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Numerical Methods for Astrophysics:
SOLUTION OF LINEAR EQUATIONS
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Linear equations. Concept

Systems of linear equations are common in many fields of 
physics and engineering (e.g. electrical circuits)

How to solve a system of n linear algebraic equations in n unknowns

where A
ij
 and b

ij
 are known, while x

i
 are unknown.
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Linear equations. Concept

In matrix form:

or in compact form  A x = b

A system like A x = b admits a unique solution (the vector x)
provided that its determinant is non zero (if det = 0 we have a singular matrix)

If the determinant is zero, the system has no or infinite solutions
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Linear equations. Concept

Two different approaches to solve linear equations:

1. DIRECT METHODS: 
transform the original equations into equivalent equations 
(i.e. equations that have the same solution) that can be solved
more easily.
The transformation can apply the 3  elementary operations 
(do not affect the solution but change the determinant):

i) exchanging two equations
ii) multiplying an equation by a non-zero constant
iii) multiplying an equation by a non-zero constant and

then subtracting it from another equation

Examples of direct methods: Gauss elimination, LU decomposition
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Linear equations. Concept

Two different approaches to solve linear equations:

2. INDIRECT METHODS: 
Start with a guess of the solution (Ansatz) and then 
repeatedly refine it until a given convergence criterion is satisfied 

Indirect methods are less efficient than direct ones but more used 
because

- simpler to implement, 
- more efficient if matrix is large and sparse (lots of zeros)

DRAWBACK: do not always converge

Examples of indirect methods: Gauss - Seidel method
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Linear equations. Gauss elimination

Suppose we must solve

Or in matrix form

To solve analytically I should find the INVERSE of matrix A 
and then calculate  x = A-1 b

This is very inefficient
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Linear equations. Gauss elimination

FINAL GOAL: produce a upper triangular matrix
 with diagonal members = 1

Two basic rules adopted in Gauss elimination:
- We can multiply any of our equations by a constant and it

is still the same equation (= the solution does not change)
if we multiply any row of A and the corresponding row of b 
by any constant, then the solution does not change.

- We can take any linear combination of two equations to get 
another correct equation. 

If we add to or subtract from any row of A a multiple of any other row,  
and we do the same for the vector b, the solution does not change.

1  something
0 1 else
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
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Linear equations. Gauss elimination

Name convention

A
00

A
01

 A
02

 A
03

A
10

A
11

 A
12

 A
13

A
20

A
21

 A
22

 A
23

A
30

A
31

 A
32

 A
33

b
0

b
1

b
2

b
3
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Linear equations. Gauss elimination

STEP 1: divide first row of A by A
00

 to change A
00

 
from 2 to 1 
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

STEP 1: divide first row of A by A
00

 to change A
00

 
from 2 to 1 
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Linear equations. Gauss elimination

STEP 2: zero A
10

 by subtracting 3 times the first row 

from the second row

1   0.5  2 0.5 –2
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Linear equations. Gauss elimination

STEP 2: zero A
10

 by subtracting 3 times the first row 

from the second row

1   0.5  2 0.5 –2

 0    2.5    –7   –2.5 9
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0    2.5    –7   –2.5 9

STEPs 3 and 4: zero A
20 

and A
30

 by doing a similar trick 
with the first row
(subtract 1 time the first row from the third and 

   2 times the first row from the fourth)
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0    2.5    –7   –2.5 9

 0   –4.5    –1    4.5 11

STEPs 3 and 4: zero A
20 

and A
30

 by doing a similar trick 
with the first row
(subtract 1 time the first row from the third and 

   2 times the first row from the fourth)
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0    2.5    –7   –2.5 9

 0   –4.5    –1    4.5 11

110    –3     –3     2.0

STEPs 3 and 4: zero A
20 

and A
30

 by doing a similar trick 
with the first row
(subtract 1 time the first row from the third and 

   2 times the first row from the fourth)
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Linear equations. Gauss elimination

STEP 5: change A
11

 from 2.5 to 1 by dividing the row by A
11

1   0.5  2 0.5 –2

 0    2.5    –7   –2.5 9

 0   –4.5    –1    4.5 11

110    –3     –3     2.0
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

 0   –4.5    –1    4.5 11

110    –3     –3     2.0

STEP 5: change A
11

 from 2.5 to 1 by dividing the row by A
11
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Linear equations. Gauss elimination

STEPs 6 and 7: zero A
21

 and A
31

 by subtracting 
– 4.5 times the second row from the third, and 
– 3.0 times the second row from the fourth

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

110    –3     –3     2.0

 0   –4.5    –1    4.5 11
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0     –13.6    0 27.2

110    –3     –3     2.0

STEPs 6 and 7: zero A
21

 and A
31

 by subtracting 
– 4.5 times the second row from the third, and 
– 3.0 times the second row from the fourth
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0     –13.6    0 27.2

21.8 0      0    –11.4   –1

STEPs 6 and 7: zero A
21

 and A
31

 by subtracting 
– 4.5 times the second row from the third, and 
– 3.0 times the second row from the fourth
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Linear equations. Gauss elimination

STEP 8: change A
22

 from –13.6 to 1 by dividing the entire 
row by –13.6

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0     –13.6    0 27.2

21.8 0      0    –11.4   –1
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Linear equations. Gauss elimination

STEP 8: change A
22

 from –13.6 to 1 by dividing the entire 
row by –13.6

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0       1        0 –2

21.8 0      0    –11.4   –1
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Linear equations. Gauss elimination

