
1

Numerical Methods for Astrophysics:
FITS

Michela Mapelli

2

Fits. Concept

Interpolation and curve fitting should not be confused.

Interpolation: curve passing through a discrete set of data points;
implicit assumption that all the data points are accurate.
Mostly done with theoretical sets of data points.

Curve fitting: smooth curve that approximates the data.
Thus, the curve does not necessarily hit the data points.
Mostly applied to data that contain scatter (noise), due to measurement errors.

3

Fits. Linear fit with the least square method

The simplest approach is to assume that our data points can be fit with a
straight line.

y
i
 := set of measures in the points x

i
 with i = 0, 1, …, N – 1

(e.g. y
i
 = flux of astrophysical source at time x

i
)

Assuming that the y
i
 and the x

i
 are connected by a linear relationship is

equivalent to say that, if we could measure y
i
 with infinite accuracy and avoid-

ing any kind of noise, the y
i
 would obey the following relationship:

With A, B = constants, y and x = continuous version of y
i
 and x

i

Many (astro)physical quantities follow a power law
→ to fit data that intrinsically scale as a power law we can use the linear fit,
applied to the logarithm of our data, i.e.

4

Fits. Linear fit with the least square method

It is not possible to measure data without errors of measurement
→ first step is to assume the distribution of the errors of measurements

Simpler assumptions:
1. no error on the x

i
, just error on the y

i

Usually reasonable assumption – e.g. I measure the time with much more
accuracy than the flux from an astrophysical source

2. measurements y
i
 distributed as a Gaussian distribution around the exact value

A + B x
i
 with a standard deviation sy

→ The probability of obtaining the observed value of y
i
 is

The probability of obtaining our complete set of measurements y
0
, y

1
 , .., y

N-1

is then

where

5

Fits. Linear fit with the least square method

From

we can derive the values of A and B as these for which the probability P
A,B

is maximum, i.e. these which minimize the c2.

For this reason, this method is called least squares fitting.

In practice, we differentiate c2 wrt A and B and set the derivatives to zero:

which can be rewritten as

where we have defined

6

Fits. Linear fit with the least square method

After some math

where we have defined

Numerically, the above eqs for A and B are subject to large rounding errors
because the two terms of the subtraction in the numerators and in the

denominators are similar numbers

→ in your scripts, better to use the equivalent equations

which reduce rounding errors (see Chapter 4)

where

are the mean values of the
xi and yi data

7

Fits. Linear fit with the least square method

Since we assumed that the measurements on y
i
 are normally

distributed about the true value A + B x
i
,

the deviations (y
i
 − A − B x

i
) are also normally distributed,

with central value = 0 and standard deviation σ
y
.

Hence:

And we can derive the erros on A and B by error propagation:

The larger the uncertainties on A and B,
the worse our assumptions that x

i
 and y

i
 are connected by a linear relationship

8

Fits. Linear fit with the least square method

Since we assumed that the measurements on y
i
 are normally

distributed about the true value A + B x
i
,

the deviations (y
i
 − A − B x

i
) are also normally distributed,

with central value = 0 and standard deviation σ
y
.

Hence:

And we can derive the erros on A and B by error propagation:

The larger the uncertainties on A and B,
the worse our assumptions that x

i
 and y

i
 are connected by a linear relationship

9

Fits. Exercise on the least square method

10

Fits. Exercise on the least square method

11

Fits. Linear fit by weighting of data

The previous application of the least squares method does not include the possibility
that the uncertainty is different for each single datum.

The most common case is that the uncertainty does depend on the data.

In this case, we might want to assign a weight to each single data point:

where W
i
 : = weight of the i-th data point. Usual choice:

We proceed as before by minimizing c2

which yields

where

12

Fits. Linear fit by weighting of data

As we said for the non-weighted linear fit, the previous equations for A and B
suffer from large rounding errors.

Better to rewrite them as

where

are the weighted averages of the xi and yi data

13

Fits. Exercise on linear fit by weighting of data

14

Fits. General approach to least – square fitting

So far, we have seen only the application of the least-square fit method to a
straight line. Let us now generalize to a general function f (x)

– Best general practice to follow:
first assume that the data can be fitted with a straight line.

If the fit we obtain with the straight line is poor,
then let us start considering some more complex functional form.

– Or special case:
if we have some theoretical understanding of
what the distribution of data should be,

it is smart to start fitting the data with the function suggested by theory.

If we have to consider a more complex function than a straight line,
it is important that this function has a simple form (for example a polynomial)

to AVOID OVERFITTING the data, i.e. to avoid that we start modeling
not only the underlying distribution of the data but also the noise

15

Fits. General approach to least – square fitting

Define a general function as

where x is the variable and a0
, a1

, ..., am are the m + 1 parameters.

