
1

Numerical Methods for Astrophysics:
INTERPOLATION

Michela Mapelli

2

Interpolation. Concept

Interpolation and curve fitting should not be confused.

Interpolation: curve passing through a discrete set of data points;
implicit assumption that all the data points are accurate.
Mostly done with theoretical sets of data points.

Curve fitting: smooth curve that approximates the data.
Thus, the curve does not necessarily hit the data points.
Mostly applied to data that contain scatter (noise), due to measurement errors.

3

Interpolation. Linear interpolation

Suppose you are given the value of a function f (x) at just two points a and b
and you want to know the value of the function at another point x in between.

The simplest way to proceed (and often the BEST WAY to proceed) is to assume
our function follows a straight line from f (a) to f (b).

Slope:

Hence:

In most astrophysical cases,
we do not have a functional form
but two arrays of points

The procedure of linear interpolation gives its best if we perform one linear
interpolation every pair of data:

4

Interpolation. Linear interpolation

Suppose you are given the value of a function f (x) at just two points a and b
and you want to know the value of the function at another point x in between.

The simplest way to proceed (and often the BEST WAY to proceed) is to assume
our function follows a straight line from f (a) to f (b).

Slope:

Hence:

In most astrophysical cases,
we do not have a functional form
but two arrays of points

The procedure of linear interpolation gives its best if we perform one linear
interpolation every pair of data:

OFTEN THE BEST WAY
TO INTERPOLATE and to EXTRAPOLATE

A GRID OF DATA

5

Interpolation. Linear interpolation, exercise

6

Interpolation. Linear interpolation, exercise

7

Interpolation. Polynomial interpolation, Lagrange method

It is always possible to construct an unique polynomial of degree n that passes
 through n + 1 data points.

There are different formulas to build that polynomial.

LAGRANGE’s formula:

where the subscript n demotes the degree of the polynomial and

are the cardinal functions.

For n = 1 with

it’s the straight line

For n = 2 with

it’s a parabolic curve

This method is conceptually simple
but inefficient to implement numerically.

8

Interpolation. Polynomial interpolation, Newton’s method

Newton’s method: polynomial interpolation method, similar to Lagrange’s method
but much better to implement numerically.

The interpolating polynomials are written as

where n is the interpolation order and k = 0, 1, 2, ..., n.

If n = 1

If n = 2

If n = 3

Hence, the k=3 polynomial can be written as

9

Interpolation. Polynomial interpolation, Newton’s method

The coefficients a
k
 are determined by forcing the polynomial to pass

through each data point y
i
 = P

k
 (x

i
) with i = 0, 1, .., n and k = n

This yields the simultaneous equations:

If we write the divided differences as

The solution of the simultaneous equations becomes

10

Interpolation. Polynomial interpolation, Newton’s method

Example script: let’s read it together

11

Interpolation. Limitations of polynomial interpolation

Polynomial interpolation should be carried out with the fewest feasible number of
data points.

Linear interpolation, using the nearest 2 points, is often sufficient if the data points
are closely spaced.

An interpolant intersecting more than 6 points must be viewed with suspicion.
The reason is that the data points that are far from the point of interest

do not contribute to the accuracy of the interpolant.

Example of bad interpolation:

* polynomial of degree 10

* 11 data points

* too much OSCILLATION

12

Interpolation. Limitations of polynomial extrapolation

Polynomial extrapolation is even more dangerous.

Example of bad extrapolation:

* polynomial of degree 5
* 6 data points

If extrapolation cannot be avoided, it should be done following some good practice:

• plot the data and visually verify that the extrapolated value makes sense
in few test cases;

• use a low-order polynomial: a linear or quadratic polynomial is often the best;

• work with plots of log vs log, which is usually much smoother than the linear axes.

13

Interpolation. Two dimensional interpolation

We consider the two dimensional linear interpolation case only.

When in 2 dimensions, linear interpolation is called bilinear interpolation.

