Wireless Networks for Mobile Applications

Prof. Claudio Palazzi cpalazzi@math.unipd.it

Università degli Studi di Padova

Bluetooth

Where does the name come from?

Harald Blaatand "Bluetooth" II King of Denmark 940-981

- Harald christianized the Danes
- Harald controlled Denmark and Norway

Bluetooth working group history

- February 1998: The Bluetooth SIG is formed
 - promoter company group: Ericsson, IBM, Intel, Nokia, Toshiba
- May 1998: Public announcement of the Bluetooth SIG
- July 1999: 1.0A spec (>1,500 pages) is published
- December 1999: ver. 1.0B is released
- December 1999: The promoter group increases to 9

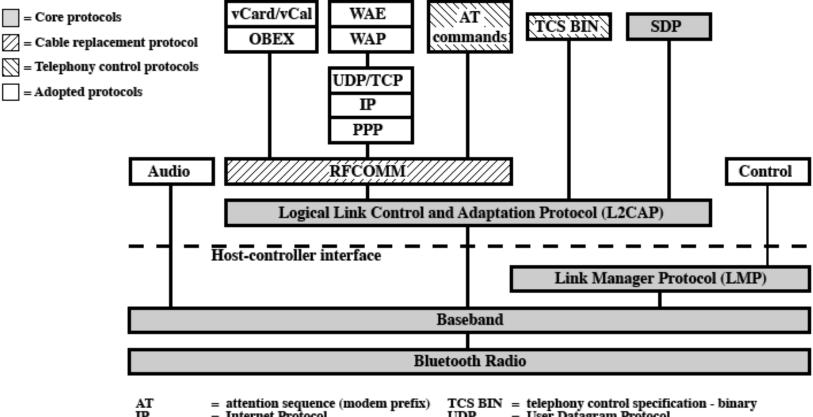
 3Com, Lucent, Microsoft, Motorola
- March 2001: ver. 1.1 is released
- Aug 2001: There are 2491+ adopter companies
- Today: almost all connected devices have Bluetooth

What does Bluetooth do for you?

Synchronization

- Automatic synchronization of calendars, address books, business cards
- Push button synchronization
- Proximity operation

Cordless Headset


User benefits

- Multiple device access
- Cordless phone benefits
- Hands free operation

Examples of use

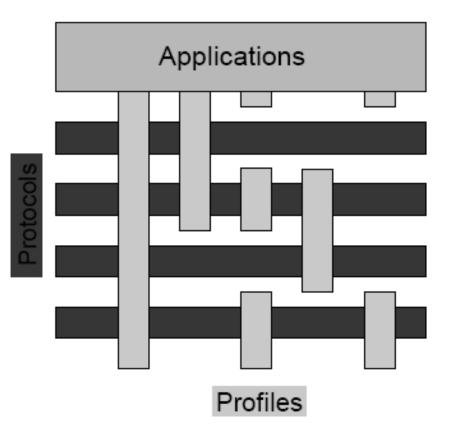
- Cordless Headset
- Portable PC speakers
- Cordless printer, scanner, keyboard, mouse, LAN
- Synchronization among devices
- Internet bridge
- Direct file sharing among devices
- Ad hoc networking
- IoT

Cordless headset

AI	= attention sequence (modem prefix)	I CS DIN	= telephony control specification - binary
IP	= Internet Protocol	UDP	= User Datagram Protocol
OBEX	= Object exchange protocol	vCal	= virtual calendar
	= Point-to-Point Protocol	vCard	= virtual card
RFCOMM	= radio frequency communications	WAE	= wireless application environment
SDP	= service discovery protocol	WAP	= wireless application protocol
TCP	= transmission control protocol		
	1		

