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ODEs. Fourth-order predictor-corrector Hermite scheme

- Hermite is >= 4" order scheme

- a predictor-corrector scheme, because particle positions and
velocities are first predicted at third-order level and then corrected
to make the accuracy fourth-order

- define JERK: derivative of acceleration

> _ da; _ e Z L 3(%‘%) Lij
Ji= "3 i3 5
j=1, 371 i) 0 -
~

- shap: second derivative of acceleration j’L

-crackle: third derivative of acceleration ] /!
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ODEs. Fourth-order predictor-corrector Hermite scheme

- Taylor expansions (fourth order for positions and velocities):

Ti(t+h) = 7;(t) + hti(t) + %c@-(t) + %ﬁ(t) + ;l—4gl(t) (1)
Gt h) = T0) + hai(t) + () + R0+ ) (2)
{1+ B) = ) + BT + ST + ) (3

i+ ) =T+ hi0 + S @

- We can use equations (3) and (4) to eliminate snap and crackle

from equations (1) and (2)
2

Zi(t+h) = Zi(t) + h [0i(t) + Wit + 1)) + = [a(t) — @t +h)]+OKh°)

2 12
Bt By = 00) + 5 @) + e+ 0]+ 1 (7.0~ e+ )] + O)

fourth order accuracy, with errors scaling as h>,
but the terms in h® and h* have canceled out!
BUT PROBLEM HERE: we do not know v(t+h), a(t+h), j(t+h) ;



ODEs. Fourth-order predictor-corrector Hermite scheme

Zi(t+h) =Z;(t) + g [0;(t) + U5 (t + h)] + h (@;(t) — @(t + h)] + O(h°) A

12 ) ¢
e+ B) = 6(0) + o [a(0) + @l + ]+ 5 [0) = Gt + )] + O()

- IMPLICIT SCHEME: method that depends on quantities that we still
need to calculate (because they refer to the next step)

vs EXPLICIT SCHEME: method depending only on quantities that we
already know (because they refer to current step)

We cannot use an implicit method unless we have some trick

to predict the quantities which refer to the next step.

- In the Hermite method, we predict positions and velocities of the
next step by using a third-order Taylor expansion.



ODEs. Fourth-order predictor-corrector Hermite scheme

1- Predictor step: we use the 3rd (2nd)order Taylor expansion to predict pos (vel)

h? h3 -
Epi(t+ ) = F(t) + W) + Ta(0) + i ()
- L L h -
Byt + ) = B(t) + hi(t) + - u(t)

2- Force evaluation: Calculate acceleration and jerk with the predicted pos

and vel I — Z mpw (t + h))
j=1, 57 xp’ij
i dby; (@i Uby) 7y |
jp; t+h) = -G m; { J 3
( ) g 122?51 ! \fvngj xp?j J

3- Corrector step: we substitute vp(t+h), ap(t+h) and jp(t+h) to v(t+h),
a(t+h) and j(t+h) into the two equations marked with *
h h?
Ti(t + h) = Z;(t) + B Ui (t) + v (T + )] + 5 @;(t) — ap;(t + )]
2

vi(t + h) = Ui(t) + g [d;(t) + ap,(t + h)] + 7:(t) — 7p(t + h)]

12 [
PROBLEM HERE! Is this really 4™ order?



ODEs. Fourth-order predictor-corrector Hermite scheme

PROBLEM HERE! Is this really 4™ order?
2

B+ ) = F(0) + 5 [0 + b+ )]+ 35

Ti(t 4+ h) = Ti(t) + g ai(t) + ap;(t + h)] + ?2 J

i(t) — ap;(t + h)]

Ji(t) = Jpit + 1)]

NO, first eq. contains  h UP;(t + h) which is 3° order

TRICK: calculate first the velocity ¢;(¢ 4+ h) and then use it instead of vp,;(t + h)




