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1. introduction

Figure 1: A nice way to explain why it is better to know numerical methods. Credits:
Bruno Oliveira.

1 introduction

We start this course with a good news and a bad news. The bad news is
that numerical methods are a must if we want to do research in astrophysics
nowadays (to better say, not just in astrophysics but in everything), the good
news is that i) numerical methods are tremendously easy to learn and ii) are
going to save your time (see Figure 1). Let’s get started.

1.1 Operating systems

“An operating system (OS) is system software that manages computer hardware,
software resources, and provides common services for computer programs” (source
Wikipedia).

In most cases, the OS must work as an intermediary between computer
hardware and user-launched applications, to allocate resources (e.g. memory)
and to optimize the usage of the hardware. Currently, the most-common oper-
ating systems are Microsoft Windows (∼82% of the desktops have Windows
when they are sold), macOS (∼ 13%) and Linux (∼ 2%). Consider, however,
that it is common practice among Linux users to buy a Windows desktop,
because most of the machines offered on the market have Windows by default,
and then to install Linux soon after.

DISCLAIMER: Before I start talking about Linux, let’s make the following
statement. You do not have to use Linux during this course. You can study
python and do the proposed exercises with your preferred operating system
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1.2. the linux operating system

(Linux, mac OS or windows), but there are two good reasons to use Linux for
this course. The practical reason is that the written exam will be in room P104
(unless covid-19 wins), where you will have Linux machines. The long-term,
general reason is that this course is an opportunity to learn Linux, which is
the most used operating system in high-performance computing (HPC) and
in science.

If you do not have Linux on your machine but you want to try it, you have
three options:

1. connect to a workstation of room P104 remotely;

ssh -p 5210 -Y username@labp104.fisica.unipd.it

2. download the virtualmachine prepared by the system managers (thank
you Dr Loris Lazzaro and Dr Matteo Menguzzato) for this course from
this url https://drive.google.com/file/d/1dY6RzW3gePm9K2diPWOJnfNcs7Jy-oq0/
view?usp=sharing;

3. install cygwin (https://www.cygwin.com/, or other Linux emulator
on windows), which allows you to “simulate” Linux on your windows
workstation/laptop;

4. install Linux on your laptop.

I can help you with these; ask the system managers of lab P104 to set up your
account. Now, let’s move on.

1.2 The Linux operating system

Linux is an open source operating system, or, to better say, a family of open
source operating systems based on the Linux kernel. We should rather call
it GNU/Linux operating system because the Linux operating system is a
combination of Linux kernel and supporting system software and libraries,
most of which are provided by the GNU project.

There are different versions of the Linux software which are called Linux
distributions. The most popular ones include Ubuntu, Debian, Fedora and
OpenSuse.

Open source means that all the lines of the code are public: they can be
seen and edited by everyone legally. It does not necessarily mean that the code
is for free. A free software is an open source code that is also for free. There
are distributions of the linux software (e.g., Red Hat and Suse) which are open
source but are not free.

A kernel is literally the core of the operating system. It is a computer
program at the core of the operating system which controls the system itself.
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1. introduction

Figure 2: Left: The original GNU logo, drawn by Etienne Suvasa. Right: Tux the
penguin, mascotte of Linux.

The GNU project is a free software initiative and an extensive collection
of utility programs wholly free software. Most of it is licensed under the GNU
Project’s own General Public License (GPL). The GNU operating system was
intended to use the Hurd kernel, but this remains at a state of development
that is not ready for daily use. Instead GNU software is more usually used
in combination with the Linux kernel, in which case it is commonly known
as Linux. Richard Stallman, an employee of the MIT Artificial Intelligence
Laboratory, founded the GNU project on September 27 1983. Soon after, he
quit his job at the Lab so that they could not claim ownership or interfere with
distributing GNU components as free software. The main idea of Stallman
was to create a completely free software initiative that “can create community
and social justice". Figure 2 shows the popular GNU and Linux mascottes.

The first version of the Linux kernel was released by Linus Torvalds on
September 17 1991. Linux takes its original structure from Unix, which, after
being born as open source, in 1984 became a proprietary product, where users
were not legally allowed to modify software. Torvalds wanted to build its
own kernel in a way that it was open source and compatible with Unix. Many
open source developers agree that the Linux kernel was not designed, rather
it evolved through Natural Selection. Many developers contributed to modify
Linux since its early stages, and only the best modifications were accepted by
the community, contributing to a natural selection of the software.

Linux started to become popular (not only among geeks) in the mid-
1990s in the supercomputing community, where organizations such as NASA
started to replace their increasingly expensive supercomputers with clusters
of inexpensive computers running Linux. Commercial use began when Dell
and IBM started offering Linux support to escape Microsoft’s monopoly in the
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1.3. basic linux commands

Figure 3: The Unity desktop environment with Ubuntu Linux.

desktop operating system market.
Nowadays, Linux is not particularly common among desktop users (∼ 2%,

probably underestimated, see the discussion above), but is by far the most
common OS for servers and HPC facilities: all the Top500 machines (i.e.,
the 500 most powerful computer clusters around the World) have Linux.
Moreover, android adopts the Linux kernel, making linux the most common
OS among mobile phones.

1.3 Basic Linux commands

The user interface (i.e. the way the user can communicate with the OS) is
known as the shell. In the case of Linux, the most common shell is the Bourne
Again Shell (bash), originally developed for the GNU project. The shell is
usually composed of both a command-line interface (CLI) and a graphi-
cal user interface (GUI). On desktops, the GUI shell is packaged together
with the desktop environment. The most common GUI shells and desktop
environments are KDE, Unity and GNOME. Figure 3 shows the desktop you
might have in front of you if you have a Ubuntu linux with a Unity desktop
environment. On the left bar, you have a menu with different fundamental
applications and a search tool. On the top right, you have some fundamental
commands, such as the shut down button, the clock, the language setting,
the connection information, the sound information, and several other system
settings.

If you work on Linux, remember to use the terminal: the command line
of the terminal can be more effective than the graphics interface (although, it
might seem counter-intuitive to people used to work with Windows and Mac).
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1. introduction

Figure 4: An example of the Linux directory tree.

When you open the terminal, you can first type

pwd

followed by an enter.
pwd tells me in which directory I am.
Usually, the default directory of Linux (i.e. the one in which I am when I

log in) is my home:

/home/username/

Warning: Directories in a computer are organized like a tree, with a common
root (the / directory) and many sub-directories which are the branches and the
leaves of the tree (see Figure 4). The / directory, the one on top of the directory
tree, is usually the system directory, i.e. the place where the operating system was
installed and lives. Be careful: don’t mess up with the / directory.

To see more options for pwd (or any other command), type

man pwd

This calls the Linux manual, which will allow you to see all possible
arguments taken by that command.

Other important commands are the following.

ls Shows you what you can find in the specific directory where you are. I
usually use it with the options below

ls -lrt The argument -l prints information on the file owner and last-change
date. The argument -t allows you to sort files by modification time,
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1.3. basic linux commands

newest first, and the argument -r reverses the previous order: you see
the newest last (usually you need to see the most recent files, rather than
the oldest ones).

mkdir Creates new directory (if followed by the name of the new directory).

cd To change directory. cd directoryname moves you to the directory with
name directoryname. If you type cd without any arguments, you are
sent to the home.

SUGGESTION: If you are not familiar with the terminal, use cd and ls to
look around and to get familiar with the directory structure. It might seem
clumsy at the beginning, but, when you become familiar with it, is way more
efficient than through the Files graphical application (the one that looks like
a windows or mac application).

rm Removes a file or a directory. If you want to remove a directory, use rm
-r. If you want to avoid removing something you did not want to remove
use rm -i filename (for files) and rm -ri directoryname (for directories).
You will be asked to confirm that you want to remove that file/directory.

cp Copies a file or a directory into something else. If you want to copy a
directory, use cp -r. If you want to avoid overwriting something, use cp
-i filename newfilename (for files) and cp -ri directoryname newdirec-
toryname (for directories). With the ’-i’ option, if there is already a file
or directory with that name, you will be asked to confirm that you want
to overwrite the file/directory.

diff filename1 filename2. Compares filename1 and filename2 and prints out
the differences.

ssh Connect to another computer remotely. The best syntax is the following

ssh username@computername.domain -X

where ’-X’ is necessary to open pop-up windows.

scp Copies files from or to a remote computer. In particular,

scp username@computername.domain:filepath/filename pathtosendfile/filename

copies the file with name filename (that you can find on computer
computername.domain when following the path filepath) from com-
putername.domain to your local machine, at the location specified by
pathtosendfile/filename.

scp filepath/filename username@computername.domain:pathtosendfile/filename

copies the file with name filename (that is on your computer at the path
filepath) to a remote computer computername.domain
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1. introduction

rsync Copies a file (or directory) from a directory to another directory or to a
remote computer in a safe way (by checking the integrity of the file and
by updating time and ownership). Use the following syntax:

rsync -a username@computername.domain:filepath/filename pathtosendfile/filename

if you want to copy the file filename from a remote computer to your
computer, and

rsync -a filepath/filename username@computername.domain:pathtosendfile/filename

if you want to copy the file filename from your computer to a remote
computer. Highly recommended with respect to scp.

mv Moves a file to some other file (i.e. it renames the file) or to some other
place on your computer.

SUGGESTION: do not use mv, just use cp or rsync -a. If you are moving
a big file or directory and something happens (e.g. a black out) during your
moving, you lose the file or directory forever. When you want to move a file,
it is safer to make a copy of it and then remove the original.

du -sh followed by a filename or a directoryname, tells you how large (in bytes)
the file or directory is. The argument -sh means human readable units
(which means that units of measure (k for kilobytes, M for megabytes,
G for gigabytes, etc) are provided by the command. In contrast, -ks is
only in kilobytes. If you use du -sh ∗, you see the size of all the files in
that directory and of all the subdirectories in that directory. In general, ∗
means all the files and all the subdirectories in that directory.

df -h followed by nothing shows you the size of the disks mounted on the
computer and how much of this disk space is used/available. df -h .
gives you information only on the local disk.

top shows all the processes running on your computer (you can kill the
unwanted ones with k).

ps aux also shows all processes running on your computer. You can use the
command

kill followed by the identifier of the process to kill that process (if the process
does not die use kill -KILL followed by the identifier of the process to
kill).

find -name filename or ’file*’ searches a file in the directory and in all the directories
below the one where you type the command.

grep ’something’ filename searches the string something within filename. It
is very useful when you debug large codes (trust me!) or when you want
to do a quick check over a file (e.g. see whether there are some NaN).
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1.3. basic linux commands

wc -l filename calculates the number of rows in fi.

nl filename prints the number of lines in filename followed by the content
of each line (does not work well with binary files, of course).

more filename shows the content of the file filename (in a non-editable way).

less filename shows the content of the file filename (in a non-editable way).
Very similar to more but more powerful (e.g. you can scroll up and down
a file with the arrows on your keyboard).

tar cvfz filename.tgz followed by the list of files or directories to be archived
produces an archive (= a container) of files and zips them. Here c means
create the archive, v means verbose mode, f means use the archive tool,
while z means zips it. If you do not want to zip the archive use just tar
cvf.

tar tvfz filename.tgz allows you to see the names of the files and directories
stored into the (already existing) archive filename.tgz without actually
uncompressing it.

tar xvfz filename.tgz uncompresses the tar file filename.tgz. If you want to ex-
tract only one file or directory, add the name of this file or directory at
the end of the command.

Remember that Linux command can be concatenated by using the pipe
(’|’) command. For example

ps aux | grep python | nl

ps aux prints the processes running on your computer, grep finds every
row of filename where there is a ’python’, then ’nl’ calculates and prints the
number of these rows.
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2 short summary of python for
astrophysicists

The examples corresponding to this section are in examples/python/.
The material needed for the exercises is in exercises/python/.

2.1 Why python?

Why choosing python as programming language for this course? No spe-
cial reason. The important thing about programming is to understand and
learn the logic of programming, in general. Once this is achieved, differences
between programming languages are a minor thing to learn.

However, a feature of python that makes it particularly appealing for this
kind of courses is that python is a high-level programming language: you do
not need to write a code the way the computer understands it directly. Hence,
you can write a code more the way YOU understand it, making your life easier
and your coding faster1.

Moreover, python is an interpreted language: you do not compile and
execute python. Rather, you call an interpreter that interprets your code for
you, i.e. makes it understandable to the computer, through pre-compiled
python libraries2.

To call the interpreter on linux you type

python namecode.py

and then you press enter, or simply

python

and then you press enter. In the former case, you want the interpreter to
interpret (i.e. execute) your script namecode.py, while in the latter case, you
enter the interpreter and then you can write your script interactively inside
the interpreter. This latter option is not particularly smart for a long code, but
is a very nice option to get a flexible scientific calculator (for free and always
available on your computer).

1In contrast, low-level programming languages such as C and C++ need you to program
more the way the computer thinks.

2In contrast, compiled languages (such as C and C++) need you to compile and execute
them. Compilation consists in translating the code from the chosen programming language to
computer language, i.e. assembly language (which depends on computer architecture; hence it
is good practice to recompile your code when you want to use it on a different machine). Of
course, you do not have to translate it ’by hand’: every compiled language has several compilers
that perform this task for you. For example, if you use GNU software, in C the typical compiler
is the gcc. The result of compilation is a new file, written in assembly language, that is called
the executable. To run your code you need to execute the executable. In Linux, usually you run
the executable by typing ./executable_name.
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Furthermore, it is extremely easy to produce plots with python (through
the matplotlib package, for example) and in general python includes a lot of
mathematical libraries that are very easy to call and use (mostly through the
numpy and the scipy packages). In the following, we review the most important
ingredients of python programmers for beginners.

2.2 Spyder

If you don’t like running python directly from the terminal, you can use
the spyder environment (spyder stands for Scientific Python Development
Environment, https://www.spyder-ide.org/). Spyder can be installed quite
easily (it is already provided on the workstations of lab P104). It provides
many features, including an editor to display and edit your python scripts,
a graphical user interface to run your python script (if you really don’t like
the command line from the terminal) and a debugger, to spot the main issues
with your script. During these lectures, I will use the command line because I
am a command-line enthusiast, but you are perfectly welcome to use spyder
instead: it is nice and user friendly.

2.3 Emacs

I prefer to use the command line to run my python script and I prefer to
use the emacs editor to write my scripts. During these lectures I will almost
always use emacs.

What about you? If you are already familiar with another editor (e.g., the
editor inside spyder, or gedit, or vim, or whatever else), of course you can keep
using your preferred editor.

If you are not familiar with any editor or you want to try a different editor
from the one you used before, I suggest either emacs or the editor inside
spyder. Have a look at Figure 5 to have some nerdish fun about opinions of
scientists on the best editor.

2.4 Variables and assignments

Variables are the minimum building blocks in coding. They contain informa-
tion about scalar quantities, playing approximately the same role as they do
in algebra. For example

x=1

means that I have defined a variable x and I have assigned it the value of 1.
This is an assignment statement. Note that in many other languages (e.g. C
and C++) the definition of a variable is independent from the assignment and
both the definition and the assignment are mandatory. For example, in C
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Figure 5: A “debate” on the best editor for real programmers. Credits: xkcd (see
https://xkcd.com/).

int x;

x=1;

In contrast, in python you do not need to define a variable, you just assign
it a value. This simplifies your coding but is dangerous, because you are allowed
to use the same name for two different variables in the same script, even with
two completely different assignments, possibly with catastrophic effects.

Variables have different types. The main types are

• integer: a variable is an integer if it is assigned an integer value, which
can be positive or negative (e.g., -1,0,20002). Fractional values (e.g. 2.4)
are not integers. In terms of programming, a number is an integer if and
only if it is written without the dot (e.g. 1 is an integer, but 1.0 is not an
integer for the computer);

• float (or floating-point): a variable that is assigned a real or fractional
value (e.g. 1.345e-30, 1.5 or 1.0);

• complex: a variable that can take a complex value such as 1 + 2 i. Note
that i in the sense of i2 = −1 in python cannot be written as i but as j.
Thus, the complex number 1 + 2 i in python is written as 1 + 2 j.

• string: a variable that can be associated to a string of characters (or a
mixed string of characters and numbers). For example "c" or "I am a
string" or "I am a 123 string".

If I assign

x=1
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or

x=int(1)

it means that x is a integer.
Instead, if I assign

x=1.0

or

x=float(1)

it means that x is a float.
Integers and float occupy different sizes of the memory of a computer.

Integers in python are 32 bit3 (in C they are only 16 bit)4.
To know the exact value of the maximum python integer on your machine,

inside the python2 interpreter type the following

import sys

sys.maxint

Note that the above command works only in python2. The command
sys.maxint was removed in python3 (the default of our course) because
python3 in principle does not have limits on the size of int. On the other
hand, you can use sys.maxsize as an integer larger than any practical list or
string index.

Floats in python are 64 bit (while in C they are just 32 bit; a 64 bit is a
double precision variable in C). The maximum value a float can assume is
1.8e308. If we try to assign a larger number than approximately 1.8e308 to a
variable, the variable is automatically re-assigned to "inf". Try for example

x=1.8e308

print(x)

To know the exact value of the maximum float on your machine, inside
the python2 or python3 interpreter type the following

import sys

sys.float_info

If a quantity I want to use is an integer (for example the number of planets
in the Solar System is intrinsically an integer), use an integer variable for it.

3A bit is a basic unit of information in information theory. It is the information that can be
conveyed by a number which can assume only the values of 0 or 1, or a statement that can be
either False or True.

4Larger integers can be defined through the numpy package. For example type uint64 in
numpy is a 64 bit unsigned integer, i.e. a 64 bit positive integer.
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Besides using less memory, it is more accurate. Rounding errors make float
intrinsically less accurate, for example 1.0 can be stored in the computer as
0.9999999999999999.

If I want to define and assign a string I do

x="a"

or

x=str("a")

In this case the string value is a. Or I can define, for example,

x="this is a string"

or

x=str("this is a string")

In this case the string is this is a string. Or I can define the following string

x="123.0"

or

x=str("123.0")

In this case 123.0 is interpreted as a string, not as a float: it will behave as
a string.

Strings are important to assign the names of files, as we will see later. In
python ” and ′ have the same meaning and usage.

Python is one of the few languages that allow to use the same variable to
have two or more different types in the same function. This is allowed but is
not advisable. For example, if you assign x=1 and few lines later you assign
x=1.5 you might lose control of the actual type of x and produce disasters.

2.5 Output and input statements

An output statement is the way the code prints some results to the terminal.
This is very simple in python:

x=1

print(x)

The function print writes the value of x. Note that the syntax of print has
changed from python2 to python3. If you use python2 you can also type the
following
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x=1

print x

An input statement is the way we assign the value of a variable through
the command line:

x= input("Enter the value of x: ")

The function input requires the user to assign the value of the variable by
typing it into the command line. input tries to guess the type of the input but
to be sure that the type of the input is what you want, you must explicitly
choose it. For example

x= float(input("Enter the value of x: "))

tells that x will be a float,

x= int(input("Enter the value of x: "))

tells that x will be an integer and

x= str(input("Enter the value of x: "))

tells that x will be a string.

2.6 Arithmetic

The basic arithmetic operators are written as follows.

x+y addition

x-y subtraction

x*y multiplication

x/y division

x**y power

In addition

x//y x divided by y and result rounded to the nearest int

x%y modulo (the remainder of x after being divided by y)

Note that the result of an arithmetic operation depends on the type of
variables. For example

x=123.0

y=2.0

x+y
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and

x="123.0"

y="2.0"

x+y

are completely different!
Similar to normal algebra, operations can be combined with each other.

Multiplications and divisions are performed before additions and subtractions.
If there are several multiplications (or divisions), they are carried from left
to right. Powers are calculated before anything else. To change the order of
operations, you can use round brackets ().

Note that these operations are arithmetic assignments, they are not equa-
tions, although they might look like equations. For example

x=0

x=x**2-2

print(x)

If this were a true equation, it would have admitted two results (2 and
-1). Instead, the computer calculates the right term of the above operation
using the previous assignments for variables (x ∗ ∗2 − 2 = 0 − 2 = −2) and then
assigns the result to the variable on the left term. This is why print(x) gives
−2.

Python admits the usage of modifiers (similar to C and C++):

x+=1 is equivalent to x=x+1

x-=2 is equivalent to x=x-2

x*=2.4 is equivalent to x=x*2.4

x/=7.0 is equivalent to x=x/7.0

x//=3.0 is equivalent to x=x//3.0

In python it is possible to assign two variables with a single statement:

x,y=2.2,1

is equivalent to

x=2.2

y=1

As a consequence

x,y=y,x

swaps the value of the two variables.
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EXERCISE:

Use what you learned to calculate the distance covered in a (user pro-
vided) time t by a ball falling from a tower of (user provided) height h.
Furthermore, calculate at what time t2 the ball reaches the ground (the
gravity constant g = 9.81 m s−2).

2.7 Packages and modules

From the above description of arithmetic operators, you can clearly spot some
missing important arithmetic functions. For example, logarithms or trigono-
metric functions. These important operators as well as more sophisticated
functions and tools are not present in the “default” python interpreter, but
can be found in additional packages (i.e. collections of useful functions and
constants, some of them coming with the default python, others needing to be
installed separately). The way to load these additional packages, making them
available to our calculations is to type “import namepackage”. For example,
the following command

import math

imports (i.e. makes available to the interpreter) the package math, that
contains some important mathematical function such as

log natural logarithm

log10 log base 10

exp exponential

sin, cos, tan sine, cosine, tangent (in radians)

asin, acos, atan arcsine, arccosine, arctan (in radians)

sqrt square root (without importing math **0.5)

Each of the functions that are inside the package must be called as

packagename.f unctionname. For example

import math

a=math.log10(100.)

If you want to import only a part of the entire package, you can do as
follows

from math import log10

a=log10(100.)

which imports only the log10 function.
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Some packages are so big that they contain multiple modules, i.e. sets of
functions and other useful things. For example, we will often use the numpy
package that contains several modules.

import numpy as np

imports the entire numpy package and assigns it the nickname np, which
is much faster to type in the rest of the code.

If we are not interested in the entire numpy but only in one of its modules
we should type, for example

from numpy import linalg as lin

The above command imports the module linalg (facilities for linear algebra
and Fourier transformations) of the numpy package and gives it the nickname
of lin.

Finally, if we are interested only in one function (or other content) inside
the module, we can import just this function. For example

from numpy.linalg import inv

which imports only the function inv (which calculate the inverse of a
matrix) from the entire linalg module (note the namepackage.namemodule
formalism).

2.8 Lists, tuples and arrays

So far, we have used only variables, which are scalar quantities. But what
happens if I want to use something that looks like a vector (for example the
vector describing the position ~r = x, y, z of a point in space)? Or, what can I do
if I have a set of data which I want to treat all in the same way (for example
I want to multiply each of them for the same variable), even if they do not
constitute a vector?

To satisfy these needs you can use the so called containers of python. In
this course we will use mainly two kinds of containers: lists and arrays. We will
briefly mention two additional types of containers: tuples and dictionaries.

2.8.1 Lists

A list in python is an ordered list of values, which are called its elements. The
elements of a list can be of different types, i.e. you can have a list composed of
several strings, several floats and several integers all together.

As we already discussed for variables, a list can be assigned in python
without being defined, which is fast but dangerous. To define a list we type

r = [1.,15.,2,"sea",1e30]
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where we have a list named r, whose elements are 1.,15.,2,sea and 1e30
(note that sea is a string, 2 is an integer, while the other elements are float).
In our course, we will use almost exclusively lists whose elements share the
same type.

You can assign a list also in the following way (through variables):

x=1.

y=15.

z=2*int(x)

a="sea"

b=1e30

r = [x,y,z,a,b]

print(r)

print(r[0])

print(r[-1])

The elements of a list are numbered from 0 to n− 1, where n is the number
of elements of the list. So r[0] is the first element of the list (in the above
example its value is 1.), r[1] is the second element of the list (in the above
example, its value is 15.) and so on. The last element of a list can be called
r[-1].

I can do several operations to the elements of a list, for example I can sum
them

r = [1.,2.,10.,3.]

a=sum(r)

print(a)

I can even add elements to the end of a list or add/remove elements from
the list with the functions append and insert/pop.

append

r = [1.,2.,10.,3.]

r.append(6.1)

print(r)

from the print I see that the new r is [1.0, 2.0, 10.0, 3.0, 6.1], with the new
element (the float 6.1) at the end.

pop
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r = [1.,2.,10.,3.]

r.pop(1)

print(r)

from the print I see that the new r is [1.0, 10.0, 3.0], i.e. pop has removed
second element (r[1], which is 2.0).

insert

r = [1.,10.,3.]

r.insert(1,9.)

print(r)

with insert I have inserted a new element (9.) with index 1 (i.e. the second
element of the list) and I have shifted all the other elements to the right. Hence,
insert wants two arguments insert(index,object): the first argument is the
index of the element I want to add in the list, the second argument is the value
of this element.

A very common way of producing a list is to start with an empty list and
then building it with append. For example

r = []

print(r)

r.append(1.)

r.append(2.)

print(r)

where r=[] defines an empty list (list with no elements), while at the end of
the example r=[1.0, 2.0] has two elements. For this usage, append is probably
the most useful and common function applied onto lists.

2.8.2 Tuples

In general python, there exists another way to organize vector-like quantities:
the tuples. Like a list, the elements of a tuple do not need to be of the same
type. For example,

a=(’word’, 17.7, 2)

defines a tuple of three elements, which are a string, a float and an integer.
From the example, you also see that tuples are defined with round brackets
instead of square brackets. Operations on the tuples are the same as operations
on the lists (e.g., if you sum two tuples, you simply concatenate them). The
last thing to know about tuples is that the number of elements cannot be
changed, so NO append on a tuple.
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2.8.3 Arrays

Similar to lists, arrays are ordered lists of values, but they have important
differences with respect to lists:

1. They exist only in the numpy package.

2. The number of elements of an array is fixed.

3. The elements of an array must be of the same type.

From the above enumeration it is apparent that arrays are way less flexible
than lists. Then, why and when should we use them?

Here are few good reasons to use arrays:

1. Arrays can be two-dimensional as matrices.

2. Arrays behave like vectors and matrices in algebra. When you do opera-
tions with them (e.g. sums), the result is what you expect from arithmetic,
while when you do operations with lists you get very different results
(example below).

3. Arrays work faster than lists.

To use an array, you need to create it. There are several ways to proceed.
For example

import numpy as np

a = np.zeros(4,float)

print(a)

This creates the array a with 4 elements that are float. All the elements are
initially zero (the function np.zeros fills with zeros all the elements).

Or you can convert to an array a list you previously created

import numpy as np

a = [1.,2.]

b = np.array(a)

print(b)

where b is the list a transformed into an array.
To create a two dimensional float array with m rows and n columns (like a

mxn matrix) you use the command numpy.zeros([m, n], float). For example

import numpy as np

a = np.zeros([2,3],float)

print(a)

produces the following output

25



2. short summary of python for astrophysicists

[[0. 0. 0.]

[0. 0. 0.]]

I can call the elements of a matrix with a set of two indexes

import numpy as np

a = np.zeros([2,3],float)

a[0,1]=-1.0

a[1,2]=1.0

print(a)

produces the following output

[[0. -1. 0.]

[0. 0. 1.]]

Here is an example of the different behaviour of arithmetic operators when
applied to lists and arrays.

import numpy as np

a = [1.,2.]

a1 = np.array(a)

b = [3.,1.]

b1 = np.array(b)

c=a+b

print(c)

c1=a1+b1

print(c1)

The print(c) operation gives the following

[1.0, 2.0, 3.0, 1.0]

i.e. the sum of two lists is a new list that results from the concatenation of
the two lists.

Instead, the print(c1) operation gives the following

[4.0, 3.0]

which is the arithmetic sum of two vectors.
An array can be sliced:

a = np.array([2.,3.,9.,5.,10.,1.])

slice = a[2:4]

print(slice)

gives as output
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[9. 5.]

2.9 A very important note on lists and numpy arrays

A very important thing to know about python is that the assignment

x=np.zeros(4,float)

x2=x

where both x and x2 are numpy arrays (or lists), does not make a copy of x
into x2. Instead, the assignment statement makes x and x2 both POINT to the
same address in memory (if you are familiar with C and C++ you immediately
understand what this means).

Hence, if (in the rest of the script) you change the elements of x2, you
change also the elements of x, because x2[i] and x[i] are stored in the same
memory address.

In older versions of python this was easily avoided with some trick, BUT
in python3 this is always the case for both lists and arrays.

See https://ecco-v4-python-tutorial.readthedocs.io/ECCO_v4_Operating_
on_Numpy_Arrays.html

You can check what happens with this example:

x=np.zeros(4,float)

x2=x

x[1]=1.0

print(x,x2)

where print gives as output

(array([ 0., 1., 0., 0.]), array([ 0., 1., 0., 0.]))

Both x[1] and x2[1] have changed!
If you want that x2 and x keep pointing two TWO DIFFERENT MEMORY

ADDRESSES and you just want to make a copy of x into x2, you should use the
function numpy.copy for numpy arrays (and copy.copy for the lists – note that
copy.copy is a function of the package copy). Here below, you see an example
for numpy arrays.

x=np.zeros(4,float)

x2=np.copy(x)

x[1]=1.0

print(x,x2)

where print gives as output
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(array([ 0., 1., 0., 0.]), array([ 0., 0., 0., 0.]))

In this case, x2 is not affected by the changes on x.
With a more technical phrasing, this means that BOTH lists and numpy

arrays (and in general objects in python) are stored by reference: you do not
assign the value of x to x2, but a pointer to the object that x is pointing to.

2.10 Comments

Comments are parts of the code that are completely ignored by the computer.
This does not mean they are useless. They are the only way for you to explain
what you have done in a script. Imagine you read the same script, two years
from now, without comments..Better to add comments, don’t you think?

Here below an example.

import numpy as np #import numpy

a = [1.,2.] #define new list a

a1 = np.array(a) # transform a into an array a1

b = [3.,1.] #define new list b

b1 = np.array(b) # transform b into an array b1

c=a+b #sum the two lists

print(c) #print the sum of the two lists

c1=a1+b1 #sum the two arrays

print(c1) #print the sum of the two arrays

2.11 if statement

We use the if statement when we want to do something only if a given condi-
tion is met. For example

x=int(input("Enter an integer no greater than ten: "))

if(x>10):

print("You entered an integer greater than ten.")

print("Let me fix it for you.")

x=10

print(x)

Note the usage of indentation, which is very strict in python. All the
operations that must be performed only if x> 10 must be shifted to the right
(through a Tab command) with respect to the line containing the if statement.

Here, we list some possible if conditions (but there are of course infinite
conditions):
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if(x==y): checks if x is equal to y

if(x>y): checks if x is larger than y

if(x>=y): checks if x is larger than or equal to y

if(x<y): checks if x is smaller than y

if(x<=y): checks if x is smaller than or equal to y

if(x!=y): checks if x is not equal to y

If you are familiar with C and C++, you immediately realised these sym-
bols are identical in C and C++.

It may happen that we need an if statement to check more conditions. If
we want all these conditions to be equally satisfied, we must connect these
conditions with the and logical operator. If we want that at least one of these
conditions is satisfied, we must connect them with the or logical operator. For
example

x=4

if((x>1) and (x<3)):

print("the if statement with and gives x=", x)

if((x>1) or (x<3)):

print("the if statement with or gives x=", x)

We will not get the first print (because x = 4 satisfies x > 1 but does not
satisfies x < 3), while we will get the second print in the form of

if statement with or gives x= 4

The symbol for logical and and logical or are different from C and C++
(which use && and ||).

2.12 while statement

Similarly to the if statement, the while statement checks if a condition is met.
If it is met, the indented block is executed, otherwise it is skipped. Differently
from the if statement, in the while statement, if the condition is met and the
block is executed, the while statement loops back to the beginning of the
statement and checks again if the condition is met. You cannot exit the while
unless the condition is met. For example
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x=10

if(x>2):

x-=1

print("We are inside the if, x=", x)

print("We are out of the if, x=", x)

x=10

while(x>2):

x-=1

print("We are inside the while, x=", x)

print("We are out of the while, x=", x)

gives as an output

We are inside the if, x= 9

We are out of the if, x= 9

We are inside the while, x= 9

We are inside the while, x= 8

We are inside the while, x= 7

We are inside the while, x= 6

We are inside the while, x= 5

We are inside the while, x= 4

We are inside the while, x= 3

We are inside the while, x= 2

We are out of the while, x= 2

2.13 for loops

A for loop is the most commonly used loop in python (way more than while).
It consists of a loop that runs though the elements of a list or array in turn.
For example,

Example 1

r= [1., 3., 5.]

for n in r: #for loop over the element n in r

print(n)

print("Loop ended")

gives as output

1.0

3.0

5.0

Loop ended

Example 2
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r= [1., 3., 5.]

for i in range(len(r)): #for loop over the integer i from 0

# to the length of the list r (calculated with len())

print(r[i])

print("Loop ended")

gives as output

1.0

3.0

5.0

Loop ended

2.14 break and continue statements

The break statement inside a loop allows to break out of a loop even if the
condition in the while (or for) statement is not met. For example

x=10

while(x>2):

x-=1

print("We are inside the while, x=", x)

if x==5:

break

print("We are out of the while, x=", x)

gives output:

We are inside the while, x= 9

We are inside the while, x= 8

We are inside the while, x= 7

We are inside the while, x= 6

We are inside the while, x= 5

We are out of the while, x= 5

This statement is nested inside the while loop.

The continue statement inside a loop allows to skip the rest of the indented
code in the loop and then goes back to the beginning of the loop. For example
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x=10

while(x>2):

x-=1

print("We are inside the while, x=", x)

if x==5:

x-=1

continue

print("We are after the continue")

print("We are out of the while, x=", x)

gives output:

We are inside the while, x= 9

We are after the continue

We are inside the while, x= 8

We are after the continue

We are inside the while, x= 7

We are after the continue

We are inside the while, x= 6

We are after the continue

We are inside the while, x= 5

We are inside the while, x= 3

We are after the continue

We are inside the while, x= 2

We are after the continue

We are out of the while, x= 2

From the above example, we see that when the condition of the if is met
and then we find the “continue” the loop goes back to the beginning without
printing the line "We are after the continue”.

2.15 Dictionaries

A dictionary is a collection of information, which is unordered, changeable
and indexed. It is the last kind of container that we see. We have not seen it
before, because it is a bit more complicated to handle than lists and arrays.
For people who already know C and C++, it is similar to a structure in C/C++.
It is created with curly brackets, for example:

mycat = {

"color": "red",

"fur": "short",

"spots": "tabby"

}
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This dictionary defines my cat’s properties. On the left, “color”, “fur” and
“spots” represent the keys, i.e. the categories which define my dictionary and
to which we want to assign a value. On the right, after the colon, you have
the values assigned to each key: my cat has red color, short fur and is a tabby
because of the structure of his spots.

In this case all values are strings, but they can be any type of variables.

Operations you can do with dictionaries:

• you can print a dictionary with print(mycat);

• you can access the items of a dictionary by referring to their key names,
as

x = mycat["color"]

If you print the variable x, you see that its value has become ’red’.
Alternatively, you can do the same by using the function get()

x = mycat.get("color")

• you can change the values of a specific item by doing, e.g.:

mycat["color"] = ’black’

If you now print the dictionary mycat you see that mycat’s color has
become black;

• you can loop over the keys of a dictionary

for x in mycat:

print(x)

returns color, fur and spots;

• or you can loop over the values of a dictionary

for x in mycat.values():

print(x)

returns red, short and tabby;
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• or you can loop over both keys and values:

for x,y in mycat.items():

print(x, y)

• you can check whether a key exists in a dictionary:

if "color’’ in mycat:

print(mycat["color"])

• you can add a new key to an existing dictionary:

mycat["age"] = 7

print(mycat)

• and you can remove a key from a dictionary:

mycat.pop("age")

print(mycat)

• you can copy a dictionary into another dictionary:

yourcat = mycat.copy()

In principle, you can do also yourcat = mycat, but, as we already said
for numpy arrays and lists, this does not make a copy; rather, it creates
a new dictionary yourcat that points to the same memory address as
mycat: the two of them change together since then;

• You can create a dictionary that contains several dictionaries (nested
dictionaries):
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mycats = {

"ettore" : {

"color" : "white",

"fur" : "short",

"age" : 10

},

"ezzelino" : {

"color" : "red",

"fur" : "short",

"age" : 7

}

}

It is also possible to create the two dictionaries separately and then
assign them to the more general dictionary:

ettore = {

"color" : "white",

"fur" : "short",

"age" : 10

}

ezzelino = {

"color" : "red",

"fur" : "short",

"age" : 7

}

mycats = {

"ettore" : ettore,

"ezzelino" : ezzelino

}

• you can construct a dictionary using the dict() function:

mycat = dict(color="red", fur="short", spot="tabby", age=7)

Dictionaries are important to know if you plan to use pandas (see one of the
later chapters in these lectures).

2.16 Functions

Functions in python (i.e. sets of instructions) are called built-in functions
when they are always available with the default version of python, without
the need for importing a package. For example, the print function is a built-in
function.
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Other functions live in packages. They need a package to be imported, in
order to be ready for usage. For example, the log function is part of the math
package and of the numpy package.

