Numerical Methods for Astrophysics:
VISUALIZATION

Michela Mapelli

Python. Matplotlib.pyplot

Python is a powerful tool for visualization

Too many options / possibilities — better google them

My preferred one: matplotlib.pyplot

Visualization. Scatter plot

##isee examples/python/simple_plot.py
import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], 'ro’)
plt.axis([0, 6, 0, 20])
plt.xlabel(’'x’, fontsize=20)
plt.ylabel('y’, fontsize=20)
plt.show()

20

15+

> 10+

Visualization. Scatter plot

character

¥O O ol W= N A > 2 0~

— O =® + T =

description
solid line style
dashed line style
dash-dot line style
dotted line style
point marker
pixel marker
circle marker
triangle-down marker
triangle-up marker
triangle-left marker
triangle-right marker
tri-down marker
tri-up marker
tri-left marker
tri-right marker
square marker
pentagon marker
star marker
hexagonl marker
hexagon2 marker
plus marker
x marker
diamond marker
thin-diamond marker
vline marker
hline marker

Visualization. Scatter plot

20

15+

Function matplotlib.pyplot.scatter
is alternative to matplotlib.pyploy.plot >

ffisee examples/python/simple_plot.py

import matplotlib.pyplot as plt

plt.scatter([1,2,3,4], [1,4,9,16], color="r’ ,marker="0")
plt.axis([0, 6, 0, 20])

plt.xlabel(’'x’, fontsize=20)

plt.ylabel(’'y’, fontsize=20)

plt.show()

Visualization. Line plot

##see examples/python/simple plot.py
import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], 'r-")
plt.axis([0, 6, 0, 20])
plt.xlabel('x’, fontsize=20)
plt.ylabel('y’, fontsize=20)
plt.show()

20

15

> 10}

Visualization. Line type

character description
- solid line style
- - dashed line style
- dash-dot line style
' dotted line style

Visualization. Logarithmic axis, Fontsize

To require the axis is logarithmic

plt.yscale(‘log’)
plt.xscale(‘log’)

NOTE on FONTSIZE in plots (labels, legends, etc):

The default fontsize of pyplot is usually too small for plots in
scientific journals

You can correct it updating the python dictionary that contains
figure parameters:

plt.rcParams.update({'font.size': 17}) #set default fontsize to 17
If you need a smaller/bigger fontsize in just one label, or legend,

don’'t worry: adding the fontisize command in that specific label
or legend overrides the above general command rcParams.update

Visualization. Annotating text, mathematical symbols

Use matplotlib.pyplot.text

plt.text(1.8,2.0,’$\mathrm{Log-log\,{}plot}$’,fontsize=17)

NOTE: mathematical symbols in the annotation
and in the labels:

Pyplot uses almost the same notation as LATEX for mathematics

When you want to use mathematical notation, you just put it among
dollars $$ as in latex

Example:

plt.xlabel('Stellar Mass M$_\odot$', fontsize=20)

Visualization. Legend

15

Use matplotlib.pyplot.legend 1o}

©Ads 2% o & r.r oy
os| :-.‘l.:., oy~ 4.’::.5:.:.,,.,::'. x A
i | Ao XL ot L LL) el

. o 29wl o0 ey ?
#see examples/python/simple_plot.py ,}ET:T&,_,:;:TQL,,;yrrza
. 0.0} - y— » s)
1mport numpy as np ::aifﬂf"~*i?"5'-*aﬁfﬂf;

e L 7 4 =

i . -t N L% L LTy -
import matplotlib.pyplot as plt A et T ot 1T st

-0.5 el - > SRR,
x=np.zeros(1000,float) 0 iy "L FoweX LY

S .’N.
y=np.zeros(1000,float)
y2=np.zeros(1000,float)

-1.0f

-1.5] L I I L L
-200 0 200 400 600 800 1000 1200

for i in range(1,len(x)):
x[i]=x[i-1]+1.
y[i]=np.sin(x[i])
y2[i]=np.cos(x[i])

a= plt.scatter(x,y, color="b’ ,marker="~")

b= plt.scatter(x,y2,color="r’ ,marker="0")

plt.legend([a,b], [’sin(x)’, cos(x)’],fontsize="20", \
loc="upper right’)

plt.show() 10

Visualization. Colors

1. Default color cycle is simple:
'b’ (blue), 'g’ (green), ’r’ (red), 'c’ (cyan),
'm’ (magenta), 'y’ (yellow), 'k’ (black).