Bluetooth Protocol Stack

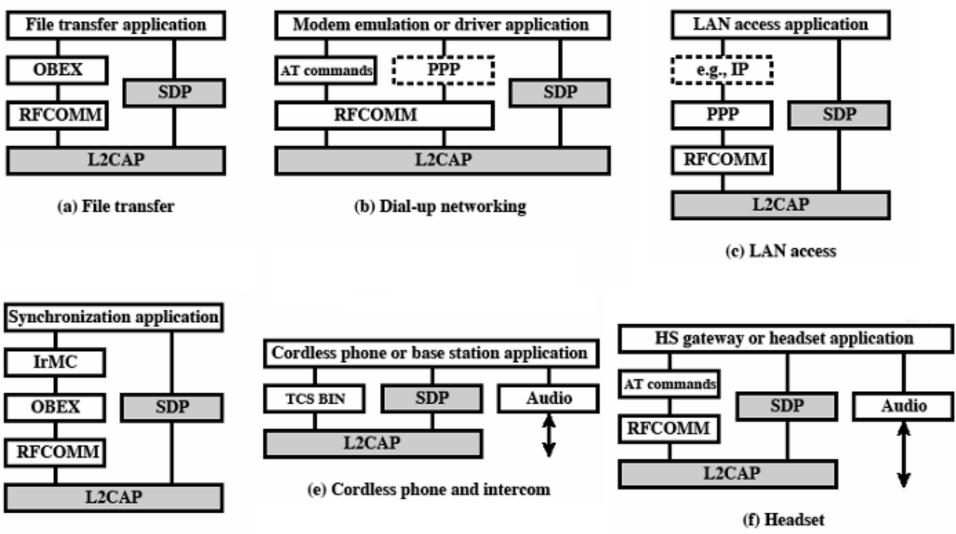
Protocol Architecture


- Bluetooth is a layered protocol architecture
 - Core protocols
 - Cable replacement and telephony control protocols
 - Adopted protocols
- Core protocols
 - Radio
 - Details of air interface (frequency hopping, modulation, tx power)
 - Baseband
 - Connection establishment in Piconet, pckt format, timing, addressing
 - Link manager protocol (LMP)
 - Setup between Bluetooth devices, security aspects, authentication, encryption
 - Logical link control and adaptation protocol (L2CAP)
 - Adapts upper-layer protocols with Baseband
 - Service discovery protocol (SDP)
 - Device information, services
 - To establish a connection between two or more bluetooth devices

Protocol Architecture

- Cable replacement protocol
 - RFCOMM (virtual serial port)
- Telephony control protocol
 - Telephony control specification binary (TCS BIN)
- Adopted protocols (use existing protocols and invent new ones only when necessary)
 - PPP (Point-to-Point protocol, IP datagrams over a point-to-point link)
 - TCP/UDP/IP
 - OBEX (Object Exchange protocol, defines objects and operations)
 - Defined by Infrared Data Association (IrDA)
 - WAE/WAP (Wireless Application Environment/Protocol)

Interoperability and Profiles


- Represents default solution for a usage model
- Vertical slice through the protocol stack
- Basis for interoperability and logo requirements
- Each Bluetooth device supports one or more profiles

Bluetooth Usage Models

- File transfer
- Internet bridge
- LAN access
- Synchronization
- Three-in-one phone
- Headset

Bluetooth Usage Model

(d) Synchronization

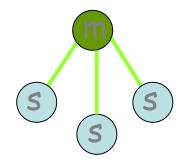
Bluetooth Radio and Baseband Parameters

- Topology: up to 7 simultaneous links in a logical star
- Peak data rate: 1 Mbps
- RF Band: 2.4 GHz
- Frequency allocations (in US and EU): 2.4 to 2.4835 GHz
- RF Channels: 2.402 GHz + n MHz (n = 0, ..., 78)
- Carrier Spacing: 1 MHz
- Transmit power: 0.1 mW
- Piconet access: FH-TDD-TDMA
- Scatternet access: FH-CDMA
- Hop Rate: 1600 hops per second (625us duration per hop)

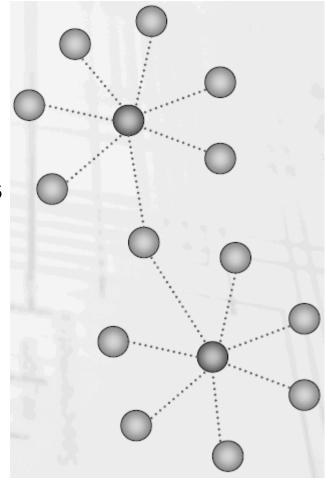
What is a Piconet?