Finally, user-provided functions are explicitly defined by the programmer
(possibly because they are custom functions available in no package), with the
following syntax

#see examples/python/simple_def.py

#I define a function that calculates the squares

def simple(x):

simplef=x**2

return simplef

#The main

number=0.0

while(number<10.):

power2=simple(number)

print(power2) #square of first 10 integers

number+=1

In the above example, I define the function simple(x), which takes one
argument (x) and returns a float (simplef). This function calculates the square
of the input argument. I then call simple in the main of my script.

Let us now consider the following much more complex example. We want
to define and use a function that calculates the lookback time, i.e. (in a ΛCDM
cosmology where the curvature parameter ΩK = 0):

tlb =
1

H0

z∫
0

dz′

(1 + z′)
[
(1 + z′)3 ΩM + ΩΛ

]1/2 , (1)

where H0 is the Hubble constant, ΩM and ΩΛ are the density parameter of
(baryonic+dark) matter and the effective density parameter of dark energy,
respectively, according to the ΛCDM model. The lookback time represents
the time elapsed from now to redshift z (that is lookback time corresponding
to present time is 0, while lookback time corresponding to redshift z = 1 is
approximately 8 Gyr ago).

The example script to calculate lookback time is the following.
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#see examples/python/lookback.py

import scipy.integrate as integrate

#integrate is the module of scipy

#that performs numerical integration

def looktime(z): #definition of new function looktime.

# This function takes one argument (z)

H0=67.2 #Hubble constant in km/s/Mpc

convert=1e5/3.086e24*3.1536e7*1e9

#converts from km/s/Mpc to Gyr

OmegaM=0.2726 #omega matter, parameter from cosmology

OmegaL= 0.7274 #omega lambda, parameter from cosmology

integrand = lambda x: 1./((1.+x)*(OmegaM*(1.+x)**3.+ \

OmegaL)**0.5)

#integrand is the function I want to integrate

#between 0 and z

ltime=integrate.quad(integrand, 0.0, z)

#ltime is an array of 2 elements:

# ltime[0] = result of integral

# ltime[1] = error

look=ltime[0]

look/=(H0*convert)

return look #function looktime returns look, which is

#the lookback time at redshift z in comoving framework

#the main

z=10. #initial redshift

look=[] #look-back time list

redsh=[] #redshift list

while(z>0.0):

look.append(looktime(z)) #call looktime and append

#result to the list look

redsh.append(z) #store z into list redsh

z-=0.1

for i in range(len(look)): #loop over the elements of look

print(redsh[i], look[i]) #prints redshift and

#corresponding look back time list
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Function looktime takes redshift z as input and returns the lookback
time (variable look) corresponding to z. Note that we jumped a bit ahead of
schedule with this example, because

1. we used the package scipy that contains several scientific tools in python,
for example tools for numerical integration in the module scipy.integrate;

2. from scipy.integrate we called the function quad that integrates func-
tions numerically. In particular, quad uses a technique from the Fortran
library QUADPACK, which consists in a Clenshaw-Curtis method which
uses Chebyshev moments (see e.g. https://en.wikipedia.org/wiki/
Clenshaw-Curtis_quadrature);

3. the function we want to integrate (integrand) with quad can be written
as

lambda x: 1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

in particular “lambda x:” must precede the function and indicates that
we are defining a small function without using the def formalism. Hence
the above notation with lambda x is almost equivalent to defining a new
function as

def integrand(x):

OmegaM=0.2726 #omega matter

OmegaL= 0.7274 #omega lambda

f=1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

return f

Note that “lambda” in the notation “lambda x:” tells us that x is the
variable.

We can use lambda also to define functions with multiple variables (e.g.
x and y), by separating them with a comma. For example “lambda x,y :”
indicates that the function defined after the colon has two variables x
and y.

The program would have worked even defining the function integrand
with def (see the alternative example examples/python/lookback2.py).
In this case, the syntax should have been:
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def integrand(x):

OmegaM=0.2726 #omega matter

OmegaL= 0.7274 #omega lambda

f=1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

return f

def looktime(z): #definition of new function looktime.

# This function takes one argument (z)

H0=67.2 #Hubble constant in km/s/Mpc

convert=1e5/3.086e24*3.1536e7*1e9

#converts from km/s/Mpc to Gyr

ltime=integrate.quad(integrand, 0.0, z)

#ltime is an array of 2 elements. ltime[0]= result of integral

#ltime[1] error

look=ltime[0]

look/=(H0*convert)

return look #function looktime returns look, which

#is the look back time at redshift z in comoving framework

Note that when integrate.quad calls integrand(x) we do not need to
specify the variable. Even more: if we specify it we get an error.

See

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html

for more details on integrate.quad.

EXERCISE:

Write a python script to calculate the comoving distance and the lu-
minosity distance given the redshift. Use scipy.integrate.quad for the
integration (as in the previous example).
Suggestion: the expression of the comoving distance (if ΩK = 0) is the
following:

DC(z) =
c

H0

z∫
0

dz′[
(1 + z′)3 ΩM + ΩΛ

]1/2 , (2)

The expression of the luminosity distance (if ΩK = 0) is the following:

DL(z) =
c

H0
(1 + z)

z∫
0

dz′[
(1 + z′)3 ΩM + ΩΛ

]1/2 = (1 + z) DC(z) (3)
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The final remark about user-provided functions is that if you want to
use a function you have created in a script also in another script you can.
You just import the name of the script where the function is. For example,
if you want to import the function which calculates the lookback time, you
can do as in lookback3.py (which contains only the defined functions, but not
the main) and in lookback3_main.py (which imports the functions defined in
lookback3.py). In particular, note the import statement in lookback3_main.py:

from lookback3 import *

With this statement you import all the functions (*) from lookback3.py.
This is a very nice practice to do if your script has a lot of user-provided

functions that make it difficult to read (you have to scroll thousands of lines
before you reach the main): just move all of your functions to another file and
then import them.

The main caveat is that if you are very unlucky, you might call one of your
functions in the same way as an already existing package, function or library in
python. In this case, the user provided function overrides the existing package,
function or library. For example, if I had called my lookback3.py file numpy.py
(this is quite an extreme example..), the functions inside my numpy.py would
have completely overridden the numpy package. Don’t worry: the problem
disappears when you cancel your own file numpy.py.

2.17 Reading from and writing to files

So far, we have seen how to read inputs from command line, but usually inputs
must be read from files. Similarly, you might want to write your outputs in
a file rather than printing them in the terminal. Here, we consider only the
simple case of plain ASCII files.

The simplest way to read the content of an ascii file in python is with
the numpy function loadtxt (or the similar function genfromtxt). Example of
usage: I have to read a file (file name: mass_evol.txt, see the examples/python)
with 20 columns but I am interested only in four of them (the 0th, the 1st, the
3rd and the 5th) and I want to copy them in arrays of type float. Moreover, I
do not want to read lines starting with #, because I know these are comments
to be skipped. Then I use

#see examples/python/read_file.py

import numpy as np

fname="mass_evol.txt" #input the filename as a string

time,m,mHe,mCO = np.genfromtxt(fname,dtype="float", \

comments="#", usecols=(0,1,3,5), unpack=True)

print(m)
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fname The first argument of genfromtxt is the name of the input file (defined
as a string). If the filename extension is gz or bz2, the file is first decom-
pressed.

dtype="float" Choose type of variables. Optional.

comments="#" The character used to indicate the start of a comment. All the characters
occurring on a line after a comment are discarded. Optional.

usecols= (0, 1, 3, 5) Which columns to read (the other ones are ignored). Optional.

unpack=True Splits the output per columns, each column is assigned to the numpy
arrays time, m, mHe ,mCO. Optional but very useful.

For more details on genfromtxt, see

https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.

html.
Unfortunately, loadtxt and genfromtxt are terribly slow and memory con-

suming. If you have very large files, it is not smart to use them. As an al-
ternative, you can write your own custom function to read an ascii file. For
example, the following user-provided function does exactly the same as the
former example of genfromtxt.

#see examples/python/read_file2.py

def readfast(fname, N):

f=open(fname,"r")

(time,m,mHe,mCO) = (

np.zeros(N,dtype="float"),

np.zeros(N,dtype="float"),

np.zeros(N,dtype="float"),

np.zeros(N,dtype="float"))

i=0

for linetext in f:

if(linetext[0]==str("#")):

continue

word_list = linetext.split()

#split splits a line in elements

if(word_list[0]!=str("#")):

time[i]=np.float(word_list[0])

m[i]=np.float(word_list[1])

mHe[i]=np.float(word_list[3])

mCO[i]=np.float(word_list[5])

i=i+1

#end [ for linetext in f ]

f.close()

return (time, m, mHe,mCO)

In the main text, I call the above function as follows:
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fname="mass_evol.txt" #input the filename as a string

N0= 103 #number of lines of the file

(evoltime,mass,massHe,massCO) = readfast(fname,N0)

Of course, you can write your own version of this user provided function
basically as you want.

The simplest way to write output in an ASCII file is to use the function
write. For example, here I want to write a file that has four columns, each
of them containing the arrays evoltime, mass, massHe, massCO of the above
example. I also add a first line of comment.

#see examples/python/read_file2.py

fname="output.txt" #output filename as a string

f=open(fname,"w") #I create file with filename

#the new file will be for writing (w)

f.write("# Time(Myr), Mass(Msun), He(Msun), CO(Msun) \n")

for i in range(len(evoltime)):

f.write(str(evoltime[i])+" "+str(mass[i])+" "+ \

str(massHe[i])+" "+str(massCO[i])+"\n")

Note that write can take as arguments only strings.

2.18 Subprocess

Python allows you to call linux commands from python scripts, if needed.
This happens through the subprocess module. By importing subprocess, you
can call linux commands as if you were using a command line.

For example

import subprocess

subprocess.call([’df’, ’-h’])

is equivalent to the linux command df -h. I can do the same with basically
every linux command.

2.19 Regular expressions

Often, the files you have to read are very simple: they are just tables with
numbers ordered in rows and columns. Sometimes, you have to read files
where some of the columns/rows are strings and some other columns/rows
contain numbers. Finally, in a small but non-negligible number of cases, the
files you are supposed to read look like a messy distribution of strings and
numbers in a chaotic way (no regular rows and columns). Regular expressions
is the best way to handle the last case and is a good option (in terms of memory
and reading speed) for the other two cases.
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A regular expression (or RE) specifies a string or a set of strings that you
want to look for in a file. In python, the module re allows you to use regular
expressions. Let’s start from an example to make it clearer.

#see examples/python/regex.py

import os #This module provides a portable way of

# using operating system dependent functionality

# it is needed to call re

import re # regular expression module

m = re.compile(’^The mass is 3 Msun’)

# the string I want to look for: the mass is 3 Msun

# ^ means that the string should be at the start of a row

fname=str(’file_name.txt’)

f=open(fname)

for s in f: #s is a generic string in f

tosearch = m.search(s) # I search for string m in s

if(tosearch != None):

print(tosearch)

If you run the above simple code with python3 you get something strange
like

<re.Match object; span=(0, 18), match=’The mass is 3 Msun’>

This is because tosearch is a new object. So far, this thing looks a bit
awkward and useless, but now we get back to our example and we add a new
feature:

#see examples/python/regex2.py

import os #This module provides a portable way

# of using operating system dependent functionality

# it is needed to call re

import re # regular expression module

m = re.compile(’^The mass is (\d+) Msun’)

# the string I want to look for:

# The mass is some integer number Msun

fname=str(’file_name.txt’)

f=open(fname)

for s in f: #s is a generic string in f

tosearch = m.search(s) # I search for string m in s

if(tosearch != None):

mass = tosearch.group(1)

print(mass)

Here I still find the same string as with the previous script (’The mass is
3 Msun’), but I could have also found other strings (’The mass is 5 Msun’ or
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’The mass is 7 Msun’), i.e. the command

m = re.compile(’^The mass is (\d+) Msun’)

in this new script allows me to search for strings with different numbers of
the mass in Msun. The reason is that I have substituted ’3’ with ’\d+’.

Here \ indicates that what follows (in this case ’d+’) is not a string but a
command of the regular expression. As a command of re, ’d’ indicates any
possible integer digit. The ’+’ symbol after ’d’ indicates that I am searching
only strings where there is AT LEAST ONE integer digit in that position of the
string (but there might be many more). If instead of ’\d+’ I had indicated ’\d’,
the script would have looked only for sentences where the integer is a single
digit. If I had indicated ’\d*’, the script would have looked for sentences where
there are integers (one or more digits) in that position but also for sentences
where there are not integers in that position. Thus, what comes before the
symbol ’*’ might or might not be there.

The regular expressions have many other similar symbols and we will not
have time to discuss all of them. Just look here https://docs.python.org/

2/library/re.html for more details.

Let’s just mention one important thing. Everything in regular expressions
breaks down to two symbols ’\s’ and ’\S’. The former means ’space’ the
latter means ’non-space’, that is every possible character (string, integer, float,
mixture of them) which is not a space. Whatever possible string or number in
the world can be written as a given sequence of spaces and non-spaces.

The next important feature of the example is that ’\d+’ is within round
brackets ’()’. When some part of the regular expression is put within round
brackets, it means that it becomes a variable. To read this variable, we should
then use the function ’group(i)’ where i = 0 means the entire string found by
the regular expression, while i = 1, 2, 3, ... refer to the first, second, third, etc
variable put within brackets. This explains why

mass = tosearch.group(1)

print(mass)

in the above example produces as print ’3’.

One last thing to be added about regular expressions is their possible usage
as fast tool to read large ascii files. Suppose that we have a simple file with
5 columns separated by spaces. The problem is that the file is very long and
genfromtxt/loadtxt would require too much memory to read it. One option is
to open the file and read it using the regular expressions as (for example):
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import os

import re

m = re.compile(’^(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)’)

fname=str(’five_columns.txt’)

f=open(fname)

col1=[]

col2=[]

col3=[]

col4=[]

col5=[]

for s in f:

tosearch = m.search(s)

if(tosearch != None):

col1.append(tosearch.group(1))

col2.append(tosearch.group(2))

col3.append(tosearch.group(3))

col4.append(tosearch.group(4))

col5.append(tosearch.group(5))
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3 visualization

The examples corresponding to this section are in examples/python/.

The material needed for the exercises is in exercises/python/.

Python is a powerful tool for visualization. The main problem is that there
are even too many tools in python for visualization and one can get lost among
them. The first and most important suggestion is to start from the examples
that can be browsed over the internet: python is very popular nowadays and
basically all possible tools for visualization are already discussed in forums,
blogs, userguides and whatever. Plus, you cannot remember the syntax of
every python command by hart..Even if you have an elephant memory, there
are better things to do than to memorize python commands.

Here I will provide just few essential examples, and I will leave to the
students the task of finding more over the internet. My preferred (and possibly
the most used) plotting package from python is pyplot, which is a sub-package
of matplotlib. The following examples are drawn from https://matplotlib.

org/users/pyplot_tutorial.html, where you can find many more details.

3.1 Scatter plot

The following script is an example of a very simple scatter plot

#see examples/python/simple_plot.py

import matplotlib.pyplot as plt

plt.plot([1,2,3,4], [1,4,9,16], color=’r’,marker=’o’)

plt.xlim(0, 6)

plt.ylim(0, 20)

plt.xlabel(’x’, fontsize=20)

plt.ylabel(’y’, fontsize=20)

plt.show()

This produces as an example Figure 6. In the above example, plot takes
four arguments: the list of values on the x axis, the list of values on the y axis
and the characteristics of the data points: the color color=’r’, where ’r’ stands
for red and the marker type marker=’o’, where ’o’ stands for circles.

I can write the definition of color and marker in a more compact way as
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Figure 6: The simplest example of a scatter plot.

#see examples/python/simple_plot.py

import matplotlib.pyplot as plt

plt.plot([1,2,3,4], [1,4,9,16], ’ro’)

plt.xlim(0, 6)

plt.ylim(0, 20)

plt.xlabel(’x’, fontsize=20)

plt.ylabel(’y’, fontsize=20)

plt.show()

Here, I have just 3 arguments of plot: the x values, the y values and the
argument ’ro’ where r stands for red and o indicates the markers. This plot is
absolutely identical to the previous example.

In the following table, you can find other possible examples of markers
that can be obtained with matplotlib.pyplot.plot:

47



3. visualization

character description
- solid line style

- - dashed line style
-. dash-dot line style
: dotted line style
. point marker
, pixel marker
o circle marker
v triangle-down marker
∧ triangle-up marker
< triangle-left marker
> triangle-right marker
1 tri-down marker
2 tri-up marker
3 tri-left marker
4 tri-right marker
s square marker
p pentagon marker
* star marker
h hexagon1 marker
H hexagon2 marker
+ plus marker
x x marker
D diamond marker
d thin-diamond marker
| vline marker
_ hline marker

An alternative function to produce scatter plots is ’scatter’ and works as in
the example:

#see examples/python/simple_plot.py

import matplotlib.pyplot as plt

plt.scatter([1,2,3,4], [1,4,9,16], color=’r’,marker=’o’)

plt.xlim(0, 6)

plt.ylim(0, 20)

plt.xlabel(’x’, fontsize=20)

plt.ylabel(’y’, fontsize=20)

plt.show()

The first two arguments of scatter are the same as before. The main dif-
ference is that the color should be indicated after the command ’color=’ and
the marker after the command ’marker=’. The symbols used to indicate colors
and markers are the same as already indicated in table 3.1.
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Figure 7: The simplest example of a line plot.

3.2 Line plot

The function ’plot’ can be used even for line plots, by substituting the symbol
of the marker with a symbol for a line type:

#see examples/python/simple_plot.py

import matplotlib.pyplot as plt

plt.plot([1,2,3,4], [1,4,9,16], ’r-’)

plt.xlim(0, 6)

plt.ylim(0, 20)

plt.xlabel(’x’, fontsize=20)

plt.ylabel(’y’, fontsize=20)

plt.show()

In the above example (see Fig. 7) the circles have been substituted by a
solid line (indicated by the symbol ’-’). The other standard line types are the
following.

character description
- solid line style

- - dashed line style
-. dash-dot line style
: dotted line style
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3.3 Logarithmic axes

If you want to make logarithmic axes simply add

plt.yscale(’log’)

for the y axis, and

plt.xscale(’log’)

for the x axis.

3.4 Annotating text

If you want to annotate some text you can use the function ’text’. For example

plt.text(1.8, 2.0, ’$\mathrm{Log-log\,{}plot}$’,fontsize=17)

The aforementioned command writes the sentence ’Log-log plot’ starting
from the point at (1.8,2.0) in the Cartesian plane of the aforementioned
example. Hence, the first two entries of text are the x and y location of the
annotated text, then you write the text you want to annotate as a string
(between the inverted commas ”), finally you might indicate the size of the
annotated text.

In this specific example the text is between dollars ($$). If you put some
text between dollars, you can use almost the same commands as mathemat-
ical latex. This is particularly useful for symbols. For example the symbol
of the solar mass is $\odot$ even in matplotlib. There are a few differences
with math latex, which you will find out case by case.

3.5 Legend

When multiple lines or data sets are present, it is always a good idea to add a
legend. This is an example of how to set up a legend:

50



3.6. note on fontsize

#see examples/python/simple_plot.py

import numpy as np

import matplotlib.pyplot as plt

x=np.zeros(1000,float)

y=np.zeros(1000,float)

y2=np.zeros(1000,float)

for i in range(1,len(x)):

x[i]=x[i-1]+1.

y[i]=np.sin(x[i])

y2[i]=np.cos(x[i])

a= plt.scatter(x,y, color=’b’,marker=’^’)

b= plt.scatter(x,y2,color=’r’,marker=’o’)

plt.legend([a,b], [’sin(x)’,’cos(x)’],fontsize=’20’, \

loc=’upper right’)

plt.show()

The first argument of legend is the set of graphs for which I need a legend
entry, i.e. [a, b]. If you do not provide this argument, python looks for all the
things that you are plotting and set up an entry in the legend for each of
them. The second argument is the set of labels associated to legend entries,
i.e. [′sin(x)′ ,′ cos(x)′]. Then, I can add other optional arguments such as font
size (very important!) and location (with loc). If you do not enter any location
or you do not set the fontsize, python will choose a location and a fontsize
based on its judgment (which is not always smart). For other possible argu-
ments, see e.g. https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.
pyplot.legend.html.

The above script produces the plot shown in Figure 8.

3.6 Note on fontsize

By default, matplotlib chooses a fontsize (of the axis labels, of the numbers on
the axis, of the legend, etc) that is too small for scientific literature: when your
plot is included into the draft a scientific journal article (e.g. the Astrophysical
Journal or the Monthly Notices of the Royal Academic Society), the labels
are too small to be easily read. Then, it is important to increase the fontsize
with respect to the default. You can always set a fontsize in each function of
your plot – for example, a fontsize in the xlabel(), ylabel(), text() and legend()
function. However, sometimes it is quite boring to add fontsize in each single
function.

If you want to set up a basic fontsize in your plot, which is used by default
in each function, you can use the command
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Figure 8: A plot with a legend.

plt.rcParams.update({’font.size’: 20})

In general, rcParams.update() allows you to update several default parame-
ters of matplotlib, such as the font type, the default text and background color.
As you can recognize from the example, rcParams is nothing but a dictionary
that contains the information on these parameters. The function .update()
allows to change the value corresponding to the chosen key. In the example,
you want that the key font.size contains the new value 20.

If you want to use a different fontsize for a specific function, for example
if you want to use a smaller font in the legend with respect to the axis labels,
you just write down a different fontsize among the arguments of a function –
e.g., legend(fontsize=’15’). Writing down the fontsize among the arguments
of a single function overrides the rcParams for that specific function.

3.7 Colors in python

Colors in python can be used and defined in many (too many..) ways. The
default color cycle is very simple: ’b’ (blue), ’g’ (green), ’r’ (red), ’c’ (cyan), ’m’
(magenta), ’y’ (yellow), ’k’ (black).

Of course, you can define more colors. I will give just one example of how
this can be done:
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Figure 9: A scatter and line plot with definition of new colors and some additional
features (e.g. s=200 defines the size of the marker, zorder defines the order of
overlaps between lines).

#see examples/python/simple_plot.py

import matplotlib.pyplot as plt

plt.scatter([1,2,3,4], [1,4,9,16], color=’#FF7700’, \

marker=’o’, s=200, zorder=2)

plt.plot([1,2,3,4], [1,4,9,16], color=’#009999’,\

linestyle=’--’, linewidth=’5’, zorder=1)

plt.xlim(0, 6)

plt.ylim(0, 20)

plt.xlabel(’x’, fontsize=20)

plt.ylabel(’y’, fontsize=20)

plt.show()

The above script produces Fig. 9. This Figure, is based on the same data
set as first two examples, but now the color of the circles is described by
color=’#FF7700’ and the color of the line is described by color=’#009999’.
The two strings ’#FF7700’ and ’#009999’ define a new orange and a new sea
blue. For a string to be interpreted as a color properly, it should be built in the
following way:

• First the symbol # which means that we are building a color.
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• The first two digits after the # refer to the amount of red in the RGB
mixture (see the additive color theory): 00 means dark red (almost black),
99 means the most luminous red, FF means even more luminous than
99.

• The second two digits after the # refer to the amount of green in the
RGB mixture (see the additive color theory): 00 means dark green (al-
most black), 99 means the most luminous green, FF means even more
luminous than 99.

• The last two digits refer to the amount of blue in the RGB mixture (see
the additive color theory): 00 means dark blue (almost black), 99 means
the most luminous blue, FF means even more luminous than 99.

Hence, the mixture between red, green and blue channels should be done
following the additive color theory. For example, ’#000000’ means black
(subtraction of all colors with minimum luminosity), while ’#FFFFFF’ means
white (sum of all the colors with the maximum luminosity). Is there a way to
find out what colors correspond to a given combination of these six digits?
Basically not, just try. If you find a nice color, keep memory of its definition.

If you use matplotlib, you have a nice set of pre-defined colors with names
(as represented in Figure 10). Be careful, because the list might change from
one version to the other of matplotlib (see the named_colors.py script).

One important color tool you will surely need is color maps, i.e. palettes
of several colors that can be used, e.g., to produce two-dimensional histograms
and contour plots. Matplotlib has a plethora of color maps and more maps
can be added with customized libraries. For a list of color maps in recent
versions of matplotlib see e.g. https://matplotlib.org/3.1.0/tutorials/
colors/colormaps.html. One thing we should always check when choosing
the color map for a plot is that the lightness of sequential colors in the color-
map increases (or decreases) in a monotonic way and possibly in a linear way.
This makes the plot readable also by color-blind people or other people with
a different perception of colors. Figure 11 is a summary of the color maps
that are perceptually uniform and of the color maps that are sequential (i.e.
monotonic in their lightness). In contrast, Figure 12 is an example of maps
that are strongly non sequential (among them, the famous jet map that is still
used when Doppler shifts or metallicity are considered).

EXERCISE:

Write a script to plot comoving distance, luminosity distance and look-
back time (derived from the previous exercise and example) as a func-
tion of redshift. The results should look like Figure 13.
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Figure 10: Colors with names in one of the many versions of matplotlib: check
yours.
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Figure 11: Matplotlib color maps that are fine for color-blind people.
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3.8. histogram

Figure 12: Examples of matplotlib color maps that do not have a monotonic trend.

3.8 Histogram

The main (but not the only) command to create an histogram is hist. See (and
try to run) the example below:

#see examples/python/simple_plot.py

import numpy as np

import matplotlib.pyplot as plt

x=np.zeros(1000,float)

y=np.zeros(1000,float)

for i in range(1,len(x)):

x[i]=x[i-1]+1.

y[i]=np.sin(x[i])

plt.hist(y, bins=60, density=’True’,histtype=’step’)

plt.show()

The above script produces the plot shown in Figure 14.
In the example, we first create a sample of data points (stored in the array

y) and then we call hist to produce an histogram. The only argument needed
by histogram is the array (or list) of data for which we want to produce the
histogram. Then, hist takes a number of optional arguments, some of which
are explained below (for all the arguments see e.g. https://matplotlib.org/
3.1.1/api/_as_gen/matplotlib.pyplot.hist.html).

bins: can be an integer or a sequence (array, list), optional. If an integer is
given, bins + 1 bin edges are calculated and returned, consistent with
numpy.histogram. If bins is a sequence, gives bin edges, including left
edge of first bin and right edge of last bin. In this case, bins is returned
unmodified.
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Figure 13: Example of result from Exercise 1.4.
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3.8. histogram

Figure 14: The simplest example of a histogram.

range: tuple or None, optional. The lower and upper range of the bins. Lower
and upper outliers are ignored. If not provided, range is (x.min(), x.max()).
Range has no effect if bins is a sequence.

density: bool, optional. If True, the first element of the return tuple will be the
counts normalized to form a probability density, i.e., the area (or integral)
under the histogram will sum to 1. This is achieved by dividing the count
by the number of observations times the bin width and not dividing by
the total number of observations. In oldish matplotlib versions, instead
of density you have normed.

histtype: {’bar’, ’barstacked’, ’step’, ’stepfilled’}, optional. The type of histogram
to draw. (i) ’bar’ is a traditional bar-type histogram. If multiple data
are given the bars are arranged side by side. (ii) ’barstacked’ is a bar-
type histogram where multiple data are stacked on top of each other.
(iii) ’step’ generates a lineplot that is by default unfilled. (iv) ’stepfilled’
generates a lineplot that is by default filled. Usually, astrophysicists
choose step or stepfilled. Default is ’bar’.

align: ’left’, ’mid’, ’right’, optional. Controls how the histogram is plotted. (i)
’left’: bars are centered on the left bin edges. (ii) ’mid’: bars are centered
between the bin edges. (iii) ’right’: bars are centered on the right bin
edges. Default is ’mid’, which is also what astrophysicists should use.
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log: bool, optional. If True, the histogram axis will be set to a log scale. If log
is True and x is a 1D array, empty bins will be filtered out and only the
non-empty (n, bins, patches) will be returned. Default is False

color: color, optional. Default (None) uses the standard line color sequence.

IMPORTANT NOTE: The histogram can be created plotting data in lin-lin
(i.e. both axes linear), lin-log (i.e. x-axis linear, y-axis logarithmic), or log-log
scale (both axes logarithmic). Note that the command log sets only the y-axis to
logarithm, hence it produces a lin-log histogram. Log-log histograms are very useful,
especially if you want to see “by eye” whether the distribution you are plotting
scales as a power law.

A common mistake when producing a log-log histogram is to forget that the
bins on the x-axis must be also set in logarithmic spacing. This means that it is
not sufficient to impose plot.xscale(’log’). This will produce the horrible example
on the top panel of Figure 15 with bin size varying on the x-axis. For a correct
log-log plot the bins should be defined not as ∆x but as ∆ log10(x). A simple way
to produce logarithmic bins is through the function np.logspace(a,b,num=25),
which divided the interval between b and a (given as logarithmic quantities) into a
number num (=25, in the example) of logarithmically spaced bins. The default is
10-based logarithm, which is perfect for scientific plots. The output of np.logspace
is an array of logaritmically spaced bins. The example below produces the bottom
panel of Figure 15.
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Figure 15: Top panel: a wrong log-log histogram. Bottom panel: a correct log-log
histogram, done with log_hist.py.
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#examples/python/log_hist.py generates proper log-log histograms

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams.update({’font.size’: 20})

x=np.zeros(1000,float)

y=np.zeros(1000,float)

x[0]=1.

y[0]=1.

for i in range(1,len(x)):

x[i]=x[i-1]+1.

y[i]=x[i]**2.

a=np.log10(min(y))

b=np.log10(max(y))

mybins=np.logspace(a,b,num=17)

plt.hist(y, bins=mybins, density=’True’,histtype=’step’,log=True)

plt.xscale("log")

plt.xlabel("My bins")

plt.ylabel("PDF")

plt.tight_layout()

plt.show()

3.9 Two-dimensional histograms

There is a very useful equivalent function to hist for two-dimensional his-
tograms, which is hist2d. The following example uses hist2d to plot the
eccentricity versus orbital period of Galactic binary neutron stars (i.e. binary
neutron stars that populate the Milky Way) into one of our models.
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#examples/python/BNS_plot.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.colors as colors

plt.rcParams.update({’font.size’: 15})

m1,m2,a,e=np.genfromtxt("binary_neutron_stars.txt", usecols=(2,3,5,6),unpack=True)

a*=1.49e13 #semimajor axis from AU to cm

m1*=1.989e33 #primary mass from Msun to g

m2*=1.989e33 #secondary mass from Msun to g

G=6.667e-8 #gravity constant in cgs

P=np.zeros(len(a)) #define numpy array for periods

P=np.log10(2.*np.pi*(a**3/(G*(m1+m2)))**0.5/3.1536e7) #calculate log period years

print(P)

plt.hist2d(P,e,bins=25,norm=colors.LogNorm())

cbar = plt.colorbar()

cbar.set_label(’Number of BNSs per cell’)

plt.xlim(-4.5,6.5)

plt.ylim(0.0,1.0)

plt.xlabel("$\log_{10}\mathrm{P/yr}$")

plt.ylabel("Eccentricity")

plt.tight_layout()

plt.show()

The second important function in this example is plt.colorbar, which is
needed to generate a color bar for the contour plot. The result of this example
is Figure 16.

3.10 Contour plots

In your academic life, you will surely need to draw a contour plot sooner or
later. For the first example, we start again from the binary neutron stars in the
Milky Way:
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Figure 16: Modelled distribution of the eccentricities and orbital periods of Galactic
binary neutron stars. Credits: data obtained by C. Sgalletta with the mobse code
[Mapelli et al., 2017].
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#examples/python/simple_contour.py

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams.update({’font.size’: 15})

m1,m2,a,e=np.genfromtxt("binary_neutron_stars.txt", usecols=(2,3,5,6),unpack=True)

a*=1.49e13 #semimajor axis from AU to cm

m1*=1.989e33 #primary mass from Msun to g

m2*=1.989e33 #secondary mass from Msun to g

G=6.667e-8 #gravity constant in cgs

P=np.zeros(len(a)) #define numpy array for periods

P=np.log10(2.*np.pi*(a**3/(G*(m1+m2)))**0.5/3.1536e7) #calculate log period years

Z,xedges,yedges=np.histogram2d(P,e,bins=25,density=False)

x=np.zeros(len(xedges)-1)

y=np.zeros(len(xedges)-1)

for i in range(len(xedges)-1):

x[i]=(xedges[i]+xedges[i+1])/2.

y[i]=(yedges[i]+yedges[i+1])/2.

# to have the matrix in the form needed by contourf you have to transpose

Z = np.transpose(Z)

cs=plt.contourf(x,y, Z, levels=10)

cbar = plt.colorbar(cs,orientation=’vertical’)

cbar.solids.set_edgecolor("face")

cbar.set_label(’Number of BNSs per cell’)

plt.xlim(-4.5,6.5)

plt.ylim(0.0,1.0)

plt.xlabel("$\log_{10}\mathrm{P/yr}$")

plt.ylabel("Eccentricity")

plt.tight_layout()

plt.show()

The above example produces Fig. 17.
The crucial function here is plt.contourf (where the final letter ’f’ stands

for ’filled’, while plt.contour produces unfilled contour lines). A healthy usage
of contourf requires at least three arguments:

z: a two dimensional array-like object of size n × m. The values over which
the contour is drawn.

x, y: two array-like objects, optional. x and y represent the coordinates of the
values in z. x and y must both be 2 dimensional arrays with the same
shape as z (e.g. created via numpy.meshgrid), or they must both be 1
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Figure 17: Contour plot generated by the simple python script example starting
from the data of the Galactic binary neutron stars.
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Figure 18: Contour plot of the chirp mass (mchirp) versus time of merger (tmerg, in
look back time). Each cell contains the number of mergers with chirp mass between
mchirp − δm and mchirp + δm, where δm = 0.5 M� occurring between tmerg − δt
and tmerg + δt, where δt = 0.005 Gyr.

dimensional arrays such that len(x) == m is the number of columns
in z and len(y) == n is the number of rows in z. If not given, they are
assumed to be integer indices, i.e. x = range(m), y = range(n). In the
example, x and y are 2 dimensional arrays generated with np.meshgrid,
but I prefer to create my own one dimensional arrays.

cmap: string, optional. Sets the color map.

To produce the input for contourf we have used numpy.histogram2d,
which works in a similar way as matplotlib.pyplot.hist2d: it produces a 2
dimensional histogram. The difference with hist2d is that histogram2d does
not produce a plot: it returns the matrix with the values of the 2D histogram in
each bin (in our example Z) and the edges of the bins in the x and in the y axis.
Note that the matrix provided by numpy.histogram2d must be transposed
(with numpy.transpose) to become the one accepted by contourf.
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EXERCISE:

Produce a contour map like Fig. 18 with data files chirpmass_bin.dat
(array of chirp masses, M�), tmerg_bin.dat (array of merger times, Gyr),
chirpmass_tmerg_tot.dat (complete matrix to produce the contours).
The chirp mass is defined as m3/5

1 m3/5
2 (m1 + m2)−1/5, where m1 and

m2 are the masses of two compact objects in a binary system. This
quantity is important for gravitational waves, because the frequency
of gravitational waves changes as ḟGW ∝ m5/3

chirp during inspiral. Hence,
chirp mass can be directly derived from gravitational wave data, given
frequency and frequency derivative with time. The merger time is
the look-back time when a merger happened. These data come from
a theoretical study on the cosmic merger rate of binary black holes
[Mapelli et al., 2017].

EXERCISE:

Produce a new contour map of the mass of the secondary black hole (i.e.
the lighter one) versus the mass of the primary black hole (i.e. the more
massive one) considering a sample of theoretically generated binary
black holes. Unlike the previous exercise, here you have to generate the
matrix z (containing the number of binary black holes in each cell with
primary mass between m1 + δm and m1 − δm with δm = 0.5 M� and
with secondary mass between m2 + δm and m2 − δm with δm = 0.5 M�).
The file you should start from is time_BHillustris1_30.dat (look at the
comments in the first line to understand the meaning of the columns).
Columns 7 and 8 are the masses of the two black holes. Note that the
black hole in column 7 is not necessarily the most massive: you should
swap the two black holes if the one in column 7 is lighter than the one
in column 8. If you succeed, you should be able to recover a contour
plot as the one in Figure 19.
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Figure 19: Contour plot of the primary black hole mass (m1) versus the secondary
black hole mass (m2) for a theoretically generated sample of binary black hole
mergers.
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Suggestion: Note that time_BHillustris1_30.dat is quite a large file. If
you read the arrays of m1 and m2 and then you do a couple of nested
for loops to calculate the matrix z, your program will be very slow. To
speed it up significantly you can use the following consideration.
I define the edges of the mass bins as

bin[0]=0

bin[1]=bin[0]+dm

bin[2]=bin[1]+dm

...

bin[n]=bin[n-1]+dm,

where dm = (mmax −mmin)/N and N = number of bins.
Then I can assign the indexes as

index1 = int(mass1/dm)

index2 = int(mass2/dm)

Finally, I calculate the table as

nmerg[index2][index1] +=1

3.11 Subplots

The subplots function in the matplotlib.pyplot package is a very fast way to
produce plots with multiple panels.

