
1

Numerical Methods for Astrophysics:
 PYTHON SUMMARY

Michela Mapelli

2

Python. Why python?

PROS:

* high-level language:
written as you understand it rather than
as the computer understands it
→ simpler than low-level languages

* nearly the best for PLOTS (with matplotlib)

* lots of mathematical libraries (math, numpy, scipy..) and
libraries for data handling (pandas, astropy,..)

* interpreted language: does not need to be compiled and executed

 You just need an INTERPRETER

CONS:

* slow: depending on application, might be 10 – 100 slower than Fortran

* young and fast evolving: your scripts become obsolete quickly

3

Python. Interpreter

1- With command line from terminal (my choice)

To interpret python, from the terminal type

python

then press enter and you are inside the python interpreter
Good scientific calculator

Or, for more complex scripts: write a script with your preferred editor
save it as as scriptname.py, then type

python scriptname.py

press enter and the python interpreter runs your script

Possible EDITORS: emacs (my choice), gedit (ubuntu default)

4

Python. Interpreter

2- User friendly interpreters? spyder
Scientific Python Development Environment, https://www.spyder-ide.org/

More than interpreter:

- editor

- graphical user interface to run scripts
(for people who don’t like the terminal)

- debugger

3- More sophisticated features? JUPYTER-NOTEBOOK

https://jupyter.org/

We will see it later during the course

https://www.spyder-ide.org/

5

Python. Variables and assignments

variables are the minimum building blocks in coding
- convey information about scalar quantities
- similar to variables in algebra but..

x = 1 is an assignment statement (in python you define and
assign a variable at the same time)
different from c and c++!!! dangerous!!!

TYPES of variables:
INTEGER (examples -1, 0, 200003493094) – 32 bit

FLOAT or FLOATING POINT (1.5, 1e30, -1e20) – 64 bit

COMPLEX 1 + 2 i , but in python written 1 + 2 j

STRING (variable associated with characters)

assignment of a integer x = 1 or x = int(1)
assignment of a float x = 1.0 or x = float(1)
assignment of a string x = “ciao” or x = str(ciao) or x = str(“ciao”)

 x = “123” or x = str(123) or x = str(“123”)

123 is a string if I assign it as a string!!

6

Python. Output and input statements

OUTPUT STATEMENT: the way the code prints some results
print(x)

Function print allows to do the output statement

INPUT STATEMENT: the way we assign the value of a variable
through command line

x = input(“Enter the value of x: ”)
Function input allows to do the input statement from command line

I can specify the variable type
x = float(input(“Enter the value of x: ”))

7

Python. Arithmetic

ARITHMETIC OPERATORS IN PYTHON:
x+y addition
x-y subtraction
x*y multiplication
x/y division
x**y power

x//y x divided by y and number rounded to nearest int
x%y modulo of x (remainder of x after dividing by y)

NOTE: you can do these operations also to strings
But they look much different from
arithmetic operations on numbers

x=”123”
y =”2”
x+y
print(x+y)
produces ‘1232’

8

Python. Arithmetic

Order of operations in python (and other languages)
~same as algebra

Multiplications and divisions before sums and subtractions
Powers before everything else
Round brakets () change the order of operations

You do not have other kind of brakets

NOTE: THESE ARE ARITHMETIC ASSIGMENTS, NOT EQUATIONS!!!

x = 0
x = x**2 – 2
print(x)

If it were an equation I should solve
x**2 – x – 2 = 0 which has two solutions: 2 and -1

Instead prints gives -2

9

Python. Arithmetic

MODIFIERS (see c and c++):
x+=1 equivalent to x = x + 1
x –=2 equivalent to x = x – 2
x*=2.4 equivalent to x = x * 2.4
x/=7 equivalent to x = x / 7
X//=3.0 equivalent to x = x // 3.0

