Numerical Methods for Astrophysics:

ORDINARY DIFFERENTIAL EQUATIONS (ODESs)
Part 1

Michela Mapelli

Ordinary Differential Equations (ODEs). Concept

ODEs ARE UBIQUITOUS IN ASTROPHYSICS

Examples:

— equation of motion of a particle subject to
Newton’s gravitational force

d2XZ'

N
=G 3 my
dt? T % — x|
j=1,j7#i i Ay

— equation of hydrostatic equilibrium of a star interior

dP M p

dr r2

ODEs. Euler Method

General form of an ODE in 1 variable: ((ii_m = f(x, 1)
t

For simplicity, let’s assume tis time

Simplest way to proceed: TAYLOR EXPANSION

or with different notation

r(t+h)=x(t)+h f(z,t) + O(h?)

If we neglect higher order terms we can calculate x(t+h) as

equation of the
|x(t +h)=a() +hf(x t>| Eulqer scheme

iIf we know the value of x at time t, then we can derive the value of x
at time (t+h)

This approximation is “good” if h is small

ODEs. Euler Method

Equation of the Euler’s method: |z (¢t + h) = z(t) + h f(x,t)|

To integrate the ODE betweent=t and t =t

| need to choose a h << (t.-t))
and then to repeat Euler’s equation for N steps with

N=(t-t)lh

Euler equation is 1° order method — errors scale as h?
— we can reduce the error by reducing h
but if we reduce h the computing time increases

We will see other methods that have a smaller error
for the same (or similar) computing time

ODEs. Runge-Kutta family

Family of algorithms that solve ODEs via Taylor’s expansion
First order: Euler method or first-order Runge-Kutta method
Second order: midpoint or second-order Runge-Kutta method
Fourth order: fourth-order Runge-Kutta method

etcetc

ODEs. Midpoint or second-order Runge-Kutta method

Evaluate the slope dx/dt of x(t)
not at the end of the interval h, but at the midpoint of the interval h/2

Mathematically, corresponds to a Taylor expansion around t+h/2
Instead that around t

1 1. (d 1 d?
x(t+h):x(t—|——h)—|——h = N + O(h?)
2 2 \dt),.., 8 \d2/, .,

1 1 dx 1 d?x
t) = t+—-—h)——=h | — —h == O(h?
CU() x(+2 > 2 <dt)t—i—lh+8 (dt2>t—i—lh+ ()

Subtracting the second expression from the first, we get

dx

r(t+h)=x(t)+h <E>t+lh + O(h?)

:x(t)—l—hf<x (t+%h> ,t+%h> + O(Rh?)

The error scales as h® — is a second-order scheme
BUT THERE IS A PROBLEM HERE

ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM: (t+h) = x(t) +h (dﬁ> + O(h?)
dt t+1h

::c(t)+hf(a; (t+%h> ,t+%h> + O(h?)

This eq. requires that we know x(t+h/2) which we still do not know

IMPLICIT SCHEME: method that depends on quantities that we still
need to calculate (because they refer to the next step)

vs EXPLICIT SCHEME: method depending only on quantities that we
already know (because they refer to current step)

ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM: 2(t+h) = () + h (d—‘”’“") + O(h?)
dt t+1h

:x(t)+hf<a: (t+%h) ,t+%h) + O(h?)

This eq. requires that we know x(t+h/2) which we still do not know

We get around this problem by approximating x (t + h/2) 1
i

with the Euler method , (t 4+ g) = x(t) + gf(:c(t), t) where f(z(t),t) = a

and then substituting into the above equation:

equation of the
midpoint scheme

which is the practical implementation of the midpoint scheme 8

ODEs. Fourth-order Runge-Kutta method

We can use the same approach to go to higher order i.e.
* by using Taylor expansion
* by evaluating the ODE in several intermediate time steps

With calculations, we derive the fourth-order Runge-Kutta as
1

k1:§hf(ﬂf,t)
k —1hf< +k t+1h)
2_2 X 1, 9

]
kgzhf<x+k2,t+§h>

k4:hf(l'—'—k3, t—|—h)

1

* Errors scale as h®

* Fourth-order Runge-Kutta (RK4) is considered the best match
between accuracy and not-too-complicated programming

ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4

EXERCISE:

