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Numerical Methods for Astrophysics:
ORDINARY DIFFERENTIAL EQUATIONS (ODEs) 
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Michela Mapelli



2

Ordinary Differential Equations (ODEs). Concept

ODEs ARE UBIQUITOUS IN ASTROPHYSICS

Examples:

– equation of motion of a particle subject to 
Newton’s gravitational force

– equation of hydrostatic equilibrium of  a star interior
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ODEs. Euler Method

General form of an ODE in 1 variable:

For simplicity, let’s assume t is time

Simplest way to proceed: TAYLOR EXPANSION

or with different notation

If we neglect higher order terms we can calculate x(t+h) as

if we know the value of x at time t, then we can derive the value of x 
at time (t+h) 

This approximation is “good” if h is small

equation of the 
Euler scheme
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ODEs. Euler Method

Equation of the Euler’s method:

To integrate the ODE between t = t
0
 and t = t

f  

I need to choose a h << (t
f
 – t

0
)

and then to repeat Euler’s equation for N steps with

N = (t
f
 – t

0
) / h

Euler equation is 1st order method → errors scale as h2

→  we can reduce the error by reducing h
  but if we reduce h the computing time increases

We will see other methods that have a smaller error 
for the same (or similar) computing time
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ODEs. Runge-Kutta family

Family of algorithms that solve ODEs via Taylor’s expansion 

First order: Euler method or first-order Runge-Kutta method

Second order: midpoint or second-order Runge-Kutta method

Fourth order: fourth-order Runge-Kutta method

etcetc
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ODEs. Midpoint or second-order Runge-Kutta method

Evaluate the slope dx/dt  of  x(t)
not at the end of the interval h, but at the midpoint of the interval h/2

Mathematically, corresponds to a Taylor expansion around t+h/2
instead that around t

Subtracting the second expression from the first, we get

The error scales as h3 → is a second-order scheme

BUT THERE IS A PROBLEM HERE
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ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM:

This eq. requires that we know x(t+h/2) which we still do not know

IMPLICIT SCHEME: method that depends on quantities that we still 
need to calculate (because they refer to the next step) 

vs EXPLICIT SCHEME: method depending only on quantities that we 
already know (because they refer to current step)
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ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM:

This eq. requires that we know x(t+h/2) which we still do not know
 
We get around this problem by approximating x

 
(t + h/2) 

with the Euler method  where 

 and then substituting into the above equation:

which is the practical implementation of the midpoint scheme

equation of the 
midpoint scheme
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ODEs. Fourth-order Runge-Kutta method

We can use the same approach to go to higher order i.e.
* by using Taylor expansion
* by evaluating the ODE in several intermediate time steps

With calculations, we derive the fourth-order Runge-Kutta as

* Errors scale as h5

* Fourth-order Runge-Kutta (RK4) is considered the best match 
between accuracy and not-too-complicated programming



ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4
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ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4
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ODEs. Systems of ordinary differential equations 

Same approach as we have seen in the previous sections, 
provided that the derivatives are with respect to a single variable

They must be integrated in the same timestep, simultaneously,
to avoid mismatch between x and y

In contrast, partial differential equations require a different treatment
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ODEs. Second-order and higher-order ODEs 

Solving second-order (or higher-order) ODEs with one variable is 
trivial once we know how to solve first-order ODEs.

Can be rewritten as a SYSTEM of TWO FIRST-ORDER ODES

Solve this system using the algorithms we learnt for first-order ODEs. 

To solve higher ODEs, we repeat this trick till we have 
a system of first-order ODEs only.
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ODEs. Second-order and higher-order ODEs 

CLASSICAL EXAMPLE of 2nd order ODE for astrophysicists:

equation of motion of a star in a binary system

 can be rewritten as
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ODEs. Astrophysical N-body problem

Integration of the equations of motion for N –bodies 
subject to Newton's gravity force (1687)

can be split into a system of 2 first-order ODEs
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ODEs. Astrophysical N-body problem

It is the first thing you need to solve to simulate a star cluster

The second thing you need is stellar evolution
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ODEs. Astrophysical N-body problem

– This eq. can be solved analytically for N = 2 
(Bernoulli solution, 1710). 

– In 1885, a challenge was proposed, to be 
answered before January 21st 1889, in 
honour of the 60th birthday of 
King Oscar II of Sweden and Norway:

“Given a system of arbitrarily many mass points that attract each
according to Newton’s law, under the assumption that no two points 
ever collide, try to find a representation of the coordinates of 
each point as a series in a variable that is some known function 
of time and for all of whose values the series converges uniformly.”

Nobody found the solution, although many participated 
(including Henry Poincaré). 

– 1991: the mathematician Qiudong Wang found the 
first convergent power series solution for a 
generic number of bodies. 
However, the solution by Q. Wang is too difficult to 
implement and slow to convergence. 
Thus, everybody solves Newton’s equation numerically for N>=3.