- A collection of devices connected in an ad-hoc fashion.
- One unit will act as a master and the others as slaves for the duration of the piconet connection.
- Master sets the clock and hopping pattern.
- Each piconet has a unique hopping pattern/ID
 Pseudo-randomly chosen
- Each master can connect to 7 simultaneous or 200+ inactive (parked) slaves per piconet

Bluetooth Physical link


• Point to point link

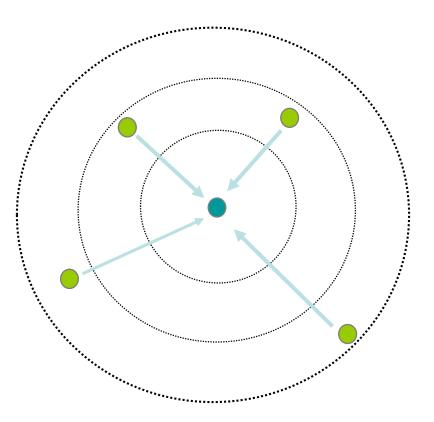
- master slave relationship
- nodes can function as masters or slaves


Piconet

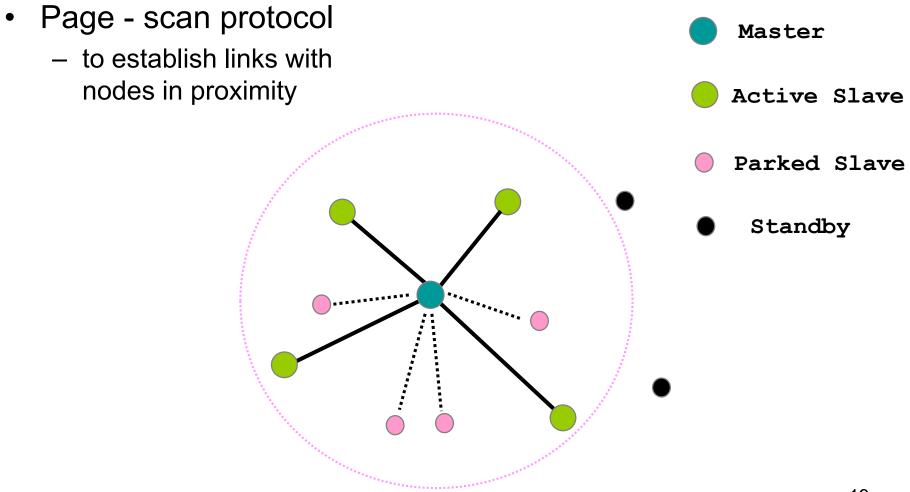
- Master can connect to 7 slaves
- Each piconet has max capacity
 =1 Mbps
- hopping pattern is determined by the master

Bluetooth Physical link

- Interconnected piconets
- One master per piconet
- Few devices shared between piconets
 - Master/Slave
 - Slave/Slave
 - Need special features
- No central network structure
 - "Ad-hoc" network