See the example below.
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#examples/python/subplots.py

import numpy as np

import matplotlib.pyplot as plt

# Fixing random state for reproducibility

np.random.seed(19680801)

dt = 0.01

t = np.arange(0, 30, dt)

nse1 = np.random.randn(len(t)) # gaussian distributed white noise 1

nse2 = np.random.randn(len(t)) # gaussian distributed white noise 2

# Signal that evolves as a sinusoid with time

s0s = np.sin(2 * np.pi * 10. * t)

# Signal that evolves as a cosinusoid with time

s0c = np.cos(2 * np.pi * 10. * t)

# Adding white noise to the sinusoidal signal

s1 = s0s + nse1

s2 = s0s + nse2

# Adding white noise to the cosinusoidal signal

s3 = s0c + nse1

s4 = s0c + nse2

fig, axs = plt.subplots(3, 2)

#print(axs)

#print(fig)

axs[0][0].plot(t, s0s, color="black")

axs[0][0].set_xlim(0, 2)

axs[0][0].set_xlabel(’time’)

axs[0][0].set_ylabel(’Sinusoidal signal’)

axs[0][0].grid(True)

axs[1][0].plot(t, s1)

axs[1][0].plot(t, s2)

axs[1][0].legend(["s1","s2"],ncol=2)

axs[1][0].set_xlim(0, 2)

axs[1][0].set_xlabel(’time’)

axs[1][0].set_ylabel(’Signal+Noise’)

axs[1][0].grid(True)

axs[2][0].plot(t, s1-s2)

axs[2][0].set_xlim(0, 2)

axs[2][0].legend(["s1-s2"],ncol=2)

axs[2][0].set_xlabel(’time’)

axs[2][0].set_ylabel(’Residuals’)

axs[2][0].grid(True)

axs[0][1].plot(t, s0c, color="black")

axs[0][1].set_xlim(0, 2)

axs[0][1].set_xlabel(’time’)

axs[0][1].set_ylabel(’Co-sinusoidal signal’)

axs[0][1].grid(True)
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axs[1][1].plot(t, s3)

axs[1][1].plot(t, s4)

axs[1][1].legend(["s3","s4"],ncol=2)

axs[1][1].set_xlim(0, 2)

axs[1][1].set_xlabel(’time’)

axs[1][1].set_ylabel(’Signal+Noise’)

axs[1][1].grid(True)

axs[2][1].plot(t, s3-s4)

axs[2][1].set_xlim(0, 2)

axs[2][1].legend(["s3-s4"],ncol=2)

axs[2][1].set_xlabel(’time’)

axs[2][1].set_ylabel(’Residuals’)

axs[2][1].grid(True)

fig.tight_layout()

plt.show()

The above example produces the plot shown in Figure 20.
In the first part we simply generate four fake sets of data (e.g. signals

in arbitrary units versus time). Time is stored in the numpy array ’t’, while
the two “perfect” signals (without noise) are assigned to s0s (the sinusoidal
signal) and s0c (the cosinusoidal signal). To generate those we have used the
trigonometric functions np.sin and np.cos for s0s and s0c, respectively.

We then generate numpy arrays s1 and s2, which are the same as the
sinusoidal signal s0s plus two different sets of white noise nse1 and nse2.
These are generated as random numbers drawn from a Gaussian distribution
centered around zero (thanks to the function np.random.randn). We will talk
about randn when we introduce random numbers. For now it is sufficient to
know that this is used to add some random noise to the data.

s3 and s4 are the same, but starting from the co-sinusoidal signal s0c.
The subplots part starts with

fig, axs = plt.subplots(3, 2)

This function creates a figure (fig) and a set of subplots (axs).
The figure fig is a container for all the plot elements, see https://matplotlib.

org/3.1.1/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.

Figure

axs is an array of Axes objects (see https://matplotlib.org/3.1.1/api/
axes_api.html#matplotlib.axes.Axes). Each of the axes objects contains
the elements which go into one of the panels of the figure (data, labels, axis
information, text, etc).

The number of sub-plots (=panels of the figure) is decided by the two
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3.11. subplots

Figure 20: Example of subplots. In the upper left-hand panel we simulate a perfect
sinusoidal signal (without noise), while in the upper right-hand panel we simulate
a perfect co-sinusoidal signal (without noise). In the central left-hand panel we
show what we obtain if we sum the signal with some white noise. The blue and the
orange lines are obtained with the same sinusoidal signal but two different random
realizations of the noise. The central right-hand panel shows the same but for the co-
sinusoidal signal. Lower left-hand panel: residual between the two noisy sinusoidal
signals. Lower right-hand panels: the same but for the noisy co-sinusoidal signals.
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arguments of subplots. The first argument is the number of rows, the second
argument the number of columns. Hence (3,2) means that we build a figure
with three rows and two columns, i.e. three panels from top to bottom and
two panels from left to right. axs will then be a matrix of objects with three
rows and two columns: axs[0][0] refers to the top left-hand panel, axs[1][0]
to the middle left-hand panel, axs[2][0] to the bottom left-hand panel, while
axs[0][1] refers to the top right-hand panel, axs[1][1] to the middle right-hand
panel and axs[2][1] to the bottom right-hand panel.

The lines of code following the call to subplots build the 6 panels of the
sub-plot figure. For example

axs[0][0].plot(t, s0s, color="black")

axs[0][0].set_xlim(0, 2)

axs[0][0].set_xlabel(’time’)

axs[0][0].set_ylabel(’Sinusoidal signal’)

axs[0][0].grid(True)

contains all the commands needed to fill in the top left-hand panel (axs[0][0]):
we plot s0s as a function of time, we decide the limits on the x axis, we define
the labels of the x and y axis and finally we decide that we want to show a
grid in the figures (grid function).

EXERCISE:

Come back to the file time_BHillustris1_30.dat you read to perform
the previous EXERCISE and produce two subplots (just one row, two
columns). In the first column, you report the contour plot of the mass
of the secondary black hole (i.e. the lighter one) versus the mass of the
primary black hole (i.e. the more massive one). In the second column,
you should plot the chirp mass versus the total mass (m1 + m2). If
you want to add other subplots, you are free to experiment with the
quantities provided in the file time_BHillustris1_30.dat.

3.12 3D plots

One of the simplest ways to produce 3D plots in python is with the subplots
feature, by importing the Axes3D package from mpl_toolkits.mplot3d. See
the example below, which produces Figure 21.
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Figure 21: Two examples of 3D plots done with matplotlib.pyplot. Produced with
the example script plots3D.py.

#see examples/python/plots3d.py

import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

# This imports the 3D projection (projection=’3d’)

from mpl_toolkits.mplot3d import Axes3D

# set up a figure twice as wide as it is tall

fig = plt.figure(figsize=plt.figaspect(0.5))

#===============

# First subplot

#===============

# set up the axes for the first plot

ax = fig.add_subplot(1, 2, 1, projection=’3d’)

# plot a 3D surface

X = np.arange(-5, 5, 0.25)

Y = np.arange(-5, 5, 0.25)

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X**2 + Y**2)

Z = np.sin(R)

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, \

cmap=cm.coolwarm, linewidth=0, antialiased=False)

ax.set_zlim(-1.01, 1.01)

fig.colorbar(surf, shrink=0.5, aspect=10)

#===============

# Second subplot

#===============

# set up the axes for the second plot

ax = fig.add_subplot(1, 2, 2, projection=’3d’)

# plot a 3D wireframe

ax.plot_wireframe(X, Y, Z, rstride=1, cstride=1, linewidth=1)

ax.set_zlim(-1.01, 1.01)

plt.show()
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From this script we learn not only how to produce 3D plots, but also
an alternative way of producing subplots (note that the subplots package
presented in the previous section cannot be used with 3d projections). In
this case, we use the figure module of matplotlib.pyplot and the add_subplot
function to add subplots to the figure.

add_subplot here takes four arguments. The first one is the number of
rows, the second one the number of columns of the entire Figure, the third one
the number of the subplot (here we have 1 row × 2 columns, so two subplots
in total). Finally, the fourth argument is projection=’3d’. This comes from the
Axes3D package and allows to do a 3D projection (with 3 axes).

The plot_surface function plots a 3D figure with color filling, while
the plot_wireframe function plots a 3D wire frame (like a net). Note the
antialiased=False in function plot_surface to remove transparency effects.
rstride and cstride define the spacing between lines and/or colors. Find out
the other features by yourselves, playing with the example script.

EXERCISE:

Come back to the file time_BHillustris1_30.dat and produce a 3D scat-
ter plot.
Unlike the surface 3D plot presented in the main lecture, a 3D
scatter plot needs the function scatter (instead of plot_surface or
plot_wireframe). The function scatter reads data from three mono-
dimensional arrays (or lists) that contain the three different quantities
of the same object we want to plot on three different axes.
In this exercise you will consider column 4 of time_BHillustris1_30.dat
(metallicity of the progenitor stars of the simulated black holes, in
absolute values Z), column 7 and 8 (mass of the first and mass of the
second black hole in M�) and column 9 (delay time in Gyr, i.e. time
elapsed from the formation of the progenitor stars to the merger of the
two black holes). IMPORTANT: please read only the first 10’000 lines
of the file time_BHillustris1_30.dat, otherwise your plot becomes
too crowded and heavy.
You will produce a 3D scatter plot similar to the one in Figure 22,
where the x-axis shows the total mass of the binary (m1 +m2), the y-axis
shows the metallicity of the progenitor star (Z) and the z-axis shows the
delay time. Finally, the Figure also shows the chirp mass of the system
(m1 m2)3/5 (m1 + m2)−1/5 as colour gradient (see the colour map). You
should be able to find out this feature of the scatter function by looking
at the matplotlib manuals on the internet. Otherwise, just ask me.
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3.12. 3d plots

Figure 22: Result of the above EXERCISE: 3D scatter plot using the data of
time_BHillustris1_30.dat. x-axis: total mass of the two black holes; y-axis: metal-
licity of their progenitor stars; z-axis: delay time; color map: chirp mass of the two
black holes.
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4 accuracy and speed

This chapter is based on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.
The examples corresponding to this section are in examples/rounding.

4.1 Scientific notation

Scientific notation consists in using an “e” to denote the exponent of a number,
expressed in powers of 10. For example 1e19 means 1019, 1.602e20 means
1.602 × 1020, 2e-10 means 2 × 10−10.

Note that a variable expressed in scientific notation is always a float, even
if it is intrinsically an integer (like 1e19).

Scientific notation is highly recommended, especially if you deal with very
large or very small numbers.

A common badness is to use the power operator to simply express a large
number. For example, both

x=2*10**20

and

x=2e20

assign to x the value of 2 × 1020, but there is a big intrinsic difference
between the two notations. Using the power operator, you ask python to com-
pute the value and then you assign it to x. Instead, using the exponential
notation, you simply assign a value to x, without computing anything. Com-
puting a value is always more computationally expensive than assigning it;
hence, especially inside a loop,

x=2*10**20

should be avoided.

4.2 Maximum size of a variable

Python variables (as well as variables in other programming languages) cannot
hold numbers that are arbitrarily large. For example, the largest value of a
floating-point variable is 21024 ∼ 1.79769 × 10308.

If the value of a variable exceeds this limit, the variable overflows. When
this happens, you usually (but not always) get a overflow warning.

Try the following:
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4.3. rounding errors

x=1e308

y=10.*x

print(y)

Python does not complain (no overflow warning), but the print tells you
that y is inf, that is infinity. For your computer, anything larger than the largest
number you can store in a variable is infinity.

Similarly, if you pretend to use a value smaller than 2−1022 ∼ 2.22507 ×
10−308, the calculation underflows and the computer just sets the number to
zero.

This problem is partially solved by python for integers (and this is a special
feature of python with respect to other programming languages). Python can
represent integers of arbitrary size (=arbitrary number of digits), because it
decides memory allocation based on the size of the integer. The limit is the
memory of the computer. Plus, consider that operations on very large integer
numbers require a lot of time, because of memory access time. For example,
try to calculate

2**10000000

4.3 Rounding errors

Floating point numbers are represented on a computer to only a certain
precision. In python, the standard level of precision is 16 digits. For example,

import numpy as np

np.pi #print the value of pi greek

You get 3.141592653589793, i.e. it stops at 16 digits.
The difference between the true value of a number and its value on the

computer is called ROUNDING ERROR.
For example, we know that 3.3 − 1.1 = 2.2, but python might print

2.1999999999999997.
A practical implication is that you should never use an if statement to

check equality between two floats. For example

x=3.3-1.1

if(x==2.2):

print(x)

does not print anything, because x = 2.1999999999999997, which is differ-
ent from 2.2. If you want to do a check like this, choose a tolerance you can
accept, and then do a comparison
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x=3.3-1.1

epsilon=1e-2

if(abs(x-2.2)<epsilon):

print(x)

We can regard at the rounding error as an error of measurement in a lab
experiment. For example

from math import sqrt

x=sqrt(2)

The value of x will not be x =
√

2 but rather x ± ε =
√

2, where ε is the
rounding error. Since x in our example is a float, the error will be of the order of
x/1016. It is usually a good assumption to consider the error to be distributed
according to a Gaussian distribution with standard deviation σ = C x, where
C is the error constant and C = 10−16 in our case. When quoting the error on
a calculation, we usually give the value of C, not that of ε, because we do not
know the exact value of ε.

Suppose now that we sum two numbers x1 and x2, both affected by round-
ing errors with standard deviation σ1 and σ2. Then, the rounding error on
their sum will be calculated starting from the variance σ in experimental error
theory:

σ =
√
σ2

1 + σ2
2 =

√
C2 x2

1 + C2 x2
2 = C

√
x2

1 + x2
2 (4)

Similarly, if we sum up N numbers:

σ2 =
N∑
i=1

C2 x2
i = C2 N x̄2, (5)

where x̄2 is the mean-square value of x. Hence, σ increases with the number

of operations but only as
√

N. Finally, the fractional error on
N∑
i=1

xi is

σ

N∑
i=1

xi

=
C
√

N
√
x̄2

N x̄
=

C
√

N

√
x̄2

x̄
(6)

This means that the fractional error goes down if we add more numbers.

Now, we want to calculate a subtraction between two numbers which are
very different in size, for example
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x=int(1e15)

y=1000000000000001.23456789

print(y-x)

The result of this print is 1.2, because we hit the 16 digit rounding.

The situation gets even worse when we calculate the subtraction of two
numbers that are nearly the same.

EXERCISE:

Consider the two numbers x = 1, y = 1 + 10−14
√

2. We see that

1014 (y − x) =
√

2

Now, write a script that defines x and y as above and then prints
1014 (y − x). The result of the print will be 1.42108547152, while

√
2 =

1.41421356237. Hence, the result is only accurate to the first decimal
place.

EXERCISE:

Consider a quadratic equation a x2 + b x + c = 0 that admits 2 real
solutions.

a) Write a script that takes in input the three numbers a, b, c and
returns the solution x using the standard formula

x =
−b ±

√
b2 − 4 a c
2 a

(7)

Apply this to the solution of the equation where a = c = 0.001,
b = 1000.

b) Write the solution x in another way, by multiplying numerator
and denominator by −b ∓

√
b2 − 4 a c:

x =
2 c

−b ∓
√
b2 − 4 a c

(8)

Apply this to the solution of the equation where a = c = 0.001,
b = 1000. What do you see? How do you explain it?

c) Using what you learned, write a script that calculates both solu-
tions accurately.

You can write a script like this
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import math

a=c=0.001

b=1000.0

x1=-b+math.sqrt(b*b-4*a*c)

x1/=(2.*a)

x2=-b-math.sqrt(b*b-4*a*c)

x2/=(2.*a)

print(x1,x2)

print(a*x1*x1+b*x1+c,a*x2*x2+b*x2+c)

x1p=2*c

x1p/=(-b-math.sqrt(b*b-4*a*c))

x2p=2*c

x2p/=(-b+math.sqrt(b*b-4*a*c))

print(x1p,x2p)

print(a*x1p*x1p+b*x1p+c,a*x2p*x2p+b*x2p+c)

print((x1-x1p)/x1,(x1-x1p),(x2-x2p)/x2,(x2-x2p))

The result has relative error of 10−5 in both cases, but since solution x1 is
small while solution x2 is big, the error on solution x2 looks larger.

If I fold the solutions back into the original quadratic equation, x1p is
slightly better than x1 because I avoid the subtraction of two similar numbers.
x2 is much better than x2p because I avoid the subtraction of two similar
numbers. Hence, the best is to use x1p and x2.

4.4 Speed

The computer cannot be infinitely fast. Considering state-of-the-art laptops
and workstations, it takes few seconds to do a million of simple operations.
Billions of operations take minutes to hours. Hence, before you start coding,
you might want to estimate whether your script will be executed in a reason-
able time or not. The rule of thumb is that the calculation is doable if you
have up to a billion of operations.

If you expect many more, either you find a smarter way to do things (see
the example of building an histogram with indexes in the previous chapter)
or you go for a supercomputer. Usually, there is a smarter way to do things.
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In addition, not all operations are the same. Sum and subtraction are fast,
while the power operator or more complex ones require more time.

The speed of a script can be improved with some simple tricks.

EXERCISE :

Consider for example the quantum simple harmonic oscillator with
energy levels En = ~ω (n + 1

2 ), where n = 0, 1, 2, ..., ∞. According
to Boltzmann and Gibbs, the average energy of a simple harmonic
oscillator at temperature T is

〈E〉 =
1
Z

∞∑
n=0

En exp (−β En), (9)

where β = 1/(kB T), with kB being the Boltzmann constant and Z =
∞∑
n=0

exp (−β En). Suppose we want to calculate the value of 〈E〉 for kB T =

100. The worst term from the computational point of view is the sum.
Let’s consider first n = 0, 1, ..., 106. Let’s work in units where ~ = ω = 1.

For example, the solution of this exercise can be worked out as:

#examples/rounding/harm_osc_0.py

import numpy as np

N=1000000

T=100.

Em=0.0

Z=0.0

beta=1./T

E=np.zeros(N,float)

for i in range(N):

E[i]=i+0.5

for i in range(N):

Z=Z+np.exp(-beta*E[i])

for i in range(N):

Em=Em+E[i]*np.exp(-beta*E[i])

Em=Em/Z

print(Em)
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The script above gives the correct result but is quite poor in performance
because I used 3 loops when I can use just one and because I do twice the
calculation of the exponential (which is consuming). On my laptop, it runs in
∼ 4 seconds.

The script can be greatly improved with few simple modifications, as
follows:

#examples/rounding/harm_osc_1.py

import numpy as np

N=1000000

T=100.

E=np.zeros(N,float)

Em=0.0

Z=0.0

beta=1./T

for i in range(N):

E[i]=i+0.5

Eexp=np.exp(-beta*E[i])

Z+=Eexp

Em+=E[i]*Eexp

Em/=Z

print(Em)

On my laptop, it runs in ∼ 2.5 seconds.

The important highlights of the improved script are:

• Initialize all the constants at the beginning of the script. It will be easier
to change them.

• Minimize the number of loops. Only one loop is sufficient here if we
calculate both E and Z at the same time.

• The exponential term is the same for both Z and E. Calculate it only
once per each term of the loop.

If you are a bit more familiar with python, you can make the script even
faster, as follows:
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#examples/rounding/harm_osc_2.py

import numpy as np

N=1000000

T=100.

integ=np.arange(0,N,1)

E=np.zeros(N,float)

Eexp=np.zeros(N,float)

Em=0.0

Z=0.0

beta=1./T

E[:]=integ[:]+0.5

Eexp=np.exp(-beta*E)

Z=sum(Eexp)

Em=sum(E*Eexp)

Em/=Z

print(Em)

In the above script, I have totally removed the loops and I have substituted
them with the properties/operations of numpy arrays. On my laptop, it runs
in ∼ 0.5 seconds: I have improved by a factor of 8 with respect to the first
version and by a factor of 5 with respect to the second version.

Now try to change the value of num and plot the value of 〈E〉 for num=
1000, 1100, 1200, , 1400, 104, 105, 106. This will probably give you a figure
like Fig. 23 From the figure, it appears that the result tends asymptotically to
the value of 100.00083333194436 when N ≥ 104. Hence, N = 104 could be
the best choice in terms of accuracy versus computational time.

EXERCISE:

Let’s calculate the product between two N × N matrices. How long it
takes to do the product if N = 100? And if N = 1000?

You can obtain a script like this, where I have added few pedagogical
things:
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Figure 23: Average energy of the quantum simple harmonic oscillator 〈E〉 versus
the maximum number of levels N considered.
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import time

import numpy as np

N=1000

A=np.zeros([N,N],float)

B=np.zeros([N,N],float)

C=np.zeros([N,N],float)

A[:,:]=1.0

B[:,:]=2.0

start = time.time()

for i in range(N):

for j in range(N):

for k in range(N):

C[i,j]+=A[i,k]*B[k,j]

end = time.time()

print(end-start)

start = time.time()

D=np.dot(A,B)

end = time.time()

print(end-start)

print(C[17,13],D[17,13])

The first pedagogical thing is the usage of the module time. As shown in
the example, time.time() allows to calculate the time spent in a given chunk
of the code.

The second pedagogical thing is the usage of numpy.dot(matrix1,matrix2),
which is a function of numpy that calculates the product of two matrices.

On my computer, for N = 100, the time requested by the user provided
function is ≈ 0.6 seconds, while the time requested by the numpy function to
do the same calculation is ≈ 0.0006 seconds. For N = 1000, the time requested
by the user provided function is ≈ 600 seconds, while the time requested by
the numpy function to do the same calculation is ≈ 0.7 seconds. Bottom line:
use the optimized functions python offers to you when you can and when
you know exactly what they do. They will be faster than your own function.
If you are a very good programmer, or you are not completely sure that the
python function does what you want, or you want to learn how to code, then
go for your own function.

By looking at the script, we can see that in the user defined calculation we
have 3 nested for loops, each of them with range N. In the innermost loop,
for each element we have 2 operations (a multiplication and a sum). Hence,
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the number of operations is 2 N in the innermost loop. If we consider the two
outer loops, the total number of operations is 2 N × N × N = 2 N3. Hence, if
N = 1000, we have to do of the order of a billion operations. It is advisable to
avoid calculating the product of two matrices larger than 1000 × 1000 with
your own function. Use numpy.dot().

4.5 Small scattered tips

• Unless you want a calculation to be with integers, please remember
writing your numbers as floating point. For example

x=10.0

a1=x**(3/2)

a2=x**(3./2.)

print(a1,a2)

If you are programming in python2 (or in many other languages), you
will realize that a1=10.0 is different from a2=31.622776601683793.
python2 interprets 3/2 as a division between integers5, hence the result
is 1 not 1.5.

• Use scientific exponential notation instead of powers.

• Try to minimize the usage of arrays. If there is no need to define a new
array, just don’t do it. Even better: sometimes you can just write with
scalars. It will save RAM memory and it will make easier to code for
you.

• Use stack overflow https://stackoverflow.com/ or similar internet
resources (start with a google search) to understand the errors you get
from your code and to find better functions for the problem you want to
tackle. You cannot learn all the python by heart.

• Try to minimize nested loops, because they really slow down your code.
Sometimes, a single function of python can do the same without any
loop. Please, look on the online python manuals and on slack overflow
to find the best function for your case.

• Choose your units of measure to make it easier for the computer to do
the calculations. If you want to calculate the mass of a galaxy cluster, it
might be not-so-smart to use grams, because you will probably end up
with something as big as 1046 g. Solar masses seem to be a better choice,
otherwise the rounding errors might dominate your result.

• Check units of measure 100 of times in your code. Bugs hide very well
in there.

5python3 instead interprets this as a division between floating points, because the other
variable involved in the calculation, x, is a floating point.
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• If some constants are used many times to a certain power or in a certain
combination, define a new constant that calculates this combination to
do the calculation just once. It will save time and accuracy. For example,
we will see one gravitational-wave related example where G and c (grav-
ity constant and speed of light) always appear as G3/c5. Define the new
constant e.g.

G3c5=G**3/c**5

and use it through the script.
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5 solution of linear equations

This chapter is based on Numerical Methods in Engineering with Python by
Jaan Kiusalaas and on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.

We want to solve n linear, algebraic equations in n unknowns. A system of
algebraic equations has the form

A11 x1 + A12 x2 + ... + A1n xn = b1

A21 x1 + A22 x2 + ... + A2n xn = b2

...

An1 x1 + An2 x2 + ... + Ann xn = bn (10)

where the coefficients Aij and bi are known, while the xi are the unknowns.
In matrix notation, these equations are written as

A11 A12 . . . A1n
A21 A22 . . . A2n
...

...
...

...
An1 An2 . . . Ann



x1
x2
...
xn

 =


b1
b2
...
bn

 (11)

or in compact form A x = b.
This system of linear equations has a unique solution, provided that the

determinant of matrix A is NON-SINGULAR.
If the determinant is singular, the system may have no solutions or infinite

solutions. For example [
2 1
4 2

] [
x1
x2

]
=

[
3
6

]
(12)

has infinite solutions because the second equation is equal to the first equation
multiplied by 2: every solution of the first equation is solution of the second,
too.

There are two different approaches to the solution of linear algebraic
equations:

• DIRECT METHODS: transform the original equations into equivalent
equations (i.e. equations that have the same solution) that can be solved
more easily. The transformation is carried out by applying three opera-
tions (elementary operations) that do not change the solution but might
affect the determinant of the coefficient matrix. These are i) exchanging
two equations (changes the sign of the determinant); ii) multiplying
an equation by a non-zero constant (multiplies the determinant by the
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5.1. gauss elimination method

same constant); iii) multiplying an equation by a non-zero constant and
then subtracting it from another equation (leaves the determinant un-
changed). Examples of direct methods are the Gauss elimination method,
the LU decomposition and the Gauss-Jordan elimination.

• INDIRECT METHODS: start with a guess (Ansatz) of the solution x and
then repeatedly refine the solution until a certain convergence criterion
is satisfied. Indirect methods are generally less efficient than direct
methods but are most used, because they are simpler to implement.
They are efficient if the matrix is large and sparse (has many 0) and they
handle rounding errors quite well, because the rounding error of one
iteration can be improved in the next one. The most serious drawback of
indirect methods is that they do NOT always CONVERGE. An example
of indirect methods is the Gauss-Seidel method (see below).

5.1 Gauss elimination method

Suppose we must solve a system of linear equations as the following one:

2 x0 + x1 + 4 x2 + x3 = −4

3 x0 + 4 x1 − x2 − x3 = 3

x0 − 4 x1 + x2 + 5 x3 = 9

2 x0 − 2 x1 + x2 + 3 x3 = 7 (13)

In matrix form this looks like:
2 1 4 1
3 4 −1 −1
1 −4 1 5
2 −2 1 3



x0
x1
x2
x3

 =


−4
3
9
7

 (14)

and in compact notation A x = b.
The way to solve this equation you probably learned in your math courses,

is to find the inverse of the matrix A, then multiply both sides by it to get
the solution x = A−1b. This procedure is inefficient and difficult to imple-
ment numerically. Hence, we try an alternative procedure (called Gaussian
elimination) as follows.

First of all, remember that we can use the following rules:

• We can multiply any of our simultaneous equations by a constant and
it is still the same equation, in the sense that the solutions do not change.
Hence, if we multiply any row of the matrix A by any constant and we
multiply the corresponding row of the vector b by the same constant,
then the solution does not change.

• We can take any linear combination of two equations to get another
correct equation. This implies that if we add to or subtract from any row
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5. solution of linear equations

of A a multiple of any other row, and we do the same for the vector b,
then the solution does not change.

Our first goal in the Gaussian elimination method is to produce an upper
triangular matrix (i.e. a matrix with all zeros below the diagonal) with all
diagonal elements equal to 1. We reach this goal by using the above rules in
the following way.

1. We divide the first row of A by the top-left element of the matrix (a00 =
2) and we obtain

x0 + 0.5 x1 + 2 x2 + 0.5 x3 = −2

3 x0 + 4 x1 − x2 − x3 = 3

x0 − 4 x1 + x2 + 5 x3 = 9

2 x0 − 2 x1 + x2 + 3 x3 = 7 (15)

In matrix form this looks like:
1 0.5 2 0.5
3 4 −1 −1
1 −4 1 5
2 −2 1 3



x0
x1
x2
x3

 =


−2
3
9
7

 (16)

2. We now subtract 3 times the first row from the second row, to zero the
first element of the second row (a10):

1 0.5 2 0.5
0 2.5 −7 −2.5
1 −4 1 5
2 −2 1 3



x0
x1
x2
x3

 =


−2
9
9
7

 (17)

3. We do a similar trick for the third and fourth row, so that the first column
becomes 1,0,0,0: 

1 0.5 2 0.5
0 2.5 −7 −2.5
0 −4.5 −1 4.5
0 −3 −3 2



x0
x1
x2
x3

 =


−2
9

11
11

 (18)

4. We want to do something similar with the other columns. Hence, we
divide each element of the second row by a11 = 2.5:

1 0.5 2 0.5
0 1 −2.8 −1
0 −4.5 −1 4.5
0 −3 −3 2



x0
x1
x2
x3

 =


−2
3.6
11
11

 (19)
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5.1. gauss elimination method

5. We subtract −4.5 times the second row from the third and −3 times the
second row from the fourth:


1 0.5 2 0.5
0 1 −2.8 −1
0 0 −13.6 0
0 0 −11.4 −1



x0
x1
x2
x3

 =


−2
3.6

27.2
21.8

 (20)

6. We divide the third row by a22 = −13.6 to get a22 = 1:
1 0.5 2 0.5
0 1 −2.8 −1
0 0 1 0
0 0 −11.4 −1



x0
x1
x2
x3

 =


−2
3.6
−2

21.8

 (21)

7. subtract −11.4 times the third row from the fourth:
1 0.5 2 0.5
0 1 −2.8 −1
0 0 1 0
0 0 0 −1



x0
x1
x2
x3

 =


−2
3.6
−2
−1

 (22)

8. Finally, we divide the fourth row by a33 = −1 to get
1 0.5 2 0.5
0 1 −2.8 −1
0 0 1 0
0 0 0 1



x0
x1
x2
x3

 =


−2
3.6
−2
1

 (23)

Now we have an upper triangular matrix with diagonal elements equal to 1.
In general form, our system of linear equations has become:

1 a01 a02 a03
0 1 a12 a13
0 0 1 a23
0 0 0 1



x0
x1
x2
x3

 =


b0
b1
b2
b3

 (24)

Which is equivalent to:

x0 + a01 x1 + a02 x2 + a03 x3 = b0

x1 + a12 x2 + a13 x3 = b1

x2 + a23 x3 = b2

x3 = b3 (25)

This system of linear equations can be easily solved by backsubstitution, i.e.

93



5. solution of linear equations

by first solving the last equation x3 = b3, so that the second-last equation
becomes x2 = b2 − a23 x3, the third-last equation becomes x1 = b1 − a12 x2 −
a13 x3, x0 = b0 − a01 x1 − a02 x2 − a03 x3, which is very easy to implement
numerically.

EXERCISE:

Produce a python script to implement the Gauss elimination method
with backsubstitution and solve the system 14.
Solution of the exercise: [ 2. − 1. − 2. 1.]

Since this is the very first difficult exercise, let us study it together step
by step. First thing to do for every numerical problem is to decompose our
problems into small sequential steps the computer can perform and write
them down in the proper logical order. This can be done with a piece of
paper before you start actually writing the code, depending on your taste.

• Step 0: Import the packages we need, set up our input values and arrays

import numpy as np

a=np.array([[2.,1.,4.,1.],[3.,4.,-1.,-1.],[1.,-4.,1.,5.],[2.,-2.,1.,3.]])

b=np.array([-4.,3.,9.,7.])

x=np.zeros(4,float)

print(a,b)

n=len(b)

NOTE: During the phase of development, do not forget to put many
prints around your script. In the likely case the first version of the
script does not work properly, these prints will help you understanding
WHICH IS THE EXACT POINT WHERE your code starts not working
properly. Here, I print the input a, b as soon as I have set it up, to check
that everything is ok.

• Step 1: Starting from row 0 (and then moving to the other rows) we
cycle on the columns j = 0, n − 1 to divide each element a[i, j] of row i
by the diagonal value a[i, i]. In practice:

n=len(b)

for i in range(n):

for j in range(n):

a[i,j]=a[i,j]/a[i,i]

b[i]=b[i]/a[i,i]

print(a,b)

If I try performing this I immediately realize the value a[i, i] is overrid-
den by a[i, i] = a[i, i]/a[i, i]. Hence, I realise I need an auxiliary variable,
where I can store the initial value of a[i, i] before it is overridden:
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n=len(b)

for i in range(n):

temp=a[i,i]

for j in range(n):

a[i,j]=a[i,j]/temp

b[i]=b[i]/temp

print(a,b)

• Step 2: Now I have to consider the second row and I have to do the
following operation per each column j of the second row:

temp=a[1,0]

for j in range(n):

a[1,j]=a[1,j]-temp * a[0,j]

b[1]=b[1]-temp * b[0]

where note that I have defined an auxiliary temp not to override the
initial value of a[1, 0]. This expression subtracts from second row a[1, 0]
times the first row.

• Step 3: Now, I can repeat the same operation to all the k rows below the
first one and I get (generalizing 1→ k and cycling over 0 < k < n):

for k in range(1,n):

temp=a[k,0]

for j in range(n):

a[k,j]=a[k,j]-temp * a[0,j]

b[k]=b[k]-temp * b[0]

• Step 4: Finally, I want to repeat this procedure for all the rows, not just
for the first one, so, connecting to the first part of my script:
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n=len(b)

for i in range(n):

temp=a[i,i]

for j in range(n):

a[i,j]=a[i,j]/temp

b[i]=b[i]/temp

for k in range(i+1,n):

temp=a[k,i]

for j in range(n):

a[k,j]=a[k,j]-temp * a[i,j]

b[k]=b[k]-temp * b[i]

print(a,b)

where I have changed 0→ i to loop over all i rows with 0 ≤ i < n and I
have changed “for k in range(1,n)” to “for k in range(i+1,n)”, to consider
all the rows before the current one (which is the ith row).

The print should now produce the final elements of a and b and a should
be upper triangular:

[[ 1. 0.5 2. 0.5]

[ 0. 1. -2.8 -1. ]

[-0. -0. 1. -0. ]

[-0. -0. -0. 1. ]]

[-2. 3.6 -2. 1. ]

• Step 5: The last step is the back substitution. The more naive way is to
write down all the operations:

x[n-1]=b[n-1]

x[n-2]=b[n-2]-x[n-1]*a[n-2][n-1]

....

x[0]=b[0]-x[1]*a[0][1]-x[2]*a[0][2]-...-x[n-1]*a[n-2][n-1]

The key point is to realize that this can be done more effectively (in
terms of script readability and generalization) with two nested for loops,
the outer one running over the i going from n−1 to −1 (−1 not included)
at steps of −1, the inner one going from n − 1 to i (i not included) at
steps of −1:
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for i in range(n-1,-1,-1):

x[i]=b[i]

for j in range(n-1,i,-1):

x[i]=x[i]-x[j]*a[i][j]

print(x)

Putting together our script, we can now write it in a complete form:

import numpy as np

a=np.array([[2.,1.,4.,1.],[3.,4.,-1.,-1.],[1.,-4.,1.,5.],[2.,-2.,1.,3.]])

b=np.array([-4.,3.,9.,7.])

x=np.zeros(4,float)

print(a,b)

n=len(b)

for i in range(n):

temp=a[i,i]

for j in range(n):

a[i,j]=a[i,j]/temp

b[i]=b[i]/temp

for k in range(i+1,n):

temp=a[k,i]

for j in range(n):

a[k,j]=a[k,j]-temp * a[i,j]

b[k]=b[k]-temp * b[i]

print(a,b)

for i in range(n-1,-1,-1):

x[i]=b[i]

for j in range(n-1,i,-1):

x[i]=x[i]-x[j]*a[i][j]

print(x)

The script as above is correct but there might be a couple of more “semi-
aesthetic” changes I might want to do.

1. I can make the notation a little bit more synthetic using the feature of
python (and c/c++ and many other languages) that a = a/b and a/ = b
are exactly the same thing. This is not necessary, but I like it because it
makes the equation more compact.

2. I can use a more compact writing for the simplest inner loops of my
script, which is also a little be faster, i.e. I can write (for example)

a[i,:]/=temp

in place of
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for j in range(n):

a[i,j]/=temp

The result of these semi-aesthetic changes is the following script:

#gauss_eli.py

import numpy as np

a=np.array([[2.,1.,4.,1.],[3.,4.,-1.,-1.],[1.,-4.,1.,5.],[2.,-2.,1.,3.]])

b=np.array([-4.,3.,9.,7.])

x=np.zeros(4,float)

#print(a)

n=len(b)

for i in range(n):

temp=a[i,i]

#for j in range(n):

# a[i,j]/=temp

a[i,:]/=temp

b[i]/=temp

#print(a)

for k in range(i+1,n):

temp=a[k,i]

#for j in range(n):

# a[k,j]=a[k,j]-temp*a[i,j]

a[k,:]=a[k,:]-temp*a[i,:]

b[k]-=temp*b[i]

for i in range(n-1,-1,-1):

x[i]=b[i]

for j in range(n-1,i,-1):

x[i]-=x[j]*a[i][j]

print(x)

5.2 Pivoting

Suppose we want to evaluate a matrix with one or more zeroes on the diago-
nal, for example: 

0 1 4 1
3 4 −1 −1
1 −4 1 5
2 −2 1 3



w
x
y
z

 =


−4
3
9
7

 (26)

The Gauss elimination method clearly does not work with this system, because
it would require to divide by zero. However, we can change the order of the
equations in the system without changing the result of the equations. Thus we
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can simply exchange the first row of A and the first element of b as follows:
3 4 −1 −1
0 1 4 1
1 −4 1 5
2 −2 1 3



w
x
y
z

 =


3
−4
9
7

 (27)

This trick of changing the order of equations to avoid zeroes on the diagonal
is called pivoting. Clearly pivoting does not work if the matrix is too sparse,
i.e. if I have more zeroes on the diagonal than I can accommodate with line
exchanges.

