Distributed
Systems

a.y. 2023/2024

Distributed Systems: lecture 4,5,6

Models for Distributed Systems

Models ...

Shared properties and common design
problems can be represented in the form of
descriptive models

Each model is intended to provide an
abstract, simplified but consistent description
of a relevant aspect of the design

..two types of models...

Architectural models

Fundamentals models:

> — Interaction
> — failure
> — security

Remember ... No global time
message-based communication

Distributed Systems:

Models for Distributed Systems:
Architectures

Architecture

Concerned with:
the placement of parts
the relationships between them
(software architecture)

The mapping onto the underlying network of
computers

(system architecture)

Processes and objects

Architectural Styles

A component is a modular unit with
well-defined required and provided
interface that is replaceable within
Its environment

A connector iIs a mechanism that
mediates communication,

coordination, cooperation among
components

Architectural Styles

Layered architectures
Object-based architectures
Data-centered architectures
Event-based architectures

...Jlayered...

Request
flow

Layer N

'

1

Layer N-1

1

Response
flow

...object-based...

Object Object

Method call

...data centered...

A common repository

Communication via a shared space

Blackboard

Shared file system/Shared data center

...event-based...

Component Component

Event delivery T T l
< Event bus >

T Publish

Component

(@)

| ...shared data-space

Component Component

Data delivery Publish

Shared (persistent) data space

(b)

Process taxonomy

Server process ...
Client process ...
Peer process ...

Moving process ...

System architectures

Software layers

Architectural models

o client-server, peer processes,...

o mobile code, agents,...

Sotftware Layers

Applications, services

Middleware

Operating system

Platform

Computer and network hardware

Sottware Layers

language and run-time
support for program extended services
interaction available to those o
\ the distributed systemN
applications
°°"Ve"ﬂ<;':$v/ Open (distributed) services
distributed(” ; :
i Middleware

Operating system<— p|atform

: . Computer and network hardware/
responsible for basic loca

resource managemen
(memory allocation/protection,

process creation and
scheduling, local interprocess

communication and peripheral
devices handling)

Software layers

Service layers
Higher-level access services at lower layers

Services can be located on different computers

Important layers

* Platform
— lowest-level hardware+software
— common programming interface, yet
— different implementations of operating system
facilities for co-ordination & communication

* Middleware
— programming support for distributed computing

...middleware provides...

support for distributed processes/objects:
— suitable for applications programming
— communication via
remote method invocation (Java RMI), or
remote procedure call (Sun RPC)

services infrastructure for application programs

— naming, security, transactions, event
notification,

Support a higher level of abstraction for:

Communication between group of processes
Notification of events

Replication of shared data

Multimedia data transmission in real time

Object Management Group’ s Common
Object Request Broker Architecture

(CORBA)

Microsoft Distributed Component Object
Model (DCOM)

Java RMI

The layered view...

though appropriate for simple types of resource data
sharing:
¢ e.g. databases of names/addresses/exam grades

too restrictive for more complex functions?

+ reliability, security, fault-tolerance, etc, need access to
application’ s data

see end-to-end argument [Saltzer, Reed & Clarke]

“Some communiction-related functions can
be completely and reliably implemented only
with the knowledge and help of the
application standing at the end points of the
communication systems”

Saltzer, J.H., Read, D.P. and Clarke, D. (1984). End-to-End
Arguements in System Deisgn. ACM Transactions on Computer
Systems Vol. 2, No 4, pp. 277-288

Checks, error-correction mechanism and
security are at many levels ...

Checking the correctness within the
communication systems could not be enough

Architectural models

Define
— software components (processes, objects)
— ways in which components interact

— mapping of components onto the underlying
network

Why needed?

— to handle varying environments and usage
— to guarantee performance

...Main types of models...

Client-server
— first and most commonly used

Multiple servers
— to improve performance and reliability

Proxy servers

— to reduce load on network, provide access
through firewall

Peer processes
— faster interactive response

‘ Client server

)

result @ result
Y

|

Key:
ProcessO Computer]

Serverl acts as client for Server2

...Main types of models...

