
1

Numerical Methods for Astrophysics:
 ACCURACY AND SPEED

Michela Mapelli

2

Python. Scientific notation

Scientific notation consists in using an “e” to indicate the exponent
of a number expressed in powers of 10

1e19 = 10**19
1.6e10=1.6 * 10**10
2.1e-3 = 2.1 * 10**(-3)

Numbers in scientific notation are always FLOAT
even if intrinsically integers (e.g. 1e19)

Scientific notation is highly recommended, especially if you deal with
very large or very small numbers!!!

 1e19 10**19

3

Python. Maximum size of a variable

Python variables (as well as other programming languages) cannot
hold numbers that are arbitrarily large

Maximum size for floating point: 2^1024 1.79769 × 10^308∼

OVERFLOW: a variable exceeding the maximum size overflows
Python does not always gives an overflow warning
>>> x=1e308
>>> y=10.*x
>>> y
inf

UNDERFLOW: a variable is too small to be represented
For python < 2^-1022 2.22507 × 10^-308∼
Python sets the value to zero

INTEGERS in python: no limit, python can represent integers of arbitrary
 size (=arbitrary number of digits), because it decides memory allocation
 based on the size of the integer. The limit is the memory of the computer.

SLOW for large numbers because of memory access time
example: print(2**10000000)

4

Python. Rounding errors

Floating points are represented on a computer to only a certain precision.

In python: standard is 16 digits

Example p
>>> import numpy as np
>>> np.pi
3.141592653589793

ROUNDING ERROR: difference between the true value of a number
and its value on the computer

For example, we know that 3.3 − 1.1 = 2.2,
but python might print 2.1999999999999997

A practical implication is that you should never use an if statement to
check equality between two floats

>>> x=3.3-1.1
>>> if(x==2.2):
... print(x)
does not print anything

>>> x=3.3-1.1
>>> epsilon=1e-2
>>> if(abs(x-2.2)<epsilon):
... print(x)
...
2.1999999999999997

5

Python. Rounding errors

Rounding error equivalent to error of measurement in a lab experiment

from math import sqrt
x=sqrt(2)

Not x = √2 but rather x ± e = √2 with e ~ x/1e16

Good assumption: error distributed according to a Gaussian distribution

ERROR CONSTANT C ~ 1e-16

Y = x
1
 + x

2
 Error on Y?

Error on Y?

Percentage error:

6

Python. Rounding errors

Subtraction between two very similar and large (or small) numbers

the result is 1.2 or 1.25 (depending on your python version),
because you hit the 16 digit limit

x=int(1e15)
y=1000000000000001.23456789
print(y-x)

7

Python. Rounding errors

8

Python. Rounding errors

With method a) I get x1a=-9.999894245993346e-07, x2a=-999999.999999

if I fold them back to the original equation, I get result
1.0575401665491313e-08, 7.247924804689582e-08

With method b) I get x1b=-1.000000000001e-06, x2b=-1000010.5755125057

if I fold them back to the original equation, I get result
0.0, 10575.62534720993

Error on x2b much worse than on x2a

- x2a much better than x2b because I avoid the subtraction
of two similar numbers
b=1000.0
np.sqrt(b * b – 4 * a * c)=999.999999998

9

Python. Speed

The computer cannot be infinitely fast

10^6 operations → ~ seconds on laptop
10^7 operations → minutes to hours

Try to estimate the computational cost before you start coding

1. if <~10^7 operations,
you can make it

2. if >10^7 operations,
things get harder

LOOK FOR A
SMART TRICK
(e.g. histogram

with indexes)

Go for a
super-computer
(e.g. CINECA)

Some simple smart
tricks can often
save your life

10

Python. Speed

11

Python. Speed

● Initialize all the constants at the beginning of the script.
It will be easier to change them.

● Minimize the number of loops.

● The exponential term is the same for both Z and E.
Calculate it only once per each term of the loop.

12

Python. Speed

Calculate the product of two matrices

13

Python. Speed

Three for lops nested
2 operations: + and *
The cost is 2 N x N x N

Package time to calculate
time spent
in a given part of the code:
good to profile your code

Function to calculate
matrix product in python

If N=1000
My function: ~600 s
Python function: ~0.7 s

14

Python. Additional remarks

x=10.0
a1=x**(3/2)
a2=x**(3./2.)
a3=x**1.5
print(a1,a2,a3)
(10.0, 31.622776601683793, 31.622776601683793)

● If you want a variable to be a float, please define it as a float
e.g. try with python2

Note: a3=x**1.5 is better because you avoid calculating the division

● Use scientific exponential notation instead of powers.

● Try to minimize the usage of arrays.
It will save RAM memory and it will make easier to code.

● Use stack overflow https://stackoverflow.com/ or similar internet
resources (start with a google search) to understand the errors you get
from your code and to find better functions for the problem you want to
tackle. You cannot learn all the python by heart.

● Try to minimize nested loops, because they really slow down your code.
Sometimes, a single function of python can do the same without any loop.
Please, look on the online python manuals and on slack overflow
to find the best function for your case.

15

Python. Additional remarks

● Choose your units of measure to make it easier for the computer to do the
calculations.
If you want to calculate the mass of a galaxy cluster,
it might be not-so-smart to use grams: you end up with ~10^46 g.
Rounding errors might dominate your result.

● Check units of measure 100 of times in your code. Bugs hide very well in there.

● If some constants are used many times to a certain power or in a certain
combination, define a new constant that calculates this combination
just once.
It will save time and accuracy.

Gravitational-wave related example
G3c5= G**3 /c**5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