2. Multiple ways to define colors, eg the RGB additive color palette:
color="#FF7700’
means we build a color
First couple of digits define level of Red
Second couple of digits define level of Green
Third couple of digits define level of Blue

where 00 means no Red (or no Green or no Blue)
99 means very luminous Red (or Green or Blue)
FF means most luminous Red (or G or B)

nice but slow to use

11

Visualization. Colors

20

15+

> 10}

plt.show()

#fsee examples/python/simple_plot.py
import matplotlib.pyplot as plt
plt.scatter([1,2,3,4], [1,4,9,16], color="#FF7700", \
marker="0", s=200, zorder=2)

plt.plot([1,2,3,4], [1,4,9,16], color="#009999",\
linestyle="--", linewidth="5", zorder=1)

plt.axis([0, 6, 0, 20])

plt.xlabel('x’, fontsize=20)

plt.ylabel('y’, fontsize=20)

12

Visualization. Colors

3. Many more colors than the default color cycle are available
in the default matplotlib and can be called just by using their name

AL R R

black

gray

silver
whitesmoke
rosybrown
firebrick

r

darksalmon
sienna
sandybrown
bisque

tan

moccasin
floralwhite

gold

darkkhalki
lightgoldenrodyellow
olivedrab
chartreuse
darksage
lightgreen

green
mediumseagreen
mediumagquamarine
mediumturquoise
darkslategrey

c

cadetblue
skyblue
dodgerblue
slategray
ghostwhite
darkblue
slateblue
blueviclet
mediumorchid
purple

magenta

hotpink

pink

CEWC ML UL EWRCEEN WL REL LWL C

k

grey

lightgrey
white
lightcoral
maroon
mistyrose
coral

seashell
peachpuff
darkorange
navajowhite
orange
darkgoldenrod
lemonchiffon
vory

olive
yellowgreen
lawngreen
honeydew
forestgreen

g

springgreen
aguamarine
azure
darkslategray
cyan
powderblue
lightskyblue
lightslategray
lightsteelblue
lavender
mediumblue
darkslateblue
indigo

thistle
darkmagenta
orchid
lavenderblush
lightpink

MWL T RRURMLLELEERREMN LD

dimgray
darkgrey
lightgray
W
indianred
darkred
salmon
orangered
chocolate
peru
burlywood
blanchedalmond
wheat
goldenrod
khaki
beige

darkolivegreen
sage
darkseagreen
limegreen

lime
mintcream
turguoise
lightcyan

teal

agua

lightblue
steelblue
lightslategrey
cornflowerblue
midnightblue
blue
mediumslateblue
darkorchid
plum

m
mediumvioletred
palevioletred

MO FENT R MM UL TRENAN D

dimgrey
darkgray
gainsboro
snow

brown

red

tomato
lightsalmon
saddlebrown
linen
antiquewhite
papayawhip
oldlace
cornsilk
palegoldenrod
lightyellow
vellow
greenyellow
lightsage
palegreen
darkgreen
seagreen
mediumspringgreen
lightseagreen
paleturquoise
darkcyan
darkturguoise
deepskyblue
aliceblue
slategrey
royalblue

nawy

b
mediumpurple
darkviolet
violet

fuchsia
deeppink 13
Crimson

Visualization. Colors

4. You can define

additional color maps,

better to use the ones
which work for
color-blind people

Lightness L *

Lightness L~

100

50

100

75 4
50 4

100

751
50 1
25

(7/77/

Sequential colormaps

Visualization. Colors

4. You can define
additional color maps,
better to use the ones
which work for
color-blind people

and avoid those
which don’t work

&
S
&

100 1
; |
()]
é 50 -
e
2
|

0

Miscellaneous colormaps

Visualization. Exercise

EXERCISE:

Write a script to plot comoving distance, luminosity distance and look-
back time (derived from the previous exercise and example) as a func-
tion of redshift. The results should look like Figure 12.

