
Prof. Claudio Palazzi

cpalazzi@math.unipd.it

Università degli Studi di Padova

Wireless Networks for

Mobile Applications

mailto:cpalazzi@math.unipd.it

2

TCP Overview

• TCP is the most widely used Internet protocol
– Web, Peer-to-peer, FTP, telnet, …

• A two way, reliable, byte stream oriented end-to-end
protocol
– Includes flow and congestion control

• Closely tied to the Internet Protocol (IP)

• A focus of intense study for many years
– RENO, NEW RENO, SACK are classic, legacy TCP versions

– Nowadays TCP Cubic (Linux) and TCP Compound (Windows)

– Hundreds of proposals for new scenarios (e.g., wireless links)

• Not appropriate for current wireless scenarios

3

TCP Features
• Connection-oriented

• Byte-stream

– app writes bytes

– TCP sends segments

– app reads bytes

• Reliable data transfer

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

• Full duplex

• Flow control: keep sender from
overrunning receiver

• Congestion control: keep sender
from overrunning network

4

Reliability in TCP

• Checksum used to detect bit level errors

• Sequence numbers used to detect sequencing errors

– Duplicates are ignored

– packets can be reordered (or dropped)

– Lost packets are retransmitted

• Timeouts is one of the two main ways to detect lost

packets

– Requires RTO (retransmission timeout) calculation

– Requires sender to maintain data until it is ACKed

– [The other way is receiving three dupacks (discussed later in

these slides)]

5

Timeout-based Recovery

• Wait at least one RTT (Round Trip Time) before

retransmitting

• Importance of accurate RTT estimators:

– Low RTO  unneeded retransmissions

– High RTO  poor throughput

• RTO estimator must adapt to change in RTT

– But not too fast, or too slow!

– About 4 times the RTT

6

Fast Retransmit

• Duplicate acks (dupacks) are repeated acks for
the same segment

• When can duplicate acks occur?
– Loss

– Packet re-ordering

– Window update – advertisement of new flow control
window

• Assume re-ordering is infrequent and not of
large magnitude
– Use receipt of 3 or more dupacks as indication of loss

– Don’t wait for timeout to retransmit packet

7

Fast Retransmit and

Fast Recovery: 3 Dupacks

• Problem: coarse-grain
TCP timeouts lead to idle
periods

• Fast retransmit: use 3
duplicate ACKs (dupacks)
to trigger retransmission

• Fast recovery: start at
SSTHRESH (send out
ssthresh new packets)
and do additive increase
after fast retransmit
– Instead of starting from 1

packet only as with timeouts

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

8

Sequence Numbers

• Stop&go vs. sliding windows

• The window indicates how
many packets can be
transmitted/travelling
without having received the
corresponding ack yet

• Any time an ack is received
the window moves on
including new packets that
can be transmitted

• Data divided into packets
(segments)

– Generally of 1500 B

9

TCP Flow Control

• The Flow Control blocks the sender from overwhelming
the receiver
– The receiver can inform the sender about its receiving capacity

– The Advertised Window field in the ACKs is used to this aim

• Receiving side
– The Advertised Window (in returning ACKs) is set by the receiver

as the max number of bytes that it can receive; basically, how much
space is left in its buffer

• Sending side
– The sender’s actual window (Sending Window) represents the

actual bytes sent out and corresponds to the minimum between its
computed window (Congestion Window) and the receiver’s one
(Advertised Window)

10

Delay-Bandwitdth Product
• Delay x Bandwidth Product represents the pipe size

– Link between sender and receiver seen as a pipe of length =
Delay (or RTT) and section = Bandwidth

– Represents the max number of data that can be traveling on the
link at any time

– Similar to the amount of water filling up a pipe

• With TCP of the the RTT-Bandwidth product is used
– RTT is twice the Delay

– It considers the fact that half the traffic is traveling and half
reached the receiver and ACKs (which have small/negligible size
with respect to data packets) are coming back

11

TCP Congestion Control

• The Congestion Control blocks the sender from

overwhelming the network/Internet

• Idea

– assumes best-effort network (FIFO routers) each source

determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)

• Challenge

– determining the available capacity in the first place

– adjusting to changes in the available capacity

12

Scenario

• Internet is a black box

– Intelligence is at the boundaries (end nodes)

• 1972: TCP protocol (by Vint Cerf and Bob Kahn)

– No clue about wireless revolution

– Any loss in wired links is due to congestion (no error losses)

1987: Gekko’s

cellphone

13

Additive Increase and

Multiplicative Decrease
• Objective: adjust to changes in the available capacity

• New state variable per connection: CongestionWindow
– limits how much data source has in transit

SendingWindow = MIN(CongestionWindow, AdvertisedWindow)

• Idea:
– increase CongestionWindow when congestion goes down

– decrease CongestionWindow when congestion goes up

14

AIMD (cont)

• Question: how does the source determine whether
or not the network is congested?

