Numerical Methods for Astrophysics: ORDINARY DIFFERENTIAL EQUATIONS (ODEs) Part 1

Michela Mapelli

Ordinary Differential Equations (ODEs). Concept

ODEs ARE UBIQUITOUS IN ASTROPHYSICS

Examples:

- equation of motion of a particle subject to

Newton's gravitational force

$$
\frac{\mathrm{d}^{2} \mathbf{x}_{i}}{\mathrm{~d} t^{2}}=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\mathbf{x}_{i}-\mathbf{x}_{j}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|^{3}}
$$

- equation of hydrostatic equilibrium of a star interior

$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-G \frac{M \rho}{r^{2}}
$$

ODEs. Euler Method

General form of an ODE in 1 variable: $\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x, t)$
For simplicity, let's assume t is time
Simplest way to proceed: TAYLOR EXPANSION

$$
x(t+h)=x(t)+\frac{\mathrm{d} x}{\mathrm{~d} t} h+\frac{1}{2} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} h^{2}+\ldots
$$

or with different notation

$$
x(t+h)=x(t)+h f(x, t)+\mathcal{O}\left(h^{2}\right)
$$

If we neglect higher order terms we can calculate $x(t+h)$ as

$$
x(t+h)=x(t)+h f(x, t) \quad \begin{aligned}
& \text { equation of the } \\
& \text { Euler scheme }
\end{aligned}
$$

if we know the value of x at time t, then we can derive the value of x at time ($t+h$)
This approximation is "good" if h is small

ODEs. Euler Method

Equation of the Euler's method: $x(t+h)=x(t)+h f(x, t)$
To integrate the ODE between $t=t_{o}$ and $t=t_{f}$
I need to choose a $h \ll\left(t_{t}-t_{0}\right)$ and then to repeat Euler's equation for N steps with

$$
N=\left(t_{f}-t_{0}\right) / h
$$

Euler equation is $1^{\text {st }}$ order method \rightarrow errors scale as h^{2}
\rightarrow we can reduce the error by reducing h but if we reduce h the computing time increases

We will see other methods that have a smaller error for the same (or similar) computing time

ODEs. Runge-Kutta family

Family of algorithms that solve ODEs via Taylor's expansion
First order: Euler method or first-order Runge-Kutta method
Second order: midpoint or second-order Runge-Kutta method
Fourth order: fourth-order Runge-Kutta method
etcetc

ODEs. Midpoint or second-order Runge-Kutta method

Evaluate the slope $\mathrm{d} x / \mathrm{d} t$ of $x(t)$
not at the end of the interval h, but at the midpoint of the interval $h / 2$

Mathematically, corresponds to a Taylor expansion around $\boldsymbol{t}+\boldsymbol{h} / 2$ instead that around t

$$
\begin{aligned}
& x(t+h)=x\left(t+\frac{1}{2} h\right)+\frac{1}{2} h\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)_{t+\frac{1}{2} h}+\frac{1}{8} h^{2}\left(\frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\right)_{t+\frac{1}{2} h}+\mathcal{O}\left(h^{3}\right) \\
& x(t)=x\left(t+\frac{1}{2} h\right)-\frac{1}{2} h\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)_{t+\frac{1}{2} h}+\frac{1}{8} h^{2}\left(\frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\right)_{t+\frac{1}{2} h}+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

Subtracting the second expression from the first, we get

$$
\begin{array}{r}
x(t+h)=x(t)+h\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)_{t+\frac{1}{2} h}+\mathcal{O}\left(h^{3}\right) \\
=x(t)+h f\left(x\left(t+\frac{1}{2} h\right), t+\frac{1}{2} h\right)+\mathcal{O}\left(h^{3}\right)
\end{array}
$$

The error scales as $\boldsymbol{h}^{\mathbf{3}} \rightarrow$ is a second-order scheme

ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM:

$$
\begin{array}{r}
x(t+h)=x(t)+h\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)_{t+\frac{1}{2} h}+\mathcal{O}\left(h^{3}\right) \\
=x(t)+h f\left(x\left(t+\frac{1}{2} h\right), t+\frac{1}{2} h\right)+\mathcal{O}\left(h^{3}\right)
\end{array}
$$

