
1

Numerical Methods for Astrophysics:
FOURIER TRANSFORMS

Michela Mapelli

2

Fourier transforms. Concept

Fourier transforms are ubiquitous in physics, astrophysics and
in every-day life (e.g. the mp3 and jpg file format)

Very nice Fourier summary here (plus, you learn how to take
the Fourier transform of your cat):

 https://www.youtube.com/watch?v=UGRhqZ2ooIw

https://www.youtube.com/watch?v=UGRhqZ2ooIw

3

Fourier transforms. Concept

A periodic function f(x) defined on a finite interval 0, L
can be written as Fourier series provided that it is bounded and
has at most a finite number of discontinuities and extrema

EVEN (i.e. symmetric) function about the midpoint x=L/2

ODD (i.e. antisymmetric) function about the midpoint

GENERAL PERIODIC FUNCTION

4

Fourier transforms. Concept

Using the complex notation:
(from Euler’s formulas)

we get

Collecting terms and generalizing for whatever k

where

5

Fourier transforms. Concept

ONLY FOR PERIODIC FUNCTIONS

MOST FUNCTIONS are NOT PERIODIC

If we are interested only in a portion of a non-periodic function
in the interval 0, L, it is always possible to take that portion and
just repeat it to create a periodic function

6

Fourier transforms. Concept

The coefficients gk are COMPLEX numbers

To calculate them take

and integrate the two terms with a “trick”

i.e. multiply both sides by

if k == k’ then

if k != k’ then

7

Fourier transforms. Concept

if k != k’ then

WHY?
You know from your analysis courses (otherwise ask me) that

here

Hence

because if n integer

8

Fourier transforms. Concept

Hence the result of

is

Or, re-writing in terms of gk

Given f(x) we know the gk and
vice versa from the gk we can reconstruct f(x)

9

Fourier transforms. Discrete Fourier Transform (DFT)

1. The integral

can be calculated analytically only for some f(x)

2. in many cases we do not know f(x) but just a sample yn = f(xn)

e.g. we have experimental data for yn, not a functional form

→ it is important to calculate the gk numerically

USE TRAPEZOIDAL RULE

For

where

Using f(0) = f(L) for periodicity, we simplify the sum

10

Fourier transforms. Discrete Fourier Transform (DFT)

If function f(x) is equally sampled over the interval,
i.e. the xn are equally spaced, we simplify yn = f(xn) and xn = (n / N) L

1 2 3 4 5 6 7 xn = (n/N) L

11

Fourier transforms. Discrete Fourier Transform (DFT)

If function f(x) is equally sampled over the interval,
i.e. the xn are equally spaced, we simplify yn = f(xn) and xn = (n / N) L

By convention, we use the following formula

where c
k
 : = g

k
 N

discrete Fourier
 transform (DFT)
 formula

12

Fourier transforms. Discrete Fourier Transform (DFT)

We derived this with trapezoidal rule: simplified method

However, with few mathematical steps we can show that
the DFT is, in a certain sense, exact:

with some math tricks we see that

given the coefficients ck we can recover the values of the samples yn

that they come from exactly (except for rounding errors).

Inverse discrete
 Fourier transform
 (inverse DFT)

13

Fourier transforms. Discrete Fourier Transform (DFT)

Even though Fourier coefficients are only approximate,
 they are actually exact in the sense that
we can completely recover the original samples from them

We can freely move back and fourth from the coefficients to the
samples and vice versa WITHOUT LOSING ANY INFORMATION
in our data by using

Notice that we only need the Fourier coefficients ck up to k = N – 1

to recover the samples, so 0<= k < N : no need to calculate an infinite sum

14

Fourier transforms. Discrete Fourier Transform (DFT)

 The inverse DFT equation only gives us the sample values yn = f(xn):

it tells us nothing about the value of f(x) between sample points.

Any two functions that have the same values yn at the sample points xn

will have the same DFT,
no matter what they do between the sample points.

We cannot do better than this when we do not know the functional form
of the function, but we have only a sample of discrete experimental data.

15

Fourier transforms. Discrete Fourier Transform (DFT)

 If REAL FUNCTIONS, further simplifications.

Suppose all the yn are real and consider the value ck for N/2 <k <N,

which we write as k = N – r where 1<= r <= N/2

where c* is the complex conjugate of c
This implies

if f(x) is real, we calculate only the coefficients ck with 0 <= k <= N/2

If N is even, we must calculate N/2+1 coefficients
if N is odd, we must calculate (N+1)/2

In python

16

Fourier transforms. Fast Fourier Transform (FFT)

Computational cost of the DFT method: N2,
because we calculate N/2+1 or (N+1)/2 coefficients and
for each coefficient we loop over N sampled points

→ Scaling as N (N//2+1) ~ N2

Fast Fourier transform (FFT) is faster

Discovered in 1805 by Carl F. Gauss
Re-discovered independently in 1965 by James Cooley and John Tukey

Assumes that the samples are a power of two, hence N = 2m

with m integer.

17

Fourier transforms. Fast Fourier Transform (FFT)

Divide the terms of the sum in the DFT formula
into two equally sized groups.