You can assign two or more variables with the same statement
x, y = 2.2, 3

Hence
x,y= y,x
means that we swap the values of the two variables

10

Python. EXERCISE

11

Python. Packages and modules

PACKAGES: collections of useful functions and constants
which are not in the default version of python
→ you need to IMPORT them

import namepackage

For example

import math

Math contains
log natural logarithm
log10 base-10 logarithm
exp exponential
sin, cos, tan sine, cosine, tangent (in radians)
asin, acos, atan arcsine, arccosine, arctan (input in radians)

12

Python. Packages and modules

import math
A = math.log(110)

or

from math import log
A = log(110)

13

Python. Packages and modules

Some packages are so big that they contain multiple modules
Modules are sub-packages

For example numpy is a package and contains sub-packages
Example

import numpy as np
c = np.linalg.det(a)

Calculates the determinant of matrix a

Alternative forms
from numpy import linalg
c = linalg.det(a)

or
import numpy.linalg as linalg
c = linalg.det(a)

If you are interested only in det
from numpy.linalg import det
c = det(a)

14

Python. Containers: lists and arrays

Variables are scalar

* but in physics/astrophysics we want VECTORS (eg position vector)

* or we want to group together in the same structure several
variables onto which we want to perform the same operation
(e.g. I have 100 measurements of the same quantity and I
want to calculate the mean)

DONE BY PYTHON CONTAINERS

LISTS, TUPLES, DICTIONARIES and ARRAYS

15

Python. Lists

LISTS in python are ordered lists of values

Each value in a list is called ELEMENT of the list

Lists can contain elements of different types (int,float,string,complex)

ASSIGMENT of a LIST:

r = [1., 15., 2., “sea”, 1e30]

or assign the variables first and then define the list as the container of
these variables

x,y,z,a,b=1.,15.,2.,”sea”,1e30
r = [x,y,z,a,b]
print(r)
print(r[0])
print(r[4])
print(r[-1])

16

Python. Lists

If all elements of a list do not contain strings I can sum them
r = [1., 15., 2., 10.,3.]
a = sum(r)

I can remove elements from a list (lists can change their size!!!)
r.pop(1)
print(r)

I can insert elements inside a list (lists can change their size!!!)
r.insert(2,9.)
print(r)

I can add elements at the end of a list (lists can change their size!!!)
r.append(6.1)
print(r)

COMMON WAY TO ASSIGN A LIST IS START WITH EMPTY LIST
AND THEN USE APPEND TO ASSIGN VALUES

r=[]
r.append(1.)
r.append(3.)

17

Python. Lists

WARNING: If you sum two lists you concatenate them

a = [1., 15.]
b = [2, 3]
c = a+b

c will be [1.,15.,2,3]

18

Python. Tuples

Similar to lists:
* can contain elements of different type

a=(’word’, 17.7, 2)

Note the round brackets to initialize tuples
wrt square brackets for lists

* behave as lists during arithmetic operations
i.e. a+a concatenates a to a

Different from lists:
* cannot change number of elements

19

Python. Arrays

LESS FLEXIBLE THAN LISTS:

1. exist only in numpy package

2. the number of elements is fixed

3. the elements of an array must be of the same type

GOOD REASONS TO USE ARRAYS for (astro)physics:

1. can be two-dimensional as matrices

2. arrays behave like vectors and matrices in algebra
(no risk to concatenate while you think you are summing)

3. arrays work faster than lists

20

Python. Arrays

ASSIGNMENT OF AN ARRAY THROUGH ZEROS:
import numpy as np
a = np.zeros(4,float)

OR THROUGH A LIST:
b = [1.,2.]
c = np.array(b)

TO ASSIGN A MATRIX (m x n elements):

import numpy as np
a = np.zeros([2,3], float)
a[0,1] = -1.0
a[1,2] = 1.0

21

Python. Arrays

EXAMPLE OF DIFFERENCE LISTS/ARRAYS:
import numpy as np
a=[1.,2.]
a1=np.array(a)
b=[2.,3.]
b1=np.array(b)

c=a+b
c1=a1+b1

c1 is [3.,5.]
c is [1.,2.,2.,3.]

