Distributed platforms for
Big Data

Prof. Carlo Ferrari
Michele Stecca, Ph.D.
a.y. 2023-2024

Data, data, data

2 02 1 This Is What Happens In An
Internet Minute

facebook.

3.4 Million
Snaps
Created

60

SECONDS

197.6 Million
Emails Sent

DA
Created By:

3 @LorilLewis
¥ @OfficiallyChadd

932

Smart Audio
evices Shipped
amazon echo

Google Home

Vertical vs. Horizontal scalability

Scalability

Vertical scaling

&
o e
LS
<
&
o

/]

Increase in processing power

Horizontal scaling

BN |G (RGR
L 2l s
N RG] (RGR
o e,

&
AN
&
LS

Increase in number of machines

Design principles

(Data) Partitioning

Design principles

(Data) Replication

DOVOVDOY ~ OPies

original

An architecture for Big Data

Distributed Filesystem

HDEFS

HaDoop FileSystem Architecture

/7 Awesomel "\

metadata

File system

DM1: A,C
DM2: A,C
DN3: A,C

File.txt=A,C

Thanks.
Name Node
~Thave ™
blocks: / \\
* Files are splitted into AN
DataNodel

>64MB blocks
* Throughput optimized
* Write once — read many

* Failure resistant: manages
failures using block
replication

Data Nodeﬂ ‘ Data Node 3

)
_ alive! /

Data Node N

HDEFS

Master & Slave
architecture

Master Node

NameNode
~—

Meta Data

Slave Node

DataNode

e
Application
Data

Slave Node

DataNode

e
Application
Data

00O

Slave Node

DataNode

e
Application
Data

HDFS

HaDoop FileSystem Architecture: Name Node

Name Node " ﬁgi | 4P * Cluster's SPOF!

. * Manages the file system
file_name | r | block_ids « Lists the files and blocks
Jusr/data/filel | 3| (1,2,3,4,5) in which they are
/usr/data/file2 | 2| (6,7,8) divided

: | * Manages strategies
/usr/dataffile3 [*1 | (5,10) replication and block
= allocation

Checks nodes’s reliability

HDFS

HaDoop FileSystem Architecture: DataNode

Name Node e E | Secondary Name Node

file_name | r| block_ids =
: Ta- | -fsImage
forsdatatiez 121 (673 . = * Manages the storage and the
/usr/data/ffile3 [*1 | (9,10) C(l'el/\,t,s V@QM@StS

;L jL jL jL « Sends Heartbeat to NameNod

BoowgeBsn

|H [p—

An architecture for Big Data

Move computation close to data!!!

Distributed Computational Model
+ Execution Engine

Distributed Filesystem (HDFS)

Hadoop versions

HADOOP 1.0 HADOOP 2.0

MapReduce Others
(data processing) (data processing)
MapReduce J = e J
(cluster resource management YARN .
& data processing) (cluster resource management)

Cluster management: Yarn

Yet Another Resource Negotiator architecture:

[client |
clien
——— Client - RM

A v

ResourceManager

{ Scheduler] -

RM -- NodeManager

client
| R —

RM -- AM

{ AMService]

l

(MPI ™ Container
AM

‘I

MR

Container R AM

Node Manager | [Node Manager

i

Umbilical

- Container
[Contalner J

[Node Manager J
¢

Resource Manager:

One per cluster — global
view

No static resource
partitioning

Handle Job request

Find a container to
Application Manager

An architecture for Big Data

Distributed Computational Model
+ Execution Engine: Map Reduce

Resource Manager (YARN)

Distributed Filesystem (HDFS)

An architecture for Big Data

Applications («Pure» MR Apps, SQL, Machine Learning,
Graphs, Streaming, etc.)

Distributed Computational Model
+ Execution Engine (Map Reduce)

Resource Manager (YARN)

Distributed Filesystem (HDFS)

Map Reduce limitations

* Not so flexible from a programmer point of view
* Not so efficient

HDFS HDFS HDFS HDFS

i read write ﬁ read write %

* [terative jobs involve a lot of disk I/O for each repetition

3 ; £
&3 — £ Disk I/O is
s ' ™ very slow!

elel|e

From Hadoop/MapReduce to Spark

Applications («Pure» MR Apps, SQL, Machine Learning,
Graphs, Streaming, etc.)

