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TCP over Wireless?
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TCP-Wireless Interaction
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Wireless Problems: Impact on TCP

• Error losses
– TCP assumes congestion and reduces cwnd

• Losses in bursts
– Multiple cwnd reductions

• Long delays (satellites)
– RTT-unfairness

• Variable delays
– Wrong RTO computation

• Disconnections
– Multiple timeouts

• Variable bandwidth
– Sudden loss bursts or bandwidth wastage
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Impact of Multi-Hop Wireless 

Paths (e.g., in MANETs)
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Throughput Degradations with

Increasing Number of Hops
• Packet transmission can occur on at most one hop among three 

consecutive hops 

• Increasing the number of hops from 1 to 2, 3 results in increased 

delay, and decreased throughput

• Increasing number of hops beyond 3 allows simultaneous 

transmissions on more than one link, however, degradation 

continues due to contention between TCP Data and Acks traveling 

in opposite directions

• When number of hops is large enough, the throughput stabilizes due 

to effective pipelining 
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Mobility: Throughput generally

degrades with increasing speed
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mobility causes

link breakage,

resulting in route

failure

TCP data and acks

en route discarded

Why Does Throughput 

Degrade?

TCP sender times out.

Starts sending packets again

Route is

repaired

No throughput

No throughput

despite route repair
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mobility causes

link breakage,

resulting in route

failure

TCP data and acks

en route discarded

Why Does Repair Latency  

hurt?

TCP sender

times out.

Backs off timer.

Route is

repaired

TCP sender
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sending

No throughput

No throughput

despite route repair
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How to Improve Throughput

(Bring Closer to Ideal)

• Network feedback

• Inform TCP of route failure by explicit message

• Let TCP know when route is repaired

– Probing (eg, persistent  pkt retransmissions)

– Explicit link repair notification

• Alleviates repeated TCP timeouts and backoff
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Performance with Explicit 

Notification
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Transport layer solutions: 

a taxonomy

• Connection split:

– Local retransmissions

– Quick actions on the wireless link

– TCP specific for wireless link

• Pure End-to-End:

– New transport protocol

– Sender is aware of wireless link

– End-to-End paradigm preservation
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Transport Protocols

• I-TCP

• M-TCP

• Snoop Protocol

• Proxy

• Delayed Dupacks

• TCP-Aware

• Freeze-TCP

• TCP Probing

• WTCP

• TCP Westwood

• TCP Hybla

• TCP CUBIC

• TCP High Speed

• TCP Compound

• TCP Fast

• …

• TCP Reno

• TCP New Reno

• TCP Vegas

• TCP Sack

Traditional TCP: Connection split: Pure End-to-End:
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Snoop Protocol (Balakrishnan et al., 1995)

• Designed to address high BER

• The Base Station implements a Snoop Agent:

– Monitoring of all packets in transit in both directions

– All packets not yet acked are cached on the base station:

• Local retransmission s of lost data

• Dupack filtering to hide losses to the sender (otherwise it would 

perform redundant retransmissions and shrinkage of the 

congestion window)

Internet
Base Station
(Snoop Agent)

Modified TCP
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Snoop Protocol – Example (1/9)

20 19 1718
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16

ackdati in cache lostmeaning: dupack
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Snoop Protocol – Example (2/9)

21 20 1819
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16

ackdati in cache lostmeaning: dupack
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Snoop Protocol – Example (3/9)
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Snoop Protocol – Example (4/9)
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Snoop Protocol – Example (5/9)
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Snoop Protocol – Example (6/9)
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Snoop Protocol – Example (7/9)
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Snoop Protocol – Example (8/9)
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Snoop Protocol – Example (9/9)
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Snoop Protocol: Pro & Cons

• Pro:

– End-to-End semantics 

preservation (almost)

– Local (and timely) loss 

recovery 

– Addresses high BER

• Cons:

– Requires little RTTs on 

the wireless link

– Does not guarantee 

against long 

disconnections 

– Not utilizable 

immediately after a 

handoff (no packets in 

new cache)