If we want to fit this function to our data (xi, yi) with i = 0, 1, ..., N − 1,

it is important that (m + 1) < N better if (m + 1) << N.

The least-square fit is the one which minimizes the function

with respect to each ak :

which is the generalization of

 to a number m + 1 of parameters

16

Fits. General approach to least – square fitting

The spread of the data about the fitting curve is quantified by the standard deviation,
defined as

where N − m is the number of degrees of freedom of the fit.

In the linear case, we have two parameters A and B (m + 1 = 2),
so the number of degrees of freedom is always N − 1.

Note that if N = m we have interpolation, not curve fitting.

In this case both S and N − m are equal to zero, so σy is indeterminate.

17

Fits. Polynomial least – square fitting

Often the fitting function f (x) is a linear combination of functions:

so that eqs. are linear

If f(x) is a polynomial function, then

If the degree of the polynomial is m, we have

where the basis functions are

The c2 minimization becomes

18

Fits. Polynomial least – square fitting

Let’s rewrite the last eq. of previous slide:

Separating the terms that depend on j from those who do not,
and reshuffling a bit, we get:

Since the aj are our unknowns and we have a linear combination of the terms in aj,
the above equation can be rewritten as a system of linear equations :

where
These eqs can be implemented into a script

to perform a polynomial fit of degree m.

19

Fits. Exercise on polynomial least – square fitting

20

Fits. Python functions for fits: scipy.optimize.least_squares()

There are several possible functions in python that do least-square fitting,
EVEN TOO MANY.

We will see scipy.optimize.least_squares() and scipy.optimize.curve_fit()

scipy.optimize.least_squares : solves a general least-squares problem
given the residuals r(x)

 I must start providing a functional form r(x) of the residuals.

For example, if I think may data are distributed according to a Gaussian function
(e.g. I am looking at an emission line in a spectrum), the residuals should be

 estimated as

where f(xi) is a Gaussian function evaluated in xi

yi is the value of the measure at xi,

a0 : = mean, a1 : = standard deviation, a2: = normalization

Note: here we are not talking of probability distribution functions,
so a2 can be whatever normalization

21

Fits. Python functions for fits: scipy.optimize.least_squares()

Let’s rewrite the last few lines

where f(xi) is a Gaussian function evaluated in xi

yi is the value of the measure at xi,

a0 : = mean, a1 : = standard deviation, a2: = normalization

In python formalism this becomes:

from scipy import optimize as opt

def fun_res(a,x,y):
 gauss_res=a[2]*np.exp(– (x – a[0])**2/2./a[1]**2) – y
 return gauss_res

lsq=opt.least_squares(fun_res, a, args=(x,y), xtol=1e-07, loss='cauchy')

Note that I must not specify the arguments of the function fun_res when called
by scipy.optimize.least_squares()

array of
parameters

array of
data

22

Fits. Python functions for fits: scipy.optimize.least_squares()

Function scipy.optimize.least_squares()
has several additional options like

xtol = 1e-07 the tolerance (minimum requested accuracy)

loss = ‘cauchy’ the loss function

g(z), which is used to ``modulate'' the cost function F(x)
we want to minimize:

For example, if I choose ‘loss=cauchy',

which weakens the influence of outliers in the data (bad measurements)
but might slow down the optimization (or even make it fail).

23

Fits. Python functions for fits: scipy.optimize.least_squares()

The OUTPUT of scipy.optimize.least_squares() is a
quite complicated structure of data, defined in scipy.

Here below, I summarize the most important outputs and how you can get them:

lsq.x

is the array of the aj after the optimization.

In the case of the Gaussian fit, a0, a1 and a2 will contain the best fit values of

the mean, the standard deviation and the normalization.

lsq.success

 The answer can be only True or False.
False means that the fit failed, True that it succeeded.

Fits. Python functions for fits: scipy.optimize.least_squares()

25

Fits. Python functions for fits: scipy.optimize.least_squares()

26

Fits. Python functions for fits: scipy.optimize.curve_fit()

scipy.optimize.curve_fit : solves a general least-squares problem to fit a function,
f(x), to the data.

The main (but not the only) difference with respect to scipy.optimize.least_squares
is that scipy.optimize.curve_fit requires the function in input, not the residuals.