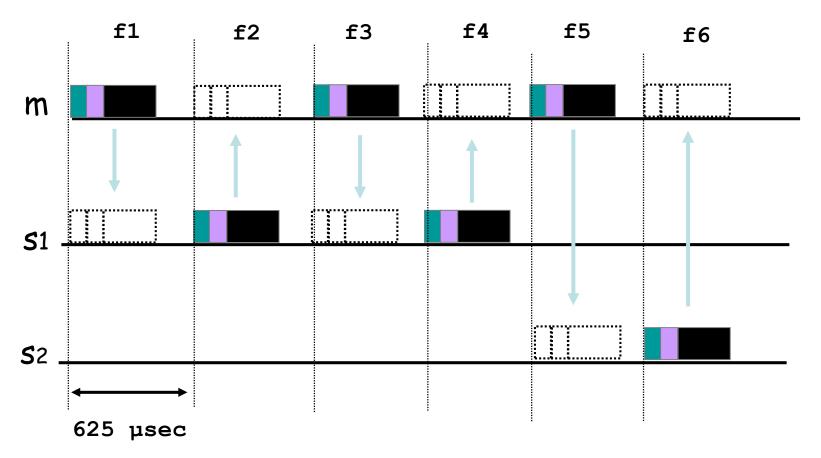
Piconets and Scatternets


- Piconet
 - Basic unit of Bluetooth networking
 - Master and one to seven slave devices
 - Master determines channel and phase
- Scatternet
 - Device in one piconet may exist as master or slave in another piconet
 - Allows many devices to share same area
 - Makes efficient use of bandwidth

Connection Setup

- Inquiry scan protocol
 - to learn about the clock offset and device address of other nodes in proximity

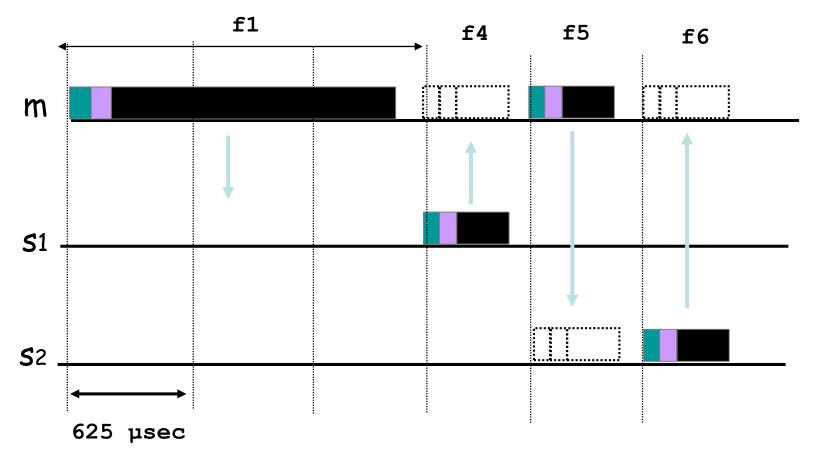
Piconet formation



Addressing

- Bluetooth device address (BD_ADDR)
 48 bit IEEE MAC address
- Active Member address (AM_ADDR)
 - 3 bits active slave address
 - all zero broadcast address
- Parked Member address (PM_ADDR)
 8 bit parked slave address

Piconet MAC protocol: Polling


FH/TDD

1600 hops/sec

Multi slot packets

FH/TDD

Data rate depends on type of packet

Error Correction Schemes

- 1/3 rate FEC (forward error correction)
 - Used on 18-bit packet header, voice field in HV1 packet
- 2/3 rate FEC
 - Used in DM packets, data fields of DV packet, FHS packet and HV2 packet
- ARQ
 - Used with DM and DH packets

ARQ Scheme Elements

- Error detection destination detects errors, discards packets
- Positive acknowledgment destination returns positive acknowledgment
- Retransmission after timeout source retransmits if packet unacknowledged
- Negative acknowledgment and retransmission destination returns negative acknowledgement for packets with errors, source retransmits