5.3 LU decomposition

The LU decomposition method is a slight modification of the Gaussian elimi-
nation method with pivoting. Suppose we want to solve many sets of equations
in the form Ax = b, in which A is the same but b changes. In this case, it
would be efficient to keep track of the transformations we make to A, in order
to perform them on the different vectors b without repeating every time the
Gauss elimination procedure. The LU decomposition is just this: a Gauss elim-
ination procedure in which we keep track of the transformations we make to
A.

Suppose we have a general matrix A (we write this as 4 × 4 matrix, but the
procedure can be generalized to N × N):

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 (28)

We now perform Gaussian elimination to transform this matrix in upper
triangular, but we do it using general matrix notation:

1
a00


1 0 0 0
−a10 a00 0 0
−a20 0 a00 0
−a30 0 0 a00



a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 =


1 b01 b02 b03
0 b11 b12 b13
0 b21 b22 b23
0 b31 b32 b33

 (29)

You can check with calculations that this is the same as the first step of Gauss
elimination, i.e. the step in which we divide the first row of the matrix by
a00 and then we subtract the first row times a10, a20 and a30 from the second,
third and fourth rows, respectively.

We now call L0 the matrix we multiply by on the left (this matrix is lower
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triangular):

L0 =
1
a00


1 0 0 0
−a10 a00 0 0
−a20 0 a00 0
−a30 0 0 a00

 (30)

It can be shown that the second step of the Gaussian elimination process
can be written as

1
b11


b11 0 0 0
0 1 0 0
0 −b21 b11 0
0 −b31 0 b11



1 b01 b02 b03
0 b11 b12 b13
0 b21 b22 b23
0 b31 b32 b33

 =


1 c01 c02 c03
0 1 c12 c13
0 0 c22 c23
0 0 c32 c33

 (31)

We now call L1 the matrix we multiply by on the left (this matrix is also
lower triangular):

L1 =
1
b11


b11 0 0 0
0 1 0 0
0 −b21 b11 0
0 −b31 0 b11

 (32)

Finally, the two remaining steps of the Gauss elimination method can be
done in the same way, defining the two new matrices L2 and L3 as

L2 =
1
c22


c22 0 0 0
0 c22 0 0
0 0 1 0
0 0 −c32 c22

 , L3 =
1
d33


d33 0 0 0
0 d33 0 0
0 0 d33 0
0 0 0 1

 (33)

Putting together these different steps, we find that Gauss elimination is equiv-
alent to multiplying A in succession by L0,L1,L2 and L3. Thus, the Gaussian
elimination method can be written as

L3 L2 L1 L0 A x = L3 L2 L1 L0 b (34)

From this procedure, we can evaluate x by backsubstitution.
From a technical point of view, the LU decomposition is implemented as

follows. We define the matrix L as

L = L0
−1 L1

−1 L2
−1 L3

−1 (35)

where L0
−1, L1

−1, L2
−1 and L3

−1 are the inverses of L0, L1, L2 and L3.
We define the matrix U as

U = L3 L2 L1 L0 A (36)
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Hence the system Ax = b can be written as

LUx = b (37)

The nice thing here is that U us upper triangular and L is lower triangular. In
fact, we can derive

L0
−1 =


a00 0 0 0
a10 1 0 0
a20 0 1 0
a30 0 0 1

 L1
−1 =


1 0 0 0
0 b11 0 0
0 b21 1 0
0 0 b31 1

 (38)

L2
−1 =


1 0 0 0
0 1 0 0
0 0 c22 0
0 0 c32 1

 L3
−1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 d33

 (39)

Multiplying them together, we find

L =


a00 0 0 0
a10 b11 0 0
a20 b21 c22 0
a30 b31 c32 d33

 (40)

This is something we can easily calculate from the Gaussian elimination
formalism we just derived.

On the other hand, in python there is no need for writing this algorithm,
because the LU decomposition with backsubstitution is exactly what is done
by the function solve of the numpy.linalg package, that can be called in the
following way:

from numpy.linalg import solve

x=solve(A,b)

In general, mathematical functions in python are much better optimized than
you can ever achieve by writing your own function. So, if there is a pre-defined
function doing exactly what you need, use it without re-inventing the wheel. On
the other hand, please avoid using python functions without knowing what they do
exactly, i.e. which algorithms they implement and what are the validity limitations
of these algorithms.

5.4 Gauss-Seidel method

Gaussian elimination and LU decomposition are both direct methods. Now,
let’s see an example of indirect method, the Gauss-Seidel method. This method
is particularly used for sparse matrices, when pivoting is not sufficient to
avoid zeroes on the diagonal.
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The equation A x = b can be written in scalar notation as

n∑
j=1

Aij xj = bi i = 1, 2, ..., n (41)

Extracting the diagonal term xi the above equation becomes

Aii xi +
n∑

j=1,j,i

Aij xj = bi i = 1, 2, ..., n (42)

Solving for xi we get

xi =
1

Aii

bi − n∑
j=1,j,i

Aij xj

 i = 1, 2, ..., n (43)

This suggests the following iterative scheme

xi ←
1

Aii

bi − n∑
j=1,j,i

Aij xj

 i = 1, 2, ..., n (44)

We start by choosing a value for the array x. We plug this value of x into
the right-hand terms of equations 44 and we re-calculate the left-hand terms.
Then we repeat this procedure a number of times. We stop when the value
of x after a new iteration is ‘sufficiently’ similar to the value of x before the
iteration.

5.5 Pros and cons of the algorithms we discussed

LU decomposition and Gaussian elimination, PROS:

• easy to implement;

• fast;

• exact solution.

LU decomposition and Gaussian elimination, CONS:

• not always possible to use (when zeroes on the diagonal even after
pivoting).

Gauss-Seidel, PROS:

• even easier to implement than Gaussian elimination;

• fast;
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• efficient in handling rounding errors.

Gauss-Seidel, CONS:

• approximate solution;

• might fail to converge.

EXERCISE:

Write a script to implement the Gauss-Seidel method and use it to solve
the following equations.

4 −1 1
−1 4 −2
1 −2 4



x1
x2
x3

 =


12
−1
5

 (45)

Solution of the exercise: [3.0, 1.0, 1.0].

Figure 24: Circuit of the following exercise (image credits: Mark Newman).
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EXERCISE:

Use the Gauss-Seidel method and the Gauss elimination method with
backsubstitution (or the LU method with backsubstitution) to solve the
circuit of resistors shown in Figure 24. All the resistors have the same
resistance R. The power rail at the top is at voltage V+ = 5 V. What are
the other voltages V1 and V4?
Suggestion to solve the problem:
1. Write down the system of linear equations using Ohm’s law and
Kirchhoff current law.
For example, for the junction at Voltage V1 we have

V1 − V2

R
+

V1 − V3

R
+

V1 − V4

R
+

V1 − V+

R
= 0 (46)

2. Adapt your Gauss-Seidel and Gauss elimination scripts to solve the
equations.

Solution of the exercise: [3., 1.6666667, 3.333333, 2].
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6 solution of non-linear equations

This chapter is based on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.

Many equations in physics and astrophysics are non-linear. Non-linear
equations are generally harder to solve than linear equations, especially if we
have systems of non-linear equations. In the following, we discuss the most
known methods to solve non-linear equations: relaxation method, bisection
method and Newton-Raphson method.

A non-linear equation for a single variable x can be always written in the
form f (x) = 0. Thus, finding a solution for such an equation is equivalent to
finding the zeros, or roots, of f (x). This is why several methods to solve non-
linear equations (including the bisection and the Newton-Raphson methods
we will discuss in this course) are called root finding methods.

6.1 The relaxation method

Suppose we have a single non-linear equation in a single variable such as

x = 2 − e−x (47)

The simplest approach to solve this equation (similar to what we have seen
with the Gauss-Seidel method for systems of linear equations) is to iterate the
equation. This approach is called relaxation method. Let’s start with a guess
for x (e.g. x = 1) and plug this guess into the right-hand side of the above
equation. We find a new x = 1.63212055883. Repeat the operation with the
new guess, etc. A script doing this would look like

import numpy as np

tol=1e-6

x=1.0

xold=10.0

while(abs(x-xold)>tol):

xold=x

x=2.-np.exp(-x)

print(x)

print("Converged to x=", x)

When it works, the relaxation method is a very good method, simple
to program and fast. The main problems of the relaxation methods are the
following.

First, it is not always easy/possible to write an equation in the simple form
x = f (x), where f (x) is some known function. For example, we might try to
solve something like log x + x2 − 1 = 0. The first thing we try to do in this case
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6. solution of non-linear equations

is to arrange the equation in the form x = f (x), for example

x = exp (1 − x2) (48)

If we use the above script to solve this equation and we choose as starting
guess x = 0.5, we can easily see that the method DOES NOT CONVERGE,
jumping between ∼ 2.718 and ∼ 0.00168.

Before we give up, we can try to rearrange the equation, again, in a different
way. For example

x =
√

(1 − log x) (49)

With the same initial guess (x = 0.5) this version of the equation converges in
few iterations.

When do we stop iterating? A reasonable approach is to decide an accu-
racy (or tolerance) based on the specific problem we want to solve. Then, we
impose that we exit the loop when (for example) |x − xold| < ε, where ε is the
imposed accuracy.

Why the method does not always converge? We can explain it mathe-
matically. Assume that we have an equation in the form x = f (x) that has a
solution x = x∗. Performing a Taylor expansion around the true solution (x∗),
the value x̃ after an iteration is given in terms of the previous value of x by

x̃ = f (x) = f (x∗) + (x − x∗) f ′(x∗), (50)

where we neglect the higher order terms. Since x∗ is the actual solution, i.e.
x∗ = f (x∗), we have that

x̃ − x∗ = (x − x∗) f ′(x∗) (51)

This equation tells us that the distance between x and the true solution x∗ gets
multiplied by f ′(x∗) at every iteration. If the derivative |f ′(x∗)| < 1, then the
distance becomes smaller and smaller and the method converge. In contrast,
if |f ′(x∗)| > 1 the method does not converge.

However, if we have a function with derivative |f ′(x∗)| > 1 and we invert
the equation, the reciprocal of the derivative will be |f ′(x∗)−1| < 1. This is
way the method did not converge for x = exp (1 − x2), while it converged for
x =

√
(1 − log x), which is the inverse.

Thus, by inverting the equation we could in principle solve the problems
of the relaxation method. Unfortunately, not all equations can be inverted.

To summarize, the main PROS of the relaxation method are:

• trivial to implement;

• fast;
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• might be used to solve systems of non-linear equations (but convergence
is a major issue).

The main CONS are:

• often it does not converge;

• to force convergence, it might require re-arranging the equation or
finding the inverse; this operation is not always possible.

Basic reminder: Taylor series

During these lectures, we will make use of Taylor series several times,
both for estimating the approximation error and to build new algo-
rithms (e.g., the algorithms for ordinary differential equations). Hence,
let us refresh what is a Taylor series. It is the expansion of a real function
f (x) about a point x0 and can be written as:

f (x) = f (x0) + f ′(x0) (x − x0) +
1
2!

f ′′(x0) (x − x0)2 +

+
1
3!

f (3)(x0) (x − x0)3 + ... +
1
n!

f (n)(x0) (x − x0)n + ... (52)

6.2 Overrelaxation

In the relaxation method, we can try to speed up convergence by using over-
relaxation. Let us rewrite x̃ = f (x) in the form x̃ = x + ∆x, where

∆x ≡ x̃ − x = f (x) − x. (53)

Let us now add a (1 + ω) term in the original equation

x̃ = x + (1 + ω)∆x, (54)

where ω is a free parameter.
Then, the equation we want to iterate becomes

x̃ = x + (1 + ω) [f (x) − x] = (1 + ω) f (x) − ω x (55)

Values of ω > 0 imply that we take larger steps with respect to the iterations
without ω. This might help speeding up convergence but might also cause
divergence.

There is no analytic way to choose the best ω. Values of ω < 1 are recom-
mended.
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6.3 Bisection method

The bisection method is the most robust method to solve a single non-linear
equation. We start specifying an interval to search for a solution. If a solution
exists in that interval, the bisection method will always find it.

The bisection method is a root finding algorithm. To use the bisection
method, let’s first re-arrange our non-linear equation so that it looks like
f (x) = 0 (i.e. let’s move all the non-zero terms of the equation to the left).

Figure 25: Visualization of the bisection method.

Suppose we want to find a root of f (x) in the interval between x1 and x2,
if such root exists (see figure 25). We calculate f (x1) and f (x2). If one of the
two values is positive, while the other is negative, it means that there is at
least one zero inside the interval x1, x2. Then, we calculate the mid-point of
the x1, x2 interval, i.e. x′ = 0.5 ∗ (x1 + x2) and we estimate f (x′). If f (x1) and
f (x′) have different signs (e.g. in the figure f (x1) < 0, f (x′) > 0), then our new
interval becomes x1, x

′. Otherwise, the interval becomes x′ , x2. We repeat the
procedure, finding the midpoint of our new interval, ans so forth.

At every step, we know the root with a factor of 2 better accuracy. If we
want to find the root with an accuracy of 10−6, we simply stop when the
interval is ≤ 10−6.

To summarize, the bisection procedure is the following.

1. Choose an initial interval x1, x2. Choose the minimum accuracy you
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want ε.

2. Check that f (x1) and f (x2) have opposite signs. If they don’t, you need
to choose another interval or another method.

3. Calculate the midpoint x′ = 0.5 ∗ (x1 + x2).

4. If f (x′) has the same sign as f (x1), then define the new interval as x′ , x2.
Otherwise, define the new interval as x1, x

′.

5. If |x1 − x2| > ε, repeat from step 3. Otherwise, calculate 0.5 ∗ (x1 + x2)
once more and this is the final estimate of the root.

Since the error decreases by a factor of 2 on each time-step, the accuracy
improves exponentially. We can easily estimate the number N of steps we need
to take to reach the desired accuracy ε. If ∆ is the initial size of the interval,
then after N steps the size of the interval is ∆/2N. Thus, the number N of
steps required to reach an accuracy ε (which is the size of the final interval),
will be

N = log2 (∆/ε), (56)

which means that this method is very fast.

Thus, the main PROS of the bisection methods are

• robust method: if a zero lies in the initial interval, it converges always;

• fast method.

The main CONS of the bisection method are the following:

• it might be that f (x1) and f (x2) have the same sign, because there is an
even number of zeros in the x1, x2 interval. In this case, the bisection
does not work;

• it cannot find even-order polynomial roots of functions, e.g, function
(1 − x2). Functions with such roots only touch the horizontal axis at the
position of the root but do not cross it;

• it does not allow to solve systems of non-linear equations.

6.4 Newton-Raphson method

Figure 27 shows a graphic representation of the Newton-Raphson method.
Like the bisection method, it is a root finding algorithm: we start by re-writing
the non-linear equation in the form f (x) = 0. We start with a guess x for the
solution and then we calculate the slope of the function at x to refine our
initial guess. The slope at x is then used to extrapolate a new guess x′, which
is usually better than the first guess, although, in some unlucky cases, it might
be worse.
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6. solution of non-linear equations

Figure 26: Visualization of the Newton-Raphson method (credits: Mark Newman,
Computational physics).
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The slope at x is

f ′(x) =
f (x)
∆x

(57)

i.e. it is the first derivative of f (x) in x.
Thus, the formula to find our new guess x′ for the root is

x′ = x − ∆x = x −
f (x)
f ′(x)

(58)

This algorithm requires us to know the derivative f ′(x) of f (x).
For functions with more than one root, this method typically finds a root

close to the starting value of x. Thus, to find different roots we can start from
different guesses.

With Taylor expansion around the true value of the root, we can demon-
strate that the error on our next estimate x′ is given by

ε′ =
[
f ′′(x)

2 f ′(x)

]
ε2, (59)

where ε is the error on the previous estimate (x) and f ′′(x) is the second
derivative of f (x) in the previous estimate x. In other words, the error on the
next step will scales as ε2 (where ε� 1 is the error on the previous step). Thus,
Newton-Raphson converges very quickly.

We can summarize the Newton-Raphson method as follows:

1. Choose a starting guess x and an accuracy ε you want to achieve.

2. Calculate a new guess x′ = x − f (x)/f ′(x).

3. If |x′ − x| > ε, repeat from point 2. If |x′ − x| ≤ ε, then x′ is our root.

The main PROS of the Newton-Raphson method are:

• it is very fast;

• it is easy to implement;

• it can be used to solve systems of non-linear equations.

The main CONS of the Newton-Raphson method are:

• sometimes, it does not converge (less serious problem than for the relax-
ation algorithm);

• we need to know the derivative of f (x); if we do not, we can try to use
numerical derivatives (see Section 7).

111



6. solution of non-linear equations

We have seen three methods to solver non-linear equations: relaxation,
bisection and Newton-Raphson. We have seen that all of them have pros
and cons. In some cases, the bisection method will perform better than the
Newton-Raphson and vice versa. Thus, we must be flexible and, when one
algorithm fails to solve a problem, try another one.

Following Mark Newman’s book: “One of the keys to doing good computa-
tional (astro)physics is to have a range of methods at your disposal, so that if one
works poorly for a particular problem you have others up your sleeve.”

6.5 Newton-Raphson method for systems of non-linear equations

The Newton-Raphson method can be used to solve systems of non-linear
equations. The first thing to do is to write these equations in the form

f1(x1, x2, ..., xN) = 0,

f2(x1, x2, ..., xN) = 0,

...

fN(x1, x2, ..., xN) = 0. (60)

Suppose these equations have a root x∗1, x
∗
2, ..., x

∗
N. Then, we can write the

Taylor expansion around the xi as

fi(x
∗
1, x
∗
2, ..., x

∗
N) = fi(x1, x2, ..., xN) +

∑
j

(x∗j − xj )
∂fi
∂xj

+ ... (61)

In vector notation, this becomes

f(x∗) = f(x) + J · (x∗ − x) + ... (62)

where J is the Jacobian matrix, the N × N matrix with elements Jij = ∂fi
∂xj

.

Since x∗ is a root of the equations, f(x∗) = 0. Neglecting higher order terms
and setting ∆x ≡ x − x∗, we have

J · ∆x = f(x) (63)

This is a set of linear equations of the form A x = v, thus we could solve it
using (e.g.) the Gaussian elimination method or the Gauss-Seidel method.

Once we have solved for ∆x, our new estimate x′ of the position of the root
is

x′ = x − ∆x (64)

Thus, applying the Newton-Raphson method for more than one variable
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equations

involves evaluating the Jacobian matrix J of first derivatives at the point x,
then solving a system of linear equation for ∆x, then using the result to
calculate a new estimate of the root.

EXERCISE:

Write a script to implement relaxation method, bisection method and
Newton-Rapshon. Use them to find the zeros of the following function
of the eccentric anomaly E:

F = E − ecc ∗ np.sin(E) (65)

In the above equation, ecc is the eccentricity of a Keplerian binary
system: it can take any value in the range [0, 1). Please, try to solve the
equation for three different values of ecc = 0.1, 0.7, 0.9.
The term F = 2π tp/T (where T is the orbital period of the binary and
tp is the time elapsed from pericentre passage) is the mean anomaly
and can take any values between 0 and 2π. Please calculate the result
for F = π and π/3.
Finally, E is the eccentric anomaly of a Keplerian binary sys-
tem and is the unknown you should try to find with this
exercise. For more information on the eccentric anomaly, see
https://en.wikipedia.org/wiki/Eccentric_anomaly and the
figure below.

Solutions of the exercise (with tolerance 10−6):
E(ecc = 0.1, F = π/3) ∼ 1.137976
E(ecc = 0.7, F = π/3) ∼ 1.737494
E(ecc = 0.9, F = π/3) ∼ 1.899123
E(ecc = ∗, F = π) = π
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6. solution of non-linear equations

Figure 27: Visualization of the eccentric anomaly (credits: CheCheDaWaff,
Wikipedia).

Figure 28: Visualization of the L1 Lagrangian point between Earth and Moon
(credits: Mark Newman).
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equations

EXERCISE:

The L1 Lagrangian point between the Earth and the Moon is the point
at which the inward pull of the Earth and the outward pull of the
Moon balance, to give the centripetal force that keeps a satellite in a
synchronous orbit with the Moon: a satellite in L1 orbits the Earth in
perfect synchrony with the Moon. See Figure 28 for a visual representa-
tion (from Mark Newman’s book).
For simplicity, let’s assume that the orbits are circular (zero eccentricity),
that the mass of the satellity mSatellite is negligible with respect to both
the mass of the Earth (MEarth) and the mass of the Moon (MMoon). Under
such assumptions, you can easily find that the distance r from the center
of the Earth to the L1 point satisfies

G MEarth

r2 − GmMoon

(R − r)2 = ω2 r, (66)

where G = 6.674 × 10−8 cm3 g−1 s−2 is the gravity constant, MEarth =
5.974 × 1027 g, , mMoon = 7.348 × 1025 g, R = 3.844 × 1010 cm is the
distance between Earth and Moon, ω = (G MEarth/R3)1/2 is the angular
frequency of both the satellite and the moon.
Solve the above equations with the methods you know and estimate r.
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7 numerical derivatives

This chapter is based on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.

Textbooks on numerical methods often skip numerical derivatives, because

• they are (too) easy to understand;

• in many cases there is no need to calculate the derivative numerically,
because we can do it analytically (but the Newton-Raphson method is
an important example of a situation in which we may need to calculate
derivatives numerically);

• there are significant problems with numerical derivative accuracy, when
applied to noisy data (see below).

7.1 Forward, backward and central differences

A first derivative is defined as

df
dx

= lim
h→0

f (x + h) − f (x)
h

(67)

Numerically, a first derivative can be calculated simply as follows

df
dx
∼

f (x + h) − f (x)
h

(68)

where h is a “small” interval. The above equation is called forward difference,
because the derivative is calculated over the interval following x.

In contrast, a backward difference is calculated over the interval preced-
ing x:

df
dx
∼

f (x) − f (x − h)
h

(69)

Usually, the backward difference and the forward difference give similar
answers, but their goodness depends on the behaviour of the function f over
the interval. In any case, it is always safer to calculate the central difference,
i.e. the difference with respect to the mid point of the interval:

df
dx
∼

f (x + h/2) − f (x − h/2)
h

(70)
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7.2 Second derivatives

In a similar way, we can estimate also the second derivatives of a function.
Let’s take the first derivatives calculated with the central difference in the
following points:

f ′(x + h/2) ∼
f (x + h) − f (x)

h

f ′(x − h/2) ∼
f (x) − f (x − h)

h
(71)

Then, we apply again the central difference for the second derivative:

f ′′(x) ∼
f ′(x + h/2) − f ′(x − h/2)

h

=
[f (x + h) − f (x)]/h − [f (x) − f (x − h)]/h

h
=

f (x + h) − 2 f (x) + f (x − h)
h2 (72)

7.3 Partial derivatives

If you have a function f (x, y) of two variables, the central difference approxi-
mations to partial derivatives with respect to x and y are simply

∂f

∂x
=

f (x + h/2, y) − f (x − h/2, y)
h

∂f

∂y
=

f (x, y + h/2) − f (x, y − h/2)
h

(73)

7.4 Derivatives of noisy data

If the function we are sampling is actually a set of data with some noise (see
e.g. figure 29), the numerical derivative of this function will be even noisier.
The reason is that locally, the slope of the function in a given point might be
dominated by the slope of the noise in that point.

There are three ways to improve numerical derivatives in this case: i)
considering larger h, so that the contribution of noise cancels out (but often
this is not sufficient); ii) fitting a smooth curve to the data and then calculating
the derivative of the fit; iii) calculating the Fourier transforms of the data,
which makes them smoother (see Section 14)

EXERCISE:

You have already written a script to perform root finding with the
Newton-Raphson method. Now modify that script to include a nu-
merical derivative (for the case of eccentric anomaly) with the central
difference method.
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Figure 29: Top panel (a): example of noisy data; bottom panel (b): numerical
derivative of the noisy data (credits: Mark Newman, Computational physics).
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8 random numbers

This chapter is based on personal notes, on Computational Physics by Mark
Newman http://www-personal.umich.edu/~mejn/cp/ and on Numerical
Recipes in C by William H. Press and Saul A. Teukolsky http://www.nrbook.

com/a/bookcpdf.php.

Some (astro)physical processes are random. For example radioactive decay.
Quantum mechanics tells us the probability of decays per unit time, but the
exact moment of a decay is random and cannot predicted.

Other (astro)physical processes are not intrinsically random, but we might
need random numbers to represent them. For example, if we want to produce
a mock sample of astrophysical data (e.g. magnitudes of individual stars in
a star cluster), we might either produce this sample from a regular grid of
values or randomly draw some quantities from a distribution function.

For example, in computational astrophysics, initial conditions of simula-
tions are often drawn from random numbers. If we want to simulate a galaxy
or a star clusters with a number of stellar particles, we need to first assign
positions and velocities to these particles. If we perform this operation over
a fixed grid, we will get initial conditions that look quite unnatural (stars
are not evenly spaced in nature..). In contrast, if we randomly draw initial
positions and velocities from distribution functions, we get something that
looks more like “a real thing”.

Thus, it is important to know how to produce a set of random numbers
with a computer. How can a computer produce “genuine” random numbers?
Indeed, it cannot. Computer-generated random numbers are “pseudo-random”
numbers, because they are generated by a deterministic formula.

8.1 Random generators

Consider the following equation

x′ = (a x + c) mod m, (74)

where a, c and m are integer constants chosen such that m > 0, 0 < a < m,
0 ≤ c < m, and x is an integer variable. Given a value for x, this equation
calculates an integer value and assigns it to x′. Now suppose we take that
new value of x′ and plug it back in on the right-hand side of the equation
(replacing x) again and get another value, and so on, generating a series of
integers.

With a python script, this can be implemented as follows

119

http://www-personal.umich.edu/~mejn/cp/
http://www.nrbook.com/a/bookcpdf.php
http://www.nrbook.com/a/bookcpdf.php
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#file examples/random/rand_gen.py

N = 100

a = int(1664525)

c=int(1013904223)

m=int(4294967296)

x=1

results = []

for i in range(N):

x = (a*x+c)%m

results.append(x)

print(results)

This programs calculates the first 100 numbers in the sequence generated
by equation 74 with a = 1664525, c = 1013904223 and m = 4294967296. This
is a linear congruential random number generator. It generates a series of
apparently random integers, by iterating the same linear equation over and
over.

Note that m must always be larger than the sequence of random numbers
we want to generate. If we generate a sequence of N values with N > m we end
up repeating the same sequence from the beginning, that is the m + 1 number
will be the same as the first number of the sequence, the m + 2 number will be
the same as the second number of the sequence and so on. This is a terrible
mistake when using random numbers.

Of course, if we generate the sequence again and again, we will obtain
always the same sequence, unless we change the starting value of x. This is
important because it guarantees reproducibility of the results of any possi-
ble code/paper adopting this script, and reproducibility is one of the main
requirements in scientific experiments. Besides, reproducibility of a random
number series is a blessing when debugging a code.

Here below, we summarize the possible functions that generate random
numbers in python. There are at least two packages that contain functions
for random numbers: random and numpy.random (the latter is clearly a
sub-package of numpy).

From the random package, the function random.random() generates float-
ing point random numbers between 0 and 1. To obtain a random number in a
different range (for example between min=4. and max=100.), we can do the
following
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#file examples/random/use_random.py

import random

min=4.

max=100.

a=random.random()

b=a*(max-min)+min

print(a,b)

where b is a floating point random number between 4 and 100.

The function random.randint(min,max), which is also part of the random
package, generates integer random numbers between min and max.

From the numpy.random package, the function numpy.random.rand()
generates floating point random numbers between 0 and 1. Even in this case,
to generate a random number in a different range, we can do the following

#file examples/random/use_nprandom.py

import numpy as np

min=4.

max=100.

a=np.random.rand()

b=a*(max-min)+min

print(a,b)

where b is a floating point random number between 4 and 100.

8.2 Random number seeds

A seed is the input value that tells the random generator where to start its
sequence (for example, in the linear congruential generator of equation 74 it
is the very first value of x). The seed uniquely determines the entire series.
Usually, when the user does not provide the seed manually, the seed is au-
tomatically chosen based on the date of the computer. Thus, if we want to
ensure the reproducibility of our random series, it is better to choose the seed
manually and record it.

To assign the seed with random.seed, we can proceed the following way:
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#examples/random/use_seed.py

from random import random, seed

seed(42) #assign 42 as seed

for i in range(10):

a=random()

print(a)

To assign the seed with numpy.random.seed, we can proceed the following
way:

#examples/random/use_npseed.py

from numpy import random

random.seed(42) #assign 42 as seed

for i in range(10):

a=random.rand()

print(a)

Note that with numpy.random you can avoid to use the for cycle and
generate all the randoms you need, storing them into one array:

#examples/random/use_npseed.py

from numpy.random import random, seed

seed(42) #assign 42 as seed

for i in range(10): #calculate 10 random numbers with a loop

a=random()

print(a)

seed(42) #assign 42 as seed

b=random(10) #calculate 10 random numbers

#with properties of numpy arrays

print(b)

8.3 Uniform and non-uniform random numbers

The random numbers generated by a random generator are uniform deviates:
each of them has the same probability to be generated within a given range.
Mathematically, this is equivalent to say that the probability distribution
function is constant over the range:

p(x) dx = const dx (75)
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where p(x) is the probability distribution function, and p(x) dx is the proba-
bility to draw a random number between x and x + dx. For a uniform deviate
p(x) = const, where const is a normalization constant (which guarantees that∫
p(x) dx = 1).

For a general (astro)physical problem, it is more likely that we need ran-
dom numbers generated according to a specific non-constant probability
distribution function. For example, if we want to produce a set of (mock)
measurements with their statistical error, and we know that the statistical
error is well reproduced by a Gaussian distribution, we need to draw random
numbers following a Gaussian probability distribution function.

In this case, we proceed as follows. We first generate uniform deviates
with the random generator and then we transform these uniform deviates into
non-uniform deviates thanks to the laws of probability.

We will see two techniques:

• inverse random sampling;

• rejection method.

In addition, we will see the Box-Muller method to calculate Gaussian deviates,
which is a sophisticated version of the inverse random sampling method.

8.4 Inverse random sampling

The fundamental transformation law of probabilities tells that the probability
p(y) dy of generating a number between y and y+dy is equal to the probability
q(x) dx of generating a number between x and x + dx, that is

p(y) dy = q(x) dx (76)

regardless of the functional form of p(y) and q(x) and of the ranges, provided
that they are properly defined probabilities over their respective ranges (i.e.∫
p(y) dy = 1,

∫
q(x) dx = 1). Thus, the value of y is related to x by a function

y = y(x).
If q(x) dx is the probability to extract a uniform deviate between 0 and 1,

then q(x) = 1 and
x∫

0
dx′ = x. This means that for a generic p(y)

y(x)∫
ymin

p(y′) dy′ =

x∫
0

dx′ = x. (77)

This means that if we derive a uniform deviate x between 0 and 1 it is possible
to derive a non-uniform deviate y(x) as a function of x. Thus, it is possible to
generate a non-uniform random deviate from a uniform random deviate. The
necessary condition to extract y from x is that we can solve the left-hand term
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Figure 30: Visualization of the inverse random sampling method. From Press et al.,
Numerical recipes in C, Second Edition, Cambridge University Press.

of the integral 77 and that we can calculate y(x). See Figure 30 for a visual
representation.

For example, if p(y) = 2 y and ymin = 0 ymax = 1, then

y(x)∫
ymin

2 y′ dy′ = x, (78)

which gives
y(x) = x0.5 if ymin = 0 (79)

and

y(x) =
√
x + y2

min (80)

in the general case.
This method is called inverse random sampling, because the function

y(x) must be defined an invertible to derive y from x.
In practice, the steps we need to do to apply this method are the following.

1. Take a probability distribution function p(y) of the quantity y you want
to sample.

2. Integrate p(y) dy over the range to obtain the cumulative probability

distribution function P(y) =
y∫

ymin

p(y′)dy′
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3. P(y) is monotonic and takes values from 0 to 1 by definition of probabil-
ity.

4. Randomly sample the values x = P(y) of the cumulative distribution
function between 0 and 1 (with a random generator).

5. Invert the function P(y) to get y = P(y)−1.

6. Repeat steps 4 and 5 as many times as you need to get y for N random
numbers.

EXERCISE:

The Salpeter mass function [Salpeter, 1955] is one of the most popular
initial mass functions for stars. It is defined as

p(m) dm = constm−α dm, (81)

where α = 2.3. It means that, given a population of stars in the zero-
age main sequence, the probability to have a star of mass m in this
population is p(m) = constm−α. Massive stars are significantly less
common than light stars.
Assuming that the minimum stellar mass is mmin = 0.1 M� and the
maximum stellar mass is mmax = 150 M�, randomly calculate the mass
of 106 stars distributed according to the Salpeter initial mass function
by using the inverse random sampling technique. Plot the resulting
population of stellar masses with an histogram. The result should look
like Figure 31.

Suggestion: First you have to calculate the normalization constant const

and the analytic integral of
m∫

mmin

p(m′) dm′.

8.5 Gaussian random numbers

Many data samples in astrophysics follow a Gaussian distribution:

p(x) =
1

√
2πσ2

exp
(
−x2

2 σ2

)
, (82)

where σ is the standard deviation and the factor in front of the exponential is
a normalization. The cumulative probability distribution function associated
with equation 84 is

P(x) =
1

√
2πσ2

x∫
−∞

exp
(
−x′2

2 σ2

)
dx′ , (83)
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Figure 31: Result of the exercise on Salpeter mass function, written in three different forms. Take
home message: be careful with log−log histograms. Upper panel: Distribution of stellar masses
randomly generated according to a Salpeter mass function between 0.1 and 150 M� (blue histogram).
The red dashed line shows the slope y ∝ x−2.3. The y axis is a well defined probability distribution
function (PDF), which I generated using the option density=True of matplotlib.pyplot.hist(). If you
use python2 the option is normed=True. Central panel: Same as in the upper panel, but I build
the histogram manually with the function matplotlib.pyplot.step(). Note that in order to obtain the
values on the y−axis of this plot, you should take the number dN of elements per bin and divide it
by dM, where dM is the linear size of the bin. If you use logarithmic bins d log M, you have to
calculate dM = M d log M and then you get dN/dM = M−1 dN/d log M. Lower panel: the same
as the central panel but here the y−axis reports the values of dN/d log M = M dN/dM. Apart from
a normalization constant, this is equivalent to just plotting dN on the y−axis. Hence, the red dashed
line shows the slope y ∝ x−1.3. All the three panels are correct representations of the result. It is
important that you know what you put on the y−axis. To make it simpler, just plot the probability
distribution function (PDF) using the option density=True of hist, but I want you to be aware of
these logical steps.
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8.5. gaussian random numbers

which cannot be integrated. However, we can use the following trick.

Imagine we have two independent random numbers x and y both drawn
from a Gaussian distribution with the same standard deviation σ. The prob-
ability that the point with position vector (x, y) falls in some small element
dx dy of the Cartesian xy plane is then

p(x)dx p(y)dy =
1

√
2πσ2

exp
(
−x2

2 σ2

)
dx

1
√

2πσ2
exp

(
−y2

2 σ2

)
dy

=
1

2πσ2 exp
(
−
x2 + y2

2 σ2

)
dx dy (84)

Now we can rewrite the above formula in polar coordinates (r, θ), by using
the well known coordinate transformation x2 + y2 → r2, dx dy → r dr dθ:

p(r, θ) dr dθ =
1

2πσ2 exp
(
− r2

2 σ2

)
r dr dθ

=
r

σ2 exp
(
− r2

2 σ2

)
dr

dθ
2π

(85)

in the above equation, we can perfectly separate the term depending on r and
the term depending on θ and both of them have the correct normalization to
be a probability distribution function. In fact,

p(r) dr =
r

σ2 exp
(
− r2

2 σ2

)
dr (86)

p(θ) dθ =
1

2π
dθ (87)

These distribution functions can be easily integrated and inverted:

P(r) =

r∫
0

r ′

σ2 exp
(
− r ′2

2 σ2

)
dr ′ = 1 − exp

(
− r2

2 σ2

)
(88)

P(θ) =

θ∫
0

1
2π

dθ′ =
θ

2π
(89)

We can now use the inverse sampling technique to generate θ and r, by
generating two uniform random numbers z1 and z2 between 0 and 1, where
z1 = P(r) and z2 = P(θ), and we obtain

r =
√
−2 σ2 ln (1 − z1) (90)

θ = 2π z2 (91)

Finally, we derive x and y by transforming back from polar to Cartesian
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8. random numbers

coordinates x = r cos θ, y = r sin θ. In this way, we have generated two random
numbers (x and y), each of them distributed according to a Gaussian centered
in zero with standard deviation σ. We can use one of the two numbers and
store the other one for the future. If we want a Gaussian with a different mean
value, we can simply shift the random numbers by the desired value.

Note: in python you can directly generate Gaussian deviates by using
the function numpy.random.normal(loc=0.0,scale=2.0), where loc indicates
the mean and scale indicates the σ, or the function random.gauss(0.0, 2.0),
where the first and the second arguments are - again - the mean and the σ.

EXERCISE:

Write a script to generate N = 105 Gaussian deviates with the Box-
Muller method. Assume σ = 2 and that the Gaussian is centered on
zero. The result should look like Figure 32.