We want to find the value of the unknown
function f(x, y) at the point (x, y).
We know the value of f(x, y) at the four points
Q11 = (x1, y1), Q12 = (x1, y2),
Q21 = (x2, y1), and Q22 = (x2, y2)

We first interpolate along the x direction:

We then interpolate along the y axis:

We obtain the same result if we interpolate first along y and then along x.

This algorithm works only if the grid points are uniformly spaced.

14

Interpolation. Cubic spline

Possibly the best interpolation method, especially if there are many data points.

It works like a thin, elastic beam that is attached with pins to the data points
The pins, i.e. the data points, are called the knots

The beam bends under the exerted transverse force,
but does not break: has smooth junctions,
no discontinuities in 1st and 2nd derivatives at the knots

Each segment of the spline curve is a cubic polynomial with smooth junctions:
the first and second derivatives are continuous at the knots.

→ STIFFER than the polynomial but oscillates much less between knots

15

Interpolation. Cubic spline

Cubic spline that spans n + 1 knots:

fi,i+1(x) := cubic polynomial that spans the segment between knots i and i + 1

The spline is a piecewise cubic curve, put together from the n cubics
f0,1(x), f1,2(x), ..., fn-1,n(x), all of which have different coefficients.

Let’s call ki the second derivative of the spline at knot i

Because of the requirement of continuity of second derivatives:

16

Interpolation. Cubic spline

Because of the requirement of continuity of second derivatives:

At this stage the ki are unknown, apart from k0 = kn = 0

The starting point for computing the coefficients of fi,i+1(x) is the expression for

f’’i,i+1(x). Using Lagrange’s two-point interpolation, we can write

where

Hence

Integrating twice with respect to x we obtain

17

Interpolation. Cubic spline

Integrating twice with respect to x we obtain

where A and B are constants of integration.
Usually, the constants of integration are written in the form C x + D,
but defining C = A − B and D = −A xi+1 + B xi

we end up with two terms that are more handy in the procedure that follows:

Simplifying the notation, we now write yi ≡ fi,i+1(xi) and yi+1 ≡ fi,i+1(xi+1).

Therefore, we can calculate A from yi and xi, and B from yi+1 and xi+1

18

Interpolation. Cubic spline

Substituting back to equation and rearranging, we have:

The only unknown terms in the above equation are the 2nd derivatives at the knots,
ki and ki+1.

They can be obtained from the continuity condition on the slope,
i.e. fi-1,i (xi) = fi,i+1 (xi)

Calculating the derivative of equation in (i − 1, i) and (i, i + 1) we obtain

for i =1, 2, …, n – 1

If the data are evenly spaced (i.e., xi − xi – 1 = xi+1 − xi = h), this further simplifies to

19

Interpolation. Cubic spline

This gives a system of linear equations that can be solved with one of the methods
you already know, to get the ki terms.

The simplest way to solve it is to observe that the matrix is tridiagonal,
i.e. it has non zero elements only on the diagonal (terms i,i) and
on the cells (i, i − 1) and (i, i + 1), that is

Namely, our system is

Tridiagonal matrices are easy to solve
with the LU decomposition

20

Interpolation. Cubic spline

Steps to take to calculate the cubic spline:

1. Calculate the ki by solving the system of linear equations (remember

that k0 = kn = 0 and you only have to calculate ki with i = 1, 2, ..., n − 1);

2. Calculate the interpolant at x from equation

Repeat for all the x points you want.

21

Interpolation. Cubic spline

22

Interpolation. Cubic spline

23

Interpolation. Cubic spline

24

Interpolation. Python modules to interpolate

1. numpy.interp()
returns the one-dimensional piecewise linear interpolant to a function
with given discrete data points (xp, yp), evaluated at x.

It is analogous to our linear interpolation script.
Reliable, robust, highly recommended.
Syntax:

y=numpy.interp(x,xp,yp)

2. scipy.interpolate contains several different functions for interpolation.

Let us just mention scipy.interpolate.CubicSpline that
interpolates using a cubic spline,
i.e. interpolates data with a piecewise cubic polynomial
which is twice continuously differentiable.

25

Interpolation. Example of scipy.interpolate.CubicSpline

26

Interpolation. Example of scipy.interpolate.CubicSpline

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