Client-server
— first and most commonly used

Multiple servers
— to improve performance and reliability

Proxy servers

— to reduce load on network, provide access
through firewall

Peer processes
— faster interactive response

Centralized Architectures

Wait for result

Client

Provide service

Request-Reply Behaviour

‘ Client-Server Systems

One Tier Architecture

o N
-
Network computer or Presentation (to clients)
PCs with terminal + processing (transactions, applications)
emulation + data (management & access)
. 7
Two Tier Architecture r Client-server

(_
workstations

“fat client™
or “fat server”

 —|

T

Presentation + processing €-> Data (remote data access)

or presentation <-> Data processing
(remote procedure call)

T'hree Tier Architecture L . _
Two tier 1s satisfactory for simple client-

server applications, but for more

demanding transaction processing

applications™® ...

a clients shared applicarion shared data services A
services
e = T 3

=

presentation processing data
remote data access, remote data access or
procedure call transaction processing
N /

...Application Layering...

The user-interface level

The processing level

The data level

...Application Layering.

User interface

User-interface

level
HTML page
Keyword expression containing list
HTML
generator Processing
Query % Ranked list level
generator of page titles
Ranking
Database queries algorithm
Web page titles
with meta-information
Database Data level

with Web pages

Multitiered Architectures

The simplest organization is to have
only two types of machines:

o A client machine containing only the
programs implementing (part of) the
user-interface level

o A server machine containing the rest, i.e.,
the programs implementing the
processing and data level

. . . Multitiered Architectures. ..

Client machine

User interfagel User interface User interface User interface User interface
‘\5_,/’/ Application Application Application
““$ _____________ ¢ e Database

User interface . “----_$ ________
Application Application Application | ,/”/“\'
Database Database Database Database [Database ‘

Server machine

(@) (b) () (d) ()

‘ Multitiered Architectures (3)

User interface Wait for result
(presentation) T\ T TTTTTTTTTTTTTTTTTTTTTTTg

Request

Return

operation result
APPIEALION cemmecmmmeae _Afe}if _fc_’[fjf"_t? _________________
server
Request data Return data
Database

server
Time »

Multiple servers

Service
[—— — — —

_— T
I
|
|
I
-
|

e —
Servers may interact

‘ Proxy servers

|/ Web >
server

~»7 Web
server

intranet firewall outside world

0
/

D
\
A

Peer processes

A
Application Application
Co-ordination Co-ordination
code code

Application .
‘White-board’

Co-ordination (event notifi(‘ation)

code

A distributed application based on peer processes

Vertical distribution

Horizontal distribution

Peer-to-peer systems

Overlay networks

DHT...Distributed Hash Table

Membership management

Structured Peer-to-Peer Architectures

Actual node
i 0

145 {13,14,15} {0,1} {2}

13 &)
(8,9,10,11,12} (2,3,4)

B Associated _
113 data keys {5}

1y v Y ¢
-~ , -~ ’,
Sew -
- —
. . b}

{10} (567} 6]

-~
.--'
.
’ N
A\l
' -
' s PEIENG
3 [G .
. I\: '
. ’
S-et v g
4 .
L
Seaw

Structured Peer-to-Peer Architectures

Keys associated with
node at (0.6,0.7)
(0,1) \ (1,1)

\ (0.9,0.9)
[
(0.2,0.8)
®
e (0.6,0.7)
Actual node * (0'960'6)
(0.2,0.3)
[
(0.7,0.2)
[

(0,0) (1,0)
(a)

Structured Peer-to-Peer Architectures

(0.2,0.8)
El

(0.6,0.7)
©

(0.9,0.9)
°

(0.9,0.6)
L]

(0.7,0.2)
]

(b)

Unstructured Peer-to-Peer Architectures

= Random graph

= Flooding

Topology Management of Overlay Networks

Structured
overlay

Random
overlay

Protocol for
specific
overlay

_/———»

Q

A

Random peer

Protocol for
randomized
view

Links to topology-
specific other nodes

Links to randomly
chosen other nodes

Unstructured Peer-to-Peer Architectures

<1> Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first c/2 entries to mybuffer;
send mybuffer to P;
} else {
send trigger to P;
}

if PULL_MODE {
receive P’s buffer;
}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partial view;

(a)

Unstructured Peer-to-Peer Architectures (2)

Actions by passive thread:

receive buffer from any process Q;

if PULL_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first ¢/2 entries to mybuffer;
send mybuffer to P;

}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partial view;

(b)

‘ Topology Mana

Vot

ement of Overlay Networks

72

Al
77 ZZ 7R
ST LTS
Y ey e,

oSO

ZFA 7T AL TR 25 .Q‘«s,&;;\‘
W s) LSS NN
A 17 T A ZAPTE AN N

er iy,)) & e SN\

& “’"llv/”//”/’ﬂ&'%»‘«v,‘ya{w‘v\\‘

S 7 oSO
O SROITN
A \? b ¢ d “’

i W

l/’ A ié\‘%" %{%’6’9"
LN AN XAFA
o ke
sty e
.;\,1,“\’,55@, AR
%07/ \

.