This eq. requires that we know $x(t+h / 2)$ which we still do not know
IMPLICIT SCHEME: method that depends on quantities that we still need to calculate (because they refer to the next step)
vs EXPLICIT SCHEME: method depending only on quantities that we already know (because they refer to current step)

ODEs. Midpoint or second-order Runge-Kutta method

PROBLEM:

$$
\begin{array}{r}
x(t+h)=x(t)+h\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)_{t+\frac{1}{2} h}+\mathcal{O}\left(h^{3}\right) \\
=x(t)+h f\left(x\left(t+\frac{1}{2} h\right), t+\frac{1}{2} h\right)+\mathcal{O}\left(h^{3}\right)
\end{array}
$$

This eq. requires that we know $x(t+h / 2)$ which we still do not know
We get around this problem by approximating $x(t+h / 2)$ with the Euler method $x\left(t+\frac{h}{2}\right)=x(t)+\frac{h}{2} f(x(t), t) \quad$ where $\quad f(x(t), t)=\frac{\mathrm{d} x}{\mathrm{~d} t}$ and then substituting into the above equation:

$$
\begin{array}{r}
k_{1}=\frac{h}{2} f(x(t), t) \\
k_{2}=h f\left(x(t)+k_{1}, t+\frac{h}{2}\right) \\
x(t+h)=x(t)+k_{2}
\end{array}
$$

which is the practical implementation of the midpoint scheme

ODEs. Fourth-order Runge-Kutta method

We can use the same approach to go to higher order i.e.

* by using Taylor expansion
* by evaluating the ODE in several intermediate time steps

With calculations, we derive the fourth-order Runge-Kutta as

$$
\begin{array}{r}
k_{1}=\frac{1}{2} h f(x, t) \\
k_{2}=\frac{1}{2} h f\left(x+k_{1}, t+\frac{1}{2} h\right) \\
k_{3}=h f\left(x+k_{2}, t+\frac{1}{2} h\right) \\
k_{4}=h f\left(x+k_{3}, t+h\right) \\
x(t+h)=x(t)+\frac{1}{6}\left(2 k_{1}+4 k_{2}+2 k_{3}+k_{4}\right)
\end{array}
$$

* Errors scale as \boldsymbol{h}^{5}
* Fourth-order Runge-Kutta (RK4) is considered the best match between accuracy and not-too-complicated programming

ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4

EXERCISE:

Write a python script to implement the Euler's method, the midpoint method and the fourth-order Runge-Kutta method. Use this script to integrate the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=-x^{3}+\sin t \tag{146}
\end{equation*}
$$

Compare the results. For a choice of initial time $t_{0}=0.0$, final time $t_{\text {fin }}=100$, initial position $x\left(t_{0}\right)=0.0$ and step-size $h=0.4$, you should obtain something similar to Figure 41.

ODEs. EXERCISE on Euler, Midpoint, Runge-Kutta 4

ODEs. Systems of ordinary differential equations

Same approach as we have seen in the previous sections, provided that the derivatives are with respect to a single variable

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=f_{1}(x, y, t) \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=f_{2}(x, y, t)
\end{aligned}
$$

They must be integrated in the same timestep, simultaneously, to avoid mismatch between x and y

In contrast, partial differential equations require a different treatment

$$
\begin{aligned}
& \frac{\partial x}{\partial t}+\frac{\partial x}{\partial s}=f_{1}(x, y, t, s) \\
& \frac{\partial y}{\partial t}+\frac{\partial y}{\partial s}=f_{2}(x, y, t, s)
\end{aligned}
$$

ODEs. Second-order and higher-order ODEs

Solving second-order (or higher-order) ODEs with one variable is trivial once we know how to solve first-order ODEs.

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=f\left(x, \frac{\mathrm{~d} x}{\mathrm{~d} t}, t\right)
$$

Can be rewritten as a SYSTEM of TWO FIRST-ORDER ODES

$$
\left\{\begin{array}{r}
\frac{\mathrm{d} x}{\mathrm{~d} t}=y \\
\frac{\mathrm{~d} y}{\mathrm{~d} t}=f(x, y, t)
\end{array}\right.
$$

Solve this system using the algorithms we learnt for first-order ODEs.
To solve higher ODEs, we repeat this trick till we have a system of first-order ODEs only.