Distributed Computational Model
+ Execution Engine: Map Reduce

Resource Manager (YARN)

Distributed Filesystem (HDFS)

From Hadoop/MapReduce to Spark

Applications («Pure» Spark Apps, SQL, Machine Learning,
Graphs, Streaming, etc.)

Distributed Computational Model
+ Execution Engine: Spark

Resource Manager (YARN)

Distributed Filesystem (HDFS)

From Hadoop/MapReduce to Spark

Applications (Simple APIs, SQL, Machine Learning, Graphs,
Streaming, etc.)

Distributed Computational Model
+ Execution Engine: Spark

Resource Manager (YARN) Mesos Kubernetes

Distributed Filesystem (HDFS)

From Hadoop/MapReduce to Spark

Applications (Simple APIs, SQL, Machine Learning, Graphs,
Streaming, etc.)

Distributed Computational Model
+ Execution Engine: Spark

Resource Manager (YARN) Mesos Kubernetes

HDFS S3 Cassandra

MapReduce vs. Spark

Spark is in-memory

Less expensive shuffles

There are many more primitives

It supports Java, Scala, Python & R
Interactive shells are available

Generalized patterns
* unified engine for many use cases

Lazy evaluation of the lineage graph
* reduces wait states, better pipelining

Lower overhead for starting jobs

Spark ecosystem

Spark MLIib

Streamingll (machine

learning)

Apache Spark

Spark (Deployment)

Driver Program

SparkContext

"l

‘//'

Cluster Manager

Worker Node

Executor

Cache

Task

Task

|

\

)

Worker Node 1

Executor

Cache

Task

Task

RDDs

* Resilient Distributed Datasets (RDDs) are the primary abstraction in Spark — a
fault-tolerant collection of elements that can be operated on in parallel

* 2 types of operations on RDDs:
* transformations and actions
e transformations are lazy (not computed immediately)

* however, an RDD can be persisted into storage in memory or disk

Some Primitives

transformation

description

map (func)

return a new distributed dataset formed by passing
each element of the source through a function func

return a new dataset formed by selecting those
elements of the source on which func returns true

similar to map, but each input item can be mapped
to 0 or more output items (so func should return a
Seq rather than a single item)

sample (withReplacement,
fraction, seed)

sample a fraction fraction of the data, with or without
replacement, using a given random number generator
seed

return a new dataset that contains the union of the
elements in the source dataset and the argument

distinct ([numTasks]))

return a new dataset that contains the distinct elements
of the source dataset

Some Primitives

transformation

description

groupByKey ([numTasks])

when called on a dataset of (x, v} pairs, returns a
dataset of (x, seg[v]) pairs

reduceByKey (func.,
[numTasks])

when called on a dataset of (x, Wv) pairs, returns
a dataset of (x, v) pairs where the values for each
key are aggregated using the given reduce function

sortByKey ([ascending] .,
[numTasks])

when called on a dataset of (®, v) pairs where &
implements ordered, returns a dataset of (g, v)
pairs sorted by keys in ascending or descending order,
as specified in the boolean ascending argument

join(otherDataset,
[numTasks])

when called on datasets of type (x, v) and (®, W),
returns a dataset of (g, (v, wW)) pairs with all pairs
of elements for each key

cogroup (otherDataset,
[numTasks])

when called on datasets of type (x, v) and (8, W),
returns a dataset of (K, seqg[V], Seg[wW]) tuples —
also called groupwith

cartesian(otherDataset)

when called on datasets of types T and u, returns a
dataset of (T, u) pairs (all pairs of elements)

Some Primitives

action

description

reduce(func)

aggregate the elements of the dataset using a function
func (which takes two arguments and returns one),
and should also be commutative and associative so
that it can be computed correctly in parallel

return all the elements of the dataset as an array at
the driver program — usually useful after a filter or
other operation that returns a sufficiently small subset
of the data

return the first element of the dataset — similar to
take(1)

take(n)

return an array with the first n elements of the dataset
— currently not executed in parallel, instead the driver
program computes all the elements

takeSample (withReplacement,
fraction, seed)

return an array with a random sample of num elements
of the dataset, with or without replacement, using the
given random number generator seed

Some Primitives

action

description

saveAsTextFile(path)

write the elements of the dataset as a text file (or set
of text files) in a given directory in the local filesystem,
HDFS or any other Hadoop-supported file system.
Spark will call tostring on each element to convert
it to a line of text in the file

write the elements of the dataset as a Hadoop
SequenceFile in a given path in the local filesystem,
HDFS or any other Hadoop-supported file system.
Only available on RDDs of key-value pairs that either
implement Hadoop's writable interface or are
implicitly convertible to writable (Spark includes
conversions for basic types like Int, Double, 8tring,
efc).