ODEs. Fourth-order predictor-corrector Hermite scheme

SUMMARY OF THE ALGORITHM:

1- Predictor step:

it h) = B (1) + AT (1) + () + %j;(t)
vp;(t + h) = U(t) + ha;(t) + %};(t)
(4)
2- Force evaluation:
N % e
ap; (t+h)=-G Y, m [Epw;,;( t; h)»
j=1,j#i Pij
- N [apy; (@i - vbyy) @by ]
jp; (t+ h) = -G m e
¢+ h) jzlz,;# e} D}, |
3- Corrector step:
h h?
h h?
Filt 4+ h) = F(t) + 5 [0(8) + Tt + 1)) + 75 [@(0) — dy(t + D)



ODEs. Exercise on binary star with Hermite

EXERCISE:

Write a code to implement the Hermite scheme. Re-do the previous
exercise with the Hermite scheme. Use f; = 0.0, final time fg, = 300
and step-size h = 0.01. Compare the result of this exercise with the
result of the leapfrog scheme. Figure 45 shows a comparison of Hermite
and leapfrog also in terms of total energy conservation. The Hermite
scheme performs better than the leapfrog scheme.

Please, don’t do this exercise unless you are terribly bored by the simpler
ones.

Suggestion: to calculate energy conservation, use the reference frame of the
reduced particle and neglect the kinetic energy of the center of mass. It
simplifies your life. In this case, the total energy of the binary is

mym, , Gmym,

p2 - 2172 (178)

1
E=—
2(my+my) Y 2 x;;

where my and m; are the masses of the two components of the binary star,
vi; = |v; —v;|is the modulus of the relative velocity and x;; = |x; —x;| is the
modulus of the relative distance between the two particles.

Example: examples/ODEs/hermite.py



ODEs. Exercise on binary star with Hermite

3
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Energy / ang. mom. conservation: AE/E~1.5e-10 AL/L~1.2e-11
9

For leapfrog was AE/E~2.1e-6 AL/L~5.6e-16



ODEs. Collisional vs collisionless N-body simulations

COLLISIONLESS SYSTEMS:
- close encounters between stars can be neglected
- the two-body relaxation timescale is longer than the Hubble time

N R
trlx —
InN v

Time for a star to completely lose memory of its initial velocity because of
two-body encounters (Av ~ V)

Galaxies and clusters of galaxies




ODEs. Collisional vs collisionless N-body simulations

COLLISIONAL SYSTEMS:
- close encounters between stars drive the evolution of the system
- the two-body relaxation timescale is SHORTER than the Hubble time

Star clusters




ODEs. Collisional vs collisionless N-body simulations

COLLISIONAL SYSTEMS:
close encounters between stars are the key ingredient of the evolution

- we need DIRECT N-BODY codes (solve Newton’s equation directly)
with high-order integrator (Hermite)

— predictor — corrector particularly convenient:

dynamically active stars are treated with both predictor and corrector
less dynamically active stars are treated with predictor only

COLLISIONLESS SYSTEMS:
we do not need to deal with close encounters

— other kind of N-body codes
with low-order integrators (leapfrog, midpoint,..)
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ODEs. Adaptive step size

So far we have assumed h = constant
In general, h is not constant and should be adapted to the problem:
smaller h means high accuracy but slow computation
— we want to choose h as a compromise
between accuracy and computing time
No universal choice of h, we must look at specific case
e.g. when simulating a stellar system

1. check that energy conservation is good enough

2. set h based on how fast the quantity we integrate changes

v
h o< —
a

where v = velocity, a = acceleration

13



ODEs. When adaptive step size matters

We now see an example of a system of two 1-st order ODEs
when adaptive step-size is important:

