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Random numbers. Concept

Random numbers are ubiquitous in physics/astrophysics:

– some (astro)physical process is intrinsically random 
(e.g. exact moment of a radioactive decay is random)

– other (astro)physical quantities are not intrinsically random
but we might need random numbers to represent them

EXAMPLEs: 

* produce mock samples of astrophysical data,
e.g. magnitudes of stars in a star cluster

* in computational astrophysics, initial conditions of 
simulations are often generated through random numbers
e.g. N-body model of a galaxy or star cluster

Initial star positions can be generated
- on a fixed grid (unnatural..)
- randomly drawing initial positions 

from distribution functions (more natural)
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Random numbers. Concept

Example: initial conditions for a simulation of a star cluster
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Random numbers. Random generators

Is a computer able to generate genuine random numbers?
NO, just PSEUDO-RANDOM numbers, generated with a formula

a, c, m = integer constants
x = integer variable

take x’ and plug it back onto the right-hand side of the equation
→ generates a series of numbers

In python:

LINEAR CONGRUENTIAL  
  RANDOM NUMBER 

GENERATOR
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Random numbers. Random generators

a, c, m = integer constants
x = integer variable

If we use the same a, c, m and the same first x,
we will generate always the same series
→ guarantees REPRODUCIBILITY of scientific experiments

Note that if we generate N random numbers with N>m
the m+1 number will be the same as the 1st  number
the m+2 number will be the same as the 2nd number
etc etc 

i.e. THE SEQUENCE REPEATS FROM THE BEGINNING
→ WARNING: terrible mistake, make sure that N<m

LINEAR CONGRUENTIAL  
  RANDOM NUMBER 

GENERATOR
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Random numbers. Random generators

Random generators in python:

* random package

random.random()  generates floating point random numbers
between 0 and 1

To obtain a random between min and max do
a=random.random()
b=a * (max – min) + min

random.randint(min, max) generates integer random numbers
between min and max 

* numpy.random package

numpy.random.rand() generates floating point random numbers
between 0 and 1

To obtain a random between min and max do
a=numpy.random.rand()
b=a * (max – min) + min 

See examples/random/use_random.py
See examples/random/use_nprandom.py



7

Random numbers. Random seed

First number of the series (first x in the linear congruential generator)

Uniquely determines the entire series

Default is computer clock, 
but better set by hand to ensure reproducibility

with random.seed:
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Random numbers. Random seed

First number of the series (first x in the linear congruential generator)

Uniquely determines the entire series

Default is computer clock, 
but better set by hand to ensure reproducibility

with numpy.random.seed:
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Random numbers. Uniform deviates

Random numbers generated by a random generator are 
uniform deviates: each of them has the same probability 
to be generated within a given range.

In math. words,
the probability distribution function is constant over the range

probability 
distribution
function

probability to draw a random 
number between x and x+ dx normalization

constant
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Random numbers. Non-uniform deviates

For a general (astro)physical problem, more likely that we need 
random numbers generated according to a non-constant probability 
distribution function

e.g. errors of measure follow Gaussian distribution

To generate non-uniform deviates:

– first generate a set of uniform deviates

– then transform these uniform deviates into 
non-uniform deviates thanks to the laws of probability

At least two techniques:

– INVERSE RANDOM SAMPLING

– REJECTION METHOD
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Random numbers. Inverse random sampling

Fundamental transformation law of probabilities:

Probability p(y) dy of generating a number between y and y+dy
equal to probability q(x) dx of generating a number between x and x+dx
provided that both p(y) and q(x) are properly defined, i.e.

   Hence y and x are related by a function y = y(x)

   If x is a uniform deviate between 0 and 1, then q(x) = 1 and 

   Thus, for a generic p(y)

→  it is possible to generate a non-uniform random deviate 
from a uniform random deviate

Necessary condition to extract y from x: that we can solve 
the left-hand term of the integral and that we can solve y(x)
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Random numbers. Inverse random sampling

Example:
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Random numbers. Inverse random sampling

Steps to produce non-uniform deviates with inverse random sampling:

1. Take a probability distribution function p(y) of the quantity y 
you want to sample.

2. Integrate p(y) dy over the range to obtain the cumulative 
probability distribution function 

3. P(y) is monotonic and takes values from 0 to 1 by definition of
probability.

4.   Randomly sample the values x = P(y) of the cumulative 
distribution function between 0 and 1 (with a random generator).