ODEs. Second-order and higher-order ODEs

CLASSICAL EXAMPLE of $2^{\text {nd }}$ order ODE for astrophysicists:
equation of motion of a star in a binary system

$$
\frac{\mathrm{d}^{2} \vec{x}_{i}}{\mathrm{~d} t^{2}}=-G m_{j} \frac{\vec{x}_{i}-\vec{x}_{j}}{\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}}
$$

can be rewritten as

$$
\left\{\begin{array}{c}
\frac{\mathrm{d} \vec{x}_{i}}{\mathrm{~d} t}=\vec{v}_{i} \\
\frac{\mathrm{~d} \vec{v}_{i}}{\mathrm{~d} t}=-G m_{j} \frac{\vec{x}_{i}-\vec{x}_{j}}{\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}}
\end{array}\right.
$$

ODEs. Astrophysical N-body problem

Integration of the equations of motion for \mathbf{N}-bodies subject to Newton's gravity force (1687)

$$
\frac{\mathrm{d}^{2} \mathbf{x}_{i}}{\mathrm{~d} t^{2}}=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\mathbf{x}_{i}-\mathbf{x}_{j}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|^{3}}
$$

can be split into a system of 2 first-order ODEs

$$
\left\{\begin{array}{r}
\frac{\mathrm{d} \mathbf{v}_{i}}{\mathrm{~d} t}=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\mathbf{x}_{i}-\mathbf{x}_{j}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|^{3}} \\
\frac{\mathrm{~d} \mathbf{x}_{i}}{\mathrm{~d} t}=\mathbf{v}_{i}
\end{array}\right.
$$

ODEs. Astrophysical N-body problem

It is the first thing you need to solve to simulate a star cluster

The second thing you need is stellar evolution

ODEs. Astrophysical N-body problem

- This eq. can be solved analytically for $\mathbf{N}=2$ (Bernoulli solution, 1710).
- In 1885, a challenge was proposed, to be answered before January $21^{\text {st }} 1889$, in honour of the 60th birthday of King Oscar II of Sweden and Norway:
"Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly."

Nobody found the solution, although many participated (including Henry Poincaré).

- 1991: the mathematician Qiudong Wang found the first convergent power series solution for a generic number of bodies.
However, the solution by Q. Wang is too difficult to implement and slow to convergence.

Bernoulli

Newton

Oscar II
of Sweden
Q. Wang

Thus, everybody solves Newton's equation numerically for $\mathbf{N}>=3$.

ODEs. Astrophysical N-body problem

Newton's equation can be solved with Runge-Kutta methods. For example, the Euler scheme:

$$
\begin{gathered}
x(t+h)=x(t)+h f(x, t) \\
\vec{a}_{i}(t)=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\vec{x}_{i}(t)-\vec{x}_{j}(t)}{\left|\vec{x}_{i}(t)-\vec{x}_{j}(t)\right|^{3}} \\
\vec{x}_{i}(t+h)=\vec{x}_{i}(t)+\vec{v}_{i}(t) h \\
\vec{v}_{i}(t+h)=\vec{v}_{i}(t)+\vec{a}_{i}(t) h
\end{gathered}
$$

ODEs. EXERCISE on binary star with Euler

Newton's equation can be solved with Runge-Kutta methods. For example, the Euler scheme:

EXERCISE:

Write a new script to implement Euler's method to evolve a system of two points in two dimensions ($x y$ plane), subject to gravity forces, with the following initial conditions. Initial positions of particles 1 and 2 (in the plane $x y)$: $\mathbf{x}=(1.0,-1.0), \mathbf{y}=(1.0,-1.0)$.
Initial velocities of particles 1 and 2 (in the plane $x y)$: $\mathbf{v}_{x}=(-0.5,0.5)$, $\mathbf{v}_{y}=(0.0,0.0)$.
Let us assume that the masses are $m_{1}=m_{2}=1$, and the gravity constant in our units is $G=1$.
Let us assume $t_{0}=0, t_{\text {fin }}=300$ and $h=0.01$. The result should look like the blue line in Figure 42.