Write a python script to implement the Euler’s method, the midpoint
method and the fourth-order Runge-Kutta method. Use this script to
integrate the following differential equation:

dx 3

3 -" + sin ¢ (146)

Compare the results. For a choice of initial time ¢35 = 0.0, final time
tin = 100, initial position x(#y) = 0.0 and step-size h = 0.4, you should
obtain something similar to Figure 41. W f\ f\ m W ﬁ f\

— Euler
— Midpoint)
— Runge-Kutta 4

il

ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4

T e .
HC'-G“
SEERARRRARAREEEE

0 20 40 60 80 100

11

ODEs. Systems of ordinary differential equations

Same approach as we have seen in the previous sections,
provided that the derivatives are with respect to a single variable

dx
e il— t
dy
e e t

They must be integrated in the same timestep, simultaneously,
to avoid mismatch between x and y

In contrast, partial differential equations require a different treatment

dx Jdx
Fri f1(x, 9, t,5)
dy dy

Fri f2(x, 9, t,5),

12

ODEs. Second-order and higher-order ODEs

Solving second-order (or higher-order) ODEs with one variable is
trivial once we know how to solve first-order ODEs.

d?x I da ,
Dl v =
dt2 T dt’

Can be rewritten as a SYSTEM of TWO FIRST-ORDER ODES
f

ar _
a7
T
dt— xvya
\

Solve this system using the algorithms we learnt for first-order ODEs.

To solve higher ODEs, we repeat this trick till we have
a system of first-order ODEs only.

13

ODEs. Second-order and higher-order ODEs

CLASSICAL EXAMPLE of 2™ order ODE for astrophysicists:

equation of motion of a star in a binary system
d?z T; — T
T 1 4y
Yo Gm;

|—> — 3

QIZ’Z'—QZ’]'

can be rewritten as

4 .
dz; S
< dt ’
d7; 7 — T,
= —G'm,
‘fz x]|

14

ODEs. Astrophysical N-body problem

Integration of the equations of motion for N —bodies
subject to Newton's gravity force (1687)

2
d —Xj

4i2 -=-G Z "

3
=1Ly ‘Xi)

can be split into a system of 2 first-order ODEs

f

dv, — X
o _G Z mJ j|37

dt =1 9= |Xi — Xj
dXZ'
L dt

15

ODEs. Astrophysical N-body problem

It is the first thing you need to solve to simulate a star cluster

The second thing you need is stellar evolution

16

ODEs. Astrophysical N-body problem

— This eq. can be solved analytically for N = 2
(Bernoulli solution, 1710).

- In 1885, a challenge was proposed, to be
answered before January 21%1889, in
honour of the 60th birthday of

\'\
& N

) Bernoulli
King Oscar Il of Sweden and Norway:

“Given a system of arbitrarily many mass points that attract each
according to Newton'’s law, under the assumption that no two points
ever collide, try to find a representation of the coordinates of

each point as a series in a variable that is some known function

of time and for all of whose values the series converges uniformly.”

Nobody found the solution, although many participated
(including Henry Poincaré).

- 1991: the mathematician Qiudong Wang found the
first convergent power series solution for a
generic number of bodies.

However, the solution by Q. Wang is too difficult to
iImplement and slow to convergence. s
Thus, everybody solves Newton’s equation humerically for N>=3.

Oscar 11

of Sweden

‘. Q. Wang

17

ODEs. Astrophysical N-body problem

Newton’s equation can be solved with Runge-Kutta methods.
For example, the Euler scheme:

lz(t +h) = x(t) + h f(z,1)]

ODEs. EXERCISE on binary star with Euler

Newton’s equation can be solved with Runge-Kutta methods.
For example, the Euler scheme:

EXERCISE:

Write a new script to implement Euler’s method to evolve a system of
two points in two dimensions (xy plane), subject to gravity forces, with
the following initial conditions. Initial positions of particles 1 and 2 (in
the plane xy): x = (1.0,-1.0), y = (1.0, -1.0).

Initial velocities of particles 1 and 2 (in the plane xy): v, = (-0.5, 0.5),
v, =(0.0,0.0).

Let us assume that the masses are m; = m, = 1, and the gravity constant
in our units is G = 1.

