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Ordinary Differential Equations (ODEs). Concept

ODEs ARE UBIQUITOUS IN ASTROPHYSICS

Examples:

— equation of motion of a particle subject to
Newton’s gravitational force

d2XZ'

N
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— equation of hydrostatic equilibrium of a star interior
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ODEs. Euler Method

General form of an ODE in 1 variable: ((ii_m = f(x, 1)
t

For simplicity, let’s assume tis time

Simplest way to proceed: TAYLOR EXPANSION

or with different notation

r(t+h)=x(t)+h f(z,t) + O(h?)

If we neglect higher order terms we can calculate x(t+h) as

equation of the
|x(t +h)=a() +hf(x t>| Eulqer scheme

iIf we know the value of x at time t, then we can derive the value of x
at time (t+h)

This approximation is “good” if h is small



ODEs. Euler Method

Equation of the Euler’s method: |z (¢t + h) = z(t) + h f(x,t)|

To integrate the ODE betweent=t and t =t

| need to choose a h << (t.-t))
and then to repeat Euler’s equation for N steps with

N=(t-t)lh

Euler equation is 1° order method — errors scale as h?
— we can reduce the error by reducing h
but if we reduce h the computing time increases

We will see other methods that have a smaller error
for the same (or similar) computing time



ODEs. Runge-Kutta family

Family of algorithms that solve ODEs via Taylor’s expansion
First order: Euler method or first-order Runge-Kutta method
Second order: midpoint or second-order Runge-Kutta method
Fourth order: fourth-order Runge-Kutta method

etcetc



ODEs. Midpoint or second-order Runge-Kutta method

Evaluate the slope dx/dt of x(t)
not at the end of the interval h, but at the midpoint of the interval h/2

Mathematically, corresponds to a Taylor expansion around t+h/2
Instead that around t

1 1. (d 1 d?
x(t+h):x(t—|——h)—|——h = N + O(h?)
2 2 \dt),.., 8 \d2/, .,

1 1 dx 1 d?x
t) = t+—-—h)——=h | — —h == O(h?
CU() x( +2 > 2 <dt)t—i—lh+8 (dt2>t—i—lh+ ( )

Subtracting the second expression from the first, we get

dx

r(t+h)=x(t)+h <E>t+lh + O(h?)

:x(t)—l—hf<x (t+%h> ,t+%h> + O(Rh?)

The error scales as h® — is a second-order scheme
BUT THERE IS A PROBLEM HERE



ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM: (t+h) = x(t) +h (dﬁ> + O(h?)
dt t+1h

::c(t)+hf(a; (t+%h> ,t+%h> + O(h?)

This eq. requires that we know x(t+h/2) which we still do not know

IMPLICIT SCHEME: method that depends on quantities that we still
need to calculate (because they refer to the next step)

vs EXPLICIT SCHEME: method depending only on quantities that we
already know (because they refer to current step)



ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM: 2(t+h) = () + h (d—‘”’“") + O(h?)
dt t+1h

:x(t)+hf<a: (t+%h) ,t+%h) + O(h?)

This eq. requires that we know x(t+h/2) which we still do not know

We get around this problem by approximating x (t + h/2) 1
i

with the Euler method , (t 4+ g) = x(t) + gf(:c(t), t) where f(z(t),t) = a

and then substituting into the above equation:

equation of the
midpoint scheme

which is the practical implementation of the midpoint scheme 8



ODEs. Fourth-order Runge-Kutta method

We can use the same approach to go to higher order i.e.
* by using Taylor expansion
* by evaluating the ODE in several intermediate time steps

With calculations, we derive the fourth-order Runge-Kutta as
1

k1:§hf(ﬂf,t)
k —1hf< +k t+1h)
2_2 X 1, 9

]
kgzhf<x+k2,t+§h>

k4:hf(l'—'—k3, t—|—h)

1

* Errors scale as h®

* Fourth-order Runge-Kutta (RK4) is considered the best match
between accuracy and not-too-complicated programming



ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4

EXERCISE:

Write a python script to implement the Euler’s method, the midpoint
method and the fourth-order Runge-Kutta method. Use this script to
integrate the following differential equation:

dx 3

3 -" + sin ¢ (146)

