
Distributed
Systems

a.y. 2023/2024

Distributed Systems: lecture 7

Middleware

Software Layers

Inter-Process Communication

n ... Middleware level ... It provides programming language
support, i.e., it does not support low-level untyped data
primitives (OS) and implements higher-level language primitives
+ typed data

n Support for communication between objects
remote method invocation (Java RMI), or
remote procedure call (Sun RPC)

n Client-server

n Group communication

API for Internet programming...

Inter-process communication

Inter-Process Communication

Message passing
– send, receive, group communication
– synchronous versus asynchronous
– types of failure, consequences
– socket abstraction

Java API for sockets
– connectionless communication (UDP)
– connection-oriented communication (TCP)

Communication service types

q Connectionless: UDP
– ‘send and pray’ unreliable delivery
– efficient and easy to implement

q Connection-oriented: TCP
– with basic reliability guarantees
– less efficient, memory and time overhead for

error correction

Connectionless service

UDP (User Datagram Protocol)
– messages possibly lost, duplicated, delivered out of order,

– maintains no state information, so cannot detect lost,
duplicate or out-of-order messages

– may discard corrupted messages due to no error correction
(simple checksum) or congestion

n Used e.g. for DNS (Domain Name System).

Connection-oriented service

TCP (Transmission Control Protocol)
– establishes data stream connection to ensure reliable, in-
sequence delivery
– error checking and reporting to both ends
– attempts to match speeds (timeouts, buffering)
– sliding window: state information includes

• unacknowledged messages
• message sequence numbers
• flow control information (matching the speeds)

Used e.g. for HTTP, FTP, SMTP on Internet.

Timing issues

• Computer clocks
– may have varying drift rate
– rely on GPS radio signals (not always reliable), or synchronise
via clock synchronisation algorithms

• Event ordering (message sending, arrival)
– carry timestamps
– may arrive in wrong order due to transmission
delays

Types of interaction

• Synchronous interaction model:
– known upper/lower bounds on execution speeds, message
transmission delays and clock drift rates
– more difficult to build, conceptually simpler model

• Asynchronous interaction model (more common, cf Internet, more
general):
– arbitrary process execution speeds, message transmission
delays and clock drift rates
– some problems impossible to solve (e.g. agreement)
– if solution valid for asynchronous then also valid for

synchronous.

Sockets and ports

Sockets

• Characteristics:
– endpoint for inter-process communication
– message transmission between sockets
– socket associated with either UDP or TCP
– processes bound to sockets, can use multiple ports
– no port sharing unless IP multicast

• Implementations
– originally BSD Unix, but available in Linux, Windows,…
– here Java API for Internet programming

Send and receive

n Send
– send a message to a socket bound to a process
– can be blocking or non-blocking

n Receive
– receive a message on a socket
– can be blocking or non-blocking

n Broadcast/multicast
– send to all processes/all processes in a group

Receive

• Blocked receive
– destination process is blocked until message arrival
– most commonly used

• Variations
– conditional receive (continue until receiving indication that
message arrived or polling)
– timeout
– selective receive (wait for message from one of a number of
ports)

Asynchronous Send

q Characteristics:
– send is non-blocking (process continues after the message is
sent out)
– buffering needed (at receive end)
– mostly used with blocking receive
– usable for multicast

q Problems
– buffer overflow
– error reporting (difficult to match error with message)

q Maps closely onto connectionless service.

Synchronous Send

• Characteristics:
– send is blocking (sender suspended until message received)
– synchronisation point for both sender & receiver
– easier to reason about

• Problems
– failure and indefinite delay causes indefinite blocking (use
timeout)
– multicasting/broadcasting not supported
– implementation is more complex

Maps closely onto connection-oriented service.

Location transparency in send/receive

n Clients refer to services by name: a name
server (binder) translates names into server
locations at run-time.

Java API for Internet addresses

n • Class InetAddress
– uses DNS (Domain Name System)
InetAddress aC =
InetAddress.getByName(“gromit.cs.bham.ac.uk

”);
throws UnknownHostException
n encapsulates detail of IP address (4 bytes for IPv4

and16 bytes for IPv6)

Java API for Datagram Comms

Java API for Datagram Comms

n Class DatagramSocket
– socket constructor (returns free port if no arg)
– send a DatagramPacket, non-blocking
– receive DatagramPacket, blocking
– setSoTimeout (receive blocks for time T and throws
InterruptedIOException)
– close DatagramSocket
– throws SocketException if port unknown or in use
See textbook site cdk3.net/ipc for complete code.

UDP client example

UDP server example

Java API for Data Stream Comms

q Data stream abstraction
– attempts to match the data between sender/receiver

– marshaling/unmarshaling
q Class Socket

– used by processes with a connection
– connect, request sent from client
– accept, issued from server; waits for a connect request,blocked
if none availabl

Java API for Data Stream Comms

Class ServerSocket
– socket constructor (for listening at a server port)
– getInputStream, getOutputStream
– DataInputStream, DataOutputStream
(automatic marshaling/unmarshaling)
– close to close a socket
– raises UnknownHost, IOException, etc

n In the next example... TCP Client
makes connection, sends a request and
receives a reply

n TCP Server
makes a connection for each client and then
echoes the client’s request

TCP client example

TCP server example

TCP server example ctd

Inter-process communication

API for Internet programming...