- First group consists of the terms with n even,
i.e. the terms with n = 2 r with r = 0, 1,...N/2 – 1

is a Fourier transform of N/2 samples

- Second group consists of the terms with n odd,
i.e. the terms with n = 2 r + 1

is another Fourier transform of N/2 samples

18

Fourier transforms. Fast Fourier Transform (FFT)

The ck can be written as sum of Ek and Ok,

both DFTs of f(x) but with half as many points

plus an extra-factor (TWIDDLE FACTOR):

Repeat the splitting process onto each of the two Fourier transforms
Each of them can be divided in its even and its odd terms

We repeat the splitting, until eventually we get to the point
where each transform is the transform of just a single sample:

19

Fourier transforms. Fast Fourier Transform (FFT)

The actual calculation of the FFT is the REVERSE of this reasoning:

We start from the individual samples and we combine them in pairs,

then we combine the pairs into fours,

the fours into eights, and so on,

creating larger and larger Fourier transforms, until we have
reconstructed the full transform of the complete set of samples.

VERY FAST:
First round of the calculation: N samples,
Second round: N/2 transforms with 2 coefficients each
Third round: N/4 transforms with 4 coefficients each

→ N operations per each level and m levels, where m = log2(N),

→ FFT method scales as N log2(N)

DFT method scales as N2

20

Fourier transforms. FFT in python

module for FFTs in numpy: numpy.fft

1. numpy.fft.rfft: FFT for real values
from numpy.fft import rfft
c=rfft(y)

returns N//2+1 values

2. numpy.fft.irfft: inverse FFT for real values
from numpy.fft import rfft, irfft
c=rfft(y)
y2 =ifft(c)

returns N values

3. numpy.fft.rfft2: FFT for real values in 2D

4. numpy.fft.irfft2: inverse FFT for real values in 2D

21

Fourier transforms. FFT in python

module for FFTs in numpy: numpy.fft

5. numpy.fft.fft: FFT for complex values

6. numpy.fft.ifft: inverse FFT for complex values

7. numpy.fft.fft2: FFT for complex values in 2D

8. numpy.fft.ifft2: inverse FFT for complex values in 2D

22

Fourier transforms. Physical interpretation

Fourier transform represents a function via a set of
real or complex sinusoidal waves.

Each term in the sum is a single wave
with its own well-defined frequency n = k/N and period T = 1 / n

If f(x) is a function in space, then spatial frequencies,
if f(x) is a function in time, then temporal frequencies.

Saying that any function can be expressed as a Fourier transform
is equivalent to saying that
any function can be represented as a sum of waves of given frequencies

and the coefficients of the Fourier transform tell us
how much power is associated with each frequency,
i.e. how big is the contribution of each frequency to the sum.

23

Fourier transforms. Physical interpretation

Saying that any function can be expressed as a Fourier transform
is equivalent to saying that
any function can be represented as a sum of waves of given frequencies

and the coefficients of the Fourier transform tell us
how much power is associated with each frequency,
i.e. how big is the contribution of each frequency to the sum.

Example: Fourier representation of the piecewise function

24

Fourier transforms. Physical interpretation

Example:
examples/fourier/fft.py

signal consists of
a wave with
a well-defined frequency
and period,
but also some noise,
visible as smaller wiggles
in the line

We can calculate the Fourier transform of this signal as shown in
examples/fourier/fft.py

1. reads the file pitch.txt and plots
2. calculates the Fourier transform (numpy.fft.rfft)
3. plots the value of the absolute value of the coefficients |ck| versus k

4. calculates what is the frequency associated with the largest |ck|

25

Fourier transforms. Physical interpretation

|ck| versus k

k proportional to
the frequency
of the waves n=k/N

Spikes in the plot

Main SPIKE
k = 16, n ~ 0.0156
T = 1/ n = 64.

Main spike = main frequency and periodicity visible in Figure

Secondary spikes: HARMONICS

LOW-LEVEL BACKGROUND: some small, random values of |ck|.

Non-zero but very small |ck| are produced by some noise in the signal,

WHITE NOISE (= does not show any dependence with k)

26

Fourier transforms. De-noising

To get rid of the noise,
reconstruct the initial samples
without considering
the smallest |ck| :

cut the small |ck|

equivalent to applying a
FILTER

Reconstruct original samples
by doing the inverse FFT
after zeroing all ck

with |ck| < = threshold ~ 25

Red: reconstructed signal after removing the noise-like coefficients.

Procedure works only if WHITE NOISE and
final result is sensitive to the choice of the threshold.

Not a tutorial on de-noising but very simplified example.

27

Fourier transforms. Exercise

28

Fourier transforms. Exercise

29

Fourier transforms. Exercise

Note:
Work with complex numbers from cmath import exp

Define complex array ck =numpy.zeros(N//2+1,complex)

2 i should be written as 2j

30

Fourier transforms. Exercise

31

Fourier transforms. Exercise

32

Fourier transforms. Exercise

33

Fourier transforms. Exercise

N = 3143 months
Frequency : k/N ~ 0.0076 months-1

Period: T = N/K ~ 10.9 yr

34

Fourier transforms. Exercise

35

Fourier transforms. Exercise

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