• Answer: timeout/dupacks
– timeout signals that a packet (or more than one) was lost

• probably with some serious congestion or other
problem (disconnection?)

– Three dupacks signals that a packet was lost but others
are still passing through

• Probably a minor congestion or packets that are seldom lost
due to transmission error

– In general it is assumed that lost packet implies congestion
• Not true in wireless environments!

15

AIMD (cont)

• In practice: increment a little for each ACK

Increment = 1/CongestionWindow

CongestionWindow += Increment

Source Destination

…

• Algorithm

– increment CongestionWindow by one

packet per RTT (linear increase)

– divide CongestionWindow by two

whenever a timeout occurs

(multiplicative decrease – fast!!)

16

AIMD (cont)

• AIMD results in a behavior that generates a
sawtooth shape trace of transmission data rate

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
W

N
D

Time (seconds)

70

30

40

50

10

10.0

Additive

Increase

Multiplicative

Decrease

17

Slow Start
• Objective: quickly determine the available

capacity in the first part of a connection

• Idea:
– begin with CongestionWindow = 1 pckt

– double CongestionWindow each RTT
(increment by 1 packet for each ACK)

– This is exponential increase to probe for
available bandwidth

– Up to half of cwnd may get lost (when congestion
level is reached)

• Used…
– when first starting connection

– when connection goes dead waiting for timeout

• SSTHRESH (slow start threshold) indicates
when to begin additive increase phase

Source Destination

…

18

SSTHRESH and CWND

• SSTHRESH typically very large on connection setup

• Set to one half of CongestionWindow (CWND) on
packet loss
– So, SSTHRESH goes through multiplicative decrease for each

packet loss

– If loss is indicated by timeout, set CongestionWindow = 1

– If loss is indicated by 3 dupacks, set CongestionWindow
equal to half of the congestion window value prior to the loss event

• After loss, when new data is ACKed, increase CWND
– Manner depends on whether we are in slow start (exponential)

or congestion avoidance (linear)

19

Legacy TCP versions

• TCP Tahoe

• TCP Reno

• TCP New Reno

• TCP SACK

• TCP Vegas

• …

20

TCP Tahoe Overview

• Standard TCP functions

– connections, reliability, etc.

• Slow Start

• Congestion control/management

– Additive Increase/ Multiplicative Decrease (AIMD)

– Only timeouts to detect losses

21

TCP Reno & New Reno

• Fast Retransmit/Fast Recovery

– Three dupacks to quickly recover from light congestion

(1 pkt loss)

• TCP Reno can recover from 1 pkt loss without

having a time out

• TCP New Reno

– Introduces partial ACKs to recover more pkts without

resorting to timeouts

22

TCP SACK

• TCP New Reno can retransmit only 1 pckt every RTT

– Needs a partial ack to come back

• TCP SACK (Selective Acknowledgment)

– Returning acks declares which packets (even non

contiguous) were received

– All non received packets can be retransmitted

• Recover from multiple losses in just one RTT

23
Time

Sequence No

X

TCP Tahoe

Time Out and

retransmission

Wasted…

24

Fast Retransmit

Time

Sequence No
Duplicate Acks

Retransmission
X

25

Multiple Losses

Time

Sequence No Duplicate Acks

Retransmission
X

X

X
X

Now what?

26

TCP Reno

Time

Sequence No

X

X

X
X

Now what?  timeout

27

TCP New Reno

Time

Sequence No

X

X

X
X

Now what?  partial ack

recovery

28

TCP SACK

Time

Sequence No

X

X

X
X

All losses recovered

in one RTT

29

Congestion Control Functionality

• Slow Start phase (exponential growth)
– Each returning ACK, a new pckt is transmitted

• cwnd -> cwnd + 1

– Every RTT
• cwnd -> 2 cwnd

• Congestion avoidance phase (linear growth)
– Each returning ACK, a new pckt is transmitted

• cwnd -> cwnd + (1/cwnd)

– Every RTT
• cwnd -> cwnd + 1

When cwnd > slow_start_threshold

Until cwnd ≤ slow_start_threshold

30

Loss Recovery: Summary

• Two ways to detect losses
– Time outs

– Three dupacks

• With timeout expiration
– ssthresh = cwnd / 2

– cwnd = 1 (so, restart in slow start phase)

• With three dupacks
– ssthresh = cwnd / 2

– cwnd = cwnd / 2 (so, restart in cong. avoidance phase)

31

TCP Saw Tooth

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeout
may still

occur

Wireless environments have error losses as well

Timeout

Three dupacks

Wired vs Wireless
• Let’s assume for simplicity only congestion avoidance

– Each packet loss determined through 3 dupacks and recovered
through fast retransmit and fast recovery

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
W

N
D

Time (seconds)

70

30

40

50

10

10.0

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
W

N
D

Time (seconds)