=

‘ Superpeers

Regular peer

Superpeer

Superpeer
network

‘ Edge-Server Systems

— ~ A A\ L A

'] O [Client Content provider s
(B, 52 N 4,00
Edge server l" 'l

~ ~ Enterprise network

Client server and mobility

Mobile code
» downloaded from server, runs on locally
» e.g. web applets

‘ Web applets

Client requests results, applet code 1s downloaded:

Applet code

Client interacts with the applet:

@l. Applet

@
N\server

Web
server

..mobility...

Mobile agent (code + data + state)
» travels from computer to another
» collects information, returning to origin.

Mobile devices forming “spontaneous
networks”

Spontaneous networks ...

Easy connection to a LAN

Easy integration with local services
Limited connectivity

Security and privacy

Discovery service=registration+lookup

Distributed Systems:

Models for Distributed Systems:
Fundamentals Models

Fundamental models

Interaction model ... it reflects communication
delays and limited accuracy due to local
timing

Failure model ...at processing and
communication level

Security model ...

Interaction model

It deals with communication and coordination
Distributed Algorithms ...

No matter how communication channels are realized

Latency
Bandwidth
Jitter

Clock drift

Synchronous distributed systems

o Clock drift
o Execution step
o Message transmission time

Asynchronous distributed systems

Agreement problem

...Bvent ordering...

Occurred before
Occurred after
Concurrent

A message is received after it is sent and
replies are sent after receiving messages

..real-time ordering of events...

send receive receive

send

receve Physical

N .
receive time

receive receive

receive receive receive
t t {3

Failure model

To provide an understanding of the effects of
failures DSs expected to continue if failure
has occurred:

Omission failures...fail to perform actions

0o Process omission failures ... A stop, A crash ... A
clean crash ...

= Fail-stop

= Crash

O Arbitrary

...processes and channels...

process p process (q

\ Communication channel /

Outgoing message buffer Incoming message buffer

Communication omission failures
o Send-omission
2 Receive-omission

o Channel-omission: the communication channel
does not transport a message from the out buffer
to the in buffer

Failure 1ssues: ...types of failures...

benign failures (omission, stopping,
timing/performance)

arbitrary (called Byzantine)

o corrupt message, wrong method called, wrong
result

Omission and arbitrary failures

Class of failure Affects

Fail-stop Process
Crash Process
Omission Channel

Send-omussion Process

Recerve-omission Process

Arbitrary Process or
(Byzantine) channel

Description

Process halts and remains halted. Other processes may
detect this state.

Process halts and remains halted. Other processes may
not be able to detect this state.

A message mnserted 1n an outgoing message buffer never
arrives at the other end’s mncoming message buffer.

A process completes a send, but the message 1s not put
i1 1ts outgoing message buffer.

A message 15 put 11 a process s MCoMming message
buffer. but that process does not recerve it.
Process/channel exhibits arbitrary behaviour: 1t may
send/transmit arbitrary messages at arbitrary tumes,
commit OMISsIONs; a process may stop or take an

imcorrect Sth.

...timing failures...

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the

stated bound.

Security models

Protecting objects ... Access rights

Securing processes and their interaction
o Enemy (adversary) modeling

Objects and principals

Access rights Object

invocation

/ 1)
Client
result Server

Principal (user) Network Principal (server)

...the enemy...

“-l"l.,

The enemy .1

*
Processp
Communication channel

Processq

Cryptography and shared secrets

Authentication

Secure channels

...secure channels...

PrincipalA
\

E T . n't

Processp

4

Secure channel

PrincipalB
/

Process ¢

...Distributed Systems...

end of lectures

References:

o A.S. Tanenbaum, M. Van Steen, “Distributed Systems: Principles and Paradigm”,
Prentice- Hall, Il edition, 2007, Chap. 2 “Architectures”

o George Coulouris, Jean Dollimore, Tim Kindberg, “Distributed Systems: concepts
and design”, fourth edition, Addison-Wesley, 2005, Chap. 2 “System models”