Lookback time (Gyr)

10

15
Redshift

20

25

30

140}

120}

100}

D¢, Dy, (Gpce)
(0]
o

— Dg

-= Dy

10 15 20
Redshift

25 30

16

Visualization. Histogram

1.8

Use matplotlib.pyplot.hist 16

14

##see examples/python/simple_plot.py
import numpy as np

import matplotlib.pyplot as plt
x=np.zeros(1000,float)
y=np.zeros(1000,float)

for i in range(1,len(x)):
x[1i]=x[i-1]+1.
yli]=np.sin(x[i])

plt.hist(y, bins=60, density="True’,histtype="step’)
plt.show() 17

Visualization. Histogram

1.8

Use matplotlib.pyplot.hist 16

14

Arguments of hist:
bins: integer, number of bins

range: tuple (i.e. set of two arrays),
min and max of each bin

density: boolean (True/False),
counts normalized to form
a probability density (area = 1)
histtype: ‘bar’, 'barstacked’, 'step’, 'stepfilled’
align: ’left’, 'mid’, 'right’ (centered on the left, mid, right bin edge)

log: log scale

color: color the histogram

18

Visualization. Log - log histogram

plt.hist(y, bins=30, density="True',histtype='step’',log=True)
plt.xscale("log")

It is not sufficient to have a log-log plot!

PDF

10_6‘_

101 103 105
My bins

BECAUSE BINS ARE NOT LOGARITHMICALLY SPACED!
They are AXx, they should be Alog(x)

19

Visualization. Log - log histogram

examples/python/log_hist.py

Fast way to have logarithmically spaced bins (but of course you can
build them “by hand”):

mybins=np.logspace(a,b,num=17)
plt.hist(y, bins=mybins, density="True’,histtype="step',log=True)
plt.xscale("log")

10—3_

101 103 105
My bins

20

Visualization. Two dimensional histogram

1.0
examples/python/BNS_plot.py
0.8 -
The color of each cell represents
the number of objects > 101
with x value between G 067
X — Ax and x + Ax and =
with y value between § 0.4
y—Ayandy + Ay L
0.2
0.0 100

4 -2 0 2 4 6
log1oP/yr

import matplotlib.pyplot as plt |

import matplotlib.colors as colors 2D histogram from P

/ and e array (on x and y)

plt.hist2d(P,e,bins=25,norm=colors.LogNorm()) Logarithmic colors

cbar = plt.colorbar()
cbar.set_label(’Number of BNSs per cell’)

— Colorbar and label
21

Number of BNSs per cell

Visualization. Two dimensional histogram

examples/python/BNS_plot.py

The color of each cell represents
the number of objects

with x value between

X —Ax and x + Ax and

with y value between
y—Ayandy + Ay

In the example,

number of binary neutron stars
(BNSs:= binary systems composed
of two neutron stars)

with a given eccentricity e and a
given orbital period P

in the Milky Way

Data binary neutron_stars.txt
come from one of our simulations

In the Milky Way we know
only ~20 BNSs
(one of them is a binary pulsar)

1.0

o
(o)

Eccentricity

o
N

=
o

o
o

©
>

10°

22

Number of BNSs per cell

Visualization. Contours

Contours are the same as 2D histograms
but smoothed and plotting only some
(user-defined) contour levels

Orographic maps are the example
of contour plot you are more
familiar with since your school days:

x and y are spatial coordinates

colors show height above sea level
of a place located at X,y

Points in the same contour-level
have the same color

Scala
1:5.200.000
a 50 w0

153
- ——

23

Visualization. Contours

examples/python/simple_contour.py

In our astrophysical example:
X is BNS orbital period
y is BNS eccentricity

Z is number of objects
per cell calculated in
the previous
2D histogram
(it is a “density of BNSs
with a given period
and eccentricity)

Eccentricity

1.0

©
o

o
o

o
~

i
N

o
o

|
IS
o

T
(oY
J

—4 -2 0 2 4
log1oP/yr

= M
o =
Number of BNSs per cell

co

24

Visualization. Contours

examples/python/simple_contour.py

| use numpy.histogram2d
to calculate the 2D
histogram from which | get
the Z values

histogram2d is like hist2d

Z,xedges,yedges=np.histogram2d(P,e,bins=25,density=False) | but does not plot anything:

x=np.zeros(len(xedges)-1)
y=np.zeros(len(xedges)-1)
for i in range(len(xedges)-1):

It just gives me the Z matrix
and x,y binned arrays

X[i]=(xedges][i]+xedges][i+1])/2.
y[i]=(yedges[i]+yedges][i+1])/2.

histogram?2d gives me the
edges of the bins, | want
the middle points

to have the matrix in the form needed by contourf you have to transpose

Z = np.transpose(Z)