70

30

40

50

10

10.0

wireless errors causing throughput degradation

33

TCP … summary

• Flow control vs congestion control

• Sliding window

• Slow start vs congestion avoidance

• Losses: time out vs three dupacks

• Windows: congestion vs sending vs advertised

• …

34

TCP Vegas Congestion

Avoidance
• Reaction per congestion episode not per loss

• Congestion avoidance vs. control

• Use change in observed end-to-end delay to detect
onset of congestion
– Compare expected to actual throughput

– Expected = window size / round trip time

– Actual = acks / round trip time

• Modifications:
– Modified Congestion Avoidance

– Aggressive Retransmission

– Aggressive Window Adaptation

– Modified Slow-Start

35

TCP Vegas

actual can only be equal or less than expected

• expected is transmission rate with no other traffic/queue

Monitor transmission rate (throughput, goodput):

• Thresholds of  and  correspond to how many packets
Vegas is willing to have in queues
–  <  so… expected -  < expected -  < expected

• If expected -  < actual < expected
– Queues decreasing  increase rate

• If expected -  < actual < expected - 
– Don’t do anything

• If actual < expected - 
– Queues increasing  decrease rate before packet drop

36

Vegas: Modified Congestion Avoidance

• Vegas Calculates (Once per RTT):

Expected Throughput=WindowSize/BaseRTT

Actual Throughput=ActualTransmittedAmount/RTT

• Static Parameters:

 = 1 pkts/RTT

 = 3 pkts/RTT

37

Vegas: Modified Congestion Avoidance

E
x
p
e
c
te

d
 T

h
ro

u
g
h
p
u
t





T
h
ro

u
g
h
p
u
t

A
c
tu

a
l

T
h

ro
u

g
h

p
u

t

A
c
tu

a
l

T
h

ro
u

g
h

p
u

t

A
c
tu

a
l

T
h

ro
u

g
h

p
u

t

(T
x
 U

n
c
h

a
n

g
e
d

)

(D
e
c
re

a
s
e
 T

x
)

(I
n

c
re

a
s
e
 T

x
)

38

Vegas: Modified Congestion Avoidance

39

Vegas: Modified Congestion Avoidance

• TCP transmission rate = cwnd/RTT

• TCP takes cwnd updating decision once per RTT

• The decision is applied throughput the next RTT for each

received ACK as follows:

• Increase Tx Rate (Expected-Actual<): :

 cwnd = cwnd + 1/cwnd

• Decrease Tx Rate (Expected-Actual>):

 cwnd = cwnd - 1/cwnd

• Tx Rate Unchanged (<Expected-Actual<): :

 cwnd = cwnd

40

Vegas: Aggressive Retransmission

• With dupacks
– When Vegas receives the first dupack or the second

dupacks, it checks the fine grained timer expiry

• More aggressive retransmissions (helps in wireless

environments with non-congestion losses)

– If timer expirers, it retransmits immediately

More appropriate for error prone (wireless) environments

41

Vegas: Aggressive cwnd Updating

• With recovery

– Reduce cwnd by one quarter instead of half

when it enters into recovery

• With multiple loss

– In case of multiple segment loss from a single

window, it reduces the cwnd only once

• With Initial setting

– cwnd is set to 2 instead of 1

More appropriate for error prone (wireless) environments

42

Vegas: Modified Slow-Start

• Vegas Calculates (in every alternate RTT):

Expected Throughput=WindowSize/BaseRTT

Actual Throughput=ActualSentAmount/RTT

• Static Parameters:

 = 1 pkts/RTT

43

Vegas: Modified Slow-Start

E
x
p
e
c
te

d
 T

h
ro

u
g
h
p
u
t



T
h
ro

u
g
h
p
u
t

A
c
tu

a
l

T
h

ro
u

g
h

p
u

t

A
c
tu

a
l

T
h

ro
u

g
h

p
u

t

(S
w

it
c
h

 t
o

 C
A

)

(C
o

n
ti

n
u

e
 S

S
)

44

Vegas: Modified Slow-Start

• TCP keeps the congestion window fixed in every

other RTT and it measures the throughput

• On every next RTT, it does the followings:

• Continue SS (Expected-Actual<):

 Exponential Increase

 cwnd = cwnd + 1 for each ACK, that is,

 cwnd = 2 * cwnd for each RTT

• Switch to CA (Expected-Actual>):

 Set ssthresh=cwnd

 Follow the rules of CA

45

TCP Vegas

• Flaws

– Sensitivity to delay variation

– Cannot coexist with legacy TCP versions

• When a TCP Vegas flow shares the same bottleneck with a TCP New Reno

(for instance), as soon as the pipe is full and packets get buffered TCP

Vegas reduces its data rate, thus leaving some more space to TCP New

Reno that continues its growth till a congestion episode (packet loss due to

buffer overflow)

• Some ideas have been incorporated into more recent

implementations

• Overall

– Some very intriguing ideas

– Controversies killed it