It can be shown that a Maxwellian curve

p(v) dv =

√
2
π

v2

σ3 exp
(
− v2

2 σ2

)
dv (92)

can be randomly sampled as v =
√
x2 + y2 + z2, where x, y and z are random

numbers distributed according to a Gaussian probability distribution function
centered around zero and with the same value of σ. Several astrophysical
processes follow a Maxwellian, too. For example, natal kicks of pulsars [Hobbs
et al., 2005].

EXERCISE:

Write a script to generate N = 105 random numbers following a
Maxwellian distribution with σ = 265 km s−1. According to Hobbs
et al. [2005], this is the distribution of natal kicks of neutron stars.

Note: every compact object which forms from a supernova is thought to
receive a kick at birth. The main reason is that linear momentum is conserved
during a supernova and asymmetries in the ejecta (or in neutrino losses)
push the compact object to move in the opposite direction with respect to the
bulk of the ejecta.
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8.5. gaussian random numbers

Figure 32: Blue histogram: sample of 105 random values distributed according to
a Gaussian distribution. The values were generated with the Box-Muller method.
Red line: analytic Gaussian distribution.
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8. random numbers

Figure 33: Visualization of the rejection sampling method. From Press et al., Nu-
merical recipes in C, Second Edition, Cambridge University Press.

8.6 Rejection method

What can we do when the cumulative distribution function cannot be ei-
ther calculated or inverted (easily)? We can follow the rejection sampling
approach.

1. Take a probability distribution function p(x) of the quantity x you want
to sample. But p(x) is difficult/impossible to integrate (or it can be
integrated but then the cumulative distribution cannot be inverted)!

2. Take a second function f (x), with f (x) > p(x) everywhere, that can be
easily integrated and whose cumulative distribution function can be
easily inverted, to obtain the cumulative distribution function g(x) =
x∫

xmin

f (x′)dx′ (note that g(x) is NOT a well defined probability).

3. Randomly sample y = g(x) between min and max value.

4. Invert g(x) to obtain x. x is distributed according to f (x).

5. Generate a second random number m uniform between 0 and f (x).
Reject x if m > p(x) and accept x if m ≤ p(x).

6. Repeat 3, 4 and 5 as many times as you need to get x for N particles.

This procedure is visualized in figure 33.
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8.6. rejection method

EXERCISE:

Generate 104 points distributed according to a Gaussian (with σ = 2
and centered around zero) with the rejection method, by using the
distribution function f (x) = 1, uniform between min = −50 and max =
+50. The result should look like Figure 34.

Suggestion: once again, note that f (x) is not a well defined probability
distribution function – and it cannot be, because f (x) > p(x) everywhere,
where p(x) is a well defined probability function (the Gaussian PDF in this

case). Hence y(x) =
x∫

xmin

f (x) dx is a uniform random number but does not

necessarily lie in the interval between 0 and 1. You must first calculate

ymax =

xmax∫
xmin

f (x) dx (93)

Hence, you should draw an uniform random number y ∈ [0, ymax].
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8. random numbers

Figure 34: Blue histogram: sample of 104 random values distributed according to a
Gaussian distribution. The values were generated with the rejection method. Red
line: analytic Gaussian distribution.
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8.6. rejection method

EXERCISE:

The Plummer sphere [Plummer, 1911] is a density distribution function
expressed as

ρ(r) =
3 M

4πa3

(
1 +

r2

a2

)−5/2

, (94)

where ρ(r) is the mass density (g cm−3), a is a typical scale-length, r is
the radial coordinate (in spherical coordinates) and M is the total mass
of the sphere. The Plummer sphere is used in astrophysics because it is
the simplest distribution function that mimics the radial distribution
of stars in a star cluster.
The goal of this exercise is to build an N-body model for a virialized
star cluster, where stellar masses are randomly drawn from a Salpeter
IMF, positions are randomly drawn from a Plummer sphere density dis-
tribution and stellar velocities are randomly drawn from a Maxwellian
curve:

• stellar masses are drawn from a Salpeter mass function with
mmin = 0.1 M� and mmax = 150 M�;

• stellar positions are drawn from a Plummer spere with scale
radius a = 1 pc;

• stellar velocities are drawn from a Maxwellian distribution;

• the star cluster is in virial equilibrium, i.e. Qvir = 2 K/ |W| = 1,
where K and W are the kinetic and the potential energy of the
cluster.

For simplicity, let us also assume that:

• the cluster has 103 stars (you can try also 104 after your script is
debugged: it takes longer to run);

• the mass of a star does not depend on star’s position inside the
cluster (no initial mass segregation);

• the velocity of a star does not depend on star’s position inside the
cluster;

• the distribution of stellar positions and velocities are isotropic.

If you think you already understood what you need to do, stop read-
ing here and start working. If you need some more suggestions, keep
reading.
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8. random numbers

EXERCISE, suggestion:

The first step to do is to randomly draw stellar masses from the Salpeter
IMF, as you have done in a previous exercise (just import your function
or copy-and-paste it to the new script). As you can simply verify, draw-
ing 103 stars is equivalent to a mass of ∼ 300 − 500 M� (a part from
stochastic fluctuations), because the average stellar mass is ∼ 0.3 − 0.5
M�. Save the exact value of the total mass in M.

The second step is to randomly draw stellar positions according to a
Plummer. On the other hand, equation 94 is a density distribution,
while we need the mass distribution assuming the cluster is isotropic,
hence:

dm = ρdV = ρ(r) r2 sin θdθdφdr, (95)

where I have used the definition of the volume element in spherical
coordinates dV = r2 sin θdθdφdr.
The good news of assuming spatial isotropy is that the angular coordi-
nates (θ and φ) are independent from each other and from the radial
coordinate r: we can draw r, θ and φ as three independent random
numbers, from three different distributions.
Let’s start with φ, which is the simplest one. The cumulative probability
distribution of φ is

P(φ) =
1

2π

φ∫
0

dφ′ =
φ

2π
(96)

Thus, we can draw a uniform random number P(φ) from 0 to 1 and
then estimate φ as φ = 2π P(φ).
Now, let’s calculate θ: the cumulative probability distribution of θ is

P(θ) =
1
2

θ∫
0

sin θ′ dθ′ =
1
2

(1 − cos θ) (97)

Thus, I can draw a uniform random number P(θ) between 0 and 1 and
then I can extract θ from P(θ) by simply inverting the above equation
θ = arccos [1 − 2 P(θ)].
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EXERCISE, suggestion:

To extract r is a bit more complicated. The cumulative distribution
function of mass is

M(r) =
∫
V

ρdV =

2π∫
0

dφ

π∫
0

sin θdθ

r∫
0

ρ(r) r2 dr,

= 4π

r∫
0

3 M
4π a3

(
1 +

r2

a2

)−5/2

r2 dr,

= M
( r
a

)3
(
1 +

r2

a2

)−3/2

(98)

Hence, the probability cumulative distribution function is

P(r) =
( r
a

)3
(
1 +

r2

a2

)−3/2

(99)

After few math. steps, we find that equation 99 can be inverted. We
can draw a uniform random number P(r) from 0 and 1 and then obtain

r =
√

a2

P(r)−2/3−1 .

Finally, we randomly draw 103 values for φ, θ, and r. It might be easier
to plot our points in Cartesian coordinates, thus we simply make the
conversion:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (100)
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8. random numbers

EXERCISE, suggestion:

Now, we must assign a velocity to each of the 103 particles. Since stellar
velocities do not depend on positions (according to our assumption),
we do not need to worry about stellar position in the cluster (in real-life
clusters we should). Moreover, since we assumed that velocities are
isotropic, we can do the same as we did for positions and generate the
modulus of velocity v, and the angles θ and φ independently of each
other. For θ and φwe do exactly as in equations 97 and 96. To generate
v, you can use the script you produced for the exercise on the Box-
Muller method and extend it to generate Maxwellian deviates, knowing
that vMaxwellian =

√
x2 + y2 + z2, where x, y and z are random deviates

distributed according to a Gaussian distribution function centered on
zero (mean value equal to zero).
We need to assign a value to the standard deviation of the three Gaus-
sian curves (they must have the same standard deviation to produce a
Maxwellian curve, when combined together). Let’s start from a guess
value σ = 0.5 km s−1. This value will be updated later to the correct one,
when we impose the virial condition. Note that the standard deviation
of the Gaussians will become the one-dimensional root mean square
parameter σ of the Maxwellian.
Once we have generated 103 new values for v, θ and φ, we can convert
to Cartesian coordinates by using the following transformation:

vx = v sin θ cosφ

vy = v sin θ sinφ

vz = v cos θ (101)

The last step consists in enforcing the virial equilibrium. We need to
calculate the total kinetic energy and the total potential energy of the
star cluster we have just generated, as

K =
1
2

N∑
i=1

mi v
2
i

W = −G
N∑
i=1

N∑
j>i

mi mj

|~xi − ~xj |
. (102)

We calculate the virial ratio of our cluster as Qvir = 2 K/ |W|. If Qvir , 1,
we have to impose the virial condition. The simplest way to do so, given
the isotropy of positions and velocities, is to rescale the velocities by:

vx = vx/Q
1/2
vir

vy = vy/Q
1/2
vir

vz = vz/Q
1/2
vir . (103)

The correct result should look like Figure 35.
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8.6. rejection method

Figure 35: Properties of the Plummer model. From top to bottom and from left
to right: probability distribution function (PDF) of the stellar radii, PDF of the
velocities, enclosed mass and scatter plot of the stellar positions in the xy plane.
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9. integration of functions

Figure 36: Visualization of the trapezoidal rule (Credits: Mark Newman, Compu-
tational Physics.

9 integration of functions

This chapter is based on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.

Suppose we want to integrate a given function. Let’s start from the sim-
plest case: the integral of a function of a single variable over a finite range.
There are many different methods to calculate the integral of a function nu-
merically (for example: trapezoidal rule, Simpson’s rule, Romberg integration,
Gauss quadrature and Monte Carlo methods). Here we consider two of them:
trapezoidal rule and Monte Carlo method.

9.1 Trapezoidal rule

Let’s suppose we want to integrate function f (x) between x = a and x = b (see
Figure 36):

I(a, b) =

b∫
a

f (x) dx. (104)

This operation is equivalent to calculate the area under the curve f (x) from a
to b. The simplest way to proceed is to divide this area into rectangular slices,
calculate the area of each rectangle and then sum them up.

Instead of rectangles, we can use trapezoids and (as we see from the Figure)
this is already a significant improvement. In practice, we divide the interval
from a to b into N slices (or steps) so that each slice has a width h = (b − a)/N.
Then, the right-hand side of the k − th slice falls at a + k h and the left-hand
side of the k − th slice falls at a + k h − h = a + (k − 1) h. Thus, the area of the
k − th trapezoid is

Ik =
1
2
h [f (a + (k − 1) h) + f (a + k h)] , (105)
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9.2. estimate of the errors

which is called trapezoidal rule.

Now, the final integral will be written as the sum of the Ik :

I(a, b) '
N∑
k=1

Ik =
1
2
h

N∑
k=1

[f (a + (k − 1) h) + f (a + k h)] ,

=
1
2
h [f (a) + 2 f (a + h) + 2 f (a + 2 h) + ... + 2 f (a + (N − 1) h) + f (b)] ,

= h

1
2
f (a) +

1
2
f (b) +

N−1∑
k=1

f (a + k h)

 (106)

9.2 Estimate of the errors

The numerical solution of an integral is an approximation. We want to estimate
how good (or bad) this approximation is. Let’s consider again our generic
function f (x) and let’s make a Taylor expansion of f (x) about the slice k − 1
(xk−1):

f (x) = f (xk−1) + (x − xk−1) f ′(xk−1) +
1
2

(x − xk−1)2 f ′′(xk−1) + ... (107)

where f ′ and f ′′ are the first and second derivatives of f , respectively. Inte-
grating the above equation between k − 1 and k:

xk∫
xk−1

f (x) dx = f (xk−1)

xk∫
xk−1

dx +f ′(xk−1)

xk∫
xk−1

(x−xk−1) dx +
1
2
f ′′(xk−1)

xk∫
xk−1

(x−xk−1)2 dx +...

(108)

If we substitute u = x − xk−1 and we use the fact that xk − xk−1 = h (see the
definition of h for the trapezoidal rule):

xk∫
xk−1

f (x) dx = f (xk−1)

h∫
0

du + f ′(xk−1)

h∫
0

u du +
1
2
f ′′(xk−1)

h∫
0

u2 du + ...

= h f (xk−1) +
1
2
h2 f ′(xk−1) +

1
6
h3 f ′′(xk−1) + O(h4),(109)

where O(h4) denotes the rest of the terms of the series, that are smaller than
h3 and that we neglect.

We repeat the same Taylor expansion around xk :

f (x) = f (xk) + (x − xk) f ′(xk) +
1
2

(x − xk)2 f ′′(xk) + ... (110)

Then, we integrate from xk−1 to xk, using the same trick u = x − xk−1 and
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h = xk − xk−1. It is important to notice that xk = xk−1 + h:

xk∫
xk−1

f (x) dx = f (xk)

xk∫
xk−1

dx + f ′(xk)

xk∫
xk−1

(x − xk−1 − h) dx +
1
2
f ′′(xk)

xk∫
xk−1

(x − xk−1 − h)2 dx + ...

= f (xk)

h∫
0

du + f ′(xk)

h∫
0

(u − h) du +
1
2
f ′′(xk)

h∫
0

(u − h)2 du + ...

= h f (xk) + f ′(xk)


h∫

0

u du − h
h∫

0

du

 +
1
2
f ′′(xk)


h∫

0

u2du − 2 h

h∫
0

u du + h2

h∫
0

du

 + ...

= h f (xk) + f ′(xk)
(1

2
h2 − h2

)
+

1
2
f ′′(xk)

(1
3
h3 − h3 + h3

)
+ ...

= h f (xk) − 1
2
h2 f ′(xk) +

1
6
h3 f ′′(xk) + O(h4)(111)

Taking the average of equations 109 and 113, we get

xk∫
xk−1

f (x) dx =

=
1
2
h [f (xk−1) + f (xk)] +

1
4
h2 [f ′(xk−1) − f ′(xk)] +

1
12

h3 [f ′′(xk−1) + f ′′(xk)] + O(h4)(112)

Finally, we sum this expression over all the slices to get the integral from a to
b:

b∫
a

f (x) dx =
N∑
k=1

xk∫
xk−1

f (x)dx

=
1
2
h

N∑
k=1

[f (xk−1) + f (xk)] +
1
4
h2 [f ′(a) − f ′(b)] +

1
12

h3
N∑
k=1

[f ′′(xk−1) + f ′′(xk)] + O(h4)(113)

In the above equation, the term 1
2 h

N∑
k=1

[f (xk−1) + f (xk)] is identical to the

trapezoidal rule. This means that when we apply the trapezoidal rule, we
assume

b∫
a

f (x) dx =
1
2
h

N∑
k=1

[f (xk−1) + f (xk)] (114)

and we discard all the other terms. The size of the terms we have discarded
tells us what is the approximation error of the method. In principle, all
O(h2) terms are neglected in the trapezoidal method, which makes it a first-

140



9.2. estimate of the errors

order approximation method, i.e. it is accurate to O(h) and the leading-order
approximation error is of the order of h2.

This result has an intuitive and useful application: since the approximation
error scales with h2, we can make the error smaller by using a smaller value
of h.

Numerical integration, as all the other numerical calculations, is subject
also to rounding errors, which indicate the amount by which the finite com-
puter’s representation of the number is wrong. Thus, when approximation
errors and the rounding errors become comparable, decreasing h does not
make any improvement in the result.

EXERCISE:

As we already discussed for random numbers, we can obtain the mass
of an astrophysical system (galaxy, cluster of galaxies or stellar cluster)
by computing the following integral

M =

rmax∫
0

4π r2 ρ(r) dr, (115)

where ρ(r) is the density distribution function (DDF) and rmax is the
maximum radius of the system (i.e. a cut-off radius).
Here below, you can find some examples of DDFs commonly used in
astrophysics.
1. The singular isothermal sphere is possibly the simplest profile used
to represent the density profile of an astrophysical system:

ρ(r) =
σ2

2πG r2 , (116)

where σ is the central velocity dispersion of the system and G is the
gravity constant. The isothermal sphere is very simple but has two
problems: the central divergence and the fact that mass never goes
to zero at infinite distance from the centre (i.e. we must truncate it
drastically). These problems can be cured by deriving more complex
versions of this DDF (for example the lowered King model, [King,
1966]), but for the purpose of this exercise let’s consider just the simple
version of the isothermal sphere, given by equation 116.
Calculate the integral 115 for a singular isothermal sphere with the
trapezoidal rule, assuming σ = 10 km s−1 (typical of a star cluster) and
rmax = 10 pc.
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EXERCISE, continued:

2. The Navarro-Frenk-White (NFW) DDF is commonly used to de-
scribe simple spherical dark matter haloes (after Navarro et al. 1996):

ρ(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (117)

where ρ0 is a normalization (in units of mass/volume) and rs is the
scale radius (in units of length).
Calculate the integral 117 for a NFW profile with the trapezoidal rule,
assuming ρ0 = 108 M� kpc−3, rs = 10 kpc and rmax = 100 rs.

The integrals you just calculated numerically can be solved analytically
(both for the isothermal sphere and for the NFW profile). Solve
the integrals analytically (or google the correct forms, if you have
problems with analytic integrals..). Compare the result of the numerical
integration with the analytic value. How large are the errors? How
much do they improve when reducing the step size in the integration?

Results:
Isothermal sphere: M ∼ 4.65 × 105 M�
NFW profile: M ∼ 4.56 × 1012 M�

9.3 Monte Carlo technique

Random numbers can be used to integrate “challenging” functions, which
vary too fast or require multi-dimensional integration.

Suppose we want to evaluate the integral

I =

2∫
0

sin2
[

1
x (2 − x)

]
dx (118)

The entire function sin2
[

1
x (2−x)

]
for x ∈ [0,2] fits in the 2 × 1 rectangle (Fig-

ure 37). The area of the rectangle is A = 2. Thus, the value of the integral I
(the area below the curve in Figure 37) is finite and must be less than A = 2.

Let’s use what we learned for the rejection method of random numbers.
First, let’s generate random points uniformly in the rectangle A. In order

to do so, we have to generate two independent uniform random numbers, one
for the x and one for the y Cartesian coordinates of the point. Obviously, the
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9.3. monte carlo technique

Figure 37: The blue area is integral I of the function presented in equation 118.
The entire rectangle defined by the x and y axes is A.
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x coordinate will be generated uniformly in [0, 2], while the y coordinate will
be generated uniformly in [0, 1].

If we choose a point uniformly at random in the rectangle A (as detailed
above), the probability that that point falls in the blue shaded region is p = I/A.
In other words, the probability that a random point falls under the curve rather
than over is p = I/A.

So, here is our scheme: we generate a large number N of random points in
the bounding rectangle A, check each one to see if it is below the curve and
keep a count of the number of points that are below the curve. Let’s call this
number k. This is equivalent to say that we take all the points below the curve
and we reject (like in the rejection method) all the points above the curve.

The fraction of points below the curve k/N should be approximately equal
to the probability p, that is

I ' k A
N

(119)

EXERCISE:

Write a python script to perform the integration in equation 119
of the integral in equation 118. Calculate the integral with N =
103, 5 × 103, 104, 5 × 104, 105, 5 × 105, 106, 5 × 106. Estimate and plot
the difference you obtain by repeating this exercise with different values
of N (the plot will be N on the x axis and I on the y−axis). The result
should look like Figure 38 (I ∼ 1.45).

Note: we should generate two random numbers per each point: one along
the x−axis and one along the y−axis.

It can be shown (or proved experimentally, see the bottom panel of Fig-
ure 38) that the error scales with N as N−1/2: the accuracy improves the more
random samples we take. This scaling is not particularly good. Even the trape-
zoidal rule did better. In fact, the error of the trapezoidal rule goes as h2,
h = (b − a)/N being the height of the trapezoids. Hence the error in the trape-
zoidal rule goes as N−2, much faster than with the Monte Carlo algorithm we
just described. In the following, we see how we can improve it.

9.3.1 The mean value method

We want to evaluate the integral

I =

b∫
a

f (x) dx (120)

The average value of f (x) from a to b is
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9.3. monte carlo technique

Figure 38: Top panel: Result of the exercise on the simplest Monte Carlo integration.
Bottom panel: Residuals (in blue), calculated as |I(N) − Iacc| / Iacc, where Iacc =
1.45152558 is a particularly good solution of the integral you can get with the
mean value method (see Section 9.3.1). The red line is the scaling y ∝ N−1/2.
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〈f 〉 =

b∫
a
f (x) dx

b∫
a

dx

=
1

b − a

b∫
a

f (x) dx (121)

Thus, we can rewrite equation 120 as

I = (b − a) 〈f 〉 (122)

If we estimate 〈f 〉 with sufficient accuracy, then we can estimate I. A sim-
ple way to estimate 〈f 〉 is to measure f (x) at N points x1, x2, ..., xN chosen

uniformly at random between a and b and calculate 〈f 〉 = N−1
N∑
i=1

f (xi).

In this way, we get the fundamental formula for the mean value method,
which is

I =
(b − a)

N

N∑
i=1

f (xi) (123)

It can be shown that even with this method the error goes as N−1/2, but, for a
given N, the error is smaller than in the previous method (equation 119).

EXERCISE:

Write a python script to perform the integration with the mean value
method (equation 123) of the integral in equation 118. Calculate the
integral with N = 103, 5 × 103, 104, 5 × 104, 105, 5 × 105, 106, 5 × 106.
Estimate and plot the difference you obtain by repeating this exercise
with different values of N (the plot will be N on the x axis and I on the
y−axis). The results should look like Figure 39 (I ∼ 1.452).

EXERCISE:

Use the scripts you have produced to perform Monte Carlo integration
with mean value to integrate the mass of a stellar system according to
the singular isothermal sphere and to the NFW density profiles (as you
already did for the trapezoidal rule).

9.3.2 Integrals in many dimensions

The mean value method can be used to calculate multi-dimensional integrals
quite efficiently, much faster than other methods. The integral of a function
f (x) over a volume V in a high-dimensional space is given by the generaliza-
tion of equation 123:
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Figure 39: Result of the exercise on the mean value method. If you compare this
plot with the result of the exercise on the simplest Monte Carlo integration method,
you see that the mean value method converges much better and faster than the
oversimplified method presented in equation 119.
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I ' V
N

N∑
i=1

f (ri) (124)

where the points ri are picked uniformly at random from the volume V.

9.3.3 Importance sampling

The Monte Carlo methods presented with equations 123 and 124 are very
efficient but perform rather poorly if the function to integrate is particularly
pathological, for example if it contains a divergence. For example

I =

1∫
0

x−1/2

ex + 1
dx (125)

This equation (which by the way is used in the theory of Fermi gases) diverges
at x = 0. The integral is finite in value but if you try to solve it with the mean
value method you run into troubles because the bins around 0 give a very
large contribution to the sum.

Then, you want to find a new Monte Carlo method able to understand
where the function becomes pathological and to “get rid” of the pathology.
The basic idea is that we use a similar algorithm to the mean value method but
we substitute the uniformly drawn N random points xi with non-uniformly
drawn random points. We proceed in the following way. For any general
function g(x) we can define a weighted average over the interval from a to b
as

〈g〉w =

b∫
a
w(x) g(x) dx

b∫
a
w(x) dx

(126)

where w(x) is a generic function we choose (the weighting function).

Setting g(x) = f (x)/w(x), the above equation becomes

〈
f (x)
w(x)

〉
w =

b∫
a
f (x) dx

b∫
a
w(x) dx

(127)

Let’s consider again the generic integral of equation 120. From equation 120,
we can re-write equation 128 as
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〈
f (x)
w(x)

〉
w =

I
b∫
a
w(x) dx

(128)

Thus

I =
〈
f (x)
w(x)

〉
w

b∫
a

w(x) dx (129)

Equation 129 is analogous to the mean value method (equation 123) but
contains a weighted mean instead of a simple uniform average.

How can we do a weighted mean? Let’s define a probability density func-
tion as

p(x) =
w(x)

b∫
a
w(x) dx

(130)

which is the function w(x) normalized so that its integral is 1. Let us sample
N random points xi non uniformly with this probability density function.
That is, the probability of generating a value in the interval between x and
x + dx is p(x) dx. Thus, if I draw N random numbers, the average number of
samples that fall in this interval is N p(x) dx and so for any function g(x)

N∑
i=1

g(xi) '
b∫
a

N p(x) g(x) dx (131)

This approximation gets better if N gets larger.

Substituting equation 130 into equation 126 we get

〈g〉w =

b∫
a

p(x) g(x) dx (132)

Finally, substituting equation 131 into the above equation, we find

〈g〉w =

b∫
a

p(x) g(x) dx ' 1
N

N∑
i=1

g(xi) (133)

where the points i are chosen from the distribution 130. Assuming now that
g(x) = f (x)/w(x), we can plug equation 133 into equation 129 and we get
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I =
1
N

N∑
i=1

f (xi)
w(xi)

b∫
a

w(x) dx (134)

which is the fundamental equation of importance sampling.

The main difference with respect to the mean value method is that we

calculate the sum
N∑
i=1

f (xi )
w(xi )

instead of the sum
N∑
i=1

f (xi). This is important

because it allows to choose a function w(x) that gets rid of pathologies in the
integrand f (x). If f (x) has a divergence, we can factor that divergence out and
hence get a sum that is well behaved. The price we pay is that we have to draw
our random numbers xi from a non-uniform distribution instead of a uniform
one, which makes the programming more complex.

For example, in the case we started with (equation 125) a reasonable choice
of w(x) is w(x) = x−1/2. In this case,

1. f (x)/w(x) = (ex + 1)−1, which has no singularity anymore;

2. the integral of w(x) can be easily calculated as follows:

b∫
a

w(x) dx =

1∫
0

x−1/2 dx = 2
√
x
∣∣∣∣1
0

= 2; (135)

3. we need to draw the random numbers xi according to the probability
distribution function associated to w(x), i.e.

p(x) =
x−1/2

1∫
0
x−1/2dx

=
1
2
x−1/2. (136)

Hence, with the inverse sampling method

y =

x∫
0

p(x) dx =
1
2

x∫
0

x−1/2 dx = x1/2

→ x = y2 (137)
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9.3. monte carlo technique

Figure 40: Result of the exercise on the importance sampling technique.

EXERCISE:

Write a python script to perform the integration in equation 125 with
the importance sampling (I ∼ 0.839). Calculate the integral with N =
103, 5 × 103, 104, 5 × 104, 105, 5 × 105, 106, 5 × 106. Evaluate the same
integration, for the same values of N, with your script that makes use
of the mean value method. Compare the results. The result should look
like Figure 40. The importance sampling performs very well already
for a small value of N.

151



9. integration of functions

9.4 Built-in functions to integrate in python

As we have seen in the lookback time example (examples/python/loock-
back.py, Chapter 2), the package scipy.integrate contains options to integrate
a function6. Let’s discuss this in more detail.

1. Methods for integrating functions given fixed samples.

This is equivalent to the methods we have discussed in this Chapter. The
python function takes as argument an array of points f (xi) (i.e. a fixed sample)
and the corresponding array xi over which it performs the integration. The
main functions in this family are

trapz Use trapezoidal rule to compute integral from samples.

cumtrapz Use trapezoidal rule to cumulatively compute integral.

simps Use Simpson’s rule (we did not have time to discuss it during these
lectures but you can find it on Mark Newman’s book) to compute integral
from samples.

romb Use Romberg Integration (we did not have time to discuss it during
these lectures but you can find it on Mark Newman’s book) to compute
integral from (2 ∗ ∗k + 1) evenly-spaced samples.

Here below (and in the examples/integral/trapz.py), you can find an
example of how to use scipy.integrate.trapz (a similar procedure applies to
the other functions):

6The package scipy does not come with the default python. You must install it separately.
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9.4. built-in functions to integrate in python

#how to use the trapz function of scipy.integrate

#applied to the NFW profile

#it calculates equation 102 of the lecture notes

#examples/integral/trapz.py

from scipy.integrate import trapz

import numpy as np

G=6.667e-8 #gravity constant in cgs

pc=3.086e18 # 1 pc in cgs

msun=1.989e33 #solar mass in cgs

rs=10.*1e3*pc #10 kpc in cgs

rmax=100.*rs

rho0=1e8*msun/(1e3*pc)**3 #1e8 Msun/kpc^3 in cgs

def NFW(r):

x=r/rs

rho=rho0/((1.+x)**2)

mass=4.*np.pi*rs*r*rho

return mass

b=rmax

a=0.0

intervallo=(b-a)

N=int(1e6)

h=intervallo/N

trapzx=[a]

trapzy=[NFW(a)]

for i in range(1,N-1,1):

trapzx.append(a+i*h)

trapzy.append(NFW(a+i*h))

trapzx.append(b)

trapzy.append(NFW(b))

II=trapz(trapzy,trapzx)

print("with scipy.integrate.trapz I= ",II/msun," Msun")
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2. Methods for integrating functions given function object.

In this case, python takes the analytic form of the function you want to
integrate as an argument, plus the integration range, and decides in which
points xi to evaluate the function. This is exactly what we have done for the
lookback time in the example examples/python/lookback.py of Chapter 2.
The main functions in this family are

quad General purpose integration (uses a technique from the Fortran library
QUADPACK: contains different algorithms to solve integrals).

dblquad General purpose integration in two dimensions (two variables).

tplquad General purpose integration in three dimensions (three variables).

fixed_quad Integrate func(x) using Gaussian quadrature of order n (we did not have
time to discuss this method during these lectures but you can find it on
Mark Newman’s book).

quadrature Integrate with given tolerance using Gaussian quadrature

romberg Integrate func using Romberg integration (we did not have time to
discuss this method during these lectures but you can find it on Mark
Newman’s book).

Let’s take a better look at examples/integral/lookback.py (this is a new
version of examples/python/lookback.py) to see how scipy.integrate.quad
works (the other functions work in a similar way).

The basic commands are:

#examples/python/lookback.py

import scipy.integrate as integrate

[...]

ltime=integrate.quad(integrand, 0.0, z, epsrel=1.e-13)

The first argument of quad is the function that you want to integrate (in
the example, integrand). The second and third argument are the two extremes
of the interval over which you want to integrate (in the example, 0.0 and z).
Then, there are other possible optional arguments. The only one shown in
the example is very useful: epsrel= indicates the relative error tolerance (the
default is 1.49e-8, which is already very good).

The function that you want to integrate (in the example, integrand) can be
expressed in several ways.

You can define it with define:
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9.4. built-in functions to integrate in python

OmegaM=0.2726 #omega matter, parameter from cosmology

OmegaL= 0.7274 #omega lambda, parameter from cosmology

def integrand(x):

r=1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

return r

Or you can use the compact definition form:

integrand = lambda x: 1./((1.+x)*(OmegaM*(1.+x)**3.+OmegaL)**0.5)

where “lambda x:” specifies what is the variable.

155



10. integration of ordinary differential

equations (odes)

10 integration of ordinary differential
equations (odes )

This chapter is based on personal notes and on Computational Physics by Mark
Newman http://www-personal.umich.edu/~mejn/cp/.

Differential equations are ubiquitous in astrophysics. For example, let’s
consider i) the equations of motion of a particle (e.g. a star) subject to Newton’s
gravity force, or ii) the equation of hydrostatic equilibrium of a stellar interior.
Thus, it is particularly important to know how to solve them and we will treat
this topic with great detail.

10.1 Euler scheme

The general form of a first-order one-variable ordinary differential equation is

dx
dt

= f (x, t) (138)

For a concrete example, let’s assume that t is the time and x the position.
To integrate equation 138 numerically, the simplest way to proceed is with

a Taylor expansion:

x(t + h) = x(t) +
dx
dt

h +
1
2

d2x

dt2 h2 + ... (139)

which we can rewrite in the form

x(t + h) = x(t) + h f (x, t) + O(h2) (140)

If we neglect terms of order higher than h, the equation becomes

x(t + h) = x(t) + h f (x, t) (141)

The above equation tells us that if we know the value of x at time t, then we
can estimate the value of x at time t + h. This approximation is particularly
good if h is small. Equation 141 defines the Euler’s method, after its inventor,
Leonhard Euler. To describe the evolution of x over a time interval between
t = a and t = b, with b − a� h, we must repeat equation 141 for N time-steps,
with N = (b − a)/h.

By looking at equation 140, we immediately realize that the Euler method
is a first-order method: errors scale as h2. While we can improve the results
by reducing h, we cannot make h too small, otherwise the calculation becomes
too slow. There are other methods with intrinsic higher accuracy that require
less computational power.

156

http://www-personal.umich.edu/~mejn/cp/


10.2. second-order runge-kutta scheme

10.2 Second-order Runge-Kutta scheme

The Euler method is also called first-order Runge-Kutta scheme, because it
represents the first-order approximation version of the Runge-Kutta family.
The second-order Runge-Kutta scheme, or midpoint method, is very simple
and significantly more accurate than the Euler method.

The midpoint method consists in evaluating the slope dx/dt of x not at
the end of the interval, but at the midpoint of the interval h. In mathematical
terms, this corresponds to performing a Taylor expansion around t + 1/2 h:

x(t + h) = x
(
t +

1
2
h
)

+
1
2
h

(
dx
dt

)
t+ 1

2 h

+
1
8
h2

(
d2x

dt2

)
t+ 1

2 h

+ O(h3)

x(t) = x
(
t +

1
2
h
)
− 1

2
h

(
dx
dt

)
t+ 1

2 h

+
1
8
h2

(
d2x

dt2

)
t+ 1

2 h

+ O(h3) (142)

Subtracting the second expression from the first, we get

x(t + h) = x(t) + h

(
dx
dt

)
t+ 1

2 h

+ O(h3)

= x(t) + h f
(
x
(
t +

1
2
h
)
, t +

1
2
h
)

+ O(h3) (143)

The error scales with h3, i.e. the midpoint scheme is a second-order scheme.

The problem here is that equation 143 requires the knowledge of x at
the point t + h

2 , which we do not have. This is a so-called implicit scheme: a
scheme in which information is required on some quantities we still do not
know. We have to calculate them in an approximate way with a trick.

We get around this problem by approximating x
(
t + h

2

)
with Euler’s method[

x
(
t + h

2

)
= x(t) + h

2 f (x(t), t)
]

and then substituting it into the above equation.
The complete midpoint scheme for a single step is thus:

k1 =
h
2
f (x(t), t)

k2 = h f

(
x(t) + k1, t +

h
2

)
x(t + h) = x(t) + k2 (144)

10.3 Fourth-order Runge-Kutta scheme

We can use the same formalism to improve the accuracy even more, cancelling
out terms that scale with h3 and h4. When introducing these terms, the scheme
becomes more complicated to implement. Usually, the fourth-order version of
Runge-Kutta (with errors scaling as h5) is considered the best match between
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accuracy and not-too-complicated programming. The equations look like:

k1 =
1
2
h f (x, t)

k2 =
1
2
h f

(
x + k1, t +

1
2
h
)

k3 = h f
(
x + k2, t +

1
2
h
)

k4 = h f (x + k3, t + h)

x(t + h) = x(t) +
1
6

(2 k1 + 4 k2 + 2 k3 + k4) (145)

We do not derive equation 145 because the algebra is quite tedious, but you
can look at the “Numerical Recipes” book by Press et al., if you want to know
more.

EXERCISE:

Write a python script to implement the Euler’s method, the midpoint
method and the fourth-order Runge-Kutta method. Use this script to
integrate the following differential equation:

dx
dt

= −x3 + sin t (146)

Compare the results. For a choice of initial time t0 = 0.0, final time
tfin = 100, initial position x(t0) = 0.0 and step-size h = 0.4, you should
obtain something similar to Figure 41.

10.4 Systems of ordinary differential equations

Solving systems of differential equations can be easily done with the same
approach as we have seen in the previous sections, provided that the deriva-
tives are with respect to a single variable (systems of ordinary differential
equations). For example

dx
dt

= f1(x, y, t)

dy
dt

= f2(x, y, t), (147)

where we have only the derivatives with respect to t. Note that in our example,
f1(x, y, t) and f2(x, y, t), i.e. f1 depends not only on x and t but also on y and f2
depends not only on y and t but also on x. In this case, we only have to make
sure that the two equations are integrated in the same timestep, to avoid
mismatches between the value of x(y, t) and the value of y(x, t) at a given time
t. We will see two examples later in this chapter: the evolution of semi-major
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Figure 41: Integration of the differential equation 146 for initial time t0 = 0.0,
final time tfin = 100, initial position x(t0) = 0.0 and step-size h = 0.4.
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axis a and eccentricity e of a binary system affected by gravitational wave
emission, and the astrophysical N−body problem.

In contrast, systems like

∂x
∂t

+
∂x
∂s

= f1(x, y, t, s)

∂y

∂t
+
∂y

∂s
= f2(x, y, t, s), (148)

are systems of partial differential equations, in which x(t, s) and y(t, s). These
can be solved only with methods for partial differential equations (see next
chapter).

10.5 Second-order and higher-order ordinary differential equations

Solving second-order (or higher-order) differential equations with just one
variable is trivial once we know how to solve first-order differential equations.
Imagine we have a second-order equation of the (general) kind:

d2x

dt2 = f

(
x,

dx
dt

, t

)
(149)

This equation can be rewritten as a system of two first-order differential
equations:

dx
dt

= y

dy
dt

= f (x, y, t) . (150)

We now can solve this system using the algorithms we learned for first-order
differential equations. To solve higher order differential equations we simply
repeat this trick till we have a system of first-order equations only.