ARRAYS CAN BE SLICED:
import numpy as np
a=np.array([2.,3.,4.,5.,7.,9.,1.])
slice = a[1:4]
print(slice)

Produces 3.,4.,5.

22

Python. Important caveat about arrays and lists

x = np.zeros(4,float)
x2 = x

The assignment of a np.array x to another np.array x2
(or a list x to another list x2) does not make a copy of x into x2.
Instead, the assignment statement makes x and x2 both
POINT to the same address in memory.

Implication:

Gives the outcome:

→ x2 is modified when you modify x

x = [0.,0.,0.,0.]
x2 = x

x=np.zeros(4,float)
x2=x
x[1]=1.0
print(x,x2)

(array([0., 1., 0., 0.]), array([0., 1., 0., 0.]))

23

Python. Important caveat about arrays and lists

To make a copy of x into x2 you should use:
np.copy() for np.arrays and copy.copy() for lists

x=np.zeros(4,float)
x2=np.copy(x)
x[1]=1.0
print(x,x2)

Give the outcomes:

→ x2 is NOT modified when you modify x

(array([0., 1., 0., 0.]), array([0., 0., 0., 0.]))

import copy
x=[0.,0.,0.,0.]
x2=copy.copy(x)
x[1]=1.0
print(x,x2)

([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0])

24

Python. Comments

Comments: parts of the code that are ignored by computer

Useful to understand what the program does

With python everything after a # is a comment

import numpy as np # import np package
a=[1.,2.] #assign list a
a1=np.array(a) #assign array a1
b=[2.,3.] #assign list b
b1=np.array(b) #assign array b1

c=a+b #sum a and b
c1=a1+b1 #sum a1 and b1

25

Python. If statement

If statement used to do something only if a given condition is met

NOTE USAGE OF INDENTATION (very strict in python):

Operations that will be performed only if(x>10): need to be shifted
 to the right wrt previous lines with a TAB

26

Python. If statement
Examples of possible if conditions:

I can combine more conditions with the AND logical operator
and/or with the OR logical operator

For c and c++ programmer: and instead of &&, or instead of ||

27

Python. while statement

While statement also checks if a condition is met

If it is met, the indented block is executed and then
loops back to the beginning of the while statement

while is a statement but produces a simple loop

28

Python. for loops
for loop: a loop that runs through the elements of a list or array in turn

EXAMPLE 1:
r=[1., 3., 5.]
for i in range(len(r)): # loop over the integer i from 0 to len(r)

print(r[i])
print(“loop ended”)

EXAMPLE 2:
r=[1., 3., 5.]
for i in range(1,len(r)): # loop over the integer i from 1 to len(r)

print(r[i])
print(“loop ended”)

EXAMPLE 3:
r=[1., 3., 5.]
for i in range(1,len(r),2): # loop over the integer i from 1 to len(r)

print(r[i]) # with steps of 2
print(“loop ended”)

29

Python. break statement
Allows to break out of a loop if a condition is met

EXAMPLE:

Useful if the loop is a very long one and I want to exit it as soon as I
find the good value of x

The break statement is NESTED inside the while and the if statements

30

Python. continue statement
Allows to skip the rest of the indented block if a condition is met
and jumps to the beginning of the loop

EXAMPLE:

Useful if the loop is a very long one and I want to exit it as soon as I
find the good value of x

The continue statement is NESTED inside the while and the if
statements

31

Python. Dictionaries

Collection of information, which is unordered, changeable and indexed

Similar to structures in C/C++
Useful to learn pandas

EXAMPLE:

KEYS: categories which define my dictionary and to which
we want to assign a value
(color, fur, spots)

VALUES: values assigned to the keys
(red, short, tabby)

mycat = {
 "color": "red",
 "fur": "short",
 "spots": "tabby"
}

32

Python. Dictionaries

OPERATIONS on DICTIONARIES:

* print(dictionary-name)
print(mycat)

* access an item calling the key
x = mycat["color"]
x = mycat.get("color")