Client-Server Interaction

n Request-reply: it supports the roles and
message exchanges in client-server
interaction
– port must be known to client processes
(usually published on a server)
– client has a private port to receive replies

Client-server communications

n Notes:
q ACK are redundant
q Flow control may be redundant ...
q send/receive can be implemented either using

UDP or TCP

Request-Reply Communication

Operations of Request-Reply

• public byte[] doOperation (RemoteObjectRef o, int
methodId, byte[] arguments)

– sends a request message to the remote object and returns the reply.
– the arguments specify the remote object, the method to be invoked and the
arguments of that method.

• public byte[] getRequest ();
– acquires a client request via the server port.

• public void sendReply (byte[] reply, InetAddress
clientHost, int clientPort);

– sends the reply message reply to the client at its Internet address
and port.

Message structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Remote Object Reference

Failure model of the R-R protocol

n Omission failure
n Crash failure
n Order not guaranteed

n Timeouts
n Discarding duplicate requests

n Lost reply ... Repetition

n Idempotent operation = it has the same
effects in spite of the number of time it is
executed.

n Trace / History

Exchange protocols

Marshalling

n Program oriented data representation (data
structures) message oriented data
representation (sequences of bytes)

n Communication requires data conversion
n Conversion methods:

n Sender’s format
n Agreed external format (external data repr.)
n Needed in RMI and RPC

Data Marshaling/Unmarshaling

• Marshalling = conversion of data into machine
independent format, suitable for transmission
– necessary due to heterogeneity & varying formats
of internal data representation

• Unmarshalling = the inverse process ...

• Approaches
– CORBA CDR (Common Data Representation)
– Java object serialisation, cf DataInputStream,

CORBA Common Data Representation
(CDR)
n External data representation defined in

CORBA 2.0
n Represent all the data type in arguments and

return values in remote invocation.
n Short, long, unsigned short, unsigned long,

float, double, char, boolean, octet any +
composit types

n n.b. No pointers

CORBA Common Data Representation
(CDR)

Type Representation
sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of the components
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

n struct Person {
string name;
string place;
long year;

}

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5
"Smith"
"h___"
6
"Lond"
"on__"
1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

n The type of the data items are not given

n Sender and recipient know types and order

n Corba IDL is used to describe data ...
n Corba interface compiler generate

(un)marshalling operations

(Java) Object serialization

public class Person implements Serializable {
private String name;
private String place;
private int year;
public Person(String aName, String aPlace, int aYear) {

name = aName;
place = aPlace;
year = aYear;

}

}

n Information about the class of each object is
included in the serialized form.

n “objects in objects” are serialized too ...

n Look at class ObjectOutputStream,
ObjectInputStream ...

The true serialized form contains additional type markers; h0 and h1 are
handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

Reflection

n Ability to enquire about the properties of a
class (names and types)

…layers…

Distributed applications programming

Ø Object Interaction: RMI (RPC)
– distributed objects model
– RMI … invocation semantics
– RPC
– events and notifications

Ø Products
– Java RMI, CORBA, DCOM
– Sun RPC
– Jini

...RMI and RPC…

…stand on top of OS, independent of:

– computer hardware… external data representation
– operating system… socket abstraction
– communication protocols… abstract request-reply

protocols over UDP or TCP
– different programming languages, e.g. CORBA

supports Java, C++…

…moreover…

Location transparency
– client/server do not need to know their
location

The object model

q Programs are logically partitioned into objects
q Interfaces
q signature definition

q Actions
– via method invocation
– effects ...
– may lead to exceptions

q Garbage collection

The distributed object model

Advantages of distributed objects

q Objects
– can act as clients, servers, etc
– can be replicated for fault-tolerance and
performance
– can migrate,

n Data encapsulation gives better protection
– concurrent processes, interference

Method invocations can be remote or local

Interfaces ...

n ... in distributed systems
q Modules run in separate processes and different

machines
q No access to variables
q No call-by-value/call-by-reference
q No pointers

n Service interface
n Remote interface

Interface Definition Languages
(IDL)
n They provide a notation that allow objects

implemented in a variety of languages to
invoke one another

The Distributed Object Model

n Remote object reference

n Remote interface

Remote object reference

q Object references
– used to access objects which live in processes
– can be passed as arguments, stored in
variables,...

q Remote object references
– object identifiers in a distributed system
– must be unique in space and time
– error returned if accessing a deleted object
– can allow relocation (see CORBA)

Remote object reference

Remote interfaces

v Specify externally accessed
– variables and procedures
– no direct references to variables (no global memory)
– local interface separate

v Parameters
– input, output or both,
– instead of call by value, call by reference

v No pointers
v No constructors

Remote object and its interfaces

Handling remote objects

q Exceptions
– raised in remote invocation
– clients need to handle exceptions
– timeouts in case server crashed or it is too busy

q Garbage collection
– distributed garbage collection may be necessary
– combined local and distributed collector
– cfr Java reference counting

RMI design issues

Ø Local invocations
– executed exactly once

Ø Remote invocations
– via Request-Reply (see DoOperation)
– may suffer from communication failures!