only available on RDDs of type (x, v).Returns a
‘Map” of (k, Int) pairs with the count of each key

foreach (func)

run a function func on each element of the dataset —
usually done for side effects such as updating an
accumulator variable or interacting with external
storage systems

Some Primitives

Spark can persist (or cache) a dataset in memory across operations

Each node stores in memory any slices of it that it computes and reuses them in
other actions on that dataset — often making future actions more than 10x faster

The cache is fault-tolerant: if any partition of an RDD is lost, it will automatically
be recomputed using the transformations that originally created it

Spark SQL

Spark SQL is a Spark module for structured data processing

Uses more information about the structure of both the data and the
computation being performed

Spark SQL uses this extra information to perform extra optimizations

Integrated with Hive metastore

Spark SQL: the Dataframe abstraction

* The DataFrame API provides a higher-level abstraction, allowing you to use a
qguery language to manipulate data. In fact, you can use SQL, as well.

* This code does essentially the same thing the previous RDD code does. Look
how much easier it is to read.

* You have probably met DataFrames already in Python or R

Spark SQL: the Dataframe abstraction

|t provides the benefits of RDDs (strong typing, ability to use powerful lambda
functions) with the benefits of Spark SQL’s optimized execution engine

* Itis conceptually equivalent to a table in a relational database or a data
frame in R/Python, but with richer optimizations under the hood

e DataFrames can be constructed from a wide array of sources such as:
structured data files, tables in Hive, external databases, or existing RDDs

| :i ! ’ Column
:
\ Cod | deid | - Lo

SparksQL p—»

@ o

Row

Spark SQL: the Dataframe abstraction

Data Sources supported by DataFrames

built-in external
% Parquet :.__g‘_ » JDBC <>dBase

{JSON}

(@ m Pos greSQL BAS elasticsearch. 7™
: o8
IVE MySQOL

Amazon Redshift and more ..
HEF 5 ramazon Iss azon Reds

senvices™

Example Optimization

users.join(events, users("id")

N

== events("uid"))

.filter(events("date") > "2815-81-81")

Fi

1 o optimized plan
logical plan optimized plan with intelligent data sources
H./

i scan

join { (users)] { filter }

7‘< | [(scan } {filter scan}‘

users) (events)
scan scan =Scan
(users) (events) (events)

Catalyst pushes the filter into the data source |
e.q.: SELECT * FROM events WHERE user_id=

Spark SQL: JOIN Operations

(Dlstrlbuted) JOIN Types
Shuffle JOIN

* Broadcast JOIN

* Merge Sort JOIN

« Skew JOIN

JOIN Optimization parameters

spark.sqgl.adaptive.enabled - if this option is set to True Spark will
make use of the runtime statistics to choose the most efficient query
execution plan, one of the optimizations is automated conversion of
shuffle join to a broadcast join.

spark.sql.autoBroadcastJoinThreshold - denotes the maximum
size of a dataset that would be automatically broadcasted.

Spark SQL:

oA

)|

ez gy v

; e Coil A [Poot | bart

; - il 1 foo_1 | bar_d

[g =L

: ! : i (o] foo_1 | bar_1

i =
LT [Bl i :
| 5 = bl e Jfoo_a|ban_al
; —1 | D [foo_a|bar_2]!
: bl e e a[bar 3]
1E [faz3|! [D [Foo3[bar3]!
E E E foo_3 | bar_3 :
T | S H—— :

JOIN Operations

o |

‘[ShuPPIe, 3' o‘ir_\.

df_B.join(df_4, ...)

