
1

Numerical Methods for Astrophysics:
ORDINARY DIFFERENTIAL EQUATIONS (ODEs)

Part 2

Michela Mapelli

2

ODEs. Fourth-order predictor-corrector Hermite scheme

- Hermite is >= 4th order scheme

- a predictor-corrector scheme, because particle positions and
velocities are first predicted at third-order level and then corrected
to make the accuracy fourth-order

- define JERK: derivative of acceleration

- snap: second derivative of acceleration

-crackle: third derivative of acceleration

3

ODEs. Fourth-order predictor-corrector Hermite scheme

- Taylor expansions (fourth order for positions and velocities):

- We can use equations (3) and (4) to eliminate snap and crackle
from equations (1) and (2)

 fourth order accuracy, with errors scaling as h5,
but the terms in h3 and h4 have canceled out!

BUT PROBLEM HERE: we do not know v(t+h), a(t+h), j(t+h)

4

ODEs. Fourth-order predictor-corrector Hermite scheme

- IMPLICIT SCHEME: method that depends on quantities that we still
need to calculate (because they refer to the next step)

vs EXPLICIT SCHEME: method depending only on quantities that we
already know (because they refer to current step)

We cannot use an implicit method unless we have some trick
to predict the quantities which refer to the next step.

- In the Hermite method, we predict positions and velocities of the
next step by using a third-order Taylor expansion.

5

ODEs. Fourth-order predictor-corrector Hermite scheme

1- Predictor step: we use the 3rd (2nd)order Taylor expansion to predict pos (vel)

2- Force evaluation: Calculate acceleration and jerk with the predicted pos
and vel

3- Corrector step: we substitute vpi(t+h), api(t+h) and jpi(t+h) to vi(t+h),
ai(t+h) and ji(t+h) into the two equations marked with

PROBLEM HERE! Is this really 4th order?

6

ODEs. Fourth-order predictor-corrector Hermite scheme

PROBLEM HERE! Is this really 4th order?

NO, first eq. contains which is 3rd order

TRICK: calculate first the velocity and then use it instead of

7

ODEs. Fourth-order predictor-corrector Hermite scheme

SUMMARY OF THE ALGORITHM:

1- Predictor step:

2- Force evaluation:

3- Corrector step:

8

ODEs. Exercise on binary star with Hermite

Example: examples/ODEs/hermite.py

9

ODEs. Exercise on binary star with Hermite

Energy / ang. mom. conservation: DE/E~1.5e-10 DL/L~1.2e-11
For leapfrog was DE/E~2.1e-6 DL/L~5.6e-16

10

ODEs. Collisional vs collisionless N-body simulations

COLLISIONLESS SYSTEMS:
- close encounters between stars can be neglected
- the two-body relaxation timescale is longer than the Hubble time

Time for a star to completely lose memory of its initial velocity because of
two-body encounters (Dv ~ v)

Galaxies and clusters of galaxies

ODEs. Collisional vs collisionless N-body simulations

COLLISIONAL SYSTEMS:
- close encounters between stars drive the evolution of the system
- the two-body relaxation timescale is SHORTER than the Hubble time

12

ODEs. Collisional vs collisionless N-body simulations

COLLISIONAL SYSTEMS:
close encounters between stars are the key ingredient of the evolution

→ we need DIRECT N-BODY codes (solve Newton’s equation directly)
with high-order integrator (Hermite)

→ predictor – corrector particularly convenient:
dynamically active stars are treated with both predictor and corrector
less dynamically active stars are treated with predictor only

COLLISIONLESS SYSTEMS:
we do not need to deal with close encounters

→ other kind of N-body codes
with low-order integrators (leapfrog, midpoint,..)

13

ODEs. Adaptive step size

So far we have assumed h = constant

In general, h is not constant and should be adapted to the problem:
 smaller h means high accuracy but slow computation

→ we want to choose h as a compromise
between accuracy and computing time

No universal choice of h, we must look at specific case

e.g. when simulating a stellar system

1. check that energy conservation is good enough

2. set h based on how fast the quantity we integrate changes

where v = velocity, a = acceleration

14

ODEs. When adaptive step size matters

We now see an example of a system of two 1-st order ODEs
when adaptive step-size is important:

EVOLUTION of the SEMI-MAJOR AXIS and of the ECCENTRICITY
of a BINARY STAR because of GRAVITATIONAL-WAVE EMISSION
See Peters 1964, https://ui.adsabs.harvard.edu/abs/1964PhRv..136.1224P/abstract

https://ui.adsabs.harvard.edu/abs/1964PhRv..136.1224P/abstract

15

ODEs. When adaptive step size matters

If you integrate the system of ODEs with fixed timestep,
you realize that either you have a very bad result
(negative a and e as soon as gravitational waves start being important,
 blue line below) or a terribly slow integration

16

ODEs. When adaptive step size matters

This problem happens is that both da/dt and de/dt are

steep functions of a and e, namely

How can we choose an adaptive timestep in this case?
An option is that we require the relative variation of the semi-major axis
to be nearly constant, or at least smaller than a chosen tolerance,
during the integration.

