Wireless Networks for
Mobile Applications

Prof. Claudio Palazzi
cpalazzi@math.unipd.it

Universita degli Studi di Padova

mailto:cpalazzi@math.unipd.it

TCP over Wireless?

Base !
Station |

TCP congestion control
mechanism was designed for
a reliable medium:

/
MWireless
/ \

losses always taken as a
congestion sign

TCP-Wireless Interaction

Lower | High ||Smaller||Disconn.|| High || Variable No Errors || Variable
Bandwidth|| latency || pckts || handoff || BER || Bandwidth || distingui| |in burst|| latency
fragmen || & fading sh. error |
o congest. Diffic. Estim.
High packet loss RLERIO
rate
| Wrong
Sending window mcouis
shrinkage
| v
Redundant
¥ Retrasmiss.
Bandwidth
v v wastage v
Time wastage Energy
Legenda.' wastage
r v Wireless || TCP Resulting
Low Data Rate feature || feature || problem 3

Wireless Problems: Impact on TCP

* Error losses
— TCP assumes congestion and reduces cwnd

» Losses in bursts
— Multiple cwnd reductions

« Long delays (satellites)
— RTT-unfairness

« Variable delays
— Wrong RTO computation

 Disconnections
— Multiple timeouts

 Variable bandwidth

— Sudden loss bursts or bandwidth wastage

Impact of Multi-Hop Wireless
Paths (e.g., iIn MANETS)

O—-0~-0~"0707"070>0>0~>0—"0

1600
1400 —
1200 -
1000 -
800 -
600 -
400 -

203?{ﬂﬂﬂﬂﬂﬂ

1 2 3 45 6 7 8 910

Number of hops
TCP Throughput using 2 Mbps 802.11 MAC

OTCP
Throughtput
] (Kbps)

Throughput Degradations with
Increasing Number of Hops

Packet transmission can occur on at most one hop among three
consecutive hops

Increasing the number of hops from 1 to 2, 3 results in increased
delay, and decreased throughput

Increasing number of hops beyond 3 allows simultaneous
transmissions on more than one link, however, degradation
continues due to contention between TCP Data and Acks traveling
In opposite directions

When number of hops is large enough, the throughput stabilizes due
to effective pipelining

Mobility: Throughput generally
degrades with increasing speed

1] -
= - Ideal

T T U~ —
Average 1.
Throughput ™ |
Over

=i - "Tmee Ll
50 runs _ T e e . Actual

k] -

ad I | |
d 1d | o]

Speed (11/s)

Why Does Throughput
Degrade?

mobility causes

link breakage, ' |
resulting in route Route 18 TCP sender times out.
failure repaired Starts sending packets again
1 \ < \ \> I
—..—..—.._..No throughput
—p
No throughput
despite route repair
I
I
TCP data and acks

en route discarded

Why Does Repair Latency
hurt?

. TCP sender
mobility causes times out
link breakage, TCP sender . Resumes.
resulting in route times out. Rout'e 1S cendin
failure Backs off timer, repaired &

J _4 _______________________________ No throughput _ _ _ -
No throughput >
despite route repair

I
1
TCP data and acks

en route discarded

How to Improve Throughput
(Bring Closer to Ideal)

Network feedback
Inform TCP of route failure by explicit message
Let TCP know when route is repaired

— Probing (eg, persistent pkt retransmissions)

— Explicit link repair notification

Alleviates repeated TCP timeouts and backoff

10

Performance with Explicit
Notification

—o— Base TCP

~-m- With explicit
notification

throughput as a fraction of

2 10 20 30

mean speed (m/s)

Transport layer solutions:
a taxonomy

* Connection split:
— Local retransmissions
— Quick actions on the wireless link
— TCP specific for wireless link

* Pure End-to-End:
— New transport protocol
— Sender is aware of wireless link
— End-to-End paradigm preservation

12

Transport Protocols

Traditional TCP:

