Numerical Methods for Astrophysics:
INTERPOLATION

Michela Mapelli



Interpolation. Concept

Interpolation and curve fitting should not be confused.

Interpolation: curve passing through a discrete set of data points;
implicit assumption that all the data points are accurate.
Mostly done with theoretical sets of data points.

Curve fitting: smooth curve that approximates the data.
Thus, the curve does not necessarily hit the data points.
Mostly applied to data that contain scatter (noise), due to measurement errors.

y

Curve fitting\>
Interpolation ~




Interpolation. Linear interpolation

Suppose you are given the value of a function f (x) at just two points a and b
and you want to know the value of the function at another point x in between.

The simplest way to proceed (and often the BEST WAY to proceed) is to assume
our function follows a straight line from f (a) to f (b).

Slope: m = f(b[)):i(a)
Hence: A
flz)=y+z= /( 2:£(a)(x—a)+f(a)
_(b—2) f(a) + (x—a) f)
b—a

In most astrophysical cases,
we do not have a functional form
but two arrays of points

o 1 X2 ... ITp

Yo Y1 Y2 - Yn

actual curve

strai ght line

The procedure of linear interpolation gives its best if we perform one linear

interpolation every pair of data:

y(z) =

(Tiv1 — ) yi + (0 — ;) Yira

Liv1 — Ly




Interpolation. Linear interpolation

Suppose you are given the value of a function f (x) at just two points a and b
and you want to know the value of the function at another point x in between.

The simplest way to proceed (and often the BEST WAY to proceed) is to assume
our function follows a straight line from f (a) to f (b).

Slope: m = f(b[)) n i(a) /

Hence: £(b) — f(a) y(z) = (Tig1 — @) yi + (T — ;) Yy
_ (b—2) f(a) + (= —a) f(b)
b —
_ ! OFTEN THE BEST WAY
In most astrophysical cases, TO INTERPOLATE and to EXTRAPOLATE

we do not have a functional form
but two arrays of points

o 1 X2 ... ITp
Yo Y1 Y2 - UYUn

The procedure of linear interpolation gives i

A GRID OF DATA

!

if we perform one linear

interpolation every pair of data:
y(z) =

(i1 — @) yi + (T — ) Yi1

Tit1 — Xy




Interpolation. Linear interpolation, exercise

EXERCISE:

The file 120a300.fis contains the evolution of a 120 M, star at solar
metallicity integrated with the stellar evolution code FrRaNEC [Limongi
and Chieffi, 2018]. Columns 0 and 7 are the evolutionary time (in years)
and the mass (in Mg). The file evol_120msun_scattered.dat shows a
subsample of data points with respect to file 120a300.fis, with a much
coarser time grid. Columns 0 and 1 are the evolutionary time (in Myr)
and the mass (in Mg). In both files the comments are preceded by #.

Using the linear interpolation, interpolate the values of the mass
from file evol 120msun_scattered.dat in all the times of 120a300.fis.

Then compare your interpolation with the values in the original file
120a300.fis. The plot should look like Figure 55.




Interpolation. Linear interpolation, exercise

140 -

40}

201 - Original data
- . Interpolation
0 009 Scattered data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [Myr]




Interpolation. Polynomial interpolation, Lagrange method
It is always possible to construct an unique polynomial of degree n that passes
through n + 1 data points.

There are different formulas to build that polynomial.
n
LAGRANGE’s formula: P, (z) = >y, l;(2)
i=0

where the subscript n demotes the degree of the polynomial and

n

L(z)= [ —=Z, i=0,1,..,n

=057 Le — X

are the cardinal functions. ) T — T4

_ ole) = Lo — 21
Forn=1 " Pi(x) = yolo(z) + y1 li(x) with -, () = L 20
it's the straight line T — 2

X — X1 T — X9

Forn=2 Py(z)=1yolo(x) + y1li(z) + y2 lo(x) with lo(7) =

it's a parabolic curve Lo — L1 Tp — L2

X — g ¥ — T2

L1 — o 1 — T2
X — g ¥ — T

This method is conceptually simple o () =
but inefficient to implement numerically. Ty — Ty T —T1 7



Interpolation. Polynomial interpolation, Newton’s method

Newton’s method: polynomial interpolation method, similar to Lagrange’s method
but much better to implement numerically.

The interpolating polynomials are written as

P.(z)=a, 4+ (x —2p_1) Pe_1(x)

where n is the interpolation orderand k =0, 1, 2, ..., n.