Let us assume fy = 0, tg, = 300 and h = 0.01. The result should look
like the blue line in Figure 42.

19

ODEs. EXERCISE on binary star with Euler

Result of previous exercise is the blue line:

— Euler

— Midpoint ||

10

20

ODEs. Midpoint & the astrophysical N-body problem

h
General expression of the midpoint scheme k=5 f(z(t),1)

z(t+h)=z(t) + ko

How does it look like when applied to the astrophysical N-body problem?

k1= gf(x(t),t)

h ko, =h
k2:hf(33(t)—|-/€1, t+§) - di

z(t+ h) = x(t) + ks dt
\ €T; (t —+ h) = X; (t) —+ kgw
. ;s

21

ODEs. Midpoint & the astrophysical N-body problem

h
r— F Ui
X I CAON) Fry = = ai(t) o

1,0 ’

’ 2 dt
A bt 12) . o h
. _hd(vz(t)—%kl,v t+ h/2) 1 ,

2.0 — dt kay =h a (Ui(t) + 5 a-(t))
v;(t + h) = v;(t) + ko

22

ODEs. Midpoint & the astrophysical N-body problem

h

klx = §Uz(t)
h

klv = §az(t)

23

ODEs. Midpoint & the astrophysical N-body problem

h
kl r — <= U; (t)

2 Remember that the acceleration
ki, = 5 a;(t) in Newton eqs depends only on

positions (a does not depend on v)

d?x
o = h% ko = h—zlyy = haglwi(t + h/2),t + h/2)

Writing Euler explicitly i

(t+h) = ,
Vit +h) =v(t) + ko k2 y — h a; (sz (t) —I_ h/2 Uy (t>)

Y

24

ODEs. Midpoint & the astrophysical N-body problem

k1o = gvi(t)
e gai(t)]{Q,x = h (Uz(t) + kl,fu)
koo =h (Uz'(t) + g@z‘(t)> /

\kgm — h@i (ZBZ(t> -+ /{1,33)

25

ODEs. Midpoint & the astrophysical N-body problem

2

h This is the most elegant form
of the midpoint scheme

for the N-body problem

26

ODEs. Midpoint & the astrophysical N-body problem

| m; (@:(8) — 2(8)
In practice, — G J j
j%@ 20 — ;)P

h
_ h kl,x — = Uz(t)
kl,w = 9 Uz(t) / }QZ
h k v = =t
klv:_ai(t) il 20,()
zi(t + h/2) = z;(t) + kg
ke = h [vi(t) + k1] _ "y (st + h)2) — 35+ By2))
koo = ha;(x;(t) + ki) G j:%# it + h/2) — @it + h/2)P
k‘g,x = h (Uz(t) -+]{1,,0)
€X; (t —+ h) = X; (t) -+ k2,:c kow = hai(t is h/2)

27

ODEs. EXERCISE on binary star with midpoint/ RK 4

EXERCISE:

Write a new script to implement the Midpoint method and/or the
Runge-Kutta 4th order method to evolve a system of two points in two
dimensions (xy plane) described in the pevious exercise.

Let us assume ty = 0, tg, = 300 and /& = 0.01. The result should look

like the red line in Figure 42 (Midpoint and Runge-Kutta 4th order
cannot be distinguished by eye in this case).

28

ODEs. EXERCISE on binary star with midpoint/ RK 4

Result of Euler is the blue line
Result of Midpoint is the red line

— Euler
— Midpoint

ODEs. Leapfrog scheme

- a particular version of the midpoint method
- leapfrog play (Italian: la cavallina)
- similar to Euler's method but evaluated in between a time-step

30

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[O O >
t t+At/2 t+At

31

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[O O >
t t+At/2 t+At

NS

v(t) - v(t+At/2)

32

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[O O >
t t+At/2 t+At

NS

v(t) - v(t+At/2)

Xx(t) - x(t+At)

33

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[O O >
t t+At/2 t+At

V(t+At/2) — v(t+At)

v(t) - v(t+At/2)

Xx(t) - x(t+At)

34

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is
Kick - Drift - Kick (KDK) algorithm

x(t), v(t), a(t) V(t+At/2) X(t+At), v(t+At), a(t+At)
[O O >
t t+Atl2 t+At

WV(HAUZ) ~ V(t+AY)

v(t) — v(t+At/2)

x(t) - x(t+At)

Kick + Drift + Kick (KDK) scheme

35

x(t), v(t), a(t) v(t+A4t/2) Xx(t+A4t), v(t+A4t), a(t+A4t)

ODEs. Leapfrog scheme o o . .