17

ODEs. When adaptive step size matters

18

ODEs. When adaptive step size matters

19

ODEs. Modified mid-point method

Let’s refresh the mid-point method:

20

ODEs. Modified mid-point method

An alternative to the above expression is to evaluate directly the
 midpoint of the next timestep from the midpoint of the previous timestep:

And then calculate the full timestep as

and we repeat this process as many times as we want.

Hence, the general expression of this new scheme is:

Suppose that we now want to solve an ODE from t to t + H using n steps
of size h = H/n. Let us write down the above equations in a still different form.

Here I just repeat the
last equation of slide 19

21

ODEs. Modified mid-point method

Suppose that we now want to solve an ODE from t to t + H using n steps
of size h = H/n. Let us write down the above equations in a still different form.

The first half step is always:

Then, the next n steps are:

The xi terms are the solutions at integer multiples of h,
The yi are the solutions at half-integer multiples.

Hence we can write the equations in a more compact form as:

22

ODEs. Modified mid-point method

The best way to estimate the final point (as shown in the Lecture notes) is

It can be shown that all the error terms containing odd powers of h
that arise from the Euler’s method step at the start of the calculation cancel out,

 giving a total error that contains only even powers of h.

SUMMARY of the MODIFIED MID-POINT METHOD:

ODEs. Modified mid-point method

24

ODEs. Bulirsch – Stoer method

The Bulirsch-Stoer method exploits the advantages of the modified midpoint
method to reach an accuracy as large as we want, at least in principle

Let’s consider, for simplicity, a first-order ODE in a single variable: dx/dt = f(x, t).

We want to integrate it from t to t + h1 .

We start calculating the solution
i) with the modified midpoint method,
ii) in just one single timestep of size h1 equal to the entire range.

This yields a very approximate solution x(t + h1) = R1,1

Then, we split the time step in two: h2 = h1 / 2

and we repeat the calculation, getting a solution x(t + h1) = R2,1

Since the error on the modified midpoint method is always and even
function of the stepsize, we have that

(1)

(2)

where c1 = unknown constant,

R1,1 and R2,1 are the solutions with the modified midpoint method

25

ODEs. Bulirsch – Stoer method

We use (1) and (2) to calculate c1:

Substituting in (1):
where we got rid of the terms in h^2

Let’s call the new solution:

We can take this approach further. Let us now consider h3 = 1/3 h1 .

The solution of the modified midpoint will be x(t + h1) = R3,1

third order algorithm with fourth order errors

26

ODEs. Bulirsch – Stoer method

We now write:

Combining the two equations indicated with

we have

From the equations marked with and we derive

Substituting this into we obtain

Where

The error is of order h^6 and we have taken only 3 modified midpoint steps.

The power of this method is that it cancels out the error terms to
higher and higher orders on successive steps.

Let’s now generalize the algorithm

27

ODEs. Bulirsch – Stoer method

Let’s now generalize the algorithm:
- denote the current number of steps by n
- denote our modified midpoint estimate of x(t + h1) by Rn,1

We can generalize as

where cm is the unknown constant

The corresponding estimate at step n – 1 is

Since , we have that

Combining the three equations marked by and expressing in terms of cm

we find

Finally, substituting eq. into eq. , we obtain the general Bulirsch-Stoer method

28

ODEs. Bulirsch – Stoer method

General formulation of the Bulirsch – Stoer method:

where

Example of a binary system: examples/ODEs/bulirsch_stoer.py

29

ODEs. Initial-value and boundary-value problems

Initial-value problems:
we solve differential equations given the initial values of the variables

Boundary-value problems:
we do not know the initial values of the variables,
but only the values of the variables at “some point/time”.
MORE DIFFICULT to integrate

Example: we want to integrate the height above the ground of a ball thrown
in the air VERTICALLY and subject to gravity force (no air friction)

where g= 9.81 m/s^2
initial-value problem:

we know initial x = x(t
0
) and initial v = v(t

0
)

boundary-value problem: we know e.g.
position at time t

0
 and time t

1
x(t

0
) and x(t

1
)

x(t
0
)

x(t
1
)

v(t
0
)?

v(t
1
)?

30

ODEs. Initial-value and boundary-value problems

Shooting method for boundary-value problems:
we start with a guess of the initial values we do not know and
then we improve our guess iteratively.

e.g. in the example of the ball thrown in the air

If we know position at t
0
 and t

1
: x

true
(t

0
) and x

true
(t

1
)

- we guess v
0
 at time t

0

- we calculate x(t
1
)

- If x(t
1
) != x

true
(t

1
),

then we come back to the initial conditions
and we try with a different velocity,
namely with a larger (smaller) v

0

if we find a value of x(t
1
) < x

true
(t

1
) (> x

true
(t

1
))

- We repeat till | x(t
1
) – x

true
(t

1
) | < tolerance

31

ODEs. Exercise on shooting method

32

ODEs. Exercise on shooting method

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