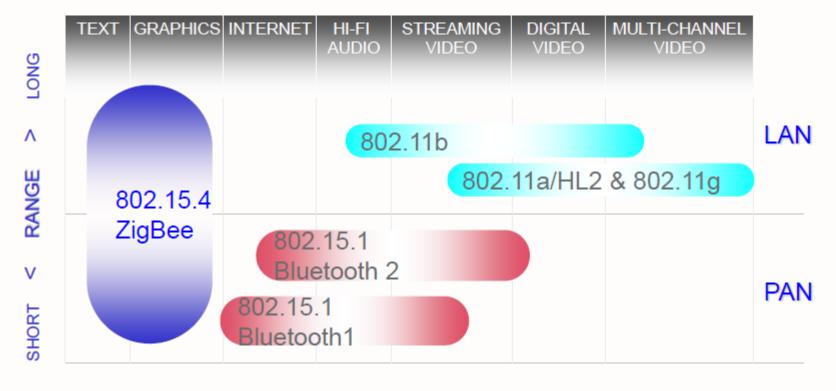
Many Versions

- Bluetooth 1.0
- Bluetooth 1.1
- Bluetooth 1.2
- Bluetooth 2.0 (up to 3 Mbps and reduced latency)
- Bluetooth 2.1
- Bluetooth 3.0 (improved speed and cooperation with Wi-Fi)
- Bluetooth 4.0
 - LE: Low Energy (speed up to 1Mbps)
 - UWB: Ultra Wideband
- Bluetooth 4.1 (improved interaction with 4G LTE)
- Bluetooth 4.2 (improved interaction with IoT)
- Bluetooth 5.0 (improved range, speed and interference avoidance)

IEEE 802.15.4 ZIGBEE

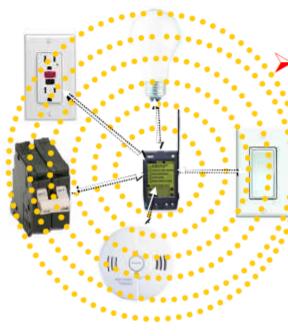
Meeting market needs

- No new wires
- Easy to install and maintain (mesh, self-organizing)
- Reliable (mesh, multiple channels, proven interference tolerance)
- Secure (AES 128)
- Scalability (hundreds of thousands of devices)
- Low power consumption (can sleep most of the time on, can last years on batteries)
- Low cost (small footprint)

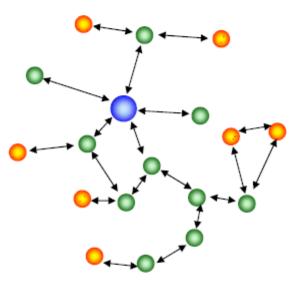

ZigBee Technology Profile

- High level communications protocol
 - Uses small, ultra low-power digital radio based on IEEE 802.15.4 wireless standard
- Targeted applications
 - secure networking
 - long battery life
 - low data rate
- RF bands
 - 2.4 GHz with 16 channels for global use
 - 915 MHz with 10 channels for NA, Australia +
 - 868 MHz with 1 channel for EU

How does ZigBee compare?

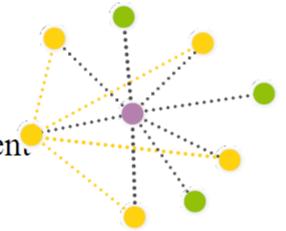

ZigBee	Bluetooth	WiFi
802.15.4 standard	802.15.1 standard	802.11 standard
250 kbps	1 Mbps	< 54 Mbps
TX: 35 mA	TX: 40 mA	TX: 400+ mA
Standby: 3 uA	Standby: 200 uA	Standby: 20mA
32-60 KB memory	100+ KB memory	100+ KB memory
Lighting, sensors, RC peripherals	Telecom audio, cable replacement	Enterprise, home access points
Mesh networking	Pt-Mpt	Pt-Mpt