EVOLUTION of the SEMI-MAJOR AXIS and of the ECCENTRICITY
of a BINARY STAR because of GRAVITATIONAL-WAVE EMISSION
See Peters 1964, https://ui.adsabs.harvard.edu/abs/1964PhRv..136.1224P/abstract

d 64 G°
aa_ my ma (M1 +my) (1+E€2+£64>
dt 5  Pad(l—e2)7/? 24 96
de 304 G3 (ALY (m1 + mg) (1 121 2)
— =——8 —e
dt 15 c®a* (1 — e2)5/2 304
A h.dt) yime

Merger Ringdown
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https://ui.adsabs.harvard.edu/abs/1964PhRv..136.1224P/abstract

ODEs. When adaptive step size matters

If you integrate the system of ODEs with fixed timestep,
you realize that either you have a very bad result

(negative a and e as soon as gravitational waves start being important,

blue line below) or a terribly slow integration
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ODEs. When adaptive step size matters

This problem happens is that both da/dt and de/dt are
steep functions of a and e, namely da/dt ~ a3 (1 B 62)_7/2

de/dt oc a™* (1 — e2)75/2

How can we choose an adaptive timestep in this case?

An option is that we require the relative variation of the semi-major axis

to be nearly constant, or at least smaller than a chosen tolerance,

during the integration.

tol=1e-2

h=3.1536e10 #1e3 yr

while(a>=rth):
anew,enew=runge4(m1,m2,a,e,h)

if(abs(anew-a)/a<(0.1xtol)): #set adaptive timestep
h=hx2.
anew, enew=runge4(mi,m2,a,e,h)

elif(abs(anew-a)/a>tol):
while(abs(anew-a)/a>tol):
h=h/10.
anew, enew=runge4(mi1,m2,a,e,h)
a=anew
e=enew
t+=h

16



ODEs. When adaptive step size matters

EXERCISE:

Use your Euler’s script (or midpoint or RK 4th order or whatever you
want) to integrate eqs. 186. Assume m; = m, = 30 My, a(t =0) =1 A.U,,
e(t = 0) = 0.7. Integrate this system till it reaches the last stable orbit
of general relativity, defined as a; o = 3 r.,, where ryp, = = G(";fmz) is
the Schwartzschild radius. As stopping condition for the main loop, use

the following:

[ while((abs(a-aLS0)/alLS0>1e-1) and (iterate<leb)): ]

this means that you stop either when the difference between the semi-
major axis a and the last stable orbit a; g is < 10% or when the number
of iterations (iterate is a counter) is > 10°. Start with a constant timestep
h=10°yr.

17



ODEs. When adaptive step size matters
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ODEs. Modified mid-point method

Let’s refresh the mid-point method:

The starting point of the midpoint scheme is the following equation

x(t+h)_x(t)+hf(x(t+;),t+g), (187)

which is implicit because of x(t + %) In the original version of the midpoint,

we have used Euler’s method to calculate x (t -+ %) = x(t)+ %f(x, t):

xu+m:xum4q(nﬂ+gﬂmﬂ¢+g) (188)

After this first step, in the usual midpoint scheme we calculate the midpoint
of the next interval:

x“+%ﬂxﬁ+M+%f@ﬁ+MJ+m (189)

19



ODEs. Modified mid-point method

Here | just repeat the

h last equation of slide 19
x(t+ %h):x(t+h)+ 5f{x(t+h),t+h) -

An alternative to the above expression is to evaluate directly the
midpoint of the next timestep from the midpoint of the previous timestep:

x(t+§h) :x<t+g> +h f(x(t+h),t+h)

And then calculate the full timestep as

x(t+2h):x(t+h)+hf(x (t+gh),t+gh)

and we repeat this process as many times as we want.

Hence, the general expression of this new scheme is:

h

ot +1) = olt) + 1 f (al0) + 5 Fz.00t+ 5 )

T <t+ gh> = [x(t) + gf(x,t)] +h f(x(t+h),t+h).

Suppose that we now want to solve an ODE from ¢t to t + H using n steps

: : : : e 20
of size h = H/n. Let us write down the above equations in a still different form.