CONTOURF draws the

cs=plt.contourf(x,y, Z, levels=10) <&

cbar = plt.colorbar(cs,orientation="vertical’)

cbar.solids.set_edgecolor(“face") \ Colorbar works both with

cbar.set_label('Number of BNSs per cell’)

contour plot given x,y,Z
and number of levels

hist2d and with
contour/contourf

NOTE: use contourf if you want contours filled with colors and 25
contour if you want line contours (not filled)

Visualization. Contours

Important note: the files needed to do the exercise are in
exercises/python/ (both on gitlab and moodile)

Mchirp [Mo]
— N N
G S 5

10
tmerg [Gyr]

Produce a contour map like Fig. 17 with data files chirpmass_bin.dat
(array of chirp masses, M), tmerg_bin.dat (array of merger times, Gyr),
chirpmass_tmerg_tot.dat (complete matrix to produce the contours).
The chirp mass is defined as m‘;’/ 2 mg/ 2 (my + m,)"/>, where m; and
m, are the masses of two compact objects in a binary system. This
quantity is important for gravitational waves, because the frequency
of gravitational waves changes as fqw o mg}/jrp during inspiral. Hence,
chirp mass can be directly derived from gravitational wave data, given
frequency and frequency derivative with time. The merger time is
the look-back time when a merger happened. These data come from
a theoretical study on the cosmic merger rate of binary black holes

[Mapelli et al., 2017].

Visualization. Contours

Chirp mass versus lookback time of merger : What is this?

* A binary compact object loses orbital energy by gravitational
wave emission — semi-major axis shrinks

during inspiral Inspiral Merger Ringdown

dfaw 11/3 5/3
dt X Jow mchirp

where

3/5 3/5 —1/5
Mchirp — My My (ml + mQ) /

- from the measure of GW frequency and frequency derivative Hiphome
we derive the chirp mass

* The plot | showed assumes a cosmological evolution model +
plants compact binaries with their properties in the model +
plots when they merge (in lookback time) versus their chirp mass

(for more details see https://arxiv.org/labs/1708.05722 or ask me)
27

https://arxiv.org/abs/1708.05722

Visualization. Contours

Important note: the files needed to do the exercise are in
exercises/python/ (both on gitlab and moodile)

40

35
104

25

mchirp [M Q]

=
w

10

0 2 4 6 8 10 12 14
tmerg [Gyr]

Chirp mass versus lookback time of merger

10°

10°

L 104

L 102

-10

Visualization. Contours

Now you build not only the contourf but also the Z matrix (which
represents the number of mergers per cell):

EXERCISE:

Produce a new contour map of the mass of the secondary black hole (i.e.
the lighter one) versus the mass of the primary black hole (i.e. the more
massive one) considering a sample of theoretically generated binary
black holes. Unlike the previous exercise, here you have to generate the
matrix z (containing the number of binary black holes in each cell with
primary mass between m; + om and m; — dm with om = 0.5 M and
with secondary mass between m; + 0m and m, — om with om = 0.5 My).
The file you should start from is time_BHillustris1_30.dat (look at the
comments in the first line to understand the meaning of the columns).
Columns 7 and 8 are the masses of the two black holes. Note that the
black hole in column 7 is not necessarily the most massive: you should
swap the two black holes if the one in column 7 is lighter than the one
in column 8. If you succeed, you should be able to recover a contour
plot as the one in Figure 18.

Important note: the file time_BHillustrisl_30.dat is in
exercises/python/ (both on gitlab and moodle)

Visualization. Contours

Here is how the result should look like

_104

Nmerg

5 10 15 20 25 30 35 40
mi1[Mg]

Important note: the file time_BHillustrisl_30.dat is in 30

exercises/python/ (both on gitlab and moodle)

Visualization. Contours

Suggestion: Note that time_BHillustris1_30.dat is quite a large file. If
you read the arrays of m; and m; and then you do a couple of nested
for loops to calculate the matrix z, your program will be very slow. To
speed it up significantly you can use the following consideration.

I define the edges of the mass bins as

bin[0]=0
bin[1]=bin[0]+dm
bin[2]=bin[1]+dm

bin[n]=bin[n-1]+dm,

where dm = (#15,x — Mmin)/N and N = number of bins.
Then I can assign the indexes as

index1 = int(mass1/dm)
index2 = int(mass2/dm)

Finally, I calculate the table as

nmerg[index2][index1] +=1

31

Visualization. Contours

* First read the masses ml, m2. They are millions so to develop the script
use only the first ones

* Choose the bhins for the contour plots on x and y axis

dm
0 10 20 , 30 40 50 Msun
binx =np.zeros(6,float) biny =np.zeros(6,float)
binx[0]=0, binx[1]=10.,... biny[0]=0, biny[1]=10.,...