—

fn=1 < PO(x)ZCLl
\Pl(x) = ag + (x — xg) Py(x)
g Py(z) = as

fn=2 < Pi(z)=aq

fn=3 <

Hence, the k=3 polynomial can be written as

Ps(z) = ag+ (x — x¢) {a1 + (x — x1) |ag + (z — x2) a3} 8



Interpolation. Polynomial interpolation, Newton’s method

The coefficients a_are determined by forcing the polynomial to pass
through each data pointy, =P, (x.)withi=0,1,..,n and k=n

This yields the simultaneous equations: Yo = do
Y1 = ao+ (r1 — zo) ay

Yo = ag + (T2 — xg) a1 + (x2 — Tg) (T2 — x1) ag

Yn = Ao + (T, — Tg) a1 + (v, — x0) (T — 1) A2 + ... + (T — 20) oo (Tp — Tp_1) Gy

If we write the divided differences as Vy, = ' , 1=1,2,...,n
X; — X
Vy, —V
VQyi — c y17 — 27 y TV
i — T
V3y; — V?
vgyi — J y27 1 = 37 y T
X; — T

The solution of the simultaneous equations becomes

ap =10, a1=Vyi, a=V1y, .. a,=V"y,



Interpolation. Polynomial interpolation, Newton’s method

")

import numpy as np

Example script: let’s read it together R I o

def coeffts(xData,yData):
#Computes the coefficients of Newton polynomial.
n = len(xData)
# Number of data points108
a = yData.copy()
for k in range(1,n):
for j in range(k,n):
aljl = (alj]l-alk-1])/(xDatalj] - xData[k-1])
ffor more simply
#talk:n] = {alk:n] - a|k-1])/(xDatalk:n] - xData[k-1])
return a

def evalPoly(a,xData,x):
n = len(xData) - 1
# Degree of polynomial
p = aln]
for k in range(1,n+1):
p =aln-k] + (x -xData[n-k])=*p
return p

#Evaluates Newton polynomial p at x. The coefficient
#vector { a } can be computed by the function coeffts.
def newtonPoly(xData,yData,x):

30 . . . . a = coeffts(xData,yData)
p = evalPoly(a,xData,x)
return p
25} 4
fmain

xData=np.zeros(10,float)
yData=np.zeros(10,float)
x=np.zeros (100, float)

15] | for i in range(len(xData)):
xDatali]=float(i+0.9)
yData|i]=float(xDatai]++2)
10| , for i in range(len{x)):
w[i]=float{i+0.5/10.)

20+ E

5t 1 y=newtonPoly(xData,yData,x)
ot J
fig, ax1= plt.subplots()
ax1.scatter(xData,yData, marker="o", edgecolor="black’,\
-5 L L L L . . facecolors="black’, s=100,zorder=1)
-1 0 1 2 3 4 5 6

axl.plot(x,y)
fig.tight_layout() 1()
plt.show()




Interpolation. Limitations of polynomial interpolation

Polynomial interpolation should be carried out with the fewest feasible number of
data points.

Linear interpolation, using the nearest 2 points, is often sufficient if the data points
are closely spaced.

An interpolant intersecting more than 6 points must be viewed with suspicion.
The reason is that the data points that are far from the point of interest
do not contribute to the accuracy of the interpolant.

Example of bad interpolation: H00 i 7 i i
* polynomial of degree 10 i Ti ________ e Ly ir _______ ji _________
* 11 data points ] 4; 77777777 YA T\ ;% 7777777 4; 777777777
* too much OSCILLATION A ******** VA TN ******* *********
20 o A
omfAN L
0N S U S IR S
6.0 40 2.0 0.0 2.0 4.0 6.0
X

11



Interpolation. Limitations of polynomial extrapolation

Polynomial extrapolation is even more dangerous.
400

Example of bad extrapolation:

* polynomial of degree 5 300 ¢

* 6 data points 200 &
, i

100 F

0F

-100 L
2.

If extrapolation cannot be avoided, it should be done following some good practice:

* plot the data and visually verify that the extrapolated value makes sense
in few test cases;

 use a low-order polynomial: a linear or quadratic polynomial is often the best;

« work with plots of log vs log, which is usually much smoother than the linear axes.

12



Interpolation. Two dimensional interpolation

We consider the two dimensional linear interpolation case only.
When in 2 dimensions, linear interpolation is called bilinear interpolation.

We want to find the value of the unknown T R T
function f(x, y) at the point (X, ). : :
We know the value of f(x, y) at the four points § P
Q11 = (x1, y1), Q12 = (x1, y2), .

Q21 =(x2,y1), and Q22 = (x2, y2)

We first interpolate along the X direction'
2 _
Flayt) ~ 222 pouy + =5 p(gan)

r2 —xl 2 —xl
f(x,y2) ~ — /(@22

T2 — r—uxl
Py RAE e v 74—

We then interpolate along the y axis:

: D'IE Eﬁ?______________._. E_-..-

y2—vy y—yl
flay) ~ S fayl) + e f,y2)
y2-y x2 y—yl [22—
el f(Qll) —— f(QQl)} o L:Q f(@12) oy f(@22)

1 1
_{2-y) (22— :E) f(QL1) + (z —=1) f(Q21)] + (y — y1) [(22 — l’) f(Q12) + (z — 1’1) f(Q22)]}
(22 — x1) (y2 — y1)

We obtain the same result if we interpolate first along y and then along x.