Newton
Bernoulli

Oscar II
of Sweden

Q. Wang
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ODEs. Astrophysical N-body problem

Newton’s equation can be solved with Runge-Kutta methods.
For example, the Euler scheme:
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Newton’s equation can be solved with Runge-Kutta methods.
For example, the Euler scheme:

ODEs. EXERCISE on binary star with Euler
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Result of previous exercise is the blue line:

ODEs. EXERCISE on binary star with Euler
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ODEs. Midpoint & the astrophysical N-body problem 

General expression of the midpoint scheme

How does it look like when applied to the astrophysical N-body problem?



22

ODEs. Midpoint & the astrophysical N-body problem 
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ODEs. Midpoint & the astrophysical N-body problem 
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ODEs. Midpoint & the astrophysical N-body problem 

Remember that the acceleration
in Newton eqs depends only on 
positions (a does not depend on v)

Writing Euler explicitly
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ODEs. Midpoint & the astrophysical N-body problem 
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ODEs. Midpoint & the astrophysical N-body problem 

This is the most elegant form
of the midpoint scheme
for the N-body problem
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ODEs. Midpoint & the astrophysical N-body problem 

In practice,
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ODEs. EXERCISE on binary star with midpoint/ RK 4
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ODEs. EXERCISE on binary star with midpoint/ RK 4

Result of Euler is the blue line
Result of Midpoint is the red line
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ODEs. Leapfrog scheme

- a particular version of the midpoint method
- leapfrog play (Italian: la cavallina)
- similar to Euler's method but evaluated in between a time-step 
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick – Drift – Kick (KDK) algorithm

t                        t+Dt/2                  t+Dt

x(t), v(t), a(t) v(t+Dt/2) x(t+Dt), v(t+Dt), a(t+Dt)x(t), v(t), a(t)
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick – Drift – Kick (KDK) algorithm

t                        t+Dt/2                  t+Dt

x(t), v(t), a(t) v(t+Dt/2) x(t+Dt), v(t+Dt), a(t+Dt)x(t), v(t), a(t)

v(t) → v(t+Dt/2)



33

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick – Drift – Kick (KDK) algorithm

t                        t+Dt/2                  t+Dt

x(t), v(t), a(t) v(t+Dt/2) x(t+Dt), v(t+Dt), a(t+Dt)x(t), v(t), a(t)

v(t) → v(t+Dt/2)

x(t) → x(t+Dt)
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick – Drift – Kick (KDK) algorithm

t                        t+Dt/2                  t+Dt

x(t), v(t), a(t) v(t+Dt/2) x(t+Dt), v(t+Dt), a(t+Dt)x(t), v(t), a(t)

v(t) → v(t+Dt/2)

x(t) → x(t+Dt)

v(t+Dt/2) → v(t+Dt)
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ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick – Drift – Kick (KDK) algorithm

t                        t+Dt/2                  t+Dt

x(t), v(t), a(t) v(t+Dt/2) x(t+Dt), v(t+Dt), a(t+Dt)x(t), v(t), a(t)

t                        t+Dt/2                  t+Dt

v(t) → v(t+Dt/2)

x(t) → x(t+Dt)

v(t+Dt/2) → v(t+Dt)

D

KK

Kick + Drift + Kick (KDK) scheme



36

ODEs. Leapfrog scheme

Mathematically
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ODEs. Leapfrog scheme

In more compact form:
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ODEs. Leapfrog scheme

- second-order scheme (barely)

- surprisingly accurate

- alternative version: drift-kick-drift (DKD) leapfrog scheme, 
in which position is evaluated at the midpoint (t+h/2), 
then velocity is advanced to the end and 
finally position is recalculated to the end of the step. 
You can try to derive this one by yourself

- (unlike Runge-Kutta) leapfrog is time-reversal symmetric
→ the error on energy conservation does not grow with time

NOTE: A nice way to estimate how well an integrator of 
celestial dynamics works is to calculate the conservation 
of total energy and total angular momentum 
as a function of time during the integration



ODEs. Exercise on binary star with leapfrog
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Euler versus Leapfrog

Same initial conditions: integration of a Keplerian binary

ODEs. Exercise on binary star with leapfrog
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ODEs. Euler vs Leapfrog: a simple test

Energy of an N-body system

For a binary star, energy in the center of mass of the system

Modulus of angular momentum

If energy and angular momentum are supposed to be conserved
in the system we simulate, 
the level of energy / angular momentum conservation between previous 
and next step is a good indicator of the accuracy of the integrator
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ODEs. Euler vs Leapfrog: a simple test

Energy conservation test

Leapfrog Delta E / E ~ 2.1e-06  Euler Delta E/E = 0.0024
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ODEs. Euler vs Leapfrog: a simple test

Angular momentum conservation test

Leapfrog Delta L / L ~ 5.6e-16  Euler Delta L/L = 0.00013
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