Numerical Methods for Astrophysics:
ACCURACY AND SPEED

Michela Mapelli

Python. Scientific notation

Scientific notation consists in using an “e” to indicate the exponent
of a number expressed in powers of 10

1e19 = 10*+19
1.6e10=1.6 * 10**10
2.1e-3 = 2.1 * 10**(-3)

Numbers in scientific notation are always FLOAT
even if intrinsically integers (e.g. 1e19)

Scientific notation is highly recommended, especially if you deal with
very large or very small numbers!!!

1el9 10**19

Python. Maximum size of a variable

Python variables (as well as other programming languages) cannot
hold numbers that are arbitrarily large

Maximum size for floating point: 221024 ~ 1.79769 x 10”308

OVERFLOW: a variable exceeding the maximum size overflows
Python does not always gives an overflow warning

>>> x=1e308

>>> y=10.*X

>>>y

inf

UNDERFLOW: a variable is too small to be represented
For python < 27-1022 ~ 2.22507 x 10"-308
Python sets the value to zero

INTEGERS in python: no limit, python can represent integers of arbitrary
size (=arbitrary number of digits), because it decides memory allocation
based on the size of the integer. The limit is the memory of the computer.

SLOW for large numbers because of memory access time
example: print(2**10000000)

Python. Rounding errors

Floating points are represented on a computer to only a certain precision.
In python: standard is 16 digits

Example r

>>> import numpy as np

>>> np.pi

3.141592653589793

ROUNDING ERROR: difference between the true value of a number
and its value on the computer

For example, we know that 3.3-1.1=2.2,
but python might print 2.1999999999999997

A practical implication is that you should never use an if statement to
check equality between two floats

>>> x=3.3-1.1 >>> x=3.3-1.1
>>> f(x==2.2): >>> epsilon=1e-2
print(x) >>> f(abs(x-2.2)<epsilon):

does not print anything .. print(x)
2.1999999999999997 4

Python. Rounding errors

Rounding error equivalent to error of measurement in a lab experiment

from math import sqrt
x=sqrt(2)

Not x = V2 butrather x + e =v2 with ¢ ~ x/1e16

Good assumption: error distributed according to a Gaussian distribution

c=C=x

ERROR CONSTANT C ~ 1e-16

Y=x, +X, Erroron Y? o =\/o%+03=C\/2%+ 23
N N

Y=Y Erroron Y? o° =Y C%z] = C®<x2>
1=1 1=1

V@) O o/(@?)

) N

(D) (@)

Percentage error:

o C VN
N

N
Zi:1 X

<

Python. Rounding errors

Subtraction between two very similar and large (or small) numbers

x=int(1el5)
y=1000000000000001.23456789
print(y-x)

the resultis 1.2 or 1.25 (depending on your python version),
because you hit the 16 digit limit

EXERCISE:

Consider the two numbers x = 1, = 1 + 10714 V2. We see that

10" (y — x) = V2

Now, write a script that defines x and y as above and then prints

10'% (v — x). The result of the print will be 1.42108547152, while V2 =
1.41421356237. Hence, the result is only accurate to the first decimal
place.

Python. Rounding errors

EXERCISE:

Consider a quadratic equation ax? + bx + ¢ = 0 that admits 2 real
solutions.

a) Write a script that takes in input the three numbers a4, b, ¢ and
returns the solution x using the standard formula

—b+Vb?2-4ac
= —— 7)
a

Apply this to the solution of the equation where a = ¢ = 0.001,
b = 1000.

b) Write the solution x in another way, by multiplying numerator
and denominator by -b F Vb? —4ac:

2¢
X = (8)
-bFVb?2-4dac

Apply this to the solution of the equation where a = ¢ = 0.001,
b = 1000. What do you see? How do you explain it?

c) Using what you learned, write a script that calculates both solu-
tions accurately.