TCP Reno
TCP New Reno
TCP Vegas
TCP Sack

Connection split:

I-TCP

M-TCP

Snoop Protocol
Proxy

Pure End-to-End:

« Delayed Dupacks
« TCP-Aware
 Freeze-TCP

« TCP Probing

« WTCP

« TCP Westwood

« TCP Hybla

« TCP CUBIC

« TCP High Speed
« TCP Compound
« TCP Fast

13

Snoop Protocol (Balakrishnan et al., 1995)

« Designed to address high BER

 The Base Station implements a Snoop Agent:
— Monitoring of all packets in transit in both directions
— All packets not yet acked are cached on the base station:

» Local retransmission s of lost data

» Dupack filtering to hide losses to the sender (otherwise it would
perform redundant retransmissions and shrinkage of the
congestion window)

é Modified TCP '
. Internet /

, Base Station
\ J (Snoop Agent)

Snoop Protocol — Example (1/9)
15 16 || 17| 18 |

$W

20 19 é

Snoop Protocol — Example (2/9)
15 [16 | 17 | 18 | 19 |

$W

21 20 é

Snoop Protocol — Example (3/9)

22

meaning.

dati

Snoop Protocol — Example (4/9)

meaning.

dati

Snoop Protocol —

Example (5/9)

20

4 Retransmissions
24 23 17 21
16 [16 HE
- Dupack discarded by the BS
meaning: | dati - \M/ - -

Snoop Protocol — Example (6/9)
17 [18| 19

20 [21 | 22 || 23 2

= $W

25

meaning: | dati

Snoop Protocol —

Example (7/9)

26

No Fast Retransmit

25 é

23

22

— e - - oE e
—-— s s mee s s [

LI O
a= 35 g
[T =
R

17

21

20

- - - Dupack discarded by the BS

meaning:

dati

Snoop Protocol — Example (8/9)

27 26 é
B

No Fast Retransmit

- - - - Dupack discarded by the BS
meaning: | dati - \M/ - -

Snoop Protocol — Example (9/9)

meaning.

dati

Snoop Protocol: Pro & Cons

* Pro: * Cons:
— End-to-End semantics — Requires little RTTs on
preservation (almost) the wireless link
— Local (and timely) loss — Does not guarantee
recovery against long
— Addresses high BER disconnections

— Not utilizable
immediately after a
handoff (no packets in
new cache)

24

Satellite Scenarios

2 Geostationary Orbit (GEO) satellites > 36000 km
2 Low Earth Orbit (LEO) satellites - 100-1500 km

A N A W
SO O
Backbone configuration Direct to home configuration

a Great increase in the Round Trip Time (RTT)
- Up to 600 ms for GEO systems

o Non negligible Packet Error Rate (PER) due to the radio
channel

- Typical values in the range of [0-10%] depending on
satellite constellation, weather conditions, antenna position,
mobility, etc.

Slow Start & Congestion Avoidance Models

o Also referred as Van Jacobson algorithm

o In the Slow Start (SS) phase W is increased by 1 segment
per every new ACK received

o In the Congestion Avoidance (CA) phase W is increased
by 1/W segment per every new ACK received

W is doubled every RTT time in slow start

previous congestion window \ |
L /
Wi+l SS QRTT 0 <t<t SS
Ve =t cal S VU=
\ I L+~ t>t CA
\ L RTT .

new congestion window

after receiving one ACK ssthresh value

Number of RTTs elapsed since
entered in congestion avoidance

Slow Start & Congestion Avoidance Models

a In SS W is doubled at every RTT

a IN CA W is increased by 1 at every RTT

- The discrete time behavior of W can be effectively
approximate by a continuous time model

o
(8]

N
(5%

N
o

w
N

Congestion Avoidance

8 ‘/___._Slow Start
O)] .] . I) I .] .])]) I) I .])