O
ﬂh linkedin.com/in/aurimas-griciunas

spod'* sal .shuPPl e,.Par't?tions='5

|.‘.|‘
[T e L e e e T L S 8 S g ‘i‘.‘t
: t P AR
1] I [. L] A
SR S A df_B g
i
[] ' L] "
- . I e— o EoR G
| BER YRR BRI R L
i '] |,' I L]
P SR b il i e e 13
s S y s [
T n b] A |Pood [bart il 1
A [eaale] —r I
" B foz__2 ' i ['
it ¥ B [foo_a|bar_afil ;@
i e mmrn e e e n el o M
i TR i A
e P e JReod]bard]ii S
" Ly J
HIE X éfi ¢ [Poo_a[bar_a | i
i ' |
:E[E ?az._.SJN ¢ |Foo|bar3|!!
'l-" L} 4 [} l: ¢
L EE ' E foo_2 | bar_3 :: A
= “':'I ---------------- i.--:.------------_---—------l' .r'
o= TN 3 I :]
Thpeeemmmemmmenas Srenesesesscssssssssse—e—— ':'a';’
i iy D foo__2 | bar__2 i
I N Y =t ¥
ey B D |foo_3|bar 3|

Spark SQL: JOIN Operations

IBW adeast Toin

A4 df_B ! A4 df_B
/ECM] A‘P___B. JOLﬁ(Bf‘OC\dCO\S‘b(d‘p_.A), ...) E %% R E E 13, O;ﬁ,_jd’- COLJ»{ QBI;EJ E
[} q:“y L" E E E
F A Feewd ihent il s il 4 [Pealer| 4 |foot|bard]:
b 1 ' : : N ,d‘-‘ ' ' | A S '
e R Pond [haiid | ! ' — =<+ B | oot | bor | !
E foz_1 ! Poz_3 N — o :
‘el foo_l | bard | ¢ B ke P (o foo_ 1 | bar_1 | 1
e et HE i
- = Foo_2 |bar_2 | | b e LS B oo 2|bara] !
= - ¢ [Poo_a|bar_a|! 8 longe-tuan]l © [P ke 21"
laz.—-] Faz1 4
D foo_2 [bar_2 | ! For_1 D foo_2 | bar_2 5

llllll
Ed |

.......

<~
{_/Eﬂi e foo_d | bar_3 ;
P

c foo_3 | bar_3 1: E
¢ |ras i
o D foo_3 |bar_3 | |
= foo_3 | bar_3 Pz

R N EIr=k

__

¥ Spark Driver

o
ﬂh linkedin.com/in/aurimas-griciunas

Spark SQL: JOIN Operations (Data Skew case)

« Data skew is a condition in which a table’s data is unevenly
distributed among partitions in the cluster.
« Data skew can severely downgrade performance of queries,

especially those with joins.
» Joins between big tables require shuffling data and the skew can

lead to an extreme imbalance of work in the cluster.

Table A Join Table B

B1 Map 1

B2 Map 2

No AQE Skew Join

Spark SQL: JOIN Operations (Data Skew case)

JOIN Optimization parameters

spark.sqgl.adaptive.optimizeSkewsInRebalancePartitions.enabled
- When true and spark.sql.adaptive.enabled is true, Spark will
optimize the skewed shuffle partitions in RebalancePartitions and
split them to smaller ones

AQE mechanisms transparently discover and optimize implementation.

Table A Join Table B

------------- -

Map 1

Map 2

Map 3

With AQE Skew Join

Map 1

Map 2

About data formats

Different workloads
. OLTP

o Online transaction processing
o Lots of small operations involving whole rows

« OLAP
o Online analytical processing
o Few large operations involving subset of all columns

The Parquet (hybrid) file format

Parquet file "B Column x chunk n

Row group 0

Page metadata

[Column A chunk O

Repetition levels

[Column B chunk O

Definition levels

Encoded values

Column x chunk 0

Column Z chunk O

Row group N

Footer (file, row group and column metadata)

Optimization: predicate pushdown
SELECT * FRCOM table WHERE x > 3
Row-group 0: x: [min: 0, max: 9]

Row-group 1l: x: [min: 3, max: 7]

Row-group 2: X: [min: 1, max: 4]

Parquet: encoding schemes
« RLE DICTIONARY

Uncompressed data Dictionary Dictionary

| "United States" | 0: ["United States" | 0: {___"United States’ |
["France" | 1: | "France" | 1| "France" J
| : "Germany" : | Dictionary 2: | "Garmany"] RLE + 2 ["Germany" |
} ":: ::::::::: : mmnmﬂm} 3: ["The Netherlands" || bitpacking 3 ["The Netherlands”)
| "The Netherlands® I Dictionary encoded data ?Fltiu;:.nr; ;m;l data
—— e () (0 (&) 63) () ()

References

https://spark.apache.org/

Performance Tuning: https://spark.apache.org/docs/latest/sqgl-performance-tuning.html

https://www.agilelab.it/blog/spark-3-0-first-hands-on-approach-with-adaptive-query-execution-part-3