The classical example for astrophysicists is the equation of motion of a star
in a binary system (see the next section for a generalization):

d2xi

dt2 = −Gmj
xi − xj∣∣∣xi − xj

∣∣∣3 , (151)

where xi and xj are the position vectors of the two members of the binary
systems (star i and star j), mj is the mass of star j and G ∼ 6.674 × 10−8

cm3 g−1 s−2 is the gravity constant. Clearly, we have a second, symmetric equa-
tion for particle j. The above equation is second-order but can be rewritten as

160



10.6. the astrophysical n-body problem

the following system:

dxi

dt
= vi

dvi

dt
= −Gmj

xi − xj∣∣∣xi − xj

∣∣∣3 . (152)

10.6 The astrophysical N-body problem

Astrophysicists need to solve ordinary differential equations for one of the
most fundamental problems of Astrophysics: the so-called astrophysical
N−body problem, i.e. the integration of the equations of motion for N bodies
subject to Newton’s gravity force (1687):

d2xi

dt2 = −G
N∑

j=1, j,i

mj
xi − xj∣∣∣xi − xj

∣∣∣3 , (153)

which is a ordinary differential equation of the second order with respect to
time t. In the above equation, xi is the position vector of the ith particle in a
system of N particles (these can be stars or gas particles, or even dark matter
particles), mj is the mass of the jth particle and G ∼ 6.667 × 10−8 cm3 g−1 s−2

is the gravity constant.

The above equation can be split into a system of two first-order differential
equations:

dxi

dt
= vi

dvi

dt
= −G

N∑
j=1, j,i

mj
xi − xj∣∣∣xi − xj

∣∣∣3 , (154)

where vi is apparently the velocity vector of the ith particle.

Clearly, this is a vector equation. So, to solve it, we have to solve per every
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single component:

dvxi
dt

= −G
N∑

j=1, j,i

mj
xi − xj∣∣∣xi − xj

∣∣∣3 ,
dvyi
dt

= −G
N∑

j=1, j,i

mj
yi − yj∣∣∣xi − xj

∣∣∣3 ,
dvzi
dt

= −G
N∑

j=1, j,i

mj
zi − zj∣∣∣xi − xj

∣∣∣3 ,
dxi
dt

= vxi ,

dyi
dt

= vyi ,

dzi
dt

= vzi (155)

where xi = (xi , yi , zi) and vi = (vxi , vyi , vzi ) in Cartesian coordinates.
Moreover, we have to solve these equations for each particle (gas parti-

cle or star) in the astrophysical system. Hence, we will have to solve 6 × N
simultaneous equations to integrate the motion of the entire N-body system.

Equation 153 can be solved analytically for N = 2 (Bernoulli solution,
1710). In 1885, a challenge was proposed, to be answered before January 21st
1889, in honour of the 60th birthday of King Oscar II of Sweden and Norway
(http://www.mittag-leffler.se/library/henri-poincare):

Given a system of arbitrarily many mass points that attract each according to
Newton’s law, under the assumption that no two points ever collide, try to find a
representation of the coordinates of each point as a series in a variable that is some
known function of time and for all of whose values the series converges uniformly.

Nobody found the solution, although many participated (including Henry
Poincaré). In 1991, the mathematician Qiudong Wang found the first conver-
gent power series solution for a generic number of bodies. Thus, equation 153
can be considered as an equation that admits analytic solution (at least in the
sense of a convergent series). However, the solution by Q. Wang is too difficult
to implement and slow to converge. Thus, everybody solves equation 153
numerically for N ≥ 3.

10.7 Astrophysical N-body problem with Euler’s method

To solve equation 153, we can use the Runge-Kutta methods (Euler’s, midpoint
and Runge-Kutta fourth orders included), but we can use also other methods
(e.g. leapfrog scheme, Hermite scheme). The simplest example is (of course)
the Euler’s method. The Euler integration of the gravitational N−body problem
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looks like this:

ai(t) = −G
N∑

j=1, j,i

mj
xi(t) − xj(t)∣∣∣xi(t) − xj(t)

∣∣∣3 ,
xi(t + h) = xi(t) + vi(t) h,

vi(t + h) = vi(t) + ai(t) h, (156)

where ai(t) = dvi
dt is the gravitational acceleration of the ith particle.

10.8 Astrophysical N-body problem with midpoint scheme

The general formulation of the midpoint scheme applied to an astrophysical
N−body problem is:

k1,x =
h
2

dxi(t)
dt

(157)

k1,v =
h
2

dvi(xi(t), t)
dt

(158)

k2,x = h
d(xi(t) + k1,x, t + h/2)

dt
(159)

k2,v = h
d(vi(t) + k1,v , t + h/2)

dt
(160)

xi(t + h) = xi(t) + k2,x (161)

vi(t + h) = vi(t) + k2,v (162)

Equations 157 and 158 can be rewritten explicitly as

k1,x =
h
2
vi(t) (163)

k1,v =
h
2
ai(t) (164)

Equations 159 and 160 require a little bit more of work. Let’s first rewrite
equation 159 as:

k2,x = h
d
dt

(
xi(t) +

h
2
vi(t)

)
= h

[
vi(t) +

h
2
ai(t)

]
(165)

In contrast, the smartest thing to do for equation 160 is to consider that

k2,v = h
d2x

dt2

∣∣∣
t+ h

2
= h ai(xi(t + h/2), t + h/2) (166)
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but the value of the acceleration ai calculated at time t + h/2 can be easily
obtained, because in the midpoint scheme we have already calculated the
value of xi(t + h/2) = xi(t) + h/2 vi(t) thanks to the Euler method. Hence, the
equation 166 becomes:

k2,v = h ai(xi(t) + h/2 vi(t)) (167)

Finally, we can rewrite equations 165 and 167 using the definitions of k1,x =
h/2 vi(t) and k1,v = h/2 ai(t):

k2,x = h
[
vi(t) + k1,v

]
(168)

k2,v = h ai
(
xi(t) + k1,x

)
(169)

So, the final compact formula for the midpoint scheme applied to the
astrophysical N-body problem is:

k1,x =
h
2
vi(t)

k1,v =
h
2
ai(t)

k2,x = h
[
vi(t) + k1,v

]
k2,v = h ai

(
xi(t) + k1,x

)

xi(t + h) = xi(t) + k2,x

vi(t + h) = vi(t) + k2,v (170)

In a less elegant but maybe more understandable way, from a practical
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point of view, the equations 170 can be rewritten also as:

ai(t) = −G
n∑

j=1,j,i

mj

[
xi(t) − xj(t)

]
∣∣∣xi(t) − xj(t)∣∣∣3

k1,x =
h
2
vi(t)

k1,v =
h
2
ai(t)

xi(t + h/2) = xi(t) + k1,x

ai(t + h/2) = −G
n∑

j=1,j,i

mj

[
xi(t + h/2) − xj(t + h/2)

]
∣∣∣xi(t + h/2) − xj(t + h/2)

∣∣∣3
k2,x = h

[
vi(t) + k1,v

]
k2,v = h ai(t + h/2)

xi(t + h) = xi(t) + k2,x

vi(t + h) = vi(t) + k2,v (171)

Here below, we discuss the leapfrog scheme and the fourth-order Hermite
scheme, which are very popular among astrophysicists studying systems of N
bodies.

EXERCISE:

Write a new script to implement Euler’s method to evolve a system of
two points in two dimensions (xy plane), subject to gravity forces, with
the following initial conditions. Initial positions of particles 1 and 2 (in
the plane xy): x = (1.0,−1.0), y = (1.0,−1.0).
Initial velocities of particles 1 and 2 (in the plane xy): vx = (−0.5, 0.5),
vy = (0.0, 0.0).
Let us assume that the masses are m1 = m2 = 1, and the gravity constant
in our units is G = 1.
Let us assume t0 = 0, tfin = 300 and h = 0.01. The result should look
like the blue line in Figure 42.
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Figure 42: Integration of a binary star with the Euler method, with the Midpoint
scheme and with the Runge-Kutta 4th order scheme, for initial time t0 = 0.0,
final time tfin = 300 and step-size h = 0.01. Blue line: orbit of the two particles
integrated with the Euler’s method. Red line: orbit of the two particles integrated
with Midpoint or Runge-Kutta 4th order method.
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Figure 43: Visualization of the leapfrog scheme in its kick-drift-kick (KDK) decli-
nation.

EXERCISE:

Write a new script to implement the Midpoint method and/or the
Runge-Kutta 4th order method to evolve a system of two points in two
dimensions (xy plane) described in the pevious exercise.
Let us assume t0 = 0, tfin = 300 and h = 0.01. The result should look
like the red line in Figure 42 (Midpoint and Runge-Kutta 4th order
cannot be distinguished by eye in this case).

10.9 Leapfrog scheme

The leapfrog scheme is indeed a particular version of the midpoint scheme. Its
name comes from the leapfrog play (in Italian: la cavallina). Indeed, the idea
beneath the leapfrog is that of evaluating velocity and position by jumping
like little happy frogs within a time-step.. It is the same as Euler’s method but
evaluated in between a time-step (see the cartoon 43).

The most common version of the leapfrog scheme is the kick-drift-kick
(KDK), which consists in estimating the velocity in the midpoint of the time-
step (kick), then estimating the position at the end of the time-step, based on
the velocity in the midpoint (drift), and finally estimating the velocity at the
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end of the time-step (kick). Mathematically, it is written as:

ai (t) = −G
N∑

j=1, j,i

mj
xi (t) − xj (t)∣∣∣xi (t) − xj (t)

∣∣∣3 , (172)

vi

(
t +

h
2

)
= vi (t) +

h
2

ai (t) (173)

xi (t + h) = xi (t) + h vi

(
t +

h
2

)
(174)

ai (t + h) = −G
N∑

j=1, j,i

mj
xi (t + h) − xj (t + h)∣∣∣xi (t + h) − xj (t + h)

∣∣∣3 , (175)

vi (t + h) = vi

(
t +

h
2

)
+
h
2

ai (t + h) (176)

In more compact form (by substituting equation 173 into equations 174 and
176), this becomes:

ai (t) = −G
N∑

j=1, j,i

mj
xi (t) − xj (t)∣∣∣xi (t) − xj (t)

∣∣∣3 ,
xi (t + h) = xi (t) + h vi (t) +

h2

2
ai (t)

ai (t + h) = −G
N∑

j=1, j,i

mj
xi (t + h) − xj (t + h)∣∣∣xi (t + h) − xj (t + h)

∣∣∣3 ,
vi (t + h) = vi (t) +

h
2

[ai (t) + ai (t + h)] (177)

The leapfrog scheme is surprisingly accurate for being just a (barely)
second-order scheme. There is also an alternative version of drift-kick-drift
(DKD) leapfrog scheme, in which position is evaluated at the midpoint (t+h/2),
then velocity is advanced to the end and finally position is recalculated to the
end of the step. You can try to derive this one by yourself.

Another nice feature of the leapfrog is that (unlike Runge-Kutta) leapfrog
is time-reversal symmetric: if we integrate the same problem forward in time
and then backward in time with the same timestep h we get exactly the same
answer (within computer rounding errors). This has the pleasant consequence
that the error on energy conservation does not grow with time.

Important note: A nice way to estimate how well an integrator of ce-
lestial dynamics works is to calculate the conservation of total energy and
total angular momentum as a function of time during the integration.
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Figure 44: Integration of a binary star with the leapfrog scheme for initial time
t0 = 0.0, final time tfin = 300 and step-size h = 0.01. Blue line: orbit of the two
particles integrated with the Euler’s method. Red line: orbit of the two particles
integrated with the leapfrog method. The leapfrog is very simple to code and very
fast, but it works as good as Midpoint and nearly as good as Runge-Kutta fourth
order. In addition, leapfrog is time reversible, while Runge-Kutta is not. These are
some of the reasons why leapfrog is so popular among N-body codes.

EXERCISE:

Write a code to implement the leapfrog scheme. Integrate the binary star
in the previous exercises with the leapfrog scheme. Compare Euler’s
method with the leapfrog scheme. Choose t0 = 0, tfin = 300 and h =
0.01. The result should look like Figure 44. Leapfrog is much better,
isn’t it?

10.10 Fourth-order predictor-corrector Hermite scheme

The Hermite scheme can be implemented as a fourth-order or higher than
fourth-order scheme. Here, we see the fourth-order version of this scheme. It is
called a predictor-corrector scheme, because particle positions and velocities
are first predicted at third-order level and then corrected to make the accuracy
fourth-order.

To derive the Hermite scheme we first need to define the jerk, which is the
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derivative of acceleration. For Newton’s gravity equation, the jerk is

ji ≡
dai
dt

= −G
N∑

j=1, j,i

mj

vij

x3
ij

− 3

(
xij · vij

)
xij

x5
ij

 , (178)

where xij ≡ xi − xj , vij ≡ vi − vj , xij ≡
∣∣∣xi − xj

∣∣∣. We then indicate with j′i and
with j′′i the first and second derivative of the jerk, respectively (in the N-body
slang, j′i and j′′i are also referred to as snap and crackle, respectively).

Let us start from fourth-order Taylor expansions for positions and veloci-
ties, third-order for accelerations, second-order for jerks:

xi(t + h) = xi(t) + h vi(t) +
h2

2
ai(t) +

h3

6
ji(t) +

h4

24
j′i(t) (179)

vi(t + h) = vi(t) + h ai(t) +
h2

2
ji(t) +

h3

6
j′i(t) +

h4

24
j′′i (t) (180)

ai(t + h) = ai(t) + h ji(t) +
h2

2
j′i(t) +

h3

6
j′′i (t) (181)

ji(t + h) = ji(t) + h j′i(t) +
h2

2
j′′i (t) (182)

We can use equations 181 and 182 to eliminate the first and second derivative
of jerk from equations 179 and 180. With this trick we obtain

xi(t + h) = xi(t) +
h
2

[vi(t) + vi(t + h)] +
h2

12
[ai(t) − ai(t + h)] + O(h5) (183)

vi(t + h) = vi(t) +
h
2

[ai(t) + ai(t + h)] +
h2

12
[ji(t) − ji(t + h)] + O(h5) (184)

The above equations are fourth order accuracy, with errors scaling as h5, but
the terms in h3 and h4 have cancelled out!

However, we have a problem here, because the equations 183 and 184
depend on vi(t + h), ai(t + h) and ji(t + h), that we do not know yet. When a
method depends on quantities that we still need to calculate (because they re-
fer to the next step) it is called an implicit method, while methods depending
only on quantities that we already know (because they refer to current step)
are called explicit methods. Obviously, we cannot use an implicit method
unless we have some trick to predict the quantities which refer to the next
step (see the similar discussion for the midpoint method).

In the Hermite method, we predict positions and velocities of the next step
by using a third-order Taylor expansion (one order less than fourth-order).
Thus, the full predictor-corrector Hermite scheme has three steps, as follows.

1. Predictor step: we use the third order Taylor expansion to predict xi(t +
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h) and vi(t + h):

xpi(t + h) = xi(t) + h vi(t) +
h2

2
ai(t) +

h3

6
ji(t) (185)

vpi(t + h) = vi(t) + h ai(t) +
h2

2
ji(t) (186)

Note that in the above equation we have used the p to indicate that
these are not the final positions and velocities at time t + h but just the
predicted values xpi(t + h) and vpi(t + h).

2. Force evaluation: we use the above predictions (equations 185 and 186)
to evaluate “predicted” acceleration and jerk at time t + h, i.e. api(t + h)
and jpi(t + h):

api (t + h) = −G
N∑

j=1, j,i

mj

xpij (t + h)

xp3
ij

, (187)

jpi (t + h) = −G
N∑

j=1, j,i

mj

vpij

xp3
ij

− 3

(
xpij · vpij

)
xpij

xp5
ij

 (188)

3. Corrector step: we substitute api (t + h) and jpi (t + h) into equations 183
and 184:

xi(t + h) = xi(t) +
h
2

[vi(t) + vpi(t + h)] +
h2

12
[ai(t) − api(t + h)] (189)

vi(t + h) = vi(t) +
h
2

[ai(t) + api(t + h)] +
h2

12

[
ji(t) − jpi(t + h)

]
(190)

However, this result is only third-order in positions, because equa-
tion 189 contains the term h vpi(t + h) which is third order.

We can use a smart trick to make it fourth order: we calculate vi(t + h)
first and then we use the result into xi(t + h), as follows:

vi(t + h) = vi(t) +
h
2

[ai(t) + api(t + h)] +
h2

12

[
ji(t) − jpi(t + h)

]
(191)

xi(t + h) = xi(t) +
h
2

[vi(t) + vi(t + h)] +
h2

12
[ai(t) − api(t + h)] (192)

Equations 191 and 192 are the simplest version of the fourth-order
predictor-corrector Hermite scheme.
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EXERCISE:

Write a code to implement the Hermite scheme. Re-do the previous
exercise with the Hermite scheme. Use t0 = 0.0, final time tfin = 300
and step-size h = 0.01. Compare the result of this exercise with the
result of the leapfrog scheme. Figure 45 shows a comparison of Hermite
and leapfrog also in terms of total energy conservation. The Hermite
scheme performs better than the leapfrog scheme.
Please, don’t do this exercise unless you are terribly bored by the simpler
ones.
Suggestion: to calculate energy conservation, use the reference frame of the
reduced particle and neglect the kinetic energy of the center of mass. It
simplifies your life. In this case, the total energy of the binary is

E =
1
2

m1 m2

(m1 + m2)
v2
ij −

Gm1 m2

2 xij
, (193)

where m1 and m2 are the masses of the two components of the binary star,
vij ≡ |vi − vj | is the modulus of the relative velocity and xij ≡ |xi − xj | is the
modulus of the relative distance between the two particles.

10.11 Collisional vs collisionless N-body simulations

The leapfrog scheme is possibly the most used scheme for collisionless N-
body simulations, while the Hermite scheme is certainly the most used
scheme for collisional N-body simulations.

A system is collisionless when close encounters between its components
are extremely rare and can be neglected. Quantitatively, systems whose two-
body relaxation timescale is longer than the Hubble time can be treated as
collisionless and can be described by the collisionless Boltzmann equation
(jumps in phase space are not allowed).

We remind that the two-body relaxation timescale can be expressed, e.g.,
as [Binney and Tremaine, 1987]

trlx =
N

8 ln N
R
v
, (194)

where R is a characteristic radius of the system, v is the typical velocity
of stars in the system (for a non-rotating system in virial equilibrium, i.e.
supported by velocity dispersion σ, we can assume v = σ), N is the number
of particle in the system. The above equation is the simplest expression for
the two-body relaxation timescale and is obtained assuming that we have a
spherical system of radius R, in which all stars have the same mass m and the
density is uniform.

In the Universe, galaxies, clusters of galaxies and larger structures are
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Figure 45: Result of the integration of a binary star with the Hermite scheme for
initial time t0 = 0.0, final time tfin = 300 and step-size h = 0.01. Top panel, red
line: orbit of the two particles integrated with the Hermite scheme. Bottom panel:
energy conservation (∆E/E) as a function of time in the case of the Hermite scheme
(red line) and of the leapfrog scheme (blue line).
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collisionless (trlx > tH, where tH is the Hubble time). N-body models of colli-
sionless systems integrate gravity force with reasonable accuracy, to ensure
energy and angular momentum conservation better than few per cent over the
entire duration of the simulation. The leapfrog method is a very good scheme
for these simulations, because it is extremely simple and fast and guarantees
the required accuracy.

A system is collisional when close encounters between its components are
frequent and can affect the overall evolution of the system. Quantitatively,
collisional systems have a two-body relaxation timescale much shorter than
the Hubble time. In the Universe, star clusters (globular clusters, open clus-
ters, young star clusters and nuclear star clusters) are collisional systems.
Collisional systems can be integrated only with direct N-body codes, i.e. with
codes that solve Newton’s gravity force directly for each single star in the
star cluster, because we do not want to miss close encounters between two or
more of these stars. The predictor-corrector Hermite scheme is very popular
in direct N-body codes, for at least two reasons:

i) it is sufficiently high order (4th order or more), hence it guarantees
energy and angular momentum conservation to 10−5 or better;

ii) the predictor-corrector scheme allows to distinguish between dynami-
cally active and less dynamically active particles. Stars that, at a given
time step, do not undergo a close encounter do not need to be inte-
grated with fourth (or higher) order accuracy. Thus, their positions and
velocities can be just predicted (without corrector step) saving a lot of
computational time. In contrast, stars that, at a given time step, undergo
a close encounter are integrated with the predictor and corrector step,
reaching the required level of accuracy.

If you want to know more about N-body techniques and other computational
techniques for astrophysics, you can follow the course on Computational
Astrophysics (first semester next year): https://en.didattica.unipd.it/
off/2019/LM/SC/SC2443/000ZZ/SCP9087518/N0.

10.12 Adaptive step size

So far, we have assumed that the step h is constant. In most cases, the best
choice is to have an adaptive step, i.e. a step that changes depending on the
specific problem we want to solve. Let’s see why.

In general, a smaller value of h means higher accuracy, but an exceedingly
small h might result in a computational challenge, especially if we have to
integrate a complex system (e.g. an astrophysical N-body problem with large
N). Thus, we want to choose a value of h that is a good compromise between
accuracy and speed of calculation.
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Unfortunately, there is no universal method to choose h. Usually, the most
reasonable choice of h is suggested by the problem we are integrating. For
example, if we integrate an N-body system, we want to ensure a “reasonable”
conservation of energy and angular momentum. Of course, it is not possible
to achieve complete conservation, because we are doing the integration nu-
merically, thus we cannot get rid of rounding errors and approximation errors.
The term “reasonable” can be quantified depending on the degree of accuracy
we need. For example, if we decide to conserve energy E within a timestep so
that the maximum change is ∆Emax/E = 10−5, then we can write a program
in which h is reduced when the error on energy conservation after a timestep
becomes > 10−5.

Another good choice is to decide h based on how fast the quantity we
integrate changes. Let’s take another example from the astrophysical N-body
problem: many codes define h = v/a, where v is the modulus of velocity and
a is the modulus of acceleration. If a is large with respect to v, it means that
a particle is changing its velocity very fast and thus we need a smaller h to
capture its motion with higher accuracy.

10.13 When adaptive time steps matter: evolution of a binary compact
object by gravitational wave emission

We will now discuss an example, in which an adaptive time step is a condition
sine qua non to have a good result: the evolution of a binary compact object by
gravitational-wave emission.

Let us start with a short summary of gravitational waves, which is not
part of this course, but might be useful to understand the exercise. As you
have probably already seen in the general relativity course (otherwise please
trust me..), gravitational waves are ripples of the space time that propagate
as waves, at the speed of light. They are caused by the movement of an
asymmetric distribution of masses, whenever the second time derivative of
the quadrupole moment of mass is non-zero. The quadrupole moment of
mass is defined as

Iij(t) =
∫
V

dx3 ρ(t, x) xi xj (195)

where ρ(t, x) is the mass density and the index i, j run over the three spatial
coordinates. This is a general version of the moment of inertia tensor you
met during your Physics 1 course.

Gravitational waves are a solution of Einstein’s field equations under
some assumptions. Einstein’s field equations describe the evolution of the
geometry of space-time in presence (or absence) of sources of the gravitational
field (see Hartle 2003 for more information). They are highly non linear
equations and do not have an analytic solution in their general formulation.
However, they can be linearised if we are in the weak-field approximation,
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i.e. if the metric tensor can be written as a Minkowski metric plus a small
perturbation:

gαβ = ηαβ + hαβ, (196)

where ηαβ is the metric tensor in the Minkowski space, hαβ is a generic small
perturbation of the Minkowski tensor and gαβ is the resulting metric. Analytic
solutions can be derived for the linearised version of Einstein’s equations, un-
der specific Gauge choices. Using the so-called Lorentz gauge, the linearised
Einstein’s equations can be written as

�h̄αβ =
16πG
c4 Tαβ, (197)

where h̄αβ is the trace-reversed tensor of the perturbation hαβ (i.e. the trace
of hαβ is equal to minus the trace of h̄αβ), G is the gravity constant, c is the
speed of light and Tαβ is the stress-energy tensor, which encodes information
on the sources of the gravitational field (again, see Hartle [2003] for details).
This equation, containing the D’alembertian operator �, is clearly a wave
equation, as you can remember from the solutions of Maxwell’s equations in
your Physics 2 course.

Under the assumption that the sources of the gravity field are distant
(distant with respect to the observer) and slowly moving (slowly moving with
respect to the speed of light), the solution of the linearised Einstein equations
is

hij(t, x) ∼ 2
r

G
c4

d2

dt2 Iij(t − r/c), (198)

where hij is a 3 × 3 tensor (no time and mixed space-time components, only
spatial components), r is the distance of the observer from the source, G is
the gravity constant, c is the speed of light (note that the constant G/c4 ∼
8 × 10−50 s2 cm−1 g−1, very small) and t − r/c is the retarded time.

If the source of the gravity field is a binary system composed of two equal
mass stars (or two equal mass compact objects) of mass m orbiting about each
other with a circular orbit, then it can be shown (see e.g. [Hartle, 2003]) that
hij is

hij ∼ − 16 G2

c4
m2

r a


cos (2ω (t − r/c)) sin (2ω (t − r/c)) 0
sin (2ω (t − r/c)) − cos (2ω (t − r/c)) 0

0 0 0

 , (199)

where a is the semi-major axis of the binary and ω =
√

2 Gm/a3 is the angular
frequency of the binary. Hence, the frequency of gravitational waves is just 2
times the orbital frequency.

Before merger, when the two bodies are still relatively far away from each
other (technically this refers to the “inspiral” phase), the effects of gravitational
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waves are basically two: i) to carry away energy from the system, reducing its
internal energy, ii) to carry away angular momentum from the system, making
it circularize.

The total internal energy of a Keplerian binary is Eint = −Gm1 m2
2 a , where

m1 and m2 are the masses of the two components. During the inspiral phase,
transformation of mass to energy is negligible; hence the loss rate of Eint can
be written as

dEint

dt
=

Gm1 m2

2 a2
da
dt

, (200)

i.e. the energy loss translates into a shrinking of the semi-major axis a
with time. For analogous reasons, circularization means loss of eccentricity e
(de/dt < 0).

Peters [1964] has written down explicit expressions for da/dt and de/dt,
accounting for energy and angular momentum loss by gravitational waves:

da
dt

= −64
5

G3 m1 m2 (m1 + m2)
c5 a3 (1 − e2)7/2

(
1 +

73
24

e2 +
37
96

e4
)

de
dt

= −304
15

e
G3 m1 m2 (m1 + m2)
c5 a4 (1 − e2)5/2

(
1 +

121
304

e2
)

(201)

The above equations are obviously the result of a series expansion. This looks
like a nice system of two first-order ODEs. Then, let’s start integrating them
with your preferred algorithm. Euler is more than enough.

EXERCISE:

Use your Euler’s script (or midpoint or RK 4th order or whatever you
want) to integrate eqs. 201. Assume m1 = m2 = 30 M�, a(t = 0) = 1 A.U.,
e(t = 0) = 0.7. Integrate this system till it reaches the last stable orbit
of general relativity, defined as aLSO = 3 rsch, where rsch = 2 G(m1+m2)

c2 is
the Schwartzschild radius. As stopping condition for the main loop, use
the following:

while((abs(a-aLSO)/aLSO>1e-1) and (iterate<1e5)):

this means that you stop either when the difference between the semi-
major axis a and the last stable orbit aLSO is < 10% or when the number
of iterations (iterate is a counter) is ≥ 105. Start with a constant timestep
h = 103 yr.

If you do so, you realize that either you have a very bad result (with
negative a and e as soon as gravitational waves start being important) or a
terribly slow integration (before you fuse your laptop, let me tell you that you
need final timesteps of the order of few hours to get an acceptable result, with
a constant timestep and RK4). The result of your constant timestep attempt
should look like the blue dashed line in Figure 46 or even worse.
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Figure 46: Integration of the equations 201 from Peters (1964) with a Runge Kutta
fourth order (RK4). Binary system with m1 = m2 = 30 M�, a(t = 0) = 0.1 AU,
e(t = 0) = 0.7. Blue dashed line: constant timestep h = 103 yr. Red solid line:
adaptive time step.

The reason why this problem happens is that both da/dt and de/dt are
very steep functions of a and e, namely7 da/dt ∝ a−3 (1 − e2)−7/2, de/dt ∝
a−4 (1 − e2)−5/2. Hence, a fixed timestep samples very well the first part of the
integration, when a and e change slowly, and very badly the last part, when a
and e change super-fast.

How can we choose an adaptive timestep in this case? An option is that
we require the relative variation of the semi-major axis to be nearly con-
stant, or at least smaller than a chosen tolerance, during the integration.
In this way, the timestep adapts itself to the speed of changes of a and conse-
quently e. For example, try with

7Especially if you are using python2, please remember to write (1 − e2)7/2 as (1.-e**2)**3.5,
or at least as (1.-e**2)**(7./2.). Otherwise, you might have bad surprises, because (7/2) is
interpreted as a division between integers by several programming languages. In this case,
the result is not 3.5 but 3. My preferred option is (1.-e*e)**3.5, which gets rid of a power and
substitutes it with a multiplication: slightly faster.
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tol=1e-2

h=3.1536e10 #1e3 yr

while(a>=rth):

anew,enew=runge4(m1,m2,a,e,h)

if(abs(anew-a)/a<(0.1*tol)): #set adaptive timestep

h=h*2.

anew,enew=runge4(m1,m2,a,e,h)

elif(abs(anew-a)/a>tol):

while(abs(anew-a)/a>tol):

h=h/10.

anew,enew=runge4(m1,m2,a,e,h)

a=anew

e=enew

t+=h

This makes the negative values to disappear and the script run much faster
for a given accuracy. Any better idea?

10.14 Modified mid-point method

Let us now go back to the midpoint scheme to introduce another variation of
it which is very popular, because of the Bulirsch-Stoer method (next section).
The starting point of the midpoint scheme is the following equation

x(t + h) = x(t) + h f

(
x

(
t +

h
2

)
, t +

h
2

)
, (202)

which is implicit because of x
(
t + h

2

)
. In the original version of the midpoint,

we have used Euler’s method to calculate x
(
t + h

2

)
= x(t) + h

2 f (x, t):

x(t + h) = x(t) + h f

(
x(t) +

h
2
f (x, t), t +

h
2

)
(203)

After this first step, in the usual midpoint scheme we calculate the midpoint
of the next interval:

x
(
t +

3
2
h
)

= x(t + h) +
h
2
f (x(t + h), t + h) (204)

An alternative to this (analog to the leapfrog scheme we have seen for the
astrophysical N-body problem) is to evaluate directly the midpoint of the next
timestep from the midpoint of the previous timestep, as:
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x
(
t +

3
2
h
)

= x

(
t +

h
2

)
+ h f (x(t + h), t + h) (205)

Once we have the above expression, we can calculate the full time step as

x(t + 2 h) = x(t + h) + h f
(
x
(
t +

3
2
h
)
, t +

3
2
h
)

(206)

and we repeat this process as many times as we want.
Hence, the general expression of this new scheme is:

x(t + h) = x(t) + h f

(
x(t) +

h
2
f (x, t), t +

h
2

)

x
(
t +

3
2
h
)

=
[
x(t) +

h
2
f (x, t)

]
+ h f (x(t + h), t + h). (207)

Suppose that we now want to solve an ODE from t to t + H using n steps
of size h = H/n. Let us write down the equations 207 in a still different form.
The first half step is always:

x0 = x(t)

y1 = x0 +
1
2
h f (x0, t) (208)

Then, the next n steps are:

x1 = x0 + h f
(
y1, t +

1
2
h
)

y2 = y1 + h f (x1, t + h)

x2 = x1 + h f
(
y2, t +

3
2
h
)

y3 = y2 + h f (x2, t + 2 h)

... (209)

This means that the xi terms are the solutions at integer multiples of h,
while the yi are the solutions at half-integer multiples. Hence we can write
the equations 209 in a more compact form as:

ym+1 = ym + h f (xm, t + mh)

xm+1 = xm + h f
(
ym+1, t +

(
m +

1
2

)
h
)

(210)

Note that the final point is

x(t + H) = xn (211)
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Figure 47: Result of the modified-midpoint exercise.

for our initial definition of H. Another possible way to calculate x(t + H) is to
start from yn and to advance by just a half-integer multiple:

x(t + H) = yn +
1
2
h f (xn, t + H) (212)

Finally, the best way to estimate x(t + H) is to take the average of equa-
tions 211 and 212:

x(t + H) =
1
2

[
xn + yn +

1
2
h f (xn, t + H)

]
(213)

It can be shown with some math that if we use the 213 all the error terms
containing odd powers of h that arise from the Euler’s method step at the start
of the calculation (eq. 208) cancel out, giving a total error that contains only
even powers of h.

Equations 208, 210 and 213 used together for an integration represent
the modified midpoint scheme. I repeat them here below for the sake of
completeness:
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x0 = x(t)

y1 = x0 +
1
2
h f (x0, t)

x1 = x0 + h f
(
y1, t +

1
2
h
)

ym+1 = ym + h f (xm, t + mh) ∀1 ≤ m ≤ (n − 1)

xm+1 = xm + h f
(
ym+1, t +

(
m +

1
2

)
h
)
∀1 ≤ m ≤ (n − 1)

x(t + H) =
1
2

[
xn + yn +

1
2
h f (xn, t + H)

]
(214)

EXERCISE:

Write a script to implement the modified midpoint method. Use it to
evolve the following differential equation

dx
dt

= exp (−x) + sin (t) (215)

Let us assume t0 = 0, tfin = 200, h = 0.01 and x0 = 0. The result should
look like Figure 47.
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10.15 Bulirsch-Stoer method

The Bulirsch-Stoer method exploits the advantages of the modified midpoint
method to reach an accuracy as large as we want, at least in principle. Let’s
consider, for simplicity, a first-order ODE in a single variable: dx/dt = f (x, t).
Let’s suppose we want to integrate it from time t to time t + h1.

We start calculating the solution i) with the modified midpoint method, ii)
in just one single timestep of size h1 equal to the entire range. This yields a
solution x(t + h1) = R1,1, which, of course, is a crude estimate.

Then, we split the time step in two: h2 = h1/2 and we repeat the calculation
with the midpoint method, getting a solution x(t + h1) = R2,1.

Since the error on the modified midpoint method is always and even
function of the stepsize, we have that

x(t + h1) = R2,1 + c1 h
2
2 + O(h4

2) (216)

and
x(t + h1) = R1,1 + c1 h

2
1 + O(h4

1) = R1,1 + 4 c1 h
2
2 + O(h4

2) (217)

In the second equation above, we made use of the fact that h1 = 2 h2. In
both equations, c1 is an unknown constant. Note that c1 is the same in both
equations, because of the relationship between the timesteps and the way the
modified midpoint method work.

Now, we can use the equations 216 and 217 to calculate c1:

c1 h
2
2 =

1
3

(R2,1 − R1,1) (218)

Substituting this back into equation 216, we find

x(t + h1) = R2,1 +
1
3

(R2,1 − R1,1) + O(h4
2), (219)

where we got rid of the terms in h2. Our new equation 219 is now accurate to
order h3 and carries a h4 error.

Let us call this new estimate R2,2:

R2,2 = R2,1 +
1
3

(R2,1 − R1,1). (220)

We can take this approach further. Let us now consider h3 = 1/3 h1. The
solution of the modified midpoint will be x(t + h1) = R3,1. We can write down

x(t + h1) = R3,1 + c1 h
2
3 + O(h4

3) (221)
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x(t + h1) = R2,1 + c1 h
2
2 + O(h4

2) = R2,1 +
9
4
c1 h

2
3 + O(h4

3) (222)

Hence, we can evaluate c1 as:

c1 h
2
3 =

4
5

(R3,1 − R2,1) (223)

and finally we can define:

R3,2 = R3,1 +
4
5

(R3,1 − R2,1) (224)

to obtain
x(t + h1) = R3,2 + O(h4

3) (225)

which is a third order algorithm with fourth order errors.
We can now write down

x(t + h1) = R3,2 + c2 h
4
3 + O(h6

3) (226)

Combining eq. 219 and eq. 220, we also have

x(t + h1) = R2,2 + c2 h
4
2 + O(h6

2) = R2,2 +
(3

2

)4
c2 h

4
3 + O(h6

3) (227)

From equations 226 and 227 we can get the value of

c2 h
4
3 =

16
65

(R3,2 − R2,2) (228)

and substituting this into eq. 226 we get

x(t + h1) = R3,3 + O(h6
3), (229)

where
R3,3 = R3,2 +

16
65

(R3,2 − R2,2). (230)

Now our error is of order h6 and we have taken only 3 modified midpoint
steps. The power of this method is that it cancels out the error terms to
higher and higher orders on successive steps.

We can go to an arbitrarily high order. Suppose we denote the current
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number of steps by n and our modified midpoint estimate of x(t + h1) by Rn,1.
Then we can generalize the above method with the formula:

x(t + h1) = Rn,m + cm h2m
n + O(h2m+2

n ), (231)

where cm is the unknown constant.