* change a value
mycat["color"] = ‘black’

* loop over the keys or the values or both
for x in mycat:

print(x)

for x in mycat.values():
print(x)

 for x,y in mycat.items():
print(x,y)

33

Python. Dictionaries

OPERATIONS on DICTIONARIES:

* check if a key exists in a dictionary
if “color” in mycat:

print(mycat)

* add a new key to an existing dictionary
mycat[“age”] = 7.0
print(mycat)

* remove a key to an existing dictionary
mycat.pop(“age”)
print(mycat)

* copy a dictionary into another
yourcat = mycat.copy()

* create a dictionary with dict() function
mycat = dict(color="red", fur="short", spot="tabby", age=7)

34

Python. Dictionaries

OPERATIONS on DICTIONARIES:

* create nested dictionaries (dictionaries of dictionaries):

You find these examples in examples/python/dictionary_example.py

mycats = {
 "ettore" : {
 "color" : "white",
 "fur" : "short",
 "age" : 10
 },
 "ezzelino" : {
 "color" : "red",
 "fur": "short",
 "age": 7
 }
}
print(mycats)

ettore = {
 "color" : "white",
 "fur" : "short",
 "age" : 10
}
ezzelino = {
 "color" : "red",
 "fur": "short",
 "age": 7
}
mycats = {
 "ettore" : ettore,
 "ezzelino" : ezzelino
}
print(mycats)

35

Python. Functions

Functions are sets of instructions

In python can be

* built-in functions:
I can call them if I am in the python interpreter

e.g. print() or input()

* functions that live in packages:
 I should import the package to call them

e.g. math.log(), numpy.zeros()

* user-provided functions:
the programmer defines them

The example of a very simple function is in
examples/python/simple_def.py

Calculate the square of a variable

36

Python. Functions

Example of a more complex user-provided function:
examples/python/lookback.py

Calculates look-back time

The look-back time is the difference between the age of the
Universe now (at observation) and the age of the Universe at
the time the photons were emitted by a celestial body

Expression of look-back time if curvature Wk = 0

H
0
 ~ 67 km/s/Mpc WM ~ 0.27 W

L
~ 0.73

37

Python. Functions

1. scipy package with math libraries

scipy.integrate to integrate functions

2. scipy.integrate.quad integrates functions numerically

using the fortran library QUADPACK

3. alternative way to define small functions:

lambda x: 1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

Equivalent to

def integrand(x):

OmegaM=0.2726 #omega matter

OmegaL= 0.7274 #omega lambda

f=1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

return f

38

Python. Functions

User defined functions can be imported as packages

For example

examples/python/lookback3.py

examples/python/lookback3_main.py

from lookback3 import *

39

Python. EXERCISE on user-defined functions

Proper distance D
p
: distance travelled by the light on a given time.

It is simply the lookback time times c (speed of light)

Comoving distance D
c
: distance that does not change in time due to

the expansion of the Universe (the expansion of the Universe, 1/(1+z)
has been factored out)

Luminosity distance D
L
: expressed by the relationship between

luminosity and flux

40

Python. EXERCISE on user-defined functions

41

Python. Reading from and writing to files

For ascii files:
numpy.loadtxt or numpy.genfromtxt

fname: input filename
dtype: optional, variable type
comments: optional, does not consider everything after the argument
usecols: optional, which columns you want to store in variables
unpack=True: optional, splits the output per columns

42

Python. Reading from and writing to files

Self-made function to use less RAM and faster:

43

Python. Reading from and writing to files

To be called by the main as

44

Python. Reading from and writing to files

Writing an ascii file can be done as follows

45

Python. Regular expressions

Useful when file you want to read is a messy bunch of strings and
numbers

A regular expression (or RE) specifies a string or a set of strings that
you want to look for in a file

46

Python. Regular expressions

47

Python. Reading files with regular expressions

Everything in regex can be simplified to

\s+ at least one space
\S+ at leas one non space

48

Python. Reading files with regular expressions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