Compare the results. For a choice of initial time ¢35 = 0.0, final time
tin = 100, initial position x(#y) = 0.0 and step-size h = 0.4, you should
obtain something similar to Figure 41. W f\ f\ m W ﬁ f\

— Euler
— Midpoint )
— Runge-Kutta 4

il




ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4
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ODEs. Systems of ordinary differential equations

Same approach as we have seen in the previous sections,
provided that the derivatives are with respect to a single variable

dx
e il— t
dy
e e t

They must be integrated in the same timestep, simultaneously,
to avoid mismatch between x and y

In contrast, partial differential equations require a different treatment

dx Jdx
Fri f1(x, 9, t,5)
dy dy

Fri f2(x, 9, t,5),
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ODEs. Second-order and higher-order ODEs

Solving second-order (or higher-order) ODEs with one variable is
trivial once we know how to solve first-order ODEs.

d?x I da ,
Dl v =
dt2 T dt’

Can be rewritten as a SYSTEM of TWO FIRST-ORDER ODES
f

ar _
a7
T
dt— xvya
\

Solve this system using the algorithms we learnt for first-order ODEs.

To solve higher ODEs, we repeat this trick till we have
a system of first-order ODEs only.
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ODEs. Second-order and higher-order ODEs

CLASSICAL EXAMPLE of 2™ order ODE for astrophysicists:

equation of motion of a star in a binary system
d?z T; — T
T 1 4y
Yo Gm;

|—> — 3

QIZ’Z'—QZ’]'

can be rewritten as

4 .
dz; S
< dt ’
d7; 7 — T,
= —G'm,
‘fz x]|
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ODEs. Astrophysical N-body problem

Integration of the equations of motion for N —bodies
subject to Newton's gravity force (1687)

2
d —Xj

4i2 -=-G Z "

3
=1Ly ‘Xi )

can be split into a system of 2 first-order ODEs

f

dv, — X
o _G Z mJ j|37

dt =1 9= |Xi — Xj
dXZ'
L dt
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ODEs. Astrophysical N-body problem

It is the first thing you need to solve to simulate a star cluster

The second thing you need is stellar evolution

16



ODEs. Astrophysical N-body problem

— This eq. can be solved analytically for N = 2
(Bernoulli solution, 1710).

- In 1885, a challenge was proposed, to be
answered before January 21%1889, in
honour of the 60th birthday of

\'\
& N

) Bernoulli
King Oscar Il of Sweden and Norway:

“Given a system of arbitrarily many mass points that attract each
according to Newton'’s law, under the assumption that no two points
ever collide, try to find a representation of the coordinates of

each point as a series in a variable that is some known function

of time and for all of whose values the series converges uniformly.”

Nobody found the solution, although many participated
(including Henry Poincaré).

- 1991: the mathematician Qiudong Wang found the
first convergent power series solution for a
generic number of bodies.

However, the solution by Q. Wang is too difficult to
iImplement and slow to convergence. s
Thus, everybody solves Newton’s equation humerically for N>=3.

Oscar 11

of Sweden

‘. Q. Wang
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ODEs. Astrophysical N-body problem

Newton’s equation can be solved with Runge-Kutta methods.
For example, the Euler scheme:

lz(t +h) = x(t) + h f(z,1)]




ODEs. EXERCISE on binary star with Euler

Newton’s equation can be solved with Runge-Kutta methods.
For example, the Euler scheme:

EXERCISE:

Write a new script to implement Euler’s method to evolve a system of
two points in two dimensions (xy plane), subject to gravity forces, with
the following initial conditions. Initial positions of particles 1 and 2 (in
the plane xy): x = (1.0,-1.0), y = (1.0, -1.0).

Initial velocities of particles 1 and 2 (in the plane xy): v, = (-0.5, 0.5),
v, =(0.0,0.0).

Let us assume that the masses are m; = m, = 1, and the gravity constant
in our units is G = 1.