5. Invert the function P(y) to get  y = P(y) – 1

6. Repeat steps 4 and 5 as many times as you need to get y for 
N random numbers.
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Random numbers. EXERCISE, Salpeter:

EXERCISE: use the inverse random sampling to generate the masses of 
stars in a star cluster

The Salpeter mass function (Salpeter1955) is one of the most popular initial 
mass functions for stars. It is defined as
  

  where a = 2.3. 

Given a population of young stars (possibly in the zero-age main sequence), 
the probability to have a star of mass m in this population is p(m) = const m – a 
Massive stars are significantly less common than light stars.

Assuming that the minimum stellar mass is m
min

= 0.1 Msun and 
the maximum stellar mass is m

max 
= 150 Msun, 

randomly calculate the mass of 106 stars distributed according to the Salpeter 
initial mass function by using the inverse random sampling technique. 
Plot the resulting population of stellar masses with an histogram. 

Suggestion: First you have to calculate the normalization constant const. 



15



16



17

Random numbers. Inverse random sampling

The y axis looks like this if you use the option “density = True” of plt.hist(), 
which calculates the PDF 
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Random numbers. Inverse random sampling

If you do not use density = True but you want a logarithmic y-axis,
 you need to divide the values on the y axis by M, because



19

Random numbers. Inverse random sampling

If you do not divide the y axis values by M, you get a slope as -1.3
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Random numbers. Gaussian distribution with Box-Muller

Gaussian distribution:

Cumulative probability distribution:
cannot be inverted

However, take the product of 2 Gaussians

Let’s use the transformation into polar coordinates:

and convert the product of two Gaussians in polar coordinates
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Random numbers. Gaussian distribution with Box-Muller

From the previous equation we can perfectly separate the terms in r and 
the terms in q :

These two separate functions can easily be integrated and inverted

We now use the inverse sampling method to generate two uniform 
random numbers z

1
 and z

2
 based on the previous equation 
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Random numbers. Gaussian distribution with Box-Muller

Finally, we derive x and y by using the transformation to polar coords

each of them distributed according to a Gaussian centered
in zero with standard deviation σ

– We can use one of the two numbers and store the other one for the future. 

– If we want a Gaussian with a different mean value, we can simply shift the 
random numbers by the desired value.
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Random numbers. Gaussian distribution with python

At least two functions in python to generate Gaussians:

numpy.random.normal(loc=0.0, scale=2.0)

where loc is the mean and scale the standard deviation

random.gauss(0.0, 2.0)

where first argument is the mean and 
second argument is the standard deviation
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Random numbers. Exercise, Gaussian with Box-Mueller
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Random numbers. Rejection method

What can we do when the cumulative distribution function cannot be 
inverted (easily)? REJECTION SAMPLING APPROACH.

1. Take a probability distribution function p(x) of the quantity x you want 
to sample. But p(x) is difficult/impossible to integrate!

2. Take a second function f (x), with f (x) > p(x) everywhere, that can be 
easily integrated, to obtain the cumulative distribution function 

 

Note that g(x) is NOT a well defined probability.

3. Randomly sample y = g(x) between min and max value.

4. Invert g(x) to obtain x. x is distributed according to f (x).

5. Generate a second random number m uniform between 0 and f (x).
Reject x if m > p(x) and accept x if m ≤ p(x).

6. Repeat 3, 4 and 5 as many times as you need to get x for N particles.
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Random numbers. Rejection method

Better understood with a figure:
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Random numbers. Exercise, Gaussian Rejection



Random numbers. Exercise, Gaussian Rejection
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Random numbers. Maxwellian from Gaussian

 It can be shown that a Maxwellian curve

can be randomly sampled as

where x, y, z are Gaussian deviates centered around zero

A Maxwellian 
curve is a good
representation for:

1. NATAL KICKS OF
PULSARS

2. MOTIONS OF 
STARS IN A 
RELAXED AND
VIRIALIZED SYSTEM
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Random numbers. Maxwellian from Gaussian

ejectacompact 
object
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Random numbers. Exercise “Star cluster”

 Let’s build an N-body model for a star cluster with N = 10^3 stars, where 
●   Stellar masses are drawn from a Salpeter mass function
●   positions are randomly drawn  from a Plummer sphere density distribution
●   velocities are randomly drawn from a Maxwellian curve

For simplicity, let us assume that:
●   the mass of a star does not depend on star’s position inside the cluster 

(equivalent to no initial mass segregation);
●   the velocity of a star does not depend on star's position inside the cluster;
●   the distribution of stellar positions and velocities are isotropic.
●   the cluster is in virial equilibrium (virial ratio 2 K/|W| = 1)

 First step: draw the stellar masses from the Salpeter initial mass function (IMF), 
as in the previous exercise. 