Satellite Scenarios



Slow Start & Congestion Avoidance Models

ssthresh value

time in slow startW is doubled every RTT

new congestion window

after receiving one ACK

previous congestion window

Number of RTTs elapsed since

entered in congestion avoidance



Slow Start & Congestion Avoidance Models



RTT Unfairness
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RTT Unfairness
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TCP Hybla
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Satellite Link with Large RTT
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TCP Hybla: Pros & Cons

• Pros:

– End-to-End solution

– Code modifications

only at sender side

– RTT used to speed up 

transmission speed

for connections with 

long RTTs (e.g., 

satellites) in order to 

reach RTT fairness

• Cons:

– Agressive behavior

may result in multiple 

losses

– Measured RTT is

sensitive to buffer size

– No handling of BER or 

disconnections

– Fairness & 

Friendliness?
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TCP Westwood & TCP Westwood+

• Pure End-to-End

• Flow Control based on an estimation of the 

available/eligible bandwidth (BWE):

– Monitoring of acks’ arrival rate at sender side

– Use of this BWE to set cwnd e ssthresh after a loss:

• ssthresh=BWE*RTTmin

instead TCP New Reno:

ssthresh = cwnd/2

• if(cwnd > ssthresh) 

then cwnd=ssthresh

• ssthresh=BWE*RTTmin

instead TCP New Reno:

ssthresh = cwnd/2

• cwnd = 1

3 dupack arrival: Timeout expiration:
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TCP Westwood vs. TCP Reno

cwnd

time

ssthresh = 
BWE * RTTmin
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TCP Westwood: Estimation

• Compute the Rate Estimate (RE) to enhance 
congestion control
– RE is computed at the sender by sampling and 

exponential filtering

– Samples are determined from ACK inter-arrival
times and info in ACKs regarding amounts of 
bytes delivered

• RE is used by the sender to properly set 
cwnd and ssthresh after packet loss
(indicated by 3 DUPACKs, or Timeout)
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Fair RE = “Residual Bandwidth” 

Estimate?
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Terrestrial Wireless Link with PER
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TCPW Rate Estimation (TCP RE)

• Rate estimate (RE) is obtained by aggregating the data 

ACKed during the interval T (typically = RTT):
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TCP Westwood: Pros & Cons

• Pros:

– bandwidth estimation

at sender side to set 

ssthresh & cwnd so 

as to reach higher

throughput

– Code modifications

only at sender side

• Cons:

– Wrong Bandwidth 

Estimation over 

asymmetric links

– No specific 

mechanism to handle 

disconnections or very 

high BER

– Fairness & 

Friendliness?
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TCP Adaptive-Selection
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TCP Adaptive-Selection
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TCP Adaptive-Selection

Need for quick and efficient metrics to 

determine best choice at any time
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TCP CUBIC
• Optimized congestion control algorithm for high speed networks with 

high latency (Long Fat Pipes/Networks)

• The cwnd is a cubic function of time since last congestion event

– inflection point set to the window prior to the last congestion event

• CUBIC grows very quickly initially

• Slow down and maintains stable to a value around the cwnd when the 

congestion happened

• If no loss happens (maybe some flow left the network leaving more 

bandwidth available) quickly grows again

• Major difference between TCP CUBIC and standard TCPs

– TCP CUBIC does not rely on the receipt of ACKs to increase the cwnd

– TCP CUBIC's cwnd depends only on the last congestion event

• Less RTT-unfairness since the window growth is independent of RTT

• TCP CUBIC is implemented and used by default in Linux kernels

2.6.19 and above
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TCP CUBIC: Cwnd Growth
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Class Project Idea!

• Take various TCP protocols and test/compare 

them in a realistic new environment

– Mobility

– Starbuck’s / Coffee Shop

– UMTS

– …

• NS-2/NS-3 simulations or Linux

• Alternative: read and present paper(s) on 

TCP (or general congestion control) for some 

wireless environment