Let us assume fy = 0, tg, = 300 and h = 0.01. The result should look
like the blue line in Figure 42.
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ODEs. EXERCISE on binary star with Euler

Result of previous exercise is the blue line:

—  Euler

—  Midpoint ||

10
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ODEs. Midpoint & the astrophysical N-body problem

h
General expression of the midpoint scheme k=5 f(z(t),1)

z(t+h)=z(t) + ko

How does it look like when applied to the astrophysical N-body problem?

k1= gf(x(t),t)

h ko, =h
k2:hf(33(t)—|-/€1, t+§) - di

z(t+ h) = x(t) + ks dt
\ €T; (t —+ h) = X; (t) —+ kgw
. ;s

21




ODEs. Midpoint & the astrophysical N-body problem

h
r— F Ui
X I CAON) Fry = = ai(t) o

1,0 ’

’ 2 dt
A bt 12) . o h
. _hd(vz(t)—%kl,v t+ h/2) 1 ,

2.0 — dt kay =h a (Ui(t) + 5 a-(t))
v;(t + h) = v;(t) + ko
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ODEs. Midpoint & the astrophysical N-body problem

h

klx = §Uz(t)
h

klv = §az(t)
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ODEs. Midpoint & the astrophysical N-body problem

h
kl r — <= U; (t)

2 Remember that the acceleration
ki, = 5 a;(t) in Newton eqs depends only on

positions (a does not depend on v)

d?x
o = h% ko = h—zlyy = haglwi(t + h/2),t + h/2)

Writing Euler explicitly i

(t+h) = ,
Vit +h) =v(t) + ko k2 y — h a; (sz (t) —I_ h/2 Uy (t>)

Y

24



ODEs. Midpoint & the astrophysical N-body problem

k1o = gvi(t)
e gai(t) ]{Q,x = h (Uz(t) + kl,fu)
koo =h (Uz'(t) + g@z‘(t)> /

\kgm — h@i (ZBZ(t> -+ /{1,33)
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ODEs. Midpoint & the astrophysical N-body problem

2

h This is the most elegant form
of the midpoint scheme

for the N-body problem

26



ODEs. Midpoint & the astrophysical N-body problem

| m; (@:(8) — 2(8)
In practice, — G J j
j%@ 20 — ;)P

h
_ h kl,x — = Uz(t)
kl,w = 9 Uz(t) / }QZ
h k v = =t
klv:_ai(t) il 20,()
zi(t + h/2) = z;(t) + kg
ke = h [vi(t) + k1] _ "y (st + h)2) — 35+ By2))
koo = ha;(x;(t) + ki) G j:%# it + h/2) — @it + h/2)P
k‘g,x = h (Uz(t) -+ ]{1,,0)
€X; (t —+ h) = X; (t) -+ k2,:c kow = hai(t is h/2)
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ODEs. EXERCISE on binary star with midpoint/ RK 4

EXERCISE:

Write a new script to implement the Midpoint method and/or the
Runge-Kutta 4th order method to evolve a system of two points in two
dimensions (xy plane) described in the pevious exercise.

Let us assume ty = 0, tg, = 300 and /& = 0.01. The result should look

like the red line in Figure 42 (Midpoint and Runge-Kutta 4th order
cannot be distinguished by eye in this case).

28



ODEs. EXERCISE on binary star with midpoint/ RK 4

Result of Euler is the blue line
Result of Midpoint is the red line

— Euler
— Midpoint




ODEs. Leapfrog scheme

- a particular version of the midpoint method
- leapfrog play (Italian: la cavallina)
- similar to Euler's method but evaluated in between a time-step

30



ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[ O O >
t t+At/2 t+At
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[ O O >
t t+At/2 t+At

NS

v(t) - v(t+At/2)
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[ O O >
t t+At/2 t+At

NS

v(t) - v(t+At/2)

Xx(t) - x(t+At)
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[ O O >
t t+At/2 t+At

V(t+At/2) — v(t+At)

v(t) - v(t+At/2)

Xx(t) - x(t+At)
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[ O O >
t t+Atl2 t+At

WV(HAUZ) ~ V(t+AY)

v(t) — v(t+At/2)

x(t) - x(t+At)

Kick + Drift + Kick (KDK) scheme
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x(t), v(t), a(t) v(t+A4t/2) Xx(t+A4t), v(t+A4t), a(t+A4t)

ODEs. Leapfrog scheme o o . .