The corresponding estimate at step n − 1 is

x(t + h1) = Rn−1,m + cm h2m
n−1 + O(h2m+2

n−1 ) (232)

but hn = h1/n and hn−1 = h1/(n − 1), so

hn−1 =
n

n − 1
hn (233)

Substituting eq. 232 and 233 into eq. 231 and reshuffling to express in terms
of cm, we find

cm h2m
n =

Rn,m − Rn−1,m

[n/(n − 1)]2m − 1
(234)

Finally, substituting equation 234 into eq. 232 we get the most general ex-
pression of the Bulirsch-Stoer:

x(t + h1) = Rn,m+1 + O(h2m+2
n ), (235)

where

Rn,m+1 = Rn,m +
Rn,m − Rn−1,m

[n/(n − 1)]2m − 1
(236)

Since this method is quite complex, we will see together the example of a
binary star (our usual binary star).
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import numpy as np

import matplotlib.pyplot as plt

G=1.0

m1=1.0

m2=1.0

Ttot= 300. #final time

N = 300 #number of big steps

h1 = Ttot/float(N) # size of big steps

delta = 1e-9 #position accuracy per unit time

def ode(r):

num=4

x=np.zeros(num,float)

v=np.zeros(num,float)

a=np.zeros(num,float)

x=r[0:4]

#x1 = r[0]

#y1 = r[1]

#x2 = r[2]

#y2 = r[3]

v=r[4:8]

#vx1 = r[4]

#vy1 = r[5]

#vx2 = r[6]

#vy2 = r[7]

rij=((x[0]-x[2])**2.+(x[1]-x[3])**2.)**1.5

for i in range(int(num/2)):

a[i] = -G * m2 * (x[i]-x[i+2])/rij

for i in range(int(num/2),num):

a[i] = -G * m1 * (x[i]-x[i-2])/rij

return np.array([v,a],float).ravel()

tp = np.arange(0.,Ttot,h1)

x1p = []

y1p = []

x2p = []

y2p = []

r = np.array([1.0,1.0,-1.0,-1.0,-0.5,0.0,0.5,0.0],float)

num=len(r)
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#Do the big steps of size h1

for t in tp:

x1p.append(r[0])

y1p.append(r[1])

x2p.append(r[2])

y2p.append(r[3])

#Do first big timestep

n = 1

r1 = r + 0.5 * h1 * ode(r)

r2 = r + h1 * ode(r1)

#The array R1 stores the first row of the extrapolation table,

#which contains only the single modified midpoint estimate

#at the end of the interval h1

R1 = np.zeros([1,num],float) #8 columns because 8 variables x1y1x2y2vx1vy1vx2vy2

#R1[0] = 0.5 * (r1 + r2 + 0.5 * h1 * ode(r1))

R1[0] = 0.5 * (r1 + r2 + 0.5 * h1 * ode(r2))

#Now increase n until the required accuracy is reached

error = 2 * h1 * delta

while(error > (h1 * delta)):

n+=1

h = h1/n

#Modified midpoint method

r1 = r + 0.5 * h * ode(r)

r2 = r + h * ode(r1)

for i in range(n-1):

r1 += h * ode(r2)

r2 += h * ode(r1)

#Calculate extrapolation estimates.

#Arrays R1 and R2 hold the two modst recent lines of the table

R2=np.copy(R1)

R1 = np.zeros([n,num],float)

#R1[0] = 0.5 * (r1 + r2 + 0.5 * h * ode(r1))

R1[0] = 0.5 * (r1 + r2 + 0.5 * h * ode(r2))

for m in range(1,n):

c = (R1[m-1]-R2[m-1])/((n/(n-1.))**(2.*m)-1.)

R1[m] = R1[m-1] + c

error = abs(c[0])

#Set r equal to the most accurate estimate we have

# before moving on to the next big step

r = R1[n-1]

fig1, ax1 = plt.subplots()

#ax1.set_aspect(’equal’)

ax1.scatter(x1p,y1p)

ax1.scatter(x2p,y2p)

ax1.set_xlabel("x")

ax1.set_ylabel("y")

plt.show()
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10.16 Initial value problems and boundary value problems

All the examples and exercises we have seen so far are initial-value problems:
we solve differential equations given the initial values of the variables. There
is another kind of problems, in which we do not know the initial values of the
variables, but only the values of the variables at “some point/time”.

For example, suppose we want to integrate the height above the ground of
a ball thrown in the air and subject to gravity force (no friction from the air,
for simplicity). Its motion is described by

d2x

dt2 = −g, (237)

where g = 9.81 m s−2 is the acceleration due to gravity.

This is an initial-value problem when we know the initial position and the
initial velocity of the ball. In contrast, it becomes a boundary value problem,
when we know (for example) its position at time t = 0 and its position at
another time t = t1 but we do not know its initial velocity. Boundary-value
differential equations are usually harder to solve computationally.

10.17 The shooting method

A possibility to solve a boundary-value problem is to use the shooting method:
we start with a guess of the initial values we do not know and then we improve
our guess iteratively.

For example, if the problem is the ball thrown in the air and we know the
initial position and the position at t = t1, we start with a guess on the initial
velocity, then we calculate the position x1 at time t = t1. If this position is
different from the value we know, then we come back to the initial conditions
and we try with a different velocity, namely with a larger (smaller) one if we
find a value of x1 smaller (larger) than the given one. We repeat this procedure
till the difference between the given value of x1 and the recovered one is
smaller than the tolerance we have decided. This is essentially a problem of
finding the zeros of a function: we can solve it with the bisection method we
have learned.
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Figure 48: Result of the exercise on the shooting method. Blue (Red) line: position
(velocity) of the ball as a function of time. Position (Velocity) is shown in m (m/s).

EXERCISE:

Solve the problem proposed in equation 237, i.e. integrate the motion
of a ball vertically thrown in the air with initial position x(t = 0) = 0
and position x(t = 3 s) = 10 m, at t = 3 s. Neglect the viscous friction
from the air. Use the shooting method.

Suggestion: use the Euler method to solve the ODEs. Take N = 103 steps
between t = 0 and tf = 3 s. Assume a tolerance ε = 10−3 and stop the
calculation when

∣∣∣x(tf ) − xtrue(tf )
∣∣∣ < ε, where xtrue(tf ) = 10 m.

The result should look like Figure 48. In particular, the correct initial
velocity is v0 ∼ 18.0 m/s.
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11 partial differential equations

This chapter is based on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.

A differential equation involving more than one independent variable is
called a partial differential equation (PDE). Many problems in applied science,
physics and engineering are modeled mathematically with PDEs. For example,
the wave equation is a PDE:

− 1
c2

∂2ψ

∂t2 + ∇2ψ = 0, (238)

where we remind that the Laplacian is

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

∇2 =
1
r2

∂
∂r

(
r2 ∂

∂r

)
+

1
r2 sinφ

∂2

∂φ2 +
∂2

∂z2

∇2 =
1
r2

∂
∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂
∂θ

(
sin θ

∂
∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2 , (239)

in Cartesian, polar and spherical coordinates, respectively.
Similarly, the diffusion equation, the Laplace equation, the Maxwell’s

equations, the Schrödinger equation and the Poisson equations are PDEs.

11.1 Boundary-value PDEs with finite difference methods

As a simple example, let’s start from the Laplace’s equation:

∇2φ = 0, (240)

where φ is the electrostatic potential in the absence of electric charges. Let’s
write it in two dimensions for simplicity

∂2φ

∂x2 +
∂2φ

∂y2 = 0 (241)

For example, this could be the case of an empty box with conducting walls.
The boundary conditions are that one wall is kept at voltage V, while the other
three walls are insulated from it and are at 0 volts. This is an electrostatics
problem, so we do not have time evolution here, but we want to calculate the
potential φ(x, y) at each point in the 2D box.

First, we divide the box into a grid of points, each of them separated by a
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small distance a (in this example the grid is square and regular, but ideally
we can have any possible type of grid: the problem itself suggests what kind
of grid is better to use).

We can now use what we learned from the chapter on numerical derivatives
(equation 72) and write each term of equation 241 as follows:

∂2φ

∂x2 '
1
a2 [φ(x + a, y) + φ(x − a, y) − 2φ(x, y)]

∂2φ

∂y2 '
1
a2 [φ(x, y + a) + φ(x, y − a) − 2φ(x, y)] (242)

where x + a, x and x − a are adjacent points on the x-axis and y + a, y and y − a
are adjacent points on the y-axis of the grid.

Substituting equation 242 into equation 241 we then get

1
a2 [φ(x + a, y) + φ(x − a, y) + φ(x, y + a) + φ(x, y − a) − 4φ(x, y)] = 0 (243)

In this way, we have transformed a second-order, double variable differen-
tial equation into a set of differences, evaluated over the grid points. We can
now get rid of the 1/a2 and we can write the 243 as follows

φ(x, y) =
1
4

[φ(x + a, y) + φ(x − a, y) + φ(x, y + a) + φ(x, y − a)] (244)

Equation 244 states that we can derive the value of φ(x, y) at any point in the
grid, provided that we solve a set of linear equations.

Hence, solving PDEs with a finite difference method ends up being equiv-
alent to solving systems of linear equations: we can use the methods we have
learned to solve sets of linear equations.

11.2 Solve by iteration

Since we have approximated our derivatives with finite differences, the so-
lution of the PDEs will always be just an approximated solution. Hence, it
is pointless to struggle with some very sophisticated algorithms. Moreover,
since the accuracy of our final results will depend on how small is a, and thus
on how many points we have in the grid, the system we want to solve will
ideally have a very large number of linear equations: it is very important to
choose a fast method to solve a large system of linear equations. For these
two reasons, the best possible choice is to use a fast approximate method to
solve our system of linear equations, rather than a slower exact method.

Equation 244 is immediately reminiscent of an iterative method to find
the solution of equations (e.g. the relaxation method and the Gauss-Seidel
method). Let’s then set up this iterative method.
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1) Assign boundary values:

We must first assign the boundary values to the points of the grid
that are at the boundaries (these are the only values of φ(x, y) that we
already know). Thus, in our example, if we have a grid of M ×M points:
φ[0, :] = V (the first row is always V), φ[M − 1, :] = φ[1 : M − 1, 0] = φ[1 :
M − 1, M − 1] = 0.

2) Start from a guess for the unknown values

Then, we assign to all the other points of the grid an Ansatz value (a
guess). For example, φ[i, j] = 0 for all i , 0, (M − 1) and j , 0, (M − 1). A
PDE problem reduced to finite differences always translates into a quite
simple (although very large) system of linear equations, thus we should
not worry too much about convergence issues: whatever initial guess
you star from should be fine.

3) Iterate your calculation

Take the results of equation 244 and feed them back to the right side
of the equation. Iterate your calculation over the whole grid as many
times as you need to reach the requested accuracy. A good way to do so
is to check for convergence. At each iteration, you calculate the norm
of φnew − φ, where φnew is the current solution for the entire matrix, φ
was the solution at the previous iteration for the entire matrix, and you
check whether this difference is less than a requested accuracy.

Finally, it is recommended to use a relaxation technique, to make the
procedure even faster. Let’s see what relaxation means in this case. The rela-
tionship between the new guess of φ(x, y) (let’s call it φnew(x, y)) and the old
one (let’s call it φ(x, y)) from equation 244 can be written as

∆φ(x, y) ≡ φnew(x, y) − φ(x, y) (245)

where ∆φ(x, y) is the change of φ during this step.
Now, let’s define a set of relaxed values φω(x, y) as

φω(x, y) = φ(x, y) + (1 + ω)∆φ(x, y), (246)

where ω > 0. In other words, we change each φ by a little more than we would
in the un-relaxed case.

Substituting eq. 245 into the above expression for φω(x, y) we get

φω(x, y) = φ(x, y) + (1 + ω) [φnew(x, y) − φ(x, y)],

= (1 + ω)φnew(x, y) − ωφ(x, y), (247)
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Figure 49: Result of the electrostatics problem for φ[0, :] = 1.0 volt and all the other
walls at zero volts. Tolerance ε = 10−3.

Using equation 247 (and assuming that φω(x, y) is the one we want to
calculate), equation 244 becomes

φ(x, y) =
(1 + ω)

4
[φ(x + a, y) + φ(x − a, y) + φ(x, y + a) + φ(x, y − a)]−ωφ(x, y).

(248)

There is no clear rule to estimate ω. In general, values of ω > 1 become
unstable, while values of ω < 1 are always stable but slower. The rule-of-
thumb is to try with ω = 0.9 first, and then to reduce ω “by hand”if the solver
is not stable.
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EXERCISE:

Consider an empty 2D box with conducting walls. The boundary condi-
tions are that one wall is kept at voltage V = 1 volt (for example, the
first row of the matrix is kept at voltage V = 1 volt), while the other
three walls are insulated from it and are at 0 volts. We want to calculate
the potential φ(x, y) at each point in the 2D box. Plot the result by using
the function matplotlib.pyplot.imshow().

Suggestions: Require a tolerance delta = 10−3 (smaller tolerances require a
significant computing time). For the definition of tolerance you can use

delta=numpy.linalg.norm(phi-phiold)

where phi and phiold are the new and the old iteration of the matrix (this
treats the two matrices as two vectors and calculates the norm of their
difference).
Create a grid of M×M cells, with M = 100. Rows 0 and M−1 and columns
0 and M − 1 are the walls of the box (i.e. the boundaries) and must be
assigned the given voltage. The result should look like Figure 49 and should
require ≈ 3000 iterations to reach the required tolerance (for the above
definition of tolerance).
To produce the plot use:

import matplotlib.pyplot as plt

plt.imshow(phi) #where phi is the final matrix

plt.gray()

plt.show()

Now, solve the same exercise with relaxation, as proposed in equa-
tion 248.

Suggestions: Choose ω = 0.9 (higher ω might be unstable). With ω = 0.9
you should reach a tolerance of delta = 10−3 in ≈ 200 − 300 iterations. The
script is much faster with the relaxation.

11.3 Initial-value PDEs with finite difference methods

We now consider the case of initial-value PDEs, i.e. PDEs for which we know
the initial conditions and we must calculate the time evolution of one or more
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initial-value pdes

variables.
As a simple example (which is also involved in stellar evolution and stellar

dynamics), let’s take the one-dimensional diffusion equation

∂φ

∂t
= D

∂2φ

∂x2 , (249)

where D is the diffusion coefficient. The variable φ(x, t) depends on both
the spatial coordinate x and time t. Thus, equation 249 is a PDE with two
independent variables. However, it cannot be solved by simply creating a grid
of points, because this is not a boundary-value problem but an initial-value
problem: we know the initial value of φ(x, t), not the boundaries. We can
proceed as follows.

11.4 The forward-time centered-space (FTCS) method for initial-value
PDEs

First, we consider the spatial dependence of φ and write down the numerical
derivative

∂2φ

∂x2 =
φ(x + a, t) + φ(x − a, t) − 2φ(x, t)

a2 , (250)

where we have chosen a spatial step a and we have gridded our spatial domain
into a grid of M points (if we were in two dimensions, then we would have
used a grid of M ×M points). Substituting the above numerical derivative into
equation 249, the diffusion equation becomes

∂φ

∂t
=

D
a2 [φ(x + a, t) + φ(x − a, t) − 2φ(x, t)] , (251)

where we have only one derivative left. Hence, we can substitute ∂φ/∂t to
dφ/dt. Now, we can think of equation 251 as of a set of M ordinary differen-
tial equations, one per each point of the spatial grid.

Thus, we can solve it by applying one of the methods we learned for
ordinary differential equations. The smartest method we can adopt here is
simply the Euler’s method. The Euler method is just a first-order method:
very fast but quite inaccurate. On the other hand, it is not smart to use a more
accurate method, because the numerical derivative in the right-hand term of
equation 251 is first-order accuracy: it is pointless to look for a high-order
accuracy in time when we are limited by first-order accuracy in space.

11.5 Euler’s method, again

Euler’s method is based on a first order Taylor expansion, thus for our function
φ:

φ(x, t + h) ' φ(x, t) + h
dφ(x, t)

dt
(252)
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11. partial differential equations

Substituting the value of dφ(x, t)/dt from equation 251 into the above equa-
tion, we get

φ(x, t + h) ' φ(x, t) +
h D
a2 [φ(x + a, t) + φ(x − a, t) − 2φ(x, t)] (253)

which is the basic equation of the forward-time centered-space (FTCS) method
for initial-value PDEs, applied to diffusion equation.

EXERCISE:

Write a python script to solve the diffusion equation with the FTCS
method for the following system.

The flat base of a container made of 1 cm thick stainless steel is initially
at a uniform temperature of T0 = 293 K. The container is placed in
a bath of cold water at Tbath = 273 K and is filled with hot water at
Thot = 323 K. Calculate the temperature profile of the steel as a function
of distance x from the hot side to the cold side (from 0 to 1 cm) and as
a function of time. The system is shown in Figure 50.
Thermal conduction is described by the diffusion equation as

∂T
∂t

= D
∂2T
∂x2 , (254)

where D = 4.25 × 10−2 cm2 s−1 for stainless steel. Use equation 253 to
solve the problem.
Plot the temperature profile of the steel as a function of x at four
different times t = 0.01, 0.1, 1 and 10 s.

The result should look like Figure 51.

Suggestion: use a spatial grid with M+1 point, where M=100. Choose
h=0.001. What happens if you change h and why?
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11.5. euler’s method, again

Figure 50: System of exercise 9.2

Figure 51: Result of the initial value problem with h = 0.001. Temperature profile
of the steel as a function of x at times t = 0, 0.01, 0.1, 1 and 10 s.
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11. partial differential equations

Figure 52: Result of the initial value problem with h = 0.01. Temperature profile
of the steel as a function of x at times t = 0, 0.01, 0.1, 1 and 10 s. The solution
diverges.
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Figure 53: Visualization of the difference between interpolation and curve fitting.
Figure from Kiusalaas.

12 interpolation and extrapolation

This chapter is based on Numerical Methods in Engineering with Python by Jaan
Kiusalaas.

Interpolation and curve fitting should not be confused. In interpolation,
we construct a curve passing through a discrete set of data points. In doing
so, we make the implicit assumption that the data points are accurate and
distinct.

Curve fitting is applied to data that contain scatter (noise), usually due
to measurement errors. In this case, we want to find a smooth curve that
approximates the data. Thus, the curve does not necessarily hit the data
points. Figure 53 visualizes the difference between these two approaches. In
practice, interpolation is used more often when we deal with theoretical data
points (e.g. the outcome of discrete simulations, discrete numerical models),
curve fitting is mostly done on a set of observational data.

In this chapter we will discuss interpolation, while in the next chapter we
will talk about curve fitting.
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Figure 54: Visualization of a linear interpolation. Figure from Newman.

12.1 Linear interpolation

Suppose you are given the value of a function f (x) at just two points a and b
and you want to know the value of the function at another point x in between.
The simplest way to proceed (and often the BEST WAY to proceed) is to assume
our function follows a straight line from f (a) to f (b).

In practice, the slope of the straight-line approximation is

m =
f (b) − f (a)

b − a
. (255)

Thus, f (x) will be simply given by

f (x) ' y + z =
f (b) − f (a)

b − a
(x − a) + f (a)

=
(b − x) f (a) + (x − a) f (b)

b − a
(256)

where y and z are the quantities shown in Figure 54.
In most astrophysical applications, we do not have a continuous function

f (x), but rather a sample of n discrete data points in the form

x0 x1 x2 ... xn
y0 y1 y2 ... yn.

In the above example, the xi might be the discrete values of time at which
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12.2. polynomial interpolation with lagrange’s method

I have a measure, and yi might be the values of the measure at time xi . For
example, the yi could be fluxes of an astronomical source at time xi .

The procedure of linear interpolation gives its best if we perform one
linear interpolation every pair of data. This means that the linear interpolation
formula becomes:

y(x) =
(xi+1 − x) yi + (x − xi) yi+1

xi+1 − xi
(257)

This is often the best way to interpolate on a grid of data points. It could also
be used for extrapolation, but with many grains of salt.

EXERCISE:

The file 120a300.fis contains the evolution of a 120 M� star at solar
metallicity integrated with the stellar evolution code franec [Limongi
and Chieffi, 2018]. Columns 0 and 7 are the evolutionary time (in years)
and the mass (in M�). The file evol_120msun_scattered.dat shows a
subsample of data points with respect to file 120a300.fis, with a much
coarser time grid. Columns 0 and 1 are the evolutionary time (in Myr)
and the mass (in M�). In both files the comments are preceded by #.
Using the linear interpolation, interpolate the values of the mass
from file evol_120msun_scattered.dat in all the times of 120a300.fis.
Then compare your interpolation with the values in the original file
120a300.fis. The plot should look like Figure 55.

12.2 Polynomial interpolation with Lagrange’s method

The simplest form of an interpolant is a polynomial. It is always possible to
construct an unique polynomial of degree n that passes through n + 1 data
points. Assume we have a sample of n data points in the form xi , yi as already
discussed at the end of the previous section.

One means of obtaining this polynomial is the formula of Lagrange

Pn(x) =
n∑
i=0

yi li(x), (258)

where the subscript n demotes the degree of the polynomial and

li(x) =
n∏

j=0,j,i

x − xj
xi − xj

, i = 0, 1, ..., n (259)

are called the cardinal functions. For example, if n = 1, the interpolant is the
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12. interpolation and extrapolation

Figure 55: Result of the exercise on linear interpolation.

straight line P1(x) = y0 l0(x) + y1 l1(x), where

l0(x) =
x − x1

x0 − x1

l1(x) =
x − x0

x1 − x0
(260)

It can be easily found that the case with n = 1 is the linear interpolation we
discussed in the previous section.

If n = 2 the interpolation is parabolic: P2(x) = y0 l0(x) + y1 l1(x) + y2 l2(x)
with

l0(x) =
x − x1

x0 − x1

x − x2

x0 − x2

l1(x) =
x − x0

x1 − x0

x − x2

x1 − x2

l2(x) =
x − x0

x2 − x0

x − x1

x2 − x1

(261)

This method is conceptually simple but quite inefficient to implement numer-
ically.
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12.3. polynomial interpolation with newton’s method

12.3 Polynomial interpolation with Newton’s method

Newton’s method is another polynomial interpolation method, similar to
Lagrange’s method but much better to implement numerically.

The interpolating polynomials are written as

Pk(x) = an−k + (x − xn−k) Pk−1(x), (262)

where n is the interpolation order and k = 0, 1, 2, ..., n.

For example, if n = 1

P0(x) = a1

P1(x) = a0 + (x − x0) P0(x) (263)

If n = 2,

P0(x) = a2

P1(x) = a1 + (x − x1) P0(x)

P2(x) = a0 + (x − x0) P1(x) (264)

If n = 3

P0(x) = a3

P1(x) = a2 + (x − x2) P0(x)

P2(x) = a1 + (x − x1) P1(x)

P3(x) = a0 + (x − x0) P2(x) (265)

and so on. Hence, the k = 3 polynomial can be written as:

P3(x) = a0 + (x − x0) {a1 + (x − x1) [a2 + (x − x2) a3]} (266)

The coefficients ak are determined by forcing the polynomial to pass
through each data point yi = Pk(xi) with i = 0,1, .., n and k = n. This yields
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the simultaneous equations

y0 = a0

y1 = a0 + (x1 − x0) a1

y2 = a0 + (x2 − x0) a1 + (x2 − x0) (x2 − x1) a2

...

yn = a0 + (xn − x0) a1 + (xn − x0) (xn − x1) a2 + ... + (xn − x0) ...(xn − xn−1) an

(267)

If we write the divided differences as

∇yi =
yi − y0

xi − x0
, i = 1, 2, ..., n

∇2yi =
∇yi − ∇y1

xi − x1
, i = 2, ..., n

∇3yi =
∇2yi − ∇2y2

xi − x2
, i = 3, ..., n

...

∇nyn =
∇n−1yi − ∇n−1yn−1

xi − xn−1

(268)

the solution of equations 267 becomes

a0 = y0, a1 = ∇y1, a2 = ∇2y2, ..., an = ∇nyn (269)

Here is an example of how to write the Newton’s method in python effi-
ciently
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12.3. polynomial interpolation with newton’s method

import numpy as np

import matplotlib.pyplot as plt

def coeffts(xData,yData):

#Computes the coefficients of Newton polynomial.

n = len(xData)

# Number of data points108

a = yData.copy()

for k in range(1,n):

for j in range(k,n):

a[j] = (a[j]-a[k-1])/(xData[j] - xData[k-1])

#or more simply

#a[k:n] = (a[k:n] - a[k-1])/(xData[k:n] - xData[k-1])

return a

def evalPoly(a,xData,x):

n = len(xData) - 1

# Degree of polynomial

p = a[n]

for k in range(1,n+1):

p = a[n-k] + (x -xData[n-k])*p

return p

#Evaluates Newton polynomial p at x. The coefficient

#vector { a } can be computed by the function coeffts.

def newtonPoly(xData,yData,x):

a = coeffts(xData,yData)

p = evalPoly(a,xData,x)

return p

#main

xData=np.zeros(10,float)

yData=np.zeros(10,float)

x=np.zeros(100,float)

for i in range(len(xData)):

xData[i]=float(i*0.5)

yData[i]=float(xData[i]**2)

for i in range(len(x)):

x[i]=float(i*0.5/10.)

y=newtonPoly(xData,yData,x)

fig, ax1= plt.subplots()

ax1.scatter(xData,yData, marker=’o’, edgecolor=’black’,\

facecolors=’black’, s=100,zorder=1)

ax1.plot(x,y)

fig.tight_layout()

plt.show()

This example produces the interpolation in Figure 56.
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Figure 56: Example of Newton’s polynomial interpolation following the given
script.
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Figure 57: Polynomial interpolant displaying oscillations.

12.4 Limitations of polynomial interpolation

Polynomial interpolation should be carried out with the fewest feasible num-
ber of data points. Linear interpolation, using the nearest two points, is often
sufficient if the data points are closely spaced. Three to six nearest-neighbor
points produce good results in most cases. An interpolant intersecting more
than six points must be viewed with suspicion. The reason is that the data
points that are far from the point of interest do not contribute to the accuracy
of the interpolant. As a matter of fact, they can be detrimental.

The danger of using too many points is illustrated in Figure 57. There
are 11 equally spaced data points represented by the circles. The solid line
is the interpolant, a polynomial of degree 10, that intersects all the points.
As seen in the figure, a polynomial of such a high degree has a tendency to
oscillate excessively between the data points. A much smoother result would
be obtained by using a cubic interpolant spanning four nearest-neighbour
points.

Polynomial extrapolation (i.e. interpolating outside the range of data
points) is dangerous as well. As an example, Figure 58 shows a fifth-degree
interpolating polynomial. The interpolant performs fine over the data, but pro-
duces a strange result when extrapolating. If extrapolation cannot be avoided,
it should be done following some good practice:

• plot the data and visually verify that the extrapolated value makes sense
in few test cases;

• use a low-order polynomial based on nearest-neighbour data points. A
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Figure 58: Extrapolation might produce spurious trends.

linear or quadratic interpolant should work fine;

• work with plots of log vs log, which is usually much smoother than the
linear axes.

12.5 Two-dimensional interpolation

Often in astrophysics we have to interpolate not just in one dimension, but
in two or more dimensions. Here, we discuss the case of two-dimensional
interpolation focusing on linear interpolation only. When applied in two
dimensions, linear interpolation is often called bilinear interpolation.

Suppose that we want to find the value of the unknown function f (x, y)
at the point (x, y). It is assumed that we know the value of f (x, y) at the four
points Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22 = (x2, y2), as
shown in Fig. 59.

We first interpolate along the x− direction. This yields

f (x, y1) ∼ x2 − x
x2 − x1

f (Q11) +
x − x1
x2 − x1

f (Q21)

f (x, y2) ∼ x2 − x
x2 − x1

f (Q12) +
x − x1
x2 − x1

f (Q22) (270)
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Figure 59: Scheme for bilinear interpolation.

Figure 60: Cartoon of a cubic spline, represented as an elastic beam. From Kiusalaas.

We then interpolate along the y− axis:

f (x, y) ∼
y2 − y
y2 − y1

f (x, y1) +
y − y1
y2 − y1

f (x, y2)

=
y2 − y
y2 − y1

[ x2 − x
x2 − x1

f (Q11) +
x − x1
x2 − x1

f (Q21)
]

+

y − y1
y2 − y1

[ x2 − x
x2 − x1

f (Q12) +
x − x1
x2 − x1

f (Q22)
]

=
1

(x2 − x1) (y2 − y1)
{(y2 − y) [(x2 − x) f (Q11) + (x − x1) f (Q21)] +

(y − y1) [(x2 − x) f (Q12) + (x − x1) f (Q22)]} (271)

We obtain the same result if we interpolate first along y and then along x.
Note that this algorithm works only if the grid points are uniformly spaced,
which often is not the case.
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Figure 61: Model of a cubic spline. From Kiusalaas.

12.6 Cubic spline interpolation

The cubic spline is possibly the best interpolation method, especially if there
are more than a few data points. The mechanical model of a cubic spline is a
thin, elastic beam that is attached with pins to the data points (see Fig. 60).
The pins, that is, the data points, are called the knots of the spline. Each
segment of the spline curve is a cubic polynomial with smooth junctions:
the first and second derivatives are continuous at the knots. This gives a
”stiffer” behaviour than a polynomial, in the sense that the cubic spline has
less tendency to oscillate between data points.

Figure 61 shows a cubic spline that spans n + 1 knots. We use the notation
fi,i+1(x) for the cubic polynomial that spans the segment between knots i
and i + 1. Note that the spline is a piecewise cubic curve, put together from
the n cubics f0,1(x), f1,2(x), ..., fn−1,n(x), all of which have different coefficients.
Denoting the second derivative of the spline at knot i by ki , continuity of
second derivatives requires that

f ′′i−1,i(xi) = f ′′i,i+1(xi) = ki . (272)

At this stage, each k is unknown, except for

k0 = kn = 0 (273)

The starting point for computing the coefficients of fi,i+1(x) is the expres-
sion for f ′′i,i+1(x). Using Lagrange’s two-point interpolation, we can write

f ′′i,i+1(x) = ki li(x) + ki+1 li+1(x), (274)
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where
li(x) =

x − xi+1

xi − xi+1
, li+1(x) =

x − xi
xi+1 − xi

(275)

Hence

f ′′i,i+1(x) =
ki (x − xi+1) − ki+1 (x − xi)

xi − xi+1
(276)

Integrating twice with respect to x, we obtain

fi,i+1(x) =
ki (x − xi+1)3 − ki+1 (x − xi)3

6 (xi − xi+1)
+ A (x − xi+1) − B (x − xi), (277)

where A and B are constants of integration. Usually, the constants of in-
tegration are written in the form C x + D, but defining C = A − B and
D = −A xi+1 + B xi we end up with two terms that are more handy in the
procedure that follows.

Simplifying the notation, we now write yi ≡ fi,i+1(xi) and yi+1 ≡ fi,i+1(xi+1).
Therefore,

ki (xi − xi+1)3

6 (xi − xi+1)
+ A (xi − xi+1) = yi ,

−ki+1 (xi+1 − xi)3

6 (xi − xi+1)
− B (xi+1 − xi) = yi+1, (278)

which leads us to an expression for both A and B:

A =
yi

(xi − xi+1)
− ki

6
(xi − xi+1),

B =
yi+1

(xi − xi+1)
− ki+1

6
(xi − xi+1) (279)

Substituting back the values of A and B into equation 277 and rearranging,
we find:

fi,i+1(x) =
ki
6

[
(x − xi+1)3

(xi − xi+1)
− (xi − xi+1) (x − xi+1)

]

−ki+1

6

[
(x − xi)3

(xi − xi+1)
− (xi − xi+1) (x − xi)

]
+
yi (x − xi+1) − yi+1 (x − xi)

(xi − xi+1)
(280)

The only missing terms in equation 280 are the second derivatives at the knots,
ki and ki+1. They can be obtained from the continuity condition on the slope,
i.e. f ′i−1,i(xi) = f ′i,i+1(xi). Calculating the derivative of eq. 280 in i − 1, i and
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i, i + 1 we obtain

ki−1 (xi−1 − xi) + 2 ki (xi−1 − xi+1) + ki+1 (xi − xi+1) = 6
(
yi−1 − yi
xi−1 − xi

−
yi − yi+1

xi − xi+1

)
(281)

for i = 1, 2, ..., n − 1. This gives a system of linear equations that can be solved
with one of the methods you already know, to get the ki terms. The simplest
way to solve it is to observe that the matrix is tridiagonal, i.e. it has non zero
elements only on the diagonal (terms i, i) and on the cells i, i − 1 and i, i + 1,
that is 

d0 e0 0 0 0 0
c0 d1 e1 0 0 0
0 c1 d2 e2 0 0
0 0 c2 d3 e3 0
0 0 0 c3 d4 e4
0 0 0 0 c4 d5


Namely, our system is:

2 (x0 − x2) (x1 − x2) 0 0 0 0
(x1 − x2) 2 (x1 − x3) (x2 − x3) 0 0 0

0 (x2 − x3) 2 (x2 − x4) (x3 − x4) 0 0
0 0 (x3 − x4) 2 (x3 − x5) (x4 − x5) 0
0 0 0 (x4 − x5) 2 (x4 − x6) (x5 − x6)
0 0 0 0 (x5 − x6) 2 (x5 − x7)





k1
k2
k3
k4
k5
k6


=



6
(
y0−y1
x0−x1

− y1−y2
x1−x2

)
6

(
y1−y2
x1−x2

− y2−y3
x2−x3

)
6

(
y2−y3
x2−x3

− y3−y4
x3−x4

)
6

(
y3−y4
x3−x4

− y4−y5
x4−x5

)
6

(
y4−y5
x4−x5

− y5−y6
x5−x6

)
6

(
y5−y6
x5−x6

− y6−y7
x6−x7

)


(282)

Tridiagonal matrices are particularly easy to solve with the LU decomposition
(see example below).

If the data are evenly spaced, i.e. xi − xi−1 = xi+1 − xi = h, equation 281
further simplifies to

ki−1 + 4 ki + ki+1 =
6
h2 (yi−1 − 2 yi + yi+1) . (283)

For the implementation of the cubic spline, we have to follow these steps:
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1. Calculate the ki by solving the system of linear equations (remember
that k0 = kn = 0 and you only have to calculate ki with i = 1, 2, ..., n − 1);

2. Calculate the interpolant at x from Eq. 280. Repeat for all the x points
you want;

EXERCISE:

Write a script to implement the cubic spline. To calculate the coefficients
ki use the LU decomposition through numpy.linalg.solve. Apply it to
the following sample of fake data.

import numpy as np

N=18

x=np.arange(0,18,1.)

y=np.sin(x)

The result should look as the upper panel of Fig. 62.
Now, apply this script to the file evol_120msun_scattered.dat and re-
construct the evolution of the 120 M� star with the spline. The result
should look as the lower panel of Fig. 62.

12.7 Python modules to interpolate

• The function numpy.interp returns the one-dimensional piecewise lin-
ear interpolant to a function with given discrete data points (xp, yp),
evaluated at x. It is analogous to our linear interpolation script. Reliable,
robust, highly recommended. Syntax:

y=numpy.interp(x,xp,yp)

• The module scipy.interpolate contains several different functions for
interpolation. Let us just mention scipy.interpolate.CubicSpline that
interpolates using a cubic spline, i.e. interpolates data with a piecewise
cubic polynomial which is twice continuously differentiable. Example
of usage of CubicSpline
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Figure 62: Results of the cubic spline exercise. Top: sinusoidal set of data. Bottom:
evolution of a 120 M� star.
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from scipy.interpolate import CubicSpline

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(10)

y = np.sin(x)

cs = CubicSpline(x, y) # x is the array of data,

#y is the array of values of the function in these data

xs = np.arange(-0.5, 9.6, 0.1)

fig, ax = plt.subplots(figsize=(6.5, 4))

ax.plot(x, y, ’o’, label=’data’) #scattered data

ax.plot(xs, np.sin(xs), label=’true’) #true value of the function

ax.plot(xs, cs(xs), label="f") #interpolated value of the function

ax.plot(xs, cs(xs, 1), label="f’") #first derivative of f

ax.plot(xs, cs(xs, 2), label="f’’") #second derivative of f

ax.plot(xs, cs(xs, 3), label="f’’’") #third derivative of f

ax.set_xlim(-0.5, 9.5)

ax.legend(loc=’lower left’, ncol=2)

plt.show()

which produces the result in Figure 63.
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Figure 63: Example of the function scipy.interpolate.CubicSpline.
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Figure 64: Visualization of the difference between interpolation and curve fitting.
Figure from Kiusalaas.

13 fitting procedures

This chapter is based on Numerical Methods in Engineering with Python by Jaan
Kiusalaas.

We start this Chapter by quoting the beginning of previous chapter (im-
portant concept!):

“Interpolation and curve fitting should not be confused. In interpolation
we construct a curve passing through a discrete set of data points. In doing
so, we make the implicit assumption that the data points are accurate and
distinct.

Curve fitting is applied to data that contain scatter (noise), usually due
to measurement errors. In this case, we want to find a smooth curve that
approximates the data. Thus, the curve does not necessarily hit the data
points. Figure 64 visualizes the difference between these two approaches. In
practice, interpolation is used more often when we deal with theoretical data
points (e.g. the outcome of discrete simulations, discrete numerical models),
curve fitting is mostly done on a set of observational data.”

In this chapter we show some examples of curve fitting, starting from the
simpler ones.
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13.1 Linear fit with the least squares

The simplest approach is to assume that our data points can be fit with a
straight line. For example, let yi be our set of measurements in the points xi ,
where i = 0, 1, .., N − 1. For example, the yi could be measurements of the flux
of an astrophysical source at different times xi .