0 50 100 150 200 250 300 350 400 450 500 550
Elapsed Time (ms)

N
~
T

—
(¢2]

Congestion Window (segments)

RTT Unfairness

o The longer the RTT the slower the W growth rate

(8)]
(0]

—RTT=25ms
— = RTT =50 ms
-=-=-RTT=100ms

I
o

B
o

_—
-
- —

.....
- e m -
--—c L e mm ="
_ —— - = =

Congestion Window (segments)
- N w
(o)} ESS N

o
T

- =

o

0 100 200 300 400 500 600 700 800
Elapsed Time (ms)

o Transmission rate B(t) (segments/sec) is given by:

B(t) = W(t)/ RTT .

RTT Unfairness

2 Transmitted data vs RTT

1000 r

900 _ —RTT =25 ms
800 || — - RTT=50ms
200 || - -RTT=100ms

600 |
500 |
400 |
300 |
200 |
100 f

ol

Transmitted data (Kbyte)

0 100 200 300 400 500 600 700

Elapsed Time (ms)

— Introduction of a parameter p = RTT/RTT,

TCP Hybla

a TCP Hybla was first presented in 2004* with the aim of
equalize the transmission rate against the RTT

— RTT is the actual Round Trip Time
- RTT,is a reference Round Trip Time (e.g. RTT, =25ms)

t

p2" RTT 0<t<t, SS
WH(t) =
‘ P b ‘ t>t CA
PP R T =0 ’
t
9RTT,
WH (¢ 0<t <ty SS
BH(t) RT(T) I RTT,
*C. Caini, and R. Firrincieli, L ft—10 b CA
“TCP Hybla: a TCP Enhancement | RTTy| RTTy Y /

for Heterogeneous Networks,”

Wiley Int. J. Satellite Commun. Netw., vol. 22, pp. 547-566, Sep.-Oct. 2004.

29

Satellite Link with Large RTT

10

—e— Hybla
o-VJ

Transmission rate (Mbps)

0.1 | | | | | (I)
0 100 200 300 400 500 600

RTT (ms)

29

TCP Hybla: Pros & Cons

* Pros: « Cons:

— End-to-End solution — Agressive behavior

— Code modifications may result in multiple
only at sender side losses

— RTT used to Speed up — Measured RTT is
transmission Speed sensitive to buffer size
for connections with — No handling of BER or
long RTTs (e.g., disconnections
satellites) in order to — Fairness &
reach RTT fairness Friendliness?

32

TCP Westwood & TCP Westwood+

Pure End-to-End

Flow Control based on an estimation of the
available/eligible bandwidth (BWE):

— Monitoring of acks’ arrival rate at sender side

— Use of this BWE to set cwnd e ssthresh after a loss:

3 dupack arrival:

ssthresh=BWE*RTTmin

instead TCP New Reno:
ssthresh = cwnd/2

if (cwnd > ssthresh)
then cwnd=ssthresh

Timeout expiration:

ssthresh=BWE*RTTmin

instead TCP New Reno:
ssthresh = cwnd/2

cwnd = 1

33

TCP Westwood vs. TCP Reno

TCP Westwood
TCP Reno

ssthresh =
BWE * RTTmin

Average ssthres)jl' !‘ L | |/l/l/

TCP Reno

| | | | | | | | | | | | >
Random losses time

34

TCP Westwood: Estimation

« Compute the Rate Estimate (RE) to enhance
congestion control

— RE is computed at the sender by sampling and
exponential filtering

— Samples are determined from ACK inter-arrival
times and info in ACKs regarding amounts of
bytes delivered

 RE is used by the sender to properly set
cwnd and ssthresh after packet loss
(indicated by 3 DUPACKS, or Timeout)

35

Fair RE = “Residual Bandwidth”

Estimate?