STEP 9: zero A
23

 by subtracting –11.4 times the third row 
from the fourth one

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0       1        0 –2

21.8 0      0    –11.4   –1
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Linear equations. Gauss elimination

STEP 9: zero A
23

 by subtracting –11.4 times the third row 
from the fourth one

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0       1        0 –2

–1 0      0       0      –1
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Linear equations. Gauss elimination

STEP 10: change A
33

 to 1 by dividing the fourth row by 
A

33

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0       1        0 –2

–1 0      0       0      –1
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Linear equations. Gauss elimination

1   0.5  2 0.5 –2

 0      1     –2.8    –1 3.6

0      0       1        0 –2

 10      0       0       1

THE MATRIX IS NOW UPPER TRIANGULAR

STEP 10: change A
33

 to 1 by dividing the fourth row by 
A

33
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Linear equations. Gauss elimination

SUMMARY: 

- first we divide a row by its diagonal element to obtain
A

i j 
= 1 if i == j

- then we subtract N times an upper row i 
from a lower row k 
to zero the element of column j 
below the diagonal

where N = A
k j
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Linear equations. Gauss elimination – Backsubstitution

When the matrix is upper triangular

The system of equations looks like

Which is the same as

1  a01  a02  a03
0 1    a12  a13
0 0   1    a23
0 0   0     1
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Linear equations. Gauss elimination – Backsubstitution

The system

can be solved by backsubstitution, i.e. by starting from
the last equation and using it to solve the previous one
and so on:

z = b3
y = – a23 z + b2 
x = – a12 y – a13 z + b1 
w = – a01 x – a02 y – a03z + b0
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Linear equations. Gauss elimination – Backsubstitution

System 14 of the notes is our example:

Since it is your first difficult script let’s do it together
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Linear equations. Gauss elimination – Backsubstitution

Advice 1: decompose your problem in smaller steps:

STEP 0: upload the matrix and vector

STEP 1: divide the lines by their diagonal elements

STEP 2: zero the elements below the diagonal starting from 2nd row

STEP 3: generalize the zeroing to all the k rows below the 1st one

STEP 4: generalize the zeroing to all the rows (not only the 1st one)

STEP 5: back substitution

STEP 6: program debugged and running. How can I improve it?
 Make it faster, more elegant, add comments
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Linear equations. Pivoting

Suppose we want to calculate a matrix which has 
some ZEROS on the diagonal

The Gauss elimination does not work: divide by zero
I can try to change the order of the rows (PIVOTING)

Method does not work if matrix is too sparse
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Linear equations. LU decomposition

A modification of Gaussian elimination + pivoting

Suppose we want to solve many sets of equations
in the form Ax = b, in which A is the same but b changes

→ We want to keep track of the transformations 
we make to A, to avoid re-calculating them for each b

The LU decomposition is a modification of Gaussian 
elimination + pivoting that allows remembering the 
transformations
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Linear equations. LU decomposition

Consider a generic 4x4 matrix A

STEPs 1, 2 and 3 of Gauss elimination can be written as
(check yourself)

- divide first row by a
00

, 
- then subtract the first row a

10
 times from the second

- then subtract the first row a
20

 times from the third
- then subtract the first row a

30
 times from the fourth
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Linear equations. LU decomposition

Let’s name L
0
 the first part of this
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Linear equations. LU decomposition

It can be shown that the next step of Gaussian elim. is

Let’s define L
1
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Linear equations. LU decomposition

It can be shown that the last steps of Gauss elimination 
correspond to multiply the results by these matrices

In compact form   A x = b  becomes

L
3
 L

2
 L

1
 L

0
 A x = L

3
 L

2
 L

1
 L

0
 b

where 
L

3
 L

2
 L

1
 L

0
 A is a UPPER TRIANGULAR matrix,

because it is the result of Gauss elimination

L
3
 L

2
 L

1
 L

0
 b is a known vector

→I can calculate vector x by backsubstitution
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Linear equations. LU decomposition

In practice, the LU decomposition is implemented in a 
slightly modified way

1. The INVERSE of matrices L
0
, L

1
, L

2
 and L

3
 are:



39

Linear equations. LU decomposition

2. Define L = L
0
– 1 L

1
– 1 L

2
– 1 L

3
– 1

3. Define U = L
3
 L

2
 L

1
 L

0
 A

4. By definition of inverse matrix we have that 

L U = A

5. Hence, equation A x = b can be written as

L U x = b 
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Linear equations. LU decomposition

Writing a script for LU decomposition can be complex 

BUT USE NUMPY



41

Linear equations. Gauss – Seidel method

Indirect method. Faster for sparse matrices 

1. Write A x = b in scalar notation

2. Extract the diagonal terms from the sum
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Linear equations. Gauss – Seidel method

3. Reshuffle so that we have only x
i
 on the left side

4. The above equation suggests a solution BY ITERATION

-  We start with a GUESS on x that we plug into the right-hand terms

-  We re-calculate the left-hand terms

-  We iterate this till the difference between the previous and the next
version of x

i
 becomes “small enough”
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Linear equations. Pros and cons of the algorithms

LU decomposition and Gaussian elimination:

PROS:
- easy to implement
- fast
- exact solution

Gauss-Seidel method:

PROS:
- very easy to implement
- fast (especially if sparse

matrices)

CONS:
- not always possible to use 

CONS:
- approximate solution
- might fail to converge
- not always possible to use
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Linear equations. Exercise
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Linear equations. Exercise
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Linear equations. Exercise
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