ODEs. EXERCISE on binary star with Euler

Result of previous exercise is the blue line:

ODEs. Midpoint \& the astrophysical N-body problem

General expression of the midpoint scheme

$$
k_{1}=\frac{h}{2} f(x(t), t)
$$

$$
\begin{array}{r}
k_{2}=h f\left(x(t)+k_{1}, t+\frac{h}{2}\right) \\
x(t+h)=x(t)+k_{2}
\end{array}
$$

How does it look like when applied to the astrophysical N -body problem?

$$
\begin{array}{r}
k_{1}=\frac{h}{2} f(x(t), t) \\
k_{2}=h f\left(x(t)+k_{1}, t+\frac{h}{2}\right) \\
x(t+h)=x(t)+k_{2} \\
k_{1, v}=\frac{h}{2} \frac{\mathrm{~d} v_{i}\left(x_{i}(t), t\right)}{\mathrm{d} t}
\end{array} \quad \begin{aligned}
& k_{2, x}=h \frac{\mathrm{~d}\left(x_{i}(t)+k_{1, x}, t+h / 2\right)}{\mathrm{d} t} \\
& k_{2, v}=h \frac{\mathrm{~d}\left(v_{i}(t)+k_{1, v}, t+h / 2\right)}{\mathrm{d} t} \\
& \begin{array}{l}
x_{i}(t+h)=x_{i}(t)+k_{2, x} \\
v_{i}(t+h)=v_{i}(t)+k_{2, v}
\end{array}
\end{aligned}
$$

ODEs. Midpoint \& the astrophysical N-body problem

$$
\begin{array}{r}
k_{1, x}=\frac{h}{2} \frac{\mathrm{~d} x_{i}(t)}{\mathrm{d} t} \\
k_{1, v}=\frac{h}{2} \frac{\mathrm{~d} v_{i}\left(x_{i}(t), t\right)}{\mathrm{d} t}
\end{array}, \begin{aligned}
& k_{1, x}=\frac{h}{2} v_{i}(t) \\
& k_{1, v}=\frac{h}{2} a_{i}(t) \\
& k_{2, x}=h \frac{\mathrm{~d}\left(x_{i}(t)+k_{1, x}, t+h / 2\right)}{\mathrm{d} t} \\
& k_{2, v}=h \frac{\mathrm{~d}\left(v_{i}(t)+k_{1, v}, t+h / 2\right)}{\mathrm{d} t} \\
& \begin{array}{l}
x_{i}(t+h)=x_{i}(t)+k_{2, x} \\
v_{i}(t+h)=v_{i}(t)+k_{2, v}
\end{array}
\end{aligned}
$$

ODEs. Midpoint \& the astrophysical N-body problem

$$
\begin{aligned}
k_{1, x} & =\frac{h}{2} v_{i}(t) \\
k_{1, v} & =\frac{h}{2} a_{i}(t)
\end{aligned}
$$

$$
k_{2, x}=h\left(v_{i}(t)+\frac{h}{2} a_{i}(t)\right)
$$

$$
k_{2, v}=h \frac{\mathrm{~d}}{\mathrm{~d} t}\left(v_{i}(t)+\frac{h}{2} a_{i}(t)\right)
$$

$$
\begin{aligned}
x_{i}(t+h) & =x_{i}(t)+k_{2, x} \\
v_{i}(t+h) & =v_{i}(t)+k_{2, v}
\end{aligned}
$$

ODEs. Midpoint \& the astrophysical N-body problem

$$
\begin{aligned}
k_{1, x} & =\frac{h}{2} v_{i}(t) \\
k_{1, v} & =\frac{h}{2} a_{i}(t)
\end{aligned}
$$

Remember that the acceleration in Newton eqs depends only on

$$
k_{2, x}=h\left(v_{i}(t)+\frac{h}{2} a_{i}(t)\right)
$$ positions (a does not depend on \boldsymbol{v})

$$
k_{2, v}=\left.h \frac{\pi}{\mathrm{~d}^{+}}\left(v_{i} h_{2, v}^{h} a_{i}(t)\right) \quad \rightarrow k_{2, v} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\right|_{t+\frac{h}{2}}=h a_{i}\left(x_{i}(t+h / 2), t+h / 2\right)
$$