As you can simply verify, drawing 10^3 stars is equivalent to a mass of 
~300 –  500 Msun (a part from stochastic fluctuations), because the 
average stellar mass is ~ 0.3 – 0.5  Msun.

Save the exact value of the total mass in M.
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 Second step: draw the stellar positions from a Plummer sphere

The Plummer sphere is a density distribution function expressed as
 

 

  where r is the mass density, a is a typical scale-length, 
  r is the radial coordinate (in spherical coordinates) and M is the total mass of the 
sphere (for M use the total mass that you generated with the Salpeter distribution).

  Let us assume a = 1 pc.

  The Plummer sphere is the simplest distribution function mimicking the radial 
distribution of stars in a star cluster.

 Third step: draw stellar velocities from a Maxwellian distribution

assume  s = 0.5  km s^-1 is the one-dimensional root-mean-square velocity of the 
Maxwellian curve. Then velocities will be rescaled to enforce virial equilibrium

Random numbers. Exercise “Star cluster”
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  Additional suggestions:

 * Plummer is a density distribution, while we need the mass distribution assuming
the cluster is isotropic, hence:

  
   where I have used the definition of the volume element in spherical coordinates 

   The good news of assuming spatial isotropy is that the angular coordinates
    are independent from each other and  from the radial coordinate  
    → we can draw r, q and f as three independent random numbers, 

  from three different distributions.

   Let's start with f, which is the simplest one. 
The cumulative probability distribution of f  is

   Thus, we can draw a uniform random number P(f) from 0 to 1 and then 
estimate f as f = 2p P(f) 

Random numbers. Exercise “Star cluster”
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 Now, let's calculate q:  The cumulative probability distribution of q is
 

   Thus, I can draw a uniform random number P(q) between 0 and 1 and then I can extract q  
from P(q)  by simply inverting the above equation:

   

To extract r is a bit more complicated. The cumulative distribution function of mass is
  

   Hence, the probability cumulative distribution function is

   After few math. steps, we find that equation can be inverted. We can draw a uniform random 
number P(r) from 0 and 1 and then obtain

Random numbers. Exercise “Star cluster”
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Finally, we randomly draw 10^3 values for  r, q and f. 
It might be easier to plot our points in Cartesian coordinates, thus we simply make 
the conversion:

  

Note that all direct N-body codes I am aware of work in Cartesian coordinates.

Now, we must assign a velocity to each of the 10^3 particles. 

Since we assumed that stellar velocities do not depend on positions, 
we do not need to worry about stellar position in the cluster (in real-life clusters we should). 

Moreover, since we assumed that velocities are isotropic, 
we can do the same as we did for positions and generate the modulus of velocity v, and 
the angles q and f independently of each other. 
For q and f we do exactly as for the positions. 

Random numbers. Exercise “Star cluster”
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To generate v (modulus of the velocity), you can use the script you developed 
for the exercise on the Box-Muller method and extend it to generate Maxwellian deviates, 

because it can be shown that

where vx, vy and vz are random deviates distributed according to a Gaussian PDF 
(with mean = 0 and with the same sigma)

Finally, once we have generated 10^3 new values for v, q and f, 
we can convert to Cartesian coordinates by using the following transformation

Note that these values of q and f must not be the same as the ones for positions 
(otherwise you generate a bias): just sample the new numbers from scratch. 

Note that assuming a Maxwellian velocity distribution is not self-consistent with the 
choice of the Plummer, because the Plummer has its own energy distribution.
Anyway, the Maxwellian makes the problem much easier to solve.

  

Random numbers. Exercise “Star cluster”
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VIRIAL EQUILIBRIUM:

 After you have generated the velocities, calculate KINETIC AND POTENTIAL ENERGY

 Then estimate the VIRIAL RATIO  Qvir:= 2 K / |W|

 If Qvir != 1.0, the system is not in virial equilibrium

 The fastest way to obtain a cluster in virial equilibrium is to divide
  all the components of the velocity by Qvir^0.5

Random numbers. Exercise “Star cluster”
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Result for a cluster with 10^4 stars and with a = 1 pc

Random numbers. Exercise “Star cluster”

examples/random/plummer.py
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