ODEs. Modified mid-point method

Suppose that we now want to solve an ODE from t to t + H using n steps
of size h = H/n. Let us write down the above equations in a still different form.

xo = x(t)
The first half step is always: 1
Y1 = To + §hf($0,t)

Then, the nextnsteps are: ;) =z 4+ 1 f (yl, t 4+ %h)
Y2 = y1 + h f(x1,t +h)
o =x1+hf (yg,t+ gh)
ys = y2 + h f(xe,t +2h)
The xi terms are the solutions at integer multiples 0.1.‘.h,
The yi are the solutions at half-integer multiples.

Hence we can write the equations in a more compact form as:

Ym+1 :ym+hf(xmat+mh)

1
Tyl = Ty T hf <ym—|—17t+ <m_|_ §> h)



ODEs. Modified mid-point method

The best way to estimate the final point (as shown in the Lecture notes) is
1 1
$(t+H):§ xn+yn+§hf(xnat+]_])

It can be shown that all the error terms containing odd powers of h

that arise from the Euler’s method step at the start of the calculation cancel out,
giving a total error that contains only even powers of h.

SUMMARY of the MODIFIED MID-POINT METHOD:

/ Ty = a:(t)\

1
$1:$0+hf(ylyt+§h)
1
xm+1:xm+hf(ym+1,t+(m+§> h) Vi<m<(n—1)

\_ o+ H) = 5 [ent v+ 5 fant+ )] )

22



ODEs. Modified mid-point method

EXERCISE:

Write a script to implement the modified midpoint method. Use it to
evolve the following differential equation
dx

7 = eXP (=x) + sin () (200)

Let us assume ty = 0, t5, = 200, h = 0.01 and x = 0. The result should
look like Figure 47.

0 50 100 150 200 23



ODEs. Bulirsch - Stoer method

The Bulirsch-Stoer method exploits the advantages of the modified midpoint
method to reach an accuracy as large as we want, at least in principle

Let’s consider, for simplicity, a first-order ODE in a single variable: dx/dt = f(x, t).

We want to integrate itfrom t to t+h,.

We start calculating the solution
1) with the modified midpoint method,
i) In just one single timestep of size h, equal to the entire range.

This yields a very approximate solution x(t + hy) = R, ;

Then, we split the time step in two: h, =h,/ 2
and we repeat the calculation, getting a solution x(t + h;) = R, ;

Since the error on the modified midpoint method is always and even
function of the stepsize, we have that

@ @t +hi) = Ray + c1 B3 + O(h3)
2) :L’(t € hl) — Rl,l + ¢4 h% —+ (’)(héll) — R1,1 + 4 ¢4 h% -+ O(h;l)

where ¢, = unknown constant,
R, . and R, ; are the solutions with the modified midpoint method

24



ODEs. Bulirsch - Stoer method

1
We use (1) and (2) to calculate c,: ¢ b3 = g(Rz,l — Ri4)

1
Substituting in (1): z(t +h1) = Raq + - (Ro1 — Ria) + O(hy) Q

where we got rid of the terms in h"2 &

Let’s call the new solution: rp,, = R, + 1(32 \ — Ri4) <>
) ) 3 ) )

We can take this approach further. Let us now consider h; = 1/3 h; .

The solution of the modified midpoint will be x(t + hy) = R34,
lIf(t -+ hl) = Rg’l + C1 hg -+ O(hg)
9
Zlf(t + hl) = R2,1 + 1 hg + O(hg) = Rg,l + ch hg + O(hg)

4
ﬁ ] hg — E(RBJ — R2’1)
4
R3o = Rz + E(Rii,l — Ry 1)

z(t 4+ hy) = Rso + O(hg)

third order algorithm with fourth order errors

25



ODEs. Bulirsch - Stoer method
We now write:  Z(t + h1) = Ry 2 + ¢ by + O(hS)

Combining the two equations indicated with <>

we have \ ; Nt . *
Bt 4+ i) = Roz+ eo b+ O(HE) = o+ (5) eabi+ O
. e . | , 16
From the equations marked with , ~ and we derive ¢y hs = g(Rs,z — Ry5)
Substituting this into *ﬁ we obtain
6 16
ZIZ‘(t _|_ hl) — R3,3 _|_ O(h3> Where R3’3 = Rg,g + &( 3,2 — RQ’Q)

The error is of order h"6 and we have taken only 3 modified midpoint steps.