Applications

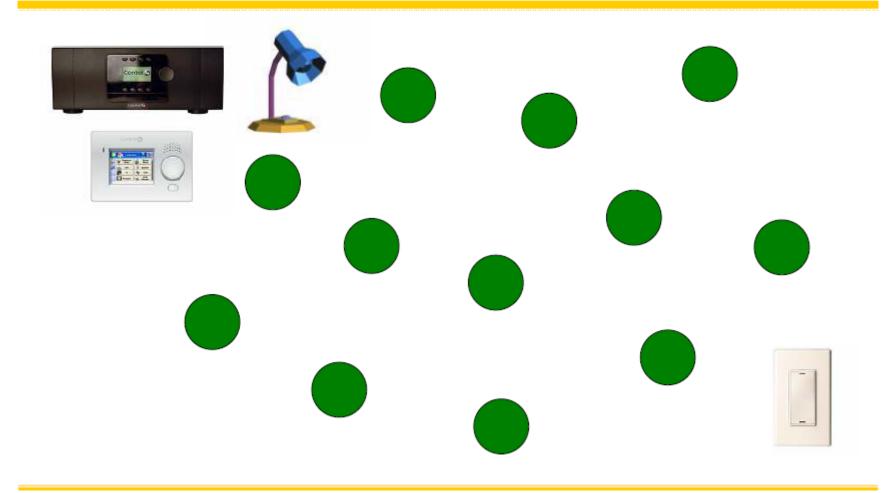


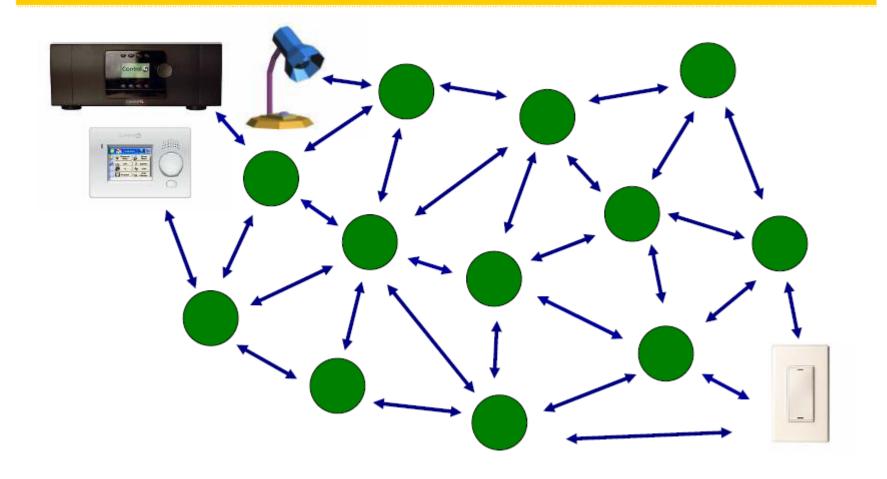
LOW < DATA RATE > HIGH

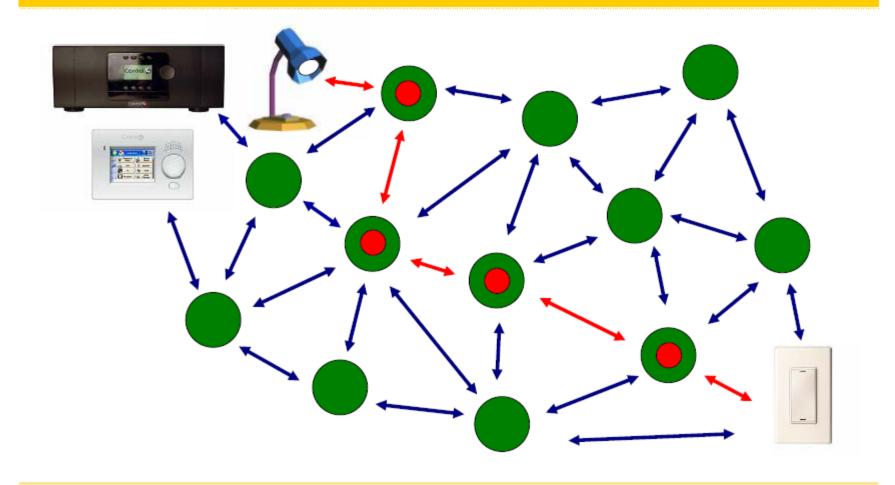
802.15.4 Application Space