Writing Euler explicitly

$$
\begin{aligned}
x_{i}(t+h) & =x_{i}(t)+k_{2, x} \\
v_{i}(t+h) & =v_{i}(t)+k_{2, v}
\end{aligned}
$$

$$
k_{2, v}=h a_{i}\left(x_{i}(t)+h / 2 v_{i}(t)\right)
$$

ODEs. Midpoint \& the astrophysical N-body problem

$$
\begin{aligned}
& k_{1, x}=\frac{h}{2} v_{i}(t) \\
& k_{1, v}=\frac{h}{2} a_{i}(t) \\
& k_{2, x}=h\left(v_{i}(t)+\frac{h}{2} a_{i}(t)\right) \\
& k_{2, v}=h a_{i}\left(x_{i}(t)+h / 2 v_{i}(t)\right) \\
& \begin{array}{l}
x_{i}(t+h)=x_{i}(t)+k_{2, x} \\
v_{i}(t+h)=v_{i}(t)+k_{2, v}
\end{array} \\
& k_{2, x}=h\left(v_{i}(t)+k_{1, v}\right) \\
& k_{2, v}=h a_{i}\left(x_{i}(t)+k_{1, x}\right)
\end{aligned}
$$

ODEs. Midpoint \& the astrophysical N-body problem

$$
\begin{aligned}
& k_{1, x}=\frac{h}{2} v_{i}(t) \\
& k_{1, v}=\frac{h}{2} a_{i}(t)
\end{aligned}
$$

$$
\begin{gathered}
k_{2, x}=h\left[v_{i}(t)+k_{1, v}\right] \\
k_{2, v}=h a_{i}\left(x_{i}(t)+k_{1, x}\right)
\end{gathered}
$$

$$
\begin{aligned}
x_{i}(t+h) & =x_{i}(t)+k_{2, x} \\
v_{i}(t+h) & =v_{i}(t)+k_{2, v}
\end{aligned}
$$

This is the most elegant form of the midpoint scheme for the N -body problem

ODEs. Midpoint \& the astrophysical N-body problem

In practice,

$$
\begin{aligned}
& k_{1, x}=\frac{h}{2} v_{i}(t) \\
& k_{1, v}=\frac{h}{2} a_{i}(t)
\end{aligned}
$$

$$
\begin{aligned}
& a_{i}(t)=-G \sum_{j=1, j \neq i}^{n} \frac{m_{j}\left(x_{i}(t)-x_{j}(t)\right)}{\left|x_{i}(t)-x_{j}(t)\right|^{3}} \\
& k_{1, x}=\frac{h}{2} v_{i}(t) \\
& k_{1, v}=\frac{h}{2} a_{i}(t)
\end{aligned}
$$

$$
x_{i}(t+h / 2)=x_{i}(t)+k_{1, x}
$$

$$
\rightarrow a_{i}(t+h / 2)=-G \sum_{j=1, j \neq i}^{n} \frac{m_{j}\left(x_{i}(t+h / 2)-x_{j}(t+h / 2)\right)}{\mid x_{i}(t+h / 2)-x_{j}(t+h / 2)^{3}}
$$

$$
k_{2, x}=h\left(v_{i}(t)+k_{1, v}\right)
$$

$$
k_{2, v}=h a_{i}(t+h / 2)
$$

$$
x_{i}(t+h)=x_{i}(t)+k_{2, x}
$$

$$
v_{i}(t+h)=v_{i}(t)+k_{2, v}
$$

ODEs. EXERCISE on binary star with midpoint/ RK 4

EXERCISE:

Write a new script to implement the Midpoint method and/or the Runge-Kutta 4th order method to evolve a system of two points in two dimensions ($x y$ plane) described in the pevious exercise.
Let us assume $t_{0}=0, t_{\text {fin }}=300$ and $h=0.01$. The result should look like the red line in Figure 42 (Midpoint and Runge-Kutta 4th order cannot be distinguished by eye in this case).

ODEs. EXERCISE on binary star with midpoint/ RK 4

Result of Euler is the blue line
Result of Midpoint is the red line

ODEs. Leapfrog scheme

- a particular version of the midpoint method
- leapfrog play (Italian: la cavallina)
- similar to Euler's method but evaluated in between a time-step

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is Kick - Drift - Kick (KDK) algorithm

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is Kick - Drift - Kick (KDK) algorithm

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is Kick - Drift - Kick (KDK) algorithm

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is Kick - Drift - Kick (KDK) algorithm