Mathematically

T;

G (t+h) =G ivj

j:]-vj

t t+At2 t+At

K K v(t+At/2) — v(t+At)

D

x(t) - x(t+At)

Kick + Drift + Kick (KDK) scheme

@(t il g) j@. (1) + o (1
(t+h) —fi(t)+h@t+g>

Z;(t+h)—Z;(t+h)

mj = - 3

h h
?7z'(t+h) <t+§> +§§i(t+h) 36



x(t), v(t), a(t)
®

v(t+At/2)
@

Xx(t+A4t), v(t+A4t), a(t+A4t)
@

-

ODEs. Leapfrog scheme

t

K

D

t+AtlI2 t+At

K

v(t+At/2) — v(t+At)

x(t) - x(t+At)

Kick + Drift + Kick (KDK) scheme

In more compact form:

Z; (t) — @; (1)

)=-G m; ;

31%@ & (8) = 2 @)

T (t+h) =T, (t)+ hi; (t) + %2@- (t)

Z; (t+h)—Z; (t+h)

Gt _GJgﬁmjm(tjth)—fj(tjth)\g’
Ui(t+h)=?7¢(t)+g[Jz(t)+51(t+h)] ;




ODEs. Leapfrog scheme

- second-order scheme (barely)
- surprisingly accurate

- alternative version: drift-kick-drift (DKD) leapfrog scheme,
In which position is evaluated at the midpoint (t+h/2),
then velocity is advanced to the end and
finally position is recalculated to the end of the step.

You can try to derive this one by yourself

- (unlike Runge-Kutta) leapfrog is time-reversal symmetric
— the error on energy conservation does not grow with time

NOTE: A nice way to estimate how well an integrator of
celestial dynamics works Is to calculate the conservation
of total energy and total angular momentum

as a function of time during the integration
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ODEs. Exercise on binary star with leapfrog

EXERCISE:

Write a code to implement the leapfrog scheme. Integrate the binary star
in the previous exercises with the leapfrog scheme. Compare Euler’s
method with the leapfrog scheme. Choose ty = 0, tg, = 300 and h =
0.01. The result should look like Figure 44. Leapfrog is much better,
isn’t it?

— Euler S——
— Leapfrog

< 39



ODEs. Exercise on binary star with leapfrog

Euler versus Leapfrog

—— Euler
— Leapfrog

I I I I ! I !
—-71.5 -5.0 —-2.5 0.0 2.5 5.0 7.5

X

Same initial conditions: integration of a Keplerian binary ®



ODEs. Euler vs Leapfrog: a simple test

Energy of an N- body system

E = z Smiv GZZ i Ty

1=1 3>1 |T7J .7|

For a binary star, energy in the center of mass of the system

1
o 1 Mo ’?}1—’02’2—G ™1 TNo
2 (m1 -+ mg)

’7“1—7“2

Modulus of angular momentum

L = Z|mzvz X 1]
i=1
If energy and angular momentum are supposed to be conserved
In the system we simulate,

the level of energy | angular momentum conservation between previous
and next step is a good indicator of the accuracy of the integrator

41



ODEs. Euler vs Leapfrog: a simple test

Energy conservation test

00025 1
—— Euler

0.0020 - Leapfrog

0.0015 +

0.0010 ~

o

0.0000

(E — Eoia)/Eoial

T T T T T T T
0 50 100 150 200 250 300

Leapfrog Delta E/ E ~ 2.1e-06 Euler Delta E/E = 0.0024



ODEs. Euler vs Leapfrog: a simple test

Angular momentum conservation test

—— Euler
0.00012 -
—— Leapfrog
— 0.00010
L=
Qo
ﬂ 0.00008
—_—
S
Q
—J 0.00006
~J] 0.00004 - “ ﬂ
P
0.00002 -
0.00000 - Jk JL
T T T T T T T
0 50 100 150 200 250 300

Leapfrog Delta L /L ~ 5.6e-16 Euler Delta L/L = 0.00013
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