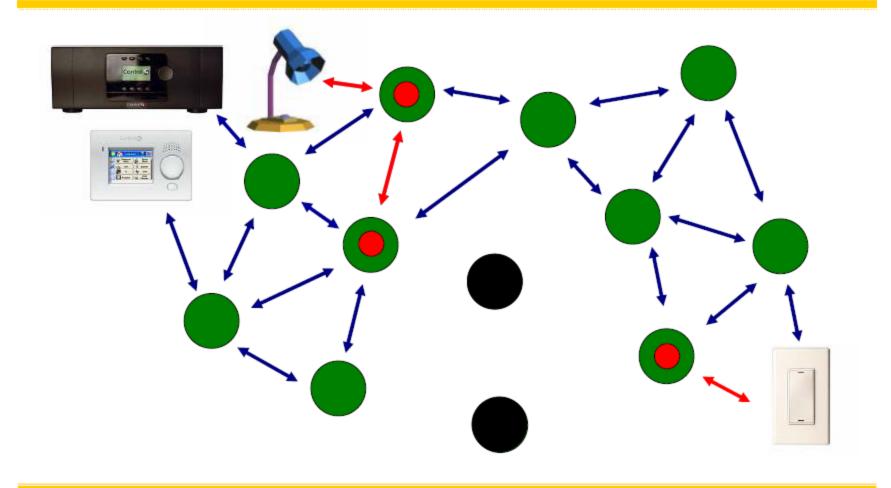


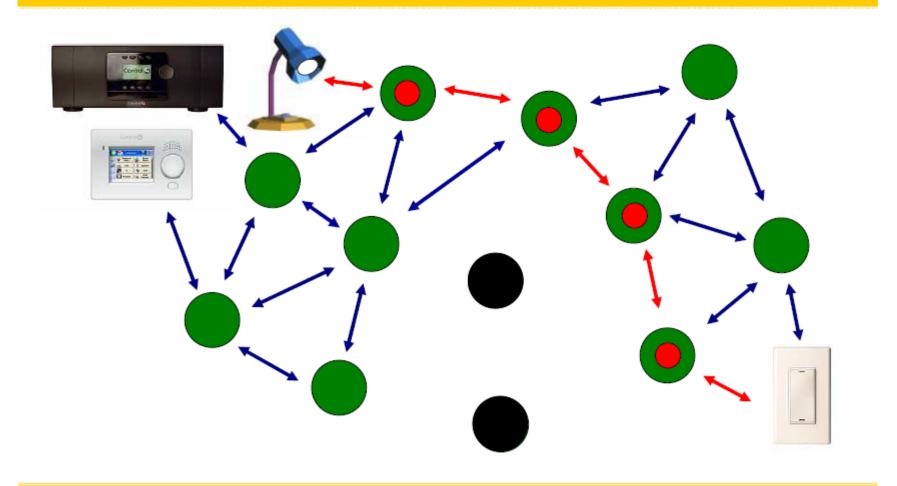
- Sensors & Controls:
 - Home Automation
 - Industrial Automation
 - Remote Metering
 - Automotive Networks
 - Interactive Toys
 - Medical