The power of this method is that it cancels out the error terms to
higher and higher orders on successive steps.

Let’'s now generalize the algorithm

26



ODEs. Bulirsch - Stoer method

Let’'s now generalize the algorithm:
- denote the current number of steps by n
- denote our modified midpoint estimate of x(t + h;) by R,

We can generalize as
2 2m—+2y ('
CE(t —I— hl) — an’m _|_ Cm ],an _|_ O(hnm+ ) =
where c,, Is the unknown constant

The corresponding estimate at stepn—11s

2(t+ ) = Ry + cm K27 4+ O(R27H2) @

n—1
n

. — — — hn— — hn .\:‘
Since h, =hi/n, hy,_1=hy/(n—1) we have that 1=
Combining the three equations marked by and expressing in terms of c,,
we find P P

Cr h,im _ n,m n—1,m ¢ )
n/(n—1)PPm -1

Finally, substituting eq. & into eq. ”/ we obtain the general Bulirsch-Stoer method

27



ODEs. Bulirsch - Stoer method

General formulation of the Bulirsch — Stoer method:
_ 2m-+2
CIZ’(t + hl) — Rn,m—I—l + O(hn )

where Rn,m — Rn_Lm

Ry m+1 = Rum
e =P -1

Example of a binary system: examples/ODEs/bulirsch_stoer.py

28



ODEs. Initial-value and boundary-value problems

Initial-value problems:
we solve differential equations given the initial values of the variables

Boundary-value problems:
we do not know the initial values of the variables,
but only the values of the variables at “some point/time”.
MORE DIFFICULT to integrate

Example: we want to integrate the height above the ground of a ball thrown
In the air VERTICALLY and subject to gravity force (no air friction)

A
d?x
w9 @
\/
where g= 9.81 m/s"2 N

initial-value problem:
we know initial x = x(t ) and initial v = v(t )

boundary-value problem: we know e.g. X(t,) 0 v(t,)?
position at time t, and time t,  X(t,) and X(t,) 79



ODEs. Initial-value and boundary-value problems

Shooting method for boundary-value problems:
we start with a guess of the initial values we do not know and
then we improve our guess iteratively.

e.g. in the example of the ball thrown in the air

If we know position att,and t:x_ (t,)and x__ (t)
- we guess v, at time t,
- we calculate x(t,)
- 1f x(t) '=x._ (),
then we come back to the initial conditions

and we try with a different velocity,
namely with a larger (smaller) v,

if we find a value of x(t,) < x__(t,) (> X, .(t))

- We repeat till | x(t,) —x_ (t,) | <tolerance

30



ODEs. Exercise on shooting method d?z

ar =

Solve the problem proposed in equation 222, i.e. integrate the motion
of a ball vertically thrown in the air with initial position x(t = 0) = 0
and position x(f = 3s) = 10 m, at t = 3 s. Neglect the viscous friction
from the air. Use the shooting method.

Suggestion: use the Euler method to solve the ODEs. Take N = 10° steps
between t = 0 and t; = 3 5. Assume a tolerance € = 107> and stop the

calculation when |x(tf) - xtme(tf)| < € where Xrye(tf) = 10 m.

The result should look like Figure 48. In particular, the correct initial
velocity is vg ~ 18.0 m/s.




ODEs. Exercise on shooting method

20

t (5)

32



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