Mathematically

T;

G (t+h) =G ivj

j:]-vj

t t+At2 t+At

K K v(t+At/2) — v(t+At)

D

x(t) - x(t+At)

Kick + Drift + Kick (KDK) scheme

@(t il g) j@. (1) + o (1
(t+h) —fi(t)+h@t+g>

Z;(t+h)—Z;(t+h)

mj = - 3

h h
?7z'(t+h) <t+§> +§§i(t+h) 36

x(t), v(t), a(t)
®

v(t+At/2)
@

Xx(t+A4t), v(t+A4t), a(t+A4t)
@

-

ODEs. Leapfrog scheme

t

K

D

t+AtlI2 t+At

K

v(t+At/2) — v(t+At)

x(t) - x(t+At)

Kick + Drift + Kick (KDK) scheme

In more compact form:

Z; (t) — @; (1)

)=-G m; ;

31%@ & (8) = 2 @)

T (t+h) =T, (t)+ hi; (t) + %2@- (t)

Z; (t+h)—Z; (t+h)

Gt _GJgﬁmjm(tjth)—fj(tjth)\g’
Ui(t+h)=?7¢(t)+g[Jz(t)+51(t+h)] ;

ODEs. Leapfrog scheme

- second-order scheme (barely)
- surprisingly accurate

- alternative version: drift-kick-drift (DKD) leapfrog scheme,
In which position is evaluated at the midpoint (t+h/2),
then velocity is advanced to the end and
finally position is recalculated to the end of the step.

You can try to derive this one by yourself

- (unlike Runge-Kutta) leapfrog is time-reversal symmetric
— the error on energy conservation does not grow with time

NOTE: A nice way to estimate how well an integrator of
celestial dynamics works Is to calculate the conservation
of total energy and total angular momentum

as a function of time during the integration

38

ODEs. Exercise on binary star with leapfrog

EXERCISE:

Write a code to implement the leapfrog scheme. Integrate the binary star
in the previous exercises with the leapfrog scheme. Compare Euler’s
method with the leapfrog scheme. Choose ty = 0, tg, = 300 and h =
0.01. The result should look like Figure 44. Leapfrog is much better,
isn’t it?

— Euler S——
— Leapfrog

< 39

ODEs. Exercise on binary star with leapfrog

Euler versus Leapfrog

—— Euler
— Leapfrog

I I I I ! I !
—-71.5 -5.0 —-2.5 0.0 2.5 5.0 7.5

X

Same initial conditions: integration of a Keplerian binary ®

ODEs. Euler vs Leapfrog: a simple test

Energy of an N- body system

E = z Smiv GZZ i Ty

1=1 3>1 |T7J .7|

For a binary star, energy in the center of mass of the system

1
o 1 Mo ’?}1—’02’2—G ™1 TNo
2 (m1 -+ mg)

’7“1—7“2

Modulus of angular momentum

L = Z|mzvz X 1]
i=1
If energy and angular momentum are supposed to be conserved
In the system we simulate,

the level of energy | angular momentum conservation between previous
and next step is a good indicator of the accuracy of the integrator

41

ODEs. Euler vs Leapfrog: a simple test

Energy conservation test

00025 1
—— Euler

0.0020 - Leapfrog

0.0015 +

0.0010 ~

o

0.0000

(E — Eoia)/Eoial

T T T T T T T
0 50 100 150 200 250 300

Leapfrog Delta E/ E ~ 2.1e-06 Euler Delta E/E = 0.0024

ODEs. Euler vs Leapfrog: a simple test

Angular momentum conservation test

—— Euler
0.00012 -
—— Leapfrog
— 0.00010
L=
Qo
ﬂ 0.00008
—_—
S
Q
—J 0.00006
~J] 0.00004 - “ ﬂ
P
0.00002 -
0.00000 - Jk JL
T T T T T T T
0 50 100 150 200 250 300

Leapfrog Delta L /L ~ 5.6e-16 Euler Delta L/L = 0.00013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