This algorithm works only if the grid points are uniformly spaced.



Interpolation. Cubic spline
Possibly the best interpolation method, especially if there are many data points.

It works like a thin, elastic beam that is attached with pins to the data points
The pins, i.e. the data points, are called the knots

Elastic strip

Point
J end Force F

Pins (data points)
X

The beam bends under the exerted transverse force,
but does not break: has smooth junctions,

no discontinuities in 1st and 2nd derivatives at the knots

Each segment of the spline curve is a cubic polynomial with smooth junctions:
the first and second derivatives are continuous at the knots.

- STIFFER than the polynomial but oscillates much less between knots

14



Interpolation. Cubic spline

Cubic spline that spans n + 1 knots:

|
|
|
Y
|
|

|

|

|
1 l
Xo X Xi-1 X;

fii+1(X) := cubic polynomial that spans the segment between knotsiand i + 1

The spline is a piecewise cubic curve, put together from the n cubics
fo.1(X), 1 2(X), ..., fo.e n(X), all of which have different coefficients.

Let’s call k; the second derivative of the spline at knot i

Because of the requirement of continuity of second derivatives:

fz”—1z(97z) — fz”z+1(5’7@) = k;

15



Interpolation. Cubic spline

Because of the requirement of continuity of second derivatives:
17 R/ N 1.
fi—1,i(97i) — fi,i—l—l (z;) = ki
At this stage the k; are unknown, apart from ky =k, =0

The starting point for computing the coefficients of f;.,(X) is the expression for
f"i+1(X). Using Lagrange’s two-point interpolation, we can write

fi/,/z'+1(517) = ki li(2) + ki1 lip1 ()

where

T — X; T — I
li(x) = ——=, lij(r) = ———
Li — Lit1 Lit+1 — Lj
Hence ki(x —xip1) — kia (v — ;)
fq,”z+1<5’7) =

Li — Ti41
Integrating twice with respect to x we obtain

ki <CIZ — Q?Z'_|_1)3 — ki—l—l (33 — ilfz')3

6 (:Cz — $7;+1)

fiiv1(z) = +A(r — 2441) — B (2 — 24)

16



Interpolation. Cubic spline

Integrating twice with respect to x we obtain

ki <CIZ — Q?Z'_|_1)3 — ki—l—l (33 — ilfz')B

6 (:Cz — $7;+1)

fz’,i—H (I) —

+ A(r —x;41) — B(x — x;)

where A and B are constants of integration.

Usually, the constants of integration are written in the form C x + D,
but definingC=A-Band D = -AXx;;; + BX

we end up with two terms that are more handy in the procedure that follows:

Simplifying the notation, we now write y; = f; .1 (X;) and yi,; = fi 11 (Xj+1)-
Therefore, we can calculate A from y; and x;, and B from y;,; and X;,;

. k.
]‘Cz’ Tr; — X 3 A _ Yi L -
6(( ,+1) + A (xz - SU¢+1) = Y, (CUz _ %H) 6 (CUz $z+1)7
Li — $z+1) |
—ki1 (w41 — 33)° _ Y ki, .
1+1 \Li+1 Y _ B (113 | — 1-) = Vit B = : (513@ x’H—l)
6 (x; — Tiv1) o ’ o (T — Tit1)

17



Interpolation. Cubic spline

Substituting back to equation Q and rearranging, we have:

ki [(EU — Tit1)’

fz’,z‘+1(93) = E (SUZ — 33¢+1) — (SUz — $i+1) (ZU — l’z‘+1)

[ ]

Yi (T — Tit1) — Y (z — )

(zi — Tiy1)
The only unknown terms in the above equation are the 2nd derivatives at the knots,
k; and Ki,,.