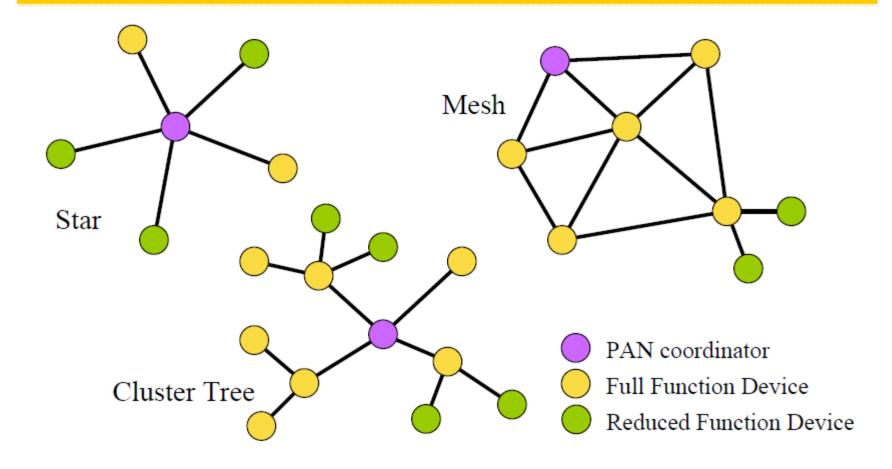



Basic Network Characteristics


- 65,536 network (client) nodes
- Optimized for timing-critical applications and power management
 - Time to Join Network: <30ms</p>
 - Sleeping to active: <15ms
 - Channel access time: <15ms</p>
- Full Mesh Networking Support




- Network coordinator
- Full Function node
- Reduced Function node
- ••• Communications flow
- ••• Virtual links



ZigBee Network Topologies

ZigBee Device Types

ZigBee Coordinator (ZC)

- -One and only one required for each ZB network.
- -Initiates network formation.
- -Acts as 802.15.4 2003 PAN coordinator (FFD).
- -May act as router once network is formed.

ZigBee Router (ZR)

- -Optional network component.
- -May associate with ZC or with previously associated ZR.
- -Acts as 802.15.4 2003 coordinator (FFD).
- -Participates in multihop routing of messages.
- ZigBee End Device (ZED)
 - -Optional network component.
 - -Shall not allow association.
 - -Shall not participate in routing.

General Advantages of ZigBee

- Reliable and self healing
- Supports large number of nodes
- Easy to deploy
- Very long battery life
- Secure
- Low cost
- Can be used globally

The Inevitable Question is whether ZigBee and Bluetooth are competitors or complements?

Bluetooth seems best suited for:

- Synchronization of cell phone to PDA
- Hands-free audio
- PDA to printer

While ZigBee is better suited for:

- Controls
- Sensors
- Lots of devices
- Low duty cycle
- Small data packets
- Long battery life is critical

Timing Considerations <u>ZigBee</u>

- New slave enumeration = 30ms typically
- Sleeping slave changing to active = 15ms typically
- Active slave channel access time = 15ms typically

<u>Bluetooth</u>

- New slave enumeration =>3s, typically 20s
- Sleeping slave changing to active = 3s typically
- Active slave channel access time = 2ms typically

Conclusion:

ZigBee devices can quickly attach, exchange information, detach, and then go to deep sleep to achieve a very long battery life. Bluetooth devices require about ~ 100 X the energy for this operation.

Power Considerations ZigBee

- 2+ years from 'normal' batteries
- Designed to optimize slave power requirements

<u>Bluetooth</u>

- Power model as a mobile phone (regular daily charging)
- Designed to maximize ad-hoc functionality

Bluetooth - Wibree

- The "Bluetooth consortium" (e.g. Nokia) has been working a low power consumption version of Bluetooth since 2001
- Wibree
 - Performance similar to ZigBee
 - Bluetooth without frequency hopping and with the possibility for nodes to be asleep most of the time
- Wibree has been adopted into Bluetooth specifications
 - It will use the same hardware as Bluetooth (shared antenna)

	Bluetooth	Wibree	ZigBee
Band	2.4GHz	2.4GHz	2.4GHz, 868MHz, 915MHz
Antenna/HW	Shared		Independent
Power	100 mW	~10 mW	30 mW
Target Battery Life	Days - months	1-2 years	6 months - 2 years
Range	10-30 m	10 m	10-75 m
Data Rate	1-3 Mbps	1 Mbps	25-250 Kbps
Component Cost	\$3	Bluetooth + 20¢	\$2
Network Topologies	Ad hoc, point to point, star	Ad hoc, point to point, star	Mesh, ad hoc, star
Security	128-bit encryption	128-bit encryption	128-bit encryption
Time to Wake and Transmit	3s	TBA	15ms