ODEs. Leapfrog scheme

Most common version of leapfrog scheme is Kick - Drift - Kick (KDK) algorithm

Kick + Drift + Kick (KDK) scheme

ODEs. Leapfrog scheme

Kick + Drift + Kick (KDK) scheme

Mathematically

$$
\begin{array}{r}
\vec{a}_{i}(t)=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\vec{x}_{i}(t)-\vec{x}_{j}(t)}{\left|\vec{x}_{i}(t)-\vec{x}_{j}(t)\right|^{3}}, \\
\left.\vec{v}_{i}\right)\left(t+\frac{h}{2}\right)=\vec{v}_{i}(t)+\frac{h}{2} \vec{a}_{i}(t) \\
\vec{x}_{i}(t+h)=\vec{x}_{i}(t)+h \widehat{\vec{v}_{i}}\left(t+\frac{h}{2}\right) \\
\vec{a}_{i}(t+h)=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\vec{x}_{i}(t+h)-\vec{x}_{j}(t+h)}{\left|\vec{x}_{i}(t+h)-\vec{x}_{j}(t+h)\right|^{3}}, \\
\vec{v}_{i}(t+h)=\widehat{v}_{i}\left(t+\frac{h}{2}\right)+\frac{h}{2} \vec{a}_{i}(t+h)
\end{array}
$$

ODEs. Leapfrog scheme

Kick + Drift + Kick (KDK) scheme
In more compact form:

$$
\begin{array}{r}
\vec{a}_{i}(t)=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\vec{x}_{i}(t)-\vec{x}_{j}(t)}{\left|\vec{x}_{i}(t)-\vec{x}_{j}(t)\right|^{3}}, \\
\vec{x}_{i}(t+h)=\vec{x}_{i}(t)+h \vec{v}_{i}(t)+\frac{h^{2}}{2} \vec{a}_{i}(t) \\
\vec{a}_{i}(t+h)=-G \sum_{j=1, j \neq i}^{N} m_{j} \frac{\vec{x}_{i}(t+h)-\vec{x}_{j}(t+h)}{\left|\vec{x}_{i}(t+h)-\vec{x}_{j}(t+h)\right|^{3}}, \\
\vec{v}_{i}(t+h)=\vec{v}_{i}(t)+\frac{h}{2}\left[\vec{a}_{i}(t)+\vec{a}_{i}(t+h)\right]
\end{array}
$$

ODEs. Leapfrog scheme

- second-order scheme (barely)
- surprisingly accurate
- alternative version: drift-kick-drift (DKD) leapfrog scheme, in which position is evaluated at the midpoint $(t+h / 2)$, then velocity is advanced to the end and finally position is recalculated to the end of the step.
You can try to derive this one by yourself
- (unlike Runge-Kutta) leapfrog is time-reversal symmetric
\rightarrow the error on energy conservation does not grow with time

NOTE: A nice way to estimate how well an integrator of celestial dynamics works is to calculate the conservation of total energy and total angular momentum as a function of time during the integration

ODEs. Exercise on binary star with leapfrog

EXERCISE:

Write a code to implement the leapfrog scheme. Integrate the binary star in the previous exercises with the leapfrog scheme. Compare Euler's method with the leapfrog scheme. Choose $t_{0}=0$, $t_{\text {fin }}=300$ and $h=$ 0.01 . The result should look like Figure 44 . Leapfrog is much better, isn't it?

ODEs. Exercise on binary star with leapfrog

Euler versus Leapfrog

Same initial conditions: integration of a Keplerian binary

ODEs. Euler vs Leapfrog: a simple test

Energy of an N-body system

$$
E=\sum_{i=1}^{N} \frac{1}{2} m_{i} v_{i}^{2}-G \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{m_{i} m_{j}}{\left|r_{i}-r_{j}\right|}
$$

For a binary star, energy in the center of mass of the system

$$
E=\frac{1}{2} \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}\left|v_{1}-v_{2}\right|^{2}-G \frac{m_{1} m_{2}}{\left|r_{1}-r_{2}\right|}
$$

Modulus of angular momentum

$$
L=\sum_{i=1}^{N}\left|m_{i} v_{i} \times r_{i}\right|
$$

If energy and angular momentum are supposed to be conserved in the system we simulate, the level of energy / angular momentum conservation between previous and next step is a good indicator of the accuracy of the integrator

ODEs. Euler vs Leapfrog: a simple test

Energy conservation test

Leapfrog Delta E I E ~ 2.1e-06 Euler Delta E/E = 0.0024

ODEs. Euler vs Leapfrog: a simple test

Angular momentum conservation test

Leapfrog Delta L / L ~ 5.6e-16 Euler Delta L/L = 0.00013