+

They can be obtained from the continuity condition on the slope,
Le. figi (%) = fijea (%)

Calculating the derivative of equation* in (i—1,i)and (i, i + 1) we obtain
ki1 (xi1— )+ 2k (v5-1 — xiq) + kiyq (45 — x341) = 6 Yi—1 —Yi  Yi — yz-+1>

fori=1,2,...,n-1

Li—1 — Li  Lj — Ti4l

If the data are evenly spaced (i.e., X, — X;_1 = Xi,1 — X; = h), this further simplifies to

0
ki1 +4k +kq = ﬁ (yz’—l —2y; + yz’—H) 10



Interpolation. Cubic spline

This gives a system of linear equations that can be solved with one of the methods

you already know, to get the k; terms.

kici (i1 — @) + 2k (wi—1 — @) + Kig1 (2 — 2441) =6 (

The simplest way to solve it is to observe that the matrix is tridiagonal,
l.e. it has non zero elements only on the diagonal (terms i,i) and

onthecells (i,i—1)and (i, i + 1), that is \

Namely, our system is

(2(xg—x2)  (x1 —X2) 0
(X1 —x2)  2(x1—x3) (x2—x3)
0 (X2 —x3)  2(x2 — xy)
0 0 (x3 — x4)

0 0 0

0 0 0

Tridiagonal matrices are easy to solve
with the LU decomposition

0
0

(x3 — x4)

2 (x3 — x5)

(x4 — xs5)
0

0
0
0

(x4 — x5)

2 (x4 — xg)

(x5 — x6)

Yi1 —Yi  Yi— Yit1
Li—1 — i Ty — Ti4l
epc 0 O
co d e 0
0 ¢ dy e
0 0 ¢ dj
0 0 0 «c3
0 0 0 O
0 st
0 ko
0 ks
0 AN
(x5 —x6) ||ks
2 (x5 — x7)] [Ke |
o (5 - k)
e
(xz—xs - x3—x4)
6 (b= - =2
6 (v - )
o (i - )

)

19



Interpolation. Cubic spline

Steps to take to calculate the cubic spline:

1. Calculate the k; by solving the system of linear equations (remember
that k, = k,, = 0 and you only have to calculate k; withi =1, 2, ..., n = 1);

2. Calculate the interpolant at x from equation

ki [(CU — Tit1)’

fz’,z‘+1(93) = EZ (SUZ — 33¢+1) — (SUz — $i+1) (ZU — l’z‘+1)

kivi | (2 —2)°

6 [(%—xm) ]

Yi (T — Tiv1) — Yiy1 (. — ;)
(xi — CUi+1)

— (T — iy1) (v — ;)

+

Repeat for all the x points you want.

20



Interpolation. Cubic spline

EXERCISE:

Write a script to implement the cubic spline. To calculate the coefficients
k; use the LU decomposition through numpy.linalg.solve. Apply it to
the following sample of fake data.

import numpy as np
N=18
x=np.arange(0,18,1.)
y=np.sin(x)

The result should look as the upper panel of Fig. 62.

Now, apply this script to the file evol_120msun_scattered.dat and re-
construct the evolution of the 120 M, star with the spline. The result
should look as the lower panel of Fig. 62.

21



Interpolation. Cubic spline

1.5

1.0¢

0.5¢

Faamme ™

2 0.0}

—

—0.5}

—1.0}

—-1.5

=5

\ .. ..
e®e Dafa
- Interpolation
0 10 15 20

22



Interpolation. Cubic spline

140

120+

100+

80 |

e —

S

60 |
40|

201

0

« Original Data
- . Interpolation
e®e¢ Scattered Data

~05 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

I

23



Interpolation. Python modules to interpolate

1. numpy.interp()
returns the one-dimensional piecewise linear interpolant to a function
with given discrete data points (xp, yp), evaluated at x.

It is analogous to our linear interpolation script.

Reliable, robust, highly recommended.
Syntax:

y=numpy.interp(x,xp,yp)

2. scipy.interpolate contains several different functions for interpolation.

Let us just mention scipy.interpolate.CubicSpline that
interpolates using a cubic spline,

l.e. interpolates data with a piecewise cubic polynomial
which is twice continuously differentiable.

24



from scipy.interpolate import CubicSpline
import numpy as np
import matplotlib.pyplot as plt

>
1

np.arange(10)

np.sin(x)

y

¢s = CubicSpline(x, y) # x is the array of data,
#ty is the array of values of the function in these data

xs = np.arange(-0.5, 9.6, 0.1)

fig, ax = plt.subplots(figsize=(6.5, 4))

ax.plot(x, y, "0", label="data’) #scattered data

ax.plot(xs, np.sin(xs), label="true’) f#fitrue value of the function
ax.plot(xs, cs(xs), label="f") #interpolated value of the function
ax.plot(xs, cs(xs, 1), label="f"") #first derivative of f
ax.plot(xs, cs(xs, 2), label="f""") f{#second derivative of f
ax.plot(xs, cs(xs, 3), label="f"""") #third derivative of f
ax.set_xlim(-0.5, 9.5)

ax.legend(loc="lower left’, ncol=2)

plt.show()

Interpolation. Example of scipy.interpolate.CubicSpline

25



Interpolation. Example of scipy.interpolate.CubicSpline

1.5 1

1.0 1

0.5 1

0.0 1

—1.0 -

—1.5 -

y
® data —_—
— frue _—
I f — flll
0 2 4 5]

26



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