Python. Rounding errors

With method a) | get x1a=-9.999894245993346e-07, x2a=-999999.999999
If | fold them back to the original equation, | get result
1.0575401665491313e-08, 7.247924804689582e-08
With method b) | get x1b=-1.000000000001e-06, x2b=-1000010.5755125057
If | fold them back to the original equation, | get result
0.0, 10575.62534720993
Error on x2b much worse than on x2a
- x2a much better than x2b because | avoid the subtraction
of two similar numbers

b=1000.0
np.sqrt(b * b — 4 * a * ¢)=999.999999998

Python. Speed

The computer cannot be infinitely fast

10”6 operations — ~ seconds on laptop
1077 operations — minutes to hours

Try to estimate the computational cost before you start coding

1. if <~10"7 operations, 2. iIf >10"7 operations,
you can make it things get harder
LOOK FOR A
SMART TRICK coerd
super-computer

(e.g. histogram

with indexes) (e.g. CINECA)

Some simple smart
fricks can often
save your life

Python. Speed

EXERCISE :

Consider for example the quantum simple harmonic oscillator with
energy levels E, = hw(n + %), where n = 0, 1, 2, ..., co. According
to Boltzmann and Gibbs, the average energy of a simple harmonic
oscillator at temperature T is

(B)= 7Y E, exp(-BE,) 9)
n=0

where p = 1/(kg T), with kg being the Boltzmann constant and Z =
Y exp(—PE,) Suppose we want to calculate the value of (E) for kg T =
n=0

100. The worst term from the computational point of view is the sum.
Let’s consider first n = 0, 1, ..., 10°. Let’s work in units where 4 = w = 1.

Python. Speed

 Initialize all the constants at the beginning of the script.
It will be easier to change them.

* Minimize the number of loops.

 The exponential term is the same for both Z and E.
Calculate it only once per each term of the loop.

100.007 o° . 4 °
99.99+
m 99.98+

99.9 74

99.96-

103 10* 105 106

11

Python. Speed

Calculate the product of two matrices

EXERCISE:

Let’s calculate the product between two N x N matrices. How long it
takes to do the product if N = 100? And if N = 10007

12

Python. Speed

Package time to calculate
time spent

In a given part of the code:
good to profile your code

Three for lops nested
2 operations: + and *

ThecostisZNxNxN\

Function to calculate
matrix product in python

If N=1000
My function: ~600 s
Python function: ~0.7 s

v import time
import numpy as np

N=1000

A=np.zeros([N,N],float)
B=np.zeros([N,N],float)
C=np.zeros([N,N], float)

start = time.time()
for i in range(N):
for j in range(N):
for k in range(N):
Cli,jl+=Al1i,k]*B[k, j]
end = time.time()
print(end-start)

start = time.time()
A D=np.dot (A,B)

end = time.time()
print (end-start)

print(C[17,13],D[17,13])

Python. Additional remarks

 If you want a variable to be a float, please define it as a float
e.g. try with python2 «=10.0

al=x**(3/2)

a2=x**(3./2.)

a3=x**1.5

print(al,a2,a3)

(10.0, 31.622776601683793, 31.622776601683793)

Note: a3=x**1.5 is better because you avoid calculating the division
« Use scientific exponential notation instead of powers.

* Try to minimize the usage of arrays.
It will save RAM memory and it will make easier to code.

» Use stack overflow https://stackoverflow.com/ or similar internet
resources (start with a google search) to understand the errors you get
from your code and to find better functions for the problem you want to
tackle. You cannot learn all the python by heart.

* Try to minimize nested loops, because they really slow down your code.
Sometimes, a single function of python can do the same without any loop.
Please, look on the online python manuals and on slack overflow
to find the best function for your case. 14

Python. Additional remarks

 Choose your units of measure to make it easier for the computer to do the
calculations.

If you want to calculate the mass of a galaxy cluster,

it might be not-so-smart to use grams: you end up with ~10746 g.
Rounding errors might dominate your result.

« Check units of measure 100 of times in your code. Bugs hide very well in there.

 If some constants are used many times to a certain power or in a certain

combination, define a new constant that calculates this combination
just once.

It will save time and accuracy.

Gravitational-wave related example
G3c5= G**3 /c**5

15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