For example, if I think may data are distributed according to a Gaussian function,

scipy.optimize.curve_fit() can be used as

from scipy import optimize as opt

def func(x,a,s,h):
 gauss=h*np.exp(– (x – a)**2/2./s**2)
 return gauss

popt,pcov=opt.curve_fit(func ,x ,y ,p0=(a ,s ,h))

Additional possible input parameters:
sigma: the array of uncertainties on the data y
bounds: the lower and upper bounds on parameters (default is no bounds)
methods: the method used by the function to do the optimization.

parameters

array of
y dataFitting

function

array of
x data

27

Fits. Python functions for fits: scipy.optimize.curve_fit()

The OUTPUT of scipy.optimize.least_squares is composed of two arrays:

popt: contains the optimal values for the best-fitting parameters
i.e. these for which the sum of the squared residuals of f(x, *popt) – y is minimized.

pcov: is the estimated covariance of popt.
The diagonals provide the variance of the parameter estimate.
To compute one – standard deviation errors on the parameters use
perr = np.sqrt(np.diag(pcov))

28

Fits. Python functions for fits: scipy.optimize.curve_fit()

29

Fits. Python functions for fits: scipy.optimize.curve_fit()

30

Fits. Python functions for fits: scipy.optimize.curve_fit()

optimize.curve_fit() can be also used to do fits in multi-dimensions.

For example, let us see now the example of a Gaussian in two dimensions.

Let’s write down a Gaussian in two dimensions oriented along x and y axis:

here h is the height, x0 and sx are the mean and the standard along x,
y0 and sy are the mean and the standard deviation along y

In python

def twoD_gauss(xy, x0, y0, sx, sy, h):
 z=h*np.exp(– ((xy[0] – x0)**2/(2.*sx*sx) + (xy[1] – y0)**2/(2.*sy*sy)))
 return z.ravel()

31

Fits. Python functions for fits: scipy.optimize.curve_fit()

In python:

#examples/fit/fit_2D_scipy.py
#fit a 2D gaussian with scipy.optimize.curve_fit
import numpy as np
import numpy.random as rnd
import matplotlib.pyplot as plt
from scipy import optimize as opt
from scipy.stats import norm

plt.rcParams.update({'font.size': 15})

def twoD_gauss(xy, x0, y0, sx, sy, h):
 z=h*np.exp(– ((xy[0] – x0)**2/(2.*sx*sx) + (xy[1] – y0)**2/(2.*sy*sy)))
 return z.ravel()

sx, sy:standard
deviation along x
and y axis

y0: y-axis
mean

xy: tuple
2D data

x0: x-axis
mean

h: normali-
zation

z is a matrix, while curve_fit only takes 1D arrays as argument.
Hence, we must first convert z to a 1D array thanks to numpy.ravel()

32

Fits. Python functions for fits: scipy.optimize.curve_fit()

def data_set():
 x=np.linspace(-5.,5.,num=500) #x data
 y=np.linspace(-5.,5.,num=500) #x data
 x,y=np.meshgrid(x,y)
 z=np.zeros([len(x),len(y)],float)
 x0=0.0
 y0=0.0
 sx=1.0
 sy=0.7
 h=1.0
 xy=(x,y)
 z=twoD_gauss(xy,x0,y0,sx,sy,h)
 z=z + 1e-1*np.random.normal(size=z.shape)
 return x,y,z

def sci_fit(x,y,x0,y0,sx,sy,h):
 xy=(x,y)
 popt,pcov=opt.curve_fit(twoD_gauss ,xy ,z ,p0=(x0,y0,sx,sy,h))
 return popt,pcov

Fit parameters:
x0, y0: means
along x and y axis

sx, sy: std along x
and y axis

h: normalization

z data
2D
Gaussian
function

xy data

Input mock data distributed
according to a 2D Gaussian

33

Fits. Python functions for fits: scipy.optimize.curve_fit()

#main
x,y,z=data_set() #data points
x0=0. #Ansatz for parameters x0, y0, sx, sy and h
y0=1.
sx=2.
sy=2.
h=2.

popt,pcov=sci_fit(x,y,x0,y0,sx,sy,h)

perr = np.sqrt(np.diag(pcov))

print(popt[0],perr[0],popt[1],perr[1],popt[2],perr[2],popt[3],perr[3],popt[4],perr[4])
#x0+err,y0+err,sx+err,sy+err,h+err

xy=(x,y)
data_fitted = twoD_gauss(xy, *popt) #fitted data

Print values of z fitted

Print best – fit parameters
and their uncertainties

Call scipy.optimize.curve_fit()

*popt : The asterisk here has the meaning of calling a pointer to the array popt,
which contains the best fitted parameters. This is a pointer like in C and C++.
This does not exist in python, just in scipy and is not commonly used

34

Fits. Python functions for fits: scipy.optimize.curve_fit()

#plot results
figsize=plt.figaspect(1.0)
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_xlim(-3,3)
ax.set_ylim(-3,3)
ax.contourf(x,y,z.reshape(len(x),len(y)),100,cmap=plt.cm.jet)
ax.contour(x, y, data_fitted.reshape(len(x),len(y)), 8, colors='w')
ax.set_xlabel("x")
ax.set_ylabel("y")

plt.tight_layout()
plt.show()

We need to transform z to
a matrix again with
function reshape()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