6 Estimated BW
Actual BW —
5
4 |
3 |
2 Single TCPW flow coexists with
.| On/Off UDP traffic
% 50 100 150 200 250 300

Time (sec)

Single TCPW flow at equilibrium does estimate “residual
bottleneck bandwidth”

36

Terrestrial Wireless Link with PER

120
100 /‘)
Av/: / : /: i
80 ‘ ‘//‘;A/A""' s a'.-/“_//
@ :
GC) Al;"“/-'
q% ° - - - Congestion Window N
” 40 4 :-""’/-‘ Bandwidth Estimate | |
,.: A ssthresh
20 JI
0 ==

Elapsed time [s]

TCPW Rate Estimation (TCP RE)

di.; d

[T 1

T K Tis the sample interval

« Rate estimate (RE) is obtained by aggregating the data
ACKed during the interval T (typically = RTT):

2 4

. tj>l‘k—T
bk o T

RE, =aRE, +(1-q,)(b" +2b’”j exponential filter

sample

_2t-Avy, .
Y filter gain

ay

38

TCP Westwood: Pros & Cons

* Pros: * Cons:

— bandwidth estimation — Wrong Bandwidth
at sender side to set Estimation over
ssthresh & cwnd so asymmetric links
as to reach higher — No specific
throughput mechanism to handle

— Code modifications disconnections or very
only at sender side high BER

— Fairness &
Friendliness?

39

TCP Adaptive-Selection

o Going back to end-to-end enhancements, few question
arise:
- is it necessary to make a definitive choice among TCP
enhancements?

- Why not to select optimized TCP variant on different
connections on the same server in an adaptive way?

- Is there any room for performance improvement?
- Is it feasible to simultaneously run different TCP
enhancements on the same machine?
2 The Adaptive-Selection* concept try to answer to all these
questions

*C. Caini, R. Firrincieli, and D. Lacamera, "The TCP ‘Adaptive- Selection” Concept”,

IEEE Systems Journal, vol. 2, no. 1, pp.83-89, Mar. 2008.
40

TCP Adaptive-Selection

o The TCP adaptive-selection concept is very simple:

- On the same server not a single TCP variant, but concurrent
use of different TCP enhancements to match the different
characteristics of connections.

o It can be applied in different ways, depending on:

- the agent that performs the TCP selection (i.e. receiver,
intermediate router, sender)

- the possible exploitation of a cross-layer approach

- the possibility to change the TCP version on an on-going

connection
. "dynamic” adaptive-selection (like gears in a car)

41

TCP Adaptive-Selection

a Linux OS appears the most convenient choice to
implement TCP adaptive-selection
- Most TCP variants are already available as modules

- A new “TCP adaptive-selection” module that calls other
modules could be the solution

a Several possibilities for the decision criteria

- TCP internal parameters (such as RTT and /or Bandwidth
estimation)

- Cross-layer information
— Reliable channel estimation

Need for quick and efficient metrics to
determine best choice at any time 42

TCP CUBIC

Optimized congestion control algorithm for high speed networks with
high latency (Long Fat Pipes/Networks)

The cwnd is a cubic function of time since last congestion event

— inflection point set to the window prior to the last congestion event
« CUBIC grows very quickly initially

 Slow down and maintains stable to a value around the cwnd when the
congestion happened

 If no loss happens (maybe some flow left the network leaving more
bandwidth available) quickly grows again

Major difference between TCP CUBIC and standard TCPs

— TCP CUBIC does not rely on the receipt of ACKs to increase the cwnd
— TCP CUBIC's cwnd depends only on the last congestion event
« Less RTT-unfairness since the window growth is independent of RTT

TCP CUBIC is implemented and used by default in Linux kernels
2.6.19 and above

43

Congestion Window

TCP CUBIC: Cwnd Growth

Study State Max
Behavior | Probing

TIME

44

Class Project Idea!

« Take various TCP protocols and test/compare
them in a realistic new environment
— Mobility
— Starbuck’s / Coffee Shop
— UMTS

e NS-2/NS-3 simulations or Linux

« Alternative: read and present paper(s) on
TCP (or general congestion control) for some
wireless environment

45