* build the contour matrix: contains in each cell ij the number of binary black
holes with binx[i]l<ml<=binx[i+1] and biny[j]J<m2<=biny[j+1]

you heed to check for each binary black hole if (m1[k]>binx[i]) and
(m1[k]<=binx[i+1]) and (m2[k]>biny[j]) and (m2[k]<=biny[j+1])

DOUBLE LOOP SUICIDAL FOR THE SIZE OF THE DATA

* To avoid the double loop, use the properties of the indexes

32

Visualization. Contours eurekal

* To avoid the double loop, use the properties of the indexes
Suppose m1[0]=14 Msun, m2[0]=33 Msun

0 10 20™ 30 40 50 Msun

—

m1[0] ends up in binx[1]
m2[0] ends up in biny[3]

calculate indexl1=int(m1[0]/dm)=1
calculate index2=int(m2[0]/dm)=3
corresponds to the correct bins

Then you can first calculate the indexes of the matrix and then assign the
matrix of the contours num=np.zeros([N,N],float)

index1=int(m1[0]/dm)
index2=int(m2[0]/dm)
num[index1][index2]+=1

In the same loop when you read the masses!

33

Visualization. Subplots

see examples/python/subplots.py

residuals

coherence

51 and s2
i

5

i . i
0.0 0.5 1.0 1.5 2.0
time

0 20 40
Frequency

residuals 53 and s4

coherence

0
_5 1 1 1 1
0.0 0.5 1.0 1.5 2.0
time
5 = 1
ﬂ =
_5 = . i
1 1 1
0.0 0.5 1.0 1.5 2.0

time

Frequency

0 20 40

34

Visualization. Subplots

EXERCISE:

Come back to the file time_BHillustris1_30.dat you read to perform
the previous EXERCISE and produce two subplots (just one row, two
columns). In the first column, you report the contour plot of the mass
of the secondary black hole (i.e. the lighter one) versus the mass of the
primary black hole (i.e. the more massive one). In the second column,
you should plot the chirp mass versus the total mass (m; + m,). If
you want to add other subplots, you are free to experiment with the
quantities provided in the file time_BHillustris1_30.dat.

35

Visualization. Three dimensional plots
see examples/python/plots3d.py

"“h‘ W
Hﬁi:' ! .‘*';"'.t\!“ *
* “{. I\ J'F‘::ll

36

Visualization. Three dimensional plots

EXERCISE:

Come back to the file time_BHillustrisl_30.dat and produce a 3D scat-
ter plot.

Unlike the surface 3D plot presented in the main lecture, a 3D
scatter plot needs the function scatter (instead of plot_surface or
plot_wireframe). The function scatter reads data from three mono-
dimensional arrays (or lists) that contain the three different quantities
of the same object we want to plot on three different axes.

In this exercise you will consider column 4 of time_BHillustris1_30.dat
(metallicity of the progenitor stars of the simulated black holes, in
absolute values Z), column 7 and 8 (mass of the first and mass of the
second black hole in M) and column 9 (delay time in Gyr, i.e. time
elapsed from the formation of the progenitor stars to the merger of the
two black holes). IMPORTANT: please read only the first 10’000 lines
of the file time_BHillustris1_30.dat, otherwise your plot becomes
too crowded and heavy.

You will produce a 3D scatter plot similar to the one in Figure 21,
where the x-axis shows the total mass of the binary (m1, + m,), the y-axis
shows the metallicity of the progenitor star (Z) and the z-axis shows the
delay time. Finally, the Figure also shows the chirp mass of the system
(my m3)>> (my + my)~/3 as colour gradient (see the colour map). You
should be able to find out this feature of the scatter function by looking
at the matplotlib manuals on the internet. Otherwise, just ask me.

Visualization. Three dimensional plots

How the result of exercise should look like [35
30
. ! T 12
T 10 25
e
O
L 2
Q
£
- 6 >
o 20
Q
(a)
~ 4
P~ 2
15
~ 0
0.0008
0.0007
0.00(.)2{:\ 10
o.ooosz}\\
0.0004@9}
- 0.00034”
40 W
Tots, =t 0.000265
Mass 0.000<° 5

80 0.0000

Chirp Mass (M)

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