Ø retransmission of request/reply
Ø message duplication, duplication filtering

– no unique semantics…

Invocation semantics summary

Maybe invocation

Ø the remote method….
– may (or may not) been executed

Ø the invocation message was lost...
– method not executed

Ø the result was not received...
– was the method executed or was not?

Ø the server crashed
– before or after method executed?
– if timeout, result could be received after timeout...

At-least-once invocation

Ø the invoker receives a result or an exception
– retransmission of request messages

Ø Invocation message retransmitted...
– method may be executed more than once
– arbitrary failure (wrong result)
– method must be idempotent (repeated execution has
the same effect as a single execution)

Ø Server crash...
– dealt with by timeouts, exceptions

At-most-once invocation

Ø the invoker receives result (executed once) or
exception (no result)
– retransmission of reply & request messages
– duplicate filtering

Ø Best fault-tolerance...
– arbitrary failures can be prevented if methods
are called at most once

Ø Used by CORBA and Java RMI

Transparency of RMI

• Should remote method invocation look the same as
local?
– same syntax, see Java RMI (keyword Remote)
– need to hide

• data marshalling

• IPC calls

• locating/contacting remote objects

Problems
– different RMI semantics? susceptibility to
failures?
– protection against interference in concurrent
scenario?

• Approaches (Java RMI)
– transparent, but express differences in
interfaces
– provide recovery features

Implementation of RMI

Communication modules

q Reside in client and server
q Carry out Request-Reply jointly

– use unique message ids (new integer for each
message)

– implement a given RMI semantic
q Server’s communication module

– selects dispatcher within RMI software
– converts remote object reference to local

Remote reference module

q Creates remote object references and proxies
q Translates remote to local references (object table):

– correspondence between remote and local
object references (proxies)

q Directs requests to proxy (if exists)
q Called by RMI software

– when marshalling/unmarshalling

The core of middleware

q Proxy
– behaves like a local object to client
– forwards requests to the remote object
– it hides:

remote object reference
argument marshalling
send/receive

n How many proxies in a client ?

n Remote interface implementation

RMI software architecture

q Dispatcher
– receives request
– selects method and passes on request to skeleton

q Skeleton
– implements methods in remote interface
– unmarshals data, invokes remote object
– waits for result, marshals it and returns reply

n Proxy, dispatcher, skeleton are implemented
“automatically” ...
(generated automatically)

n Interface compiler ...

Implementation of RMI

A server ...

n Dispatcher + skeleton classes
n Its own (remote) object classes
n Initialiazion (the mytical main ...)

A client

n Proxies classes

n A factory method ...
q For creation of a remote object ...

n A factory object

Binding

q The binder
– mapping from textual names to remote
references (using a table)
– used by clients as a look-up service (cf
Java RMIregistry)

Activation

q Activation
– objects active (available for running) and passive
(implementation of methods + marshalled state)
– activation = create new instance of class +
initialise from stored state

q Activator
– records location of passive and active objects
– starts server processes and activates objects
within them

Persistent Objects

n ... Managed by a persisten object store that
keeps their states on disk in marshalled form

n When an object is made “passive” ...

Location service

n It locates remote objects from their remote
object reference

n It maps remote object references to probable
locations

n It supports object migration

RPC client and server

Remote Procedure Call

n A client program calls a procedure in another
program running in a server machine

n Available procedures are defined in server’s
service interface

n Local procedures vs metods
RPC vs RMI

RPC

• RPC
– historically first, now less used
– implemented over the Request-Reply protocol
– at-least-once or at-most-once semantics
– can be seen as a restricted form of RMI

• RPC software architecture
– similar to RMI (communication, dispatcher and
stub in place of proxy/skeleton)

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the
call to read

b) The stack while the called procedure is active

Client and Server Stubs

n Principle of RPC between a client and server program.

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Passing Value Parameters (1)

n Steps involved in doing remote computation through RPC

2-8

Asynchronous RPC (1)

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12

Asynchronous RPC (2)

n A client and server interacting through two asynchronous RPCs

2-13

Writing a Client and a Server

n The steps in writing a client and a server in DCE RPC.

2-14

Binding a Client to a Server

n Client-to-server binding in DCE.

2-15

JAVA RMI

n Java RMI extends the Java Object Model

n Object making a remote invocation must
handle a RemoteException

n The implementation of a remote object must
implement the Remote interface

n Remote Interfaces in Java RMI

n Method parameters = input parameters

n Method result = single output parameter

n RMIregistry ... The Java RMI binder

q The Naming class ...

q Use a URL-formatted string like:
//computerName:port/objectName

n The server side ...
q Main
q Servant classes
q Servant classes as extension of

UnicastRemoteObject

n The client side
q It uses a binder to lookup a remote object

reference ...

…Distributed Systems…

end of lectures

