

HDFS

HaDoop FileSystem Architecture: Name Node

• Cluster’s SPOF!
• Manages the file system
• Lists the files and blocks

i n w h i c h t h e y a r e
divided

• Manag e s s t r a t e g i e s
replication and block
allocation

• Checks nodes’s reliability

HDFS

HaDoop FileSystem Architecture: DataNode

• Manages the storage and the
client’s requests

• Sends Heartbeat to NameNode

An architecture for Big Data

Distributed Filesystem (HDFS)

Distributed Computational Model
+ Execution Engine

Move computation close to data!!!

Hadoop versions

Cluster management: Yarn

Yet Another Resource Negotiator architecture:

Resource Manager:
• One per cluster – global

view
• No static resource

partitioning
• Handle Job request
• Find a container to

Application Manager

An architecture for Big Data

Distributed Filesystem (HDFS)

Distributed Computational Model
+ Execution Engine: Map Reduce

Resource Manager (YARN)

An architecture for Big Data

Distributed Filesystem (HDFS)

Distributed Computational Model
+ Execution Engine (Map Reduce)

Applications («Pure» MR Apps, SQL, Machine Learning,
Graphs, Streaming, etc.)

Resource Manager (YARN)

Map Reduce limitations

• Not so flexible from a programmer point of view

• Not so efficient

• …

iter. 1 iter. 2 . . .

HDFS
read

HDFS
write

HDFS
read

HDFS
write

From Hadoop/MapReduce to Spark

Distributed Filesystem (HDFS)

Distributed Computational Model
+ Execution Engine: Map Reduce

Applications («Pure» MR Apps, SQL, Machine Learning,
Graphs, Streaming, etc.)

Resource Manager (YARN)

From Hadoop/MapReduce to Spark

Distributed Filesystem (HDFS)

Distributed Computational Model
+ Execution Engine: Spark

Applications («Pure» Spark Apps, SQL, Machine Learning,
Graphs, Streaming, etc.)

Resource Manager (YARN)

From Hadoop/MapReduce to Spark

Distributed Filesystem (HDFS)

Distributed Computational Model
+ Execution Engine: Spark

Applications (Simple APIs, SQL, Machine Learning, Graphs,
Streaming, etc.)

Resource Manager (YARN) Mesos Kubernetes

From Hadoop/MapReduce to Spark

HDFS

Distributed Computational Model
+ Execution Engine: Spark

Applications (Simple APIs, SQL, Machine Learning, Graphs,
Streaming, etc.)

Resource Manager (YARN) Mesos Kubernetes

S3 Cassandra …

• Spark is in-memory

• Less expensive shuffles

• There are many more primitives

• It supports Java, Scala, Python & R

• Interactive shells are available

• Generalized patterns
• unified engine for many use cases

• Lazy evaluation of the lineage graph
• reduces wait states, better pipelining

• Lower overhead for starting jobs

MapReduce vs. Spark

Spark ecosystem

Spark (Deployment)

• Resilient Distributed Datasets (RDDs) are the primary abstraction in Spark – a
fault-tolerant collection of elements that can be operated on in parallel

• 2 types of operations on RDDs:
• transformations and actions

• transformations are lazy (not computed immediately)

• however, an RDD can be persisted into storage in memory or disk

RDDs

Some Primitives

Some Primitives

Some Primitives

Some Primitives

• Spark can persist (or cache) a dataset in memory across operations

• Each node stores in memory any slices of it that it computes and reuses them in
other actions on that dataset – often making future actions more than 10x faster

• The cache is fault-tolerant: if any partition of an RDD is lost, it will automatically
be recomputed using the transformations that originally created it

Some Primitives

Spark SQL

• Spark SQL is a Spark module for structured data processing

• Uses more information about the structure of both the data and the
computation being performed

• Spark SQL uses this extra information to perform extra optimizations

• Integrated with Hive metastore

Spark SQL: the Dataframe abstraction

• The DataFrame API provides a higher-level abstraction, allowing you to use a
query language to manipulate data. In fact, you can use SQL, as well.

• This code does essentially the same thing the previous RDD code does. Look
how much easier it is to read.

• You have probably met DataFrames already in Python or R

Spark SQL: the Dataframe abstraction

• It provides the benefits of RDDs (strong typing, ability to use powerful lambda
functions) with the benefits of Spark SQL’s optimized execution engine

• It is conceptually equivalent to a table in a relational database or a data
frame in R/Python, but with richer optimizations under the hood

• DataFrames can be constructed from a wide array of sources such as:
structured data files, tables in Hive, external databases, or existing RDDs

Spark SQL: the Dataframe abstraction

Spark SQL: JOIN Operations

(Distributed) JOIN Types
• Shuffle JOIN
• Broadcast JOIN
• Merge Sort JOIN
• Skew JOIN

JOIN Optimization parameters

spark.sql.adaptive.enabled - if this option is set to True Spark will
make use of the runtime statistics to choose the most efficient query
execution plan, one of the optimizations is automated conversion of
shuffle join to a broadcast join.

spark.sql.autoBroadcastJoinThreshold - denotes the maximum
size of a dataset that would be automatically broadcasted.

Spark SQL: JOIN Operations

Spark SQL: JOIN Operations

Spark SQL: JOIN Operations (Data Skew case)

• Data skew is a condition in which a table’s data is unevenly
distributed among partitions in the cluster.

• Data skew can severely downgrade performance of queries,
especially those with joins.

• Joins between big tables require shuffling data and the skew can
lead to an extreme imbalance of work in the cluster.

Spark SQL: JOIN Operations (Data Skew case)

JOIN Optimization parameters

spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled
- When true and spark.sql.adaptive.enabled is true, Spark will
optimize the skewed shuffle partitions in RebalancePartitions and
split them to smaller ones

About data formats

The Parquet (hybrid) file format

https://spark.apache.org/

Performance Tuning: https://spark.apache.org/docs/latest/sql-performance-tuning.html

https://www.agilelab.it/blog/spark-3-0-first-hands-on-approach-with-adaptive-query-execution-part-3

References