Assuming that the yi and the xi are connected by a linear relationship is
equivalent to say that, if we could measure yi with infinite accuracy and avoid-
ing any kind of noise, the yi would perfectly obey the following relationship

y = A + B x, (284)

where A and B are constant and the values y and x represent the “continuous
version of yi and xi .

Note that often yi and xi are not our data but the base-10 logarithms of
our data. This is because many quantities in nature can be represented by
power laws

ỹ = 10A x̃B, (285)

where ỹ ≡ 10y , x̃ ≡ 10x.
Of course, it will never be possible to measure the yi with infinite accu-

racy and avoiding any kind of noise. Hence, first of all we have to make an
assumption about the underlying distribution of the errors of measure or, if
we are lucky, we have an independent way to estimate such distribution. Very
often, if we cannot do better, we assume that the errors of measure on the yi
follow a Gaussian distribution, even if we cannot probe it.

Note that here we are also assuming that there is no error of measurement
on the xi and we know them perfectly. This is always false for obvious reasons,
but in general we can choose the xi so that the error of measurement on the xi
is much smaller than the one on the yi and can be neglected. For example, in
the case of the measurement of the flux yi from a source at time xi , usually
our measure of time is way more accurate than the measure of fluxes. If the
uncertainties on the xi are comparable to the uncertainties on the yi , the
method we are about to discuss technically fails.

If the errors on yi are Gaussian distributed, then the measurement of yi
is governed by a normal distribution centered on the true value A + B x with
standard deviation σy . Therefore, the probability of obtaining the observed
value of yi is

PA,B(yi) ∝
1
σy

exp−
(yi − A − B xi)

2

2 σ2
y

(286)

The probability of obtaining our complete set of measurements y0, y1, .., yN−1
is then
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13.1. linear fit with the least squares

PA,B(y0, y1, .., yN−1) = PA,B(y0) PA,B(y1).. PA,B(yN−1) ∝ 1

σN
y

exp (−χ2/2), (287)

where

χ2 =
N−1∑
i=0

(yi − A − B xi)2

σ2
y

. (288)

Now we can derive A and B from our set of data, as the values of A and B
for which the probability 287 is maximum, i.e. the ones for which the χ2 is
minimum. For this reason, this method is called least squares fitting.

To find A and B we differentiate χ2 with respect to A and B and set the
derivatives equal to zero:

∂χ2

∂A
= − 2

σ2
y

N−1∑
i=0

(yi − A − B xi) = 0

∂χ2

∂B
= − 2

σ2
y

N−1∑
i=0

xi (yi − A − B xi) = 0, (289)

which can be simply rewritten as

A N + B
∑

xi =
∑

yi

A
∑

xi + B
∑

x2
i =

∑
xi yi , (290)

where
∑
≡

N−1∑
i=0

for simplicity. After few steps, we can find that the solutions

of the system 290 are

A =

∑
x2
i

∑
yi −

∑
xi

∑
xi yi

∆

B =
N

∑
xi yi −

∑
xi

∑
yi

∆
, (291)

where ∆ ≡ N
∑

x2
i − (

∑
xi)2.

Numerically, equations 291 for A and B are subject to large rounding
errors, because the two terms of the subtraction in the numerators and in
the denominators of both equations are similar numbers (in Chapter 4, we
have seen that the subtraction has large rounding errors if it is done between
two numbers that are both very large and very similar to each other). In your
script, it is then better to use the following equivalent equations, which are
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designed to reduce rounding errors.

B =
∑

yi (xi − 〈x〉)∑
xi (xi − 〈x〉)

A = 〈y〉 − 〈x〉 B, (292)

where

〈x〉 =
∑

xi
N

〈y〉 =
∑

yi
N

(293)

are the mean values of the xi and yi data.

Following the same line of reasoning as before, we can estimate the uncer-
tainty on each yi . Since we assumed that the errors of measurement on yi are
normally distributed about the true value A + B xi , the deviations yi − A− B xi
are also normally distributed, with a central value = 0 and the same standard
deviation σy . Hence

σy =

√√√
1

(N − 1)

N−1∑
i=0

(yi − A − B xi)2, (294)

where we have written N − 1 instead of N because the two constants A and B
reduce the number of degrees of freedom of our system. The above equation
yields the uncertainty on each single measurement.

Now we want to determine the uncertainty on our fitting constants, A and
B. By simply performing error propagation of equations 291 in terms of the
errors on y0, y1, .., yN−1 we find:

σA = σy

√∑
x2
i

∆

σB = σy

√
N
∆
. (295)

The bigger the uncertainties σA and σB, the worse is our assumption that
the yi and the xi are connected by a linear relationship.
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13.1. linear fit with the least squares

Figure 65: Fit of the fake data set proposed in the exercise with the least squares
method.

EXERCISE:

Write a script to calculate the least square fit using the formulas 292
for A and B and the formulas 294 and 295 for the uncertainties.
Construct your “fake” set of data as follows

def data_set():

x=np.logspace(0,4,num=10000) #x data

b=-2.0

a=3.0

y=10.**a * x**b #intrinsic relation y=10**a * x**b

x=np.log10(x)

y=np.log10(y)

sigma=1.

y=rnd.normal(y,sigma) #add gaussian noise

return x,y

Use your script to fit the fake data. Your results should look like Fig-
ure 65.

221



13. fitting procedures

13.2 Linear fit by weighting of data

The previous application of the least squares method does not include the
possibility that the uncertainty is different for each single datum. The most
common case is that the uncertainty does depend on the data. In this case, we
might want to assign a weight to each single data point in the form

χ2 =
N−1∑
i=0

Wi (yi − A − B xi)
2, (296)

where Wi is the weight of the ith datum. From the comparison with equa-
tion 288, we see that usually Wi ≡ 1/σ2

yi , if we know σyi .

The conditions for minimizing χ2 in this case are:

∂χ2

∂A
= −2

N−1∑
i=0

Wi (yi − A − B xi) = 0

∂χ2

∂B
= −2

N−1∑
i=0

Wi xi (yi − A − B xi) = 0, (297)

which finally yields

A =

∑
Wi x

2
i

∑
Wi yi −

∑
Wi xi

∑
Wi xi yi

∆

B =
∑

Wi
∑

Wi xi yi −
∑

Wi xi
∑

Wi yi
∆

, (298)

where ∆ ≡
∑

Wi
∑

Wi x
2
i − (

∑
Wi xi)2.

As we already noticed for the non-weighted least-square method, the above
formulas for A and B can be affected by large rounding errors. Hence, we can
re-write them in an equivalent, but more numerical code-friendly way as:

B =
∑

Wi yi (xi − 〈x〉w)∑
Wi xi (xi − 〈x〉w)

A = 〈y〉w − B 〈x〉w, (299)

where

〈x〉w =
∑

Wi xi∑
Wi

〈y〉w =
∑

Wi yi∑
Wi

(300)

are the weighted averages of the xi and yi data.

The associated error (standard deviation) becomes then
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13.3. general approach to least-square fitting

σy =

√√√
1

(N − 1)

N−1∑
i=0

Wi (yi − A − B xi)2. (301)

The resulting error on A and B can be found to be

σA = σy

√
ΣWi x

2
i

∆W

σB = σy

√
ΣWi

∆W
, (302)

with
∆W ≡ ΣWi ΣWi x

2
i − (ΣWi xi)

2 . (303)

EXERCISE:

Redo the previous exercise with weights on the errors (equations 299).
Considering the following set up:

x=np.logspace(0.,4,num=10000) #x data

b=-2.0

a=3.0

y=10.**a * x**b #intrinsic relation y=10**a * x**b

x=np.log10(x)

y=np.log10(y)

sigma=np.zeros(len(x),float)

for i in range(len(y)):

sigma[i]=10.*rnd.random()

y[i]=rnd.normal(y[i],sigma[i])

w=1./sigma**2

return x,y,w

You will find that the result is as accurate as before (or even better) with
a much larger apparent scatter of the data. Expected errors on A and B
of the order of O(10−3 − 10−2).

13.3 General approach to least-square fitting

So far, we have seen only the application of the least-square fit method to a
straight line. Let us now generalize to a general function f (x).

In most cases, the right approach to follow is to first assume that the data
can be fitted with a straight line. If the fit we obtain with the straight line is
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poor, then let us start considering some more complex functional form.

In some cases, we have some theoretical understanding of how the distri-
bution of data should be. In that specific case, it is smart to start fitting the
data with the function suggested by theory.

If, for the former or the latter reason, we have to consider a more complex
function than a straight line, it is important that this function has a simple
form (for example a polynomial) to avoid overfitting the data, i.e. to avoid
that we start modeling not only the underlying distribution of the data but
also the noise. Let’s define this general function as

f (x) = f (x; a0, a1, ..., am), (304)

where x is the variable and a0, a1, ..., am are the m + 1 parameters. If we want
to fit this function to our data (xi , yi) with i = 0,1, ..., N − 1, it is important
that (m + 1) < N (better if (m + 1)� N).

In this general case, the least-square fit is the one which minimizes the
function

S(a0, a1, .., am) =
N−1∑
i=0

[yi − f (xi)]
2 (305)

with respect to each ak . Therefore, the optimal values of the parameters are
given by the solution of the equations

∂S
∂ak

= 0, ∀k = 0, 1, ..., m (306)

The above equation is clearly the generalization of equation 289 to a number
m + 1 of parameters. Following this line of reasoning, the spread of the data
about the fitting curve is quantified by the standard deviation, defined as

σy =

√
S

N −m
, (307)

where N −m is the number of degrees of freedom of the fit. In the linear case,
we have two parameters A and B (m + 1 = 2), so the number of degrees of
freedom is always N − 1. Note that if N = m we have interpolation, not curve
fitting. In this case both S and N −m are equal to zero, so σy is indeterminate.

13.4 Polynomial fitting

Often the fitting function f (x) is a linear combination of functions:

f (x) = a0 f0(x) + a1 f1(x) + ... + am fm(x) (308)
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so that the equations 306 are linear. If the fitting function is a polynomial,
then

f0(x) = 1

f1(x) = x

f2(x) = x2

...

fm(x) = xm (309)

Here below, we discuss polynomial fitting, because it has a nice functional
form and implementation. If the degree of the polynomial is m, then we have

f (x) =
m∑
j=0

aj x
j . Hence, the basis functions are

fj(x) = aj x
j (j = 0, 1, 2, ..., m) (310)

Equation 306 becomes

∂S
∂ak

= −2

N−1∑
i=0

yi − m∑
j=0

aj x
j
i

 xki

 = 0 (k = 0, 1, ..., m) (311)

Separating the terms that depend on j from those who do not, and reshuffling
a bit, we get:

m∑
j=0

N−1∑
i=0

x
j
i x

k
i

 aj =
N−1∑
i=0

yi x
k
i (312)

Since the aj are our unknowns and we have a linear combination of the terms
in aj , the above equation can be rewritten as a system of linear equations
Ajk aj = bk , where

Ajk ≡
N−1∑
i=0

x
j+k
i

bk ≡
N−1∑
i=0

xki yi . (313)

The equations 313 can be implemented to perform our polynomial fit of
degree m.
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Figure 66: Polynomial fit of the stellar track with m = 3 and m = 7.

EXERCISE:

Write a script to perform a polynomial fit using equations 313. For the
solution of the system of linear equations, use the method you prefer (I
used LU decomposition).
Apply this method to fit the data of the file evol_120msun_scattered.dat
(the stellar track of a 120 M� star) with a polynomial of the 3rd order.
Repeat for a polynomial of 7th order. You should obtain something
similar to Figure 66.

13.5 Python functions for fits

There are several possible functions in python that do least-square fitting, but
possibly the most reliable are scipy.optimize.least_squares and scipy.optimize.curve_fit.

13.5.1 scipy.optimize.least_squares

scipy.optimize.least_squares: solves a general least-squares problem given
the residuals r(x).

I must start providing a functional form r(x) of the residuals. For example,
if I think may data are distributed according to a Gaussian function (e.g. I am
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looking at an emission line in a spectrum), the residuals should be estimated
as

f (xi) = a2 exp
[
−(xi − a0)2/(2. ∗ a2

1)
]

r(xi) = f (xi) − yi , (314)

where f (xi) is a Gaussian function evaluated in xi , yi is the value of the
measure at xi , and the three parameters a0, a1 and a2 are the mean, standard
deviation and normalization (note: here we are not talking of probability
distribution functions, so a3 can be whatever normalization).

Or, in python words:

def fun_res(a,x,y):

gauss_res=a[2]*np.exp(-(x-a[0])**2/2./a[1]**2)-y

return gauss_res

where vector a contains the parameters of the function, while (x,y) is a
data point (in my example, the lambda and the intensity of the line at that
lambda). Of course, the vector a contains the parameters that I still do not
know and I want to estimate, but I can start by providing a guess for them.

After I have defined fun_res, I can call least_squares as

from scipy import optimize as opt

lsq=opt.least_squares(fun_res,a,args=(x,y),xtol=1e-07,loss=’cauchy’)

where I call fun_res first (note that I must not specify the arguments of
the function), then I provide my Ansatz for the parameters a (which should
be defined somewhere before), then I input my whole array of data (x, y). In
addition, I have several other options like setting the tolerance xtol, or the loss
function g(z), which is used to “modulate” the cost function F(x) we want to
minimize:

F(x) = 0.5 sum(g(r(x)2)) (315)

where r(x) is the residual I defined before.
If I choose “loss=linear” (default), g(r(x)2) = r(x)2, which yields the stan-

dard definition of the least-squares problem in the previous pages. For ex-
ample, if I choose "loss=cauchy’, g(r(x)2) = ln

[
1 + r(x)2

]
, which weakens the

influence of outliers in the data (bad measurements) but might slow down the
optimization (or even make it fail).

The output of opt.least_squares() is a quite complicated structure of data,
defined in scipy. Here below, I summarize the most important outputs and
how you can get them:

lsq.x
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is the array of the aj after the optimization. In the case of the Gaussian
fit, a0, a1 and a2 will contain the best fit values of the mean, the standard
deviation and the normalization.

lsq.success

The answer can be only True or False. False means that the fit failed, True
that it succeeded.

EXERCISE:

Write a script to perform a least-square fit using
scipy.optimize.least_squares. Apply it to this set of mock data

def data_set():

a=0.0

s=2.0

h=1.0

x=np.linspace(-5.,5.,num=500) #x data

y=h*np.exp(-(x-a)**2/(2.*s**2))

sigma=np.zeros(len(x),float)

for i in range(len(y)):

sigma[i]=0.1*rnd.random()

y[i]=rnd.normal(y[i],sigma[i]) #add gaussian noise

return x,y

Of course, these mock data correspond to a Gaussian with mean, sigma
and height equal to 0, 2 and 1, respectively, and with some Gaussian
noise. Plot the results. They should look as Figure 67

13.5.2 scipy.optimize.curve_fit

scipy.optimize.curve_fit solves a general least-squares problem to fit a func-
tion, f (x), to the data. The main (but not the only) difference with respect
to scipy.optimize.least_squares is that scipy.optimize.curve_fit requires the
function in input, not the residuals.

For example, if I think may data are distributed according to a Gaussian
function, the function can be defined as:

def func(x,a,s,h):

gauss=h*np.exp(-(x-a)**2/2./s**2)

return gauss
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Figure 67: Least-square fit with a Gaussian using scipi.optimize.least_squares.

where a, s and h are the mean, the standard deviation and the height of
the Gaussian.

After I have defined func, I can call curve_fit as

from scipy import optimize as opt

popt,pcov=opt.curve_fit(func,x,y,p0=(a,s,h))

the minimal arguments for curve_fit are the input function func (note that
I must not specify the arguments of the function), the data set x, the data set
y, the array p0 which contains the parameters needed by func, over which we
want to do the optimization (in this case a, s and h).

Other additional possible input parameters are sigma: the array of uncer-
tainties on the data y (if we know it); bounds: the lower and upper bounds on
parameters (default is no bounds); methods: the method used by the function
to do the optimization.

The output of optimize.curve_fit is composed of two arrays:

popt: contains the optimal values for the parameters so that the sum of the
squared residuals of f (x, ∗popt) − y is minimized.

pcov: is the estimated covariance of popt. The diagonals provide the variance
of the parameter estimate. To compute one standard deviation errors on
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the parameters use perr = np.sqrt(np.diag(pcov)).

EXERCISE:

Write a script to perform a least-square fit using
scipy.optimize.curve_fit. Apply it to this set of mock data

def data_set():

a=0.

s=1.

h=10.

x=np.linspace(-10.,10.,num=500) #x data

y=h*np.exp(-(x-a)**2/2./s**2)

sigma=np.zeros(len(x),float)

for i in range(len(y)):

sigma[i]=4.*rnd.random()

y[i]=rnd.normal(y[i],sigma[i]) #add gaussian noise

return x,y

Of course, these mock data correspond to a Gaussian with mean, sigma
and height equal to 0, 2 and 1, respectively, and with some Gaussian
noise. Plot the results. They should look like Figure 68

Note that optimize.curve_fit can be also used to do fits in multi-dimensions.
For example, let us see now the example of a Gaussian in two dimensions.
This is quite useful in observational astrophysics, because several point spread
functions can be approximated with 2D Gaussians.

Here below, you find an example of this fit.
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Figure 68: Least-square fit with a Gaussian using scipi.optimize.curve_fit. In
this case, the parameters with errors are: a = −0.03 ± 0.05, s = 0.94 ± 0.05,
h = 10.0 ± 0.4.

231



13. fitting procedures

#examples/fit/fit_2D_scipy.py

#fit a 2D gaussian with scipy.optimize.curve_fit

import numpy as np

import numpy.random as rnd

import matplotlib.pyplot as plt

from scipy import optimize as opt

from scipy.stats import norm

plt.rcParams.update({’font.size’: 15})

def twoD_gauss(xy,x0,y0,sx,sy,h):

z=h*np.exp(-((xy[0]-x0)**2/(2.*sx*sx)+(xy[1]-y0)**2/(2.*sy*sy)))

return z.ravel()

def data_set():

x=np.linspace(-5.,5.,num=500) #x data

y=np.linspace(-5.,5.,num=500) #x data

x,y=np.meshgrid(x,y)

z=np.zeros([len(x),len(y)],float)

x0=0.0

y0=0.0

sx=1.0

sy=0.7

h=1.0

xy=(x,y)

z=twoD_gauss(xy,x0,y0,sx,sy,h)

z=z + 1e-1*np.random.normal(size=z.shape)

return x,y,z

def sci_fit(x,y,x0,y0,sx,sy,h):

xy=(x,y)

popt,pcov=opt.curve_fit(twoD_gauss,xy,z,p0=(x0,y0,sx,sy,h))

return popt,pcov

#main

x,y,z=data_set() #data points

x0=0. #Ansatz for parameters

y0=1.

sx=2.

sy=2.

h=2.

popt,pcov=sci_fit(x,y,x0,y0,sx,sy,h)

perr = np.sqrt(np.diag(pcov))

print("x0= ", popt[0], " err x0= ", perr[0])#x0, err on x0

print("y0= ",popt[1], " err y0= ",perr[1]) #y0, err on y0

print("sx= ",popt[2], " err sx= ",perr[3]) #sx, err on sx

print("sy= ",popt[3], " err sy= ",perr[3]) #sy, err on sy

print("h= ",popt[4]," err h= ",perr[4]) #h, err on h

xy=(x,y)

data_fitted = twoD_gauss(xy, *popt) #fitted data

figsize=plt.figaspect(1.0)

fig, ax = plt.subplots(1, 1, figsize=figsize)

ax.set_xlim(-3,3)

ax.set_ylim(-3,3)

ax.contourf(x,y,z.reshape(len(x),len(y)),100,cmap=plt.cm.jet)

ax.contour(x, y, data_fitted.reshape(len(x),len(y)), 8, colors=’w’)

ax.set_xlabel("x")

ax.set_ylabel("y")

plt.tight_layout()

plt.show()
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Now, let us explain this example step by step.
First, let us write down an expression for a 2D Gaussian:

f (x, y) = h exp

−
 (x − x0)2

2 σ2
x

+
(y − y0)2

2 σ2
y


, (316)

where h is the height, x0 and σx are the mean and the standard deviation in
the x direction, y0 and σy are the mean and the standard deviation in the y
direction. Here we assumed that the 2D Gaussian is oriented along the x and
y axis. For a generic orientation, we should include also a rotation angle.

Let us write this in python:

def twoD_gauss(xy,x0,y0,sx,sy,h):

z=h*np.exp(-((xy[0]-x0)**2/(2.*sx*sx)+(xy[1]-y0)**2/(2.*sy*sy)))

return z

where the x, y couples are stored in the xy = (x, y) tuple.
Now, we can use the optimize.curve_fit as

def sci_fit(x,y,x0,y0,sx,sy,h):

xy=(x,y)

popt,pcov=opt.curve_fit(twoD_gauss,xy,z,p0=(x0,y0,sx,sy,h))

return popt,pcov

Note however that if we do so for a reasonably large choice of z (like a
500 × 500 matrix) we likely get the error

ValueError: object too deep for desired array

The reason is that z is a matrix, while curve_fit only takes 1D arrays as
argument. Hence, we must first convert z to a 1D array. We can use for this
the function ravel() of numpy, which acts on numpy arrays to transform them
to 1D. For example

a=np.array([[2,1],[5,7]]) #defines a 2x2 np matrix

print(a)

a.ravel()

print(a)

The first print yields

array([[2, 1],

[5, 7]])

The second print yields

array([2, 1, 5, 7])
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i.e. the matrix has become a 1D array thanks to ravel().
Now, if we change our previous code to

def twoD_gauss(xy,x0,y0,sx,sy,h):

z=h*np.exp(-((xy[0]-x0)**2/(2.*sx*sx)+(xy[1]-y0)**2/(2.*sy*sy)))

return z.ravel()

def sci_fit(x,y,x0,y0,sx,sy,h):

xy=(x,y)

popt,pcov=opt.curve_fit(twoD_gauss,xy,z,p0=(x0,y0,sx,sy,h))

return popt,pcov

we will see that python stop complaining.
Let us input our mock data now, for example

def data_set():

x=np.linspace(-5.,5.,num=500) #x data

y=np.linspace(-5.,5.,num=500) #x data

x,y=np.meshgrid(x,y)

z=np.zeros([len(x),len(y)],float)

x0=0.0

y0=0.0

sx=1.0

sy=0.7

h=1.0

xy=(x,y)

z=twoD_gauss(xy,x0,y0,sx,sy,h)

z=z + 1e-1*np.random.normal(size=z.shape)

return x,y,z

Note here two things. First, the usage of np.linspace to produce a set of
500 numbers linearly spaced from −5 to 5 (which has the equivalent function
for logspaced numbers, np.logspace).

Second, note the usage of np.meshgrid to transform x and y from 1D
arrays to 2D matrices the way we need to build a Cartesian grid. For example

x=np.array([2,1])

y=np.array([0,3])

x,y=np.meshgrid(x,y)

print(x)

print(y)
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13.5. python functions for fits

where the first print yields

array([[2, 1],

[2, 1]])

and the second yields

array([[0, 0],

[3, 3]])

Now, assuming that the fit is successful, we have to produce our fitted
values of z as a function of xy. Note that we do it with

data_fitted = twoD_gauss(xy, *popt) #fitted data

In the above piece of code we have called again the function twoD_gauss
in the points xy and we have assigned it also the parameters of the best fit as
*popt. The asterisk here has the meaning of calling a pointer to the array popt,
which contains the best fitted parameters. This is a pointer like in C and C++.
This does not exist in python, just in scipy and is not commonly used (but is
used in this case). If you do not know the C and C++ and you do not know
what is a pointer, do not worry. Just think that this is a funny notation to call
the array of the optimized parameters and that you will encounter it only a
bunch of times and only with scipy.

At the end, we plot our results, but notice that z is no longer a matrix.
We have to transform it back to a matrix and to do so we use the command
reshape(N,N), which transforms it back to a N,N matrix:

ax.contourf(x,y,z.reshape(len(x),len(y)),100,cmap=plt.cm.jet)

The example should be more clear now. And the final result should be
like Figure 69 and should held parameters like x0 = −0.0007 ± 0.0008, y0 =
0.0007 ± 0.0006, σx = 1.0000 ± 0.0007, σy = 0.7000 ± 0.0005.
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13. fitting procedures

Figure 69: Least-square fit with a 2D Gaussian using scipi.optimize.curve_fit. Color
map: mock data. White contour levels: 2D Gaussian best fit.
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Figure 70: No need for caption. Credits: xkcd (see https://xkcd.com/). See also
https://www.youtube.com/watch?v=UGRhqZ2ooIw.

14 fourier transforms

This chapter is based on Computational Physics by Mark Newman http://

www-personal.umich.edu/~mejn/cp/.

Fourier transforms are ubiquitous in physics, astrophysics and possibly in
every-day life (e.g. they are behind the mp3 file and the jpg file technique).

14.1 Fourier series: a math summary

As you have learned in your math courses, a periodic function f (x) defined
on a finite interval 0 ≤ x < L can be written as a Fourier series, provided that
it is bounded and has at most a finite number of discontinuities and extrema.

If the function is even (i.e. symmetric) about the midpoint at x = L/2 then
we can use a cosine series:

f (x) =
∞∑
k=0

αk cos
(

2π k x
L

)
, (317)

where the αk are a set of coefficients whose values depend on the shape of

237

https://xkcd.com/
https://www.youtube.com/watch?v=UGRhqZ2ooIw
http://www-personal.umich.edu/~mejn/cp/
http://www-personal.umich.edu/~mejn/cp/


14. fourier transforms

the function.

If the function is odd (i.e. anti-symmetric) about the midpoint, then we
can use a sine series:

f (x) =
∞∑
k=1

βk sin
(

2π k x
L

)
, (318)

where the βk are another set of coefficients whose values depend on the shape
of the function. Note that the sum of the sine series starts from k = 1 only
because the term with k = 0 is always zero.

For a general periodic function, with no special symmetry, we can write:

f (x) =
∞∑
k=0

αk cos
(

2π k x
L

)
+
∞∑
k=1

βk sin
(

2π k x
L

)
. (319)

An alternative version of writing down this series is by using the complex
notation cos θ = 1

2 (exp (−i θ) + exp (i θ)) and sin θ = 1
2 i (exp (−i θ) − exp (i θ)).

Substituting these formulas into equation 319, we get

f (x) =
1
2

∞∑
k=0

αk

[
exp

(
−i 2π k x

L

)
+ exp

(
i

2π k x
L

)]

+
i
2

∞∑
k=1

βk

[
exp

(
−i 2π k x

L

)
− exp

(
i

2π k x
L

)]
(320)

Collecting terms and generalizing for k ∈ (−∞,∞), the above equation can be
rewritten as

f (x) =
∞∑

k=−∞
γk exp

(
i

2π k x
L

)
, (321)

where

γk =


1
2 (α−k + i β−k) if k < 0
α0 if k = 0
1
2 (αk − i βk) if k > 0

(322)

If we can calculate the coefficients γk , then we are able to reconstruct the
function f (x) by using its Fourier series.

Note that Fourier series can be used only for periodic functions, meaning
that the function in the interval 0 ≤ x < L is repeated over and over again
all the way out to infinity in both the positive and negative directions. Most
of the functions we deal with are not periodic. Luckily, if we are interested
in a portion of a non-periodic function over a finite interval 0, L, it is always
possible to take that portion and just repeat it to create a periodic function,
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14.1. fourier series: a math summary

Figure 71: Creating a periodic function from a non-periodic one. The function f (x)
we are interested in is non-periodic. We can calculate a Fourier series of f (x) in a
finite interval 0 ≤ x < L by modifying the function as shown. We discard the parts
of the function represented by the gray curves that fall outside the region of interest
and replace them with an infinite set of periodic repetitions of the portion from 0 to
L (dashed black curves). Credits: Mark Newman, Computational Physics.

as shown in Figure 71. Then the Fourier series formulas given above are the
correct representation of the function in the interval 0, L. Outside of that
interval, they give an incorrect answer, but this does not matter since we are
interested only in the interval 0, L.

The coefficients γk in equation 322 are, in general, complex. The standard
way to calculate them is to evaluate the integral

L∫
0

f (x) exp
(
−i 2π k x

L

)
dx =

∞∑
k′=−∞

γk′

L∫
0

exp
(
i
2π (k′ − k) x

L

)
dx, (323)

where we have used equation 321 and we have multiplied both terms by
exp

(
−i 2π k x

L

)
. The integral on the right is easy to calculate. When k′ , k, the

integral
L∫

0
exp

(
i 2π (k′−k) x

L

)
dx is always equal to zero for the following reasons.

From your math courses you might remember (otherwise it is easy to derive)
that, for any complex z = a + i b, we have∫

ez xdx =
ez x

z
(324)
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14. fourier transforms

Hence, the right-hand term of equation 323 if k′ , k becomes

L∫
0

exp
(
i

2π (k′ − k) x
L

)
dx =

L
i 2π (k′ − k)

[
exp

(
i

2π (k′ − k) x
L

) ]L

0
=

L
i 2π (k′ − k)

{
exp

[
i 2π (k′ − k)

]
− 1

}
= 0, (325)

where we used the fact that exp (i 2πn) = 1 for any integer n (and k′ − k is an
integer by definition).

The only non-zero case for the right-hand term of equation 323 is for
k′ = k, when the integral is equal to L. Thus, equation 323 can be rewritten as

L∫
0

f (x) exp
(
−i 2π k x

L

)
dx = γk L (326)

or, rewriting in terms of γk

γk =
1
L

L∫
0

f (x) exp
(
−i 2π k x

L

)
dx (327)

Thus, given the function f (x), we can find the Fourier coefficients γk , or, vice
versa, given the coefficients γk we can reconstruct the function f (x).

14.2 The discrete Fourier transform (DFT)

The integral in equation 327 can be calculated analytically only for some
functions. In many cases, the integral does not admit an analytic solution, or
the analytic solution is too complicated, or we do not know the functional form
of f (x) but only the value of f (x) in a set of points (for example because we
have a set of experimental data). In such cases, we can calculate the coefficients
γk numerically.

Let us simply use the trapezoidal rule to solve the integral in equation 327
with N slices of width h = L/N. Applying the trapezoidal rule (equation 106),
we get

γk =
1
L

L
N

1
2
f (0) +

1
2
f (L) +

N−1∑
n=1

f (xn) exp
(
−i 2π k xn

L

) , (328)

where the positions xn of the sample points for the integral are

xn =
n
N

L (329)
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14.2. the discrete fourier transform (dft)

Since f (x) is by hypothesis periodic with period L, then f (0) = f (L) and
equation 328 simplifies to

γk =
1
N

N−1∑
n=0

f (xn) exp
(
−i 2π k xn

L

)
. (330)

The equation 330 can be used to evaluate the coefficients γk numerically.
If the function f (x) is evenly sampled over an interval 0, L, i.e. if the xn are

equally spaced, we can further simplify equation 330 by defining yn = f (xn)
and by using equation 329:

γk =
1
N

N−1∑
n=0

yn exp
(
−i 2π k n

N

)
. (331)

In this form, we only need to know the sample values yn and the total number
of samples N.

By convention, the formula 331 is written in a slightly different way (by
removing the 1

N term):

ck =
N−1∑
n=0

yn exp
(
−i 2π k n

N

)
, (332)

where the coefficients ck are nothing but ck = γk N. Equation 332 is known as
the discrete Fourier transform (DFT) of the samples yn.

We have derived equation 332 by using the trapezoidal rule, which is an
approximated method to solve the integral. However, with few mathematical
steps we can show that the DFT is, in a certain sense, exact. In fact (see the
book by Mark Newman for the calculations), by starting from equation 332
and adopting some mathematical tricks we can show that

yn =
1
N

N−1∑
k=0

ck exp
(
i

2π k n
N

)
, (333)

which is the inverse discrete Fourier transform (or inverse DFT). Equa-
tion 333 tells us that, given the coefficients ck we can derive from equation 332,
we can recover the values of the samples yn that they come from exactly (except
for rounding errors).

This is an amazing result: even though we thought our Fourier coefficients
were only approximate, it turns out that they are actually exact in the sense
that we can completely recover the original samples from them. Thus, we
can freely move back and fourth from the coefficients to the samples and
vice versa WITHOUT LOSING ANY INFORMATION in our data: both the
samples and the Fourier coefficients give us a complete representation of the
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14. fourier transforms

Figure 72: The function on the left and the function on the right assume the same
values a the five sample points (blue circles). Hence, they have the same DFT, but
they look dramatically different in between points.

original data.

Notice that we only need the Fourier coefficients ck up to k = N − 1 to
recover the samples, so we need to evaluate equation 332 only for 0 ≤ k < N
(no need to calculate an infinite sum!).

It is important to note that, unlike the original Fourier series (e.g. equa-
tion 321), the inverse DFT equation 333 only gives us the sample values
yn = f (xn): it tells us nothing about the value of f (x) between sample
points. The original function could do anything it wanted between two sam-
ple points and we would never know it. In other words, any two functions that
have the same values at the sample points will have the same DFT, no matter
what they do between the sample points, like the two functions in Figure 72.

Still, if a function is reasonably smooth and we sample enough points,
knowing the values at the sample points is enough to get a picture of the
function’s general shape. Moreover, we cannot do better than this when we do
not know the functional form of the function, but we have only a sample of
discrete experimental data.

The results discussed before apply for both complex and real functions. If
we are interested only in real functions (which is mostly the case, in physics),
we can do some further simplification. Suppose all the yn are real and consider
the value ck for N/2 < k < N, which we write as k = N − r where 1 ≤ r ≤ N/2.

242



14.3. fast fourier transform (fft)

Then

cN−r =
N−1∑
n=0

yn exp
(
−i 2π (N − r) n

N

)

=
N−1∑
n=0

yn exp (−i 2πn) exp
(
i

2π r n
N

)

=
N−1∑
n=0

yn exp
(
i

2π r n
N

)
= c∗r , (334)

where c∗r is the complex conjugate of cr . Thus, cN−1 = c∗1, cN−2 = c∗2, etc. This
means that, if the function is real, we have to calculate only the coefficients ck
with 0 ≤ k ≤ N/2. If N is even, we must calculate N/2 + 1 coefficients, if N is
odd, we must calculate (N + 1)/2 coefficients. In python notation, this means
that we should calculate

N//2+1

coefficients, where ’//’ is the integer division operator.

14.3 Fast Fourier transform (FFT)

The computational cost of the DFT method described in the first section scales
approximately as N2, because we need to calculate ∼ N/2 + 1 coefficients and
for each coefficient we need to loop over N sampled points (hence, the DFT
method scales as N (N/2 + 1)). This is computationally heavy. Can we do better
with a different algorithm?

The fast Fourier transform (or FFT) algorithm is a much more clever
scheme to calculate a Fourier transform. It was discovered by Carl F. Gauss
in 1805, then almost forgotten, then independently re-discovered by James
Cooley and John Tukey in 1965. The simplest FFT transform assumes that the
samples is a power of two, hence N = 2m, with m = integer.

Divide the terms of the sum in the DFT formula (equation 332) into two
equally sized groups. Let the first group consists of the terms with n even and
the second the terms with n odd. The group of the even terms, i.e. the terms
with n = 2 r with r = 0, 1, ...N/2 − 1 is

Ek =

N
2 −1∑
r=0

y2 r exp
(
−i 2πk (2 r)

N

)
=

N
2 −1∑
r=0

y2 r exp

−i 2πk r
1
2 N

, (335)

which is another Fourier transform, with number of samples equal to N/2.
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14. fourier transforms

Similarly, the odd terms (with n = 2 r + 1) is

N
2 −1∑
r=0

y2 r+1 exp
(
−i 2πk (2 r + 1)

N

)
= exp

(
−i 2πk

N

) N
2 −1∑
r=0

y2 r+1 exp

−i 2πk r
1
2 N

 = exp
(
−i 2πk

N

)
Ok ,

where Ok is another Fourier transform with N/2 samples.
We can thus rewrite the Fourier coefficients as

ck = Ek + exp
(
−i 2πk

N

)
Ok (336)

Hence, the Fourier coefficients in the DFT method can be written as the sum
of two terms Ek and Ok that are each DFTs of the same function f (x) but with
half as many points spaced twice as far apart, plus an extra-factor exp

(
−i 2πk

N

)
,

called twiddle factor.
We now repeat the splitting process onto each of the two Fourier trans-

forms, i.e. Ek and Ok. Each of them can be divided in its even and its odd
terms. We repeat the splitting, until eventually we get to the point where each
transform is the transform of just a single sample. But the Fourier transform
of a single sample has only a single Fourier coefficient c0, which, putting k = 0
and N = 1 is equal to

c0 =
0∑

n=0

yn exp (0) = y0, (337)

i.e. if we have a single sample the Fourier coefficient is the sample itself.
The actual calculation of the FFT is the reverse of the process outlined

above. We start from the individual samples (which are their own Fourier
transforms) and we combine them in pairs, then we combine the pairs into
fours, the fours into eights, and so on, creating larger and larger Fourier
transforms, until we have reconstructed the full transform of the complete set
of samples.

The power of this approach is its speed. At the first round of the calculation
we have N samples, at the second N/2 transforms with 2 coefficients each
(i.e. N operations), at the third N/4 transforms with 4 coefficients each (i.e. N
operations) and so on. We have to do N operations per each level.

We have to calculate this for m levels, where m = log2 (N), by definition
(since N = 2m). Thus, the FFT method scales as N log2 (N), much better than
the DFT method (∝ N2).

We will not see the formulas of the FFT method, because they are quite
tedious (but see the book by Mark Newman for details) and because there is
already a super-efficient module for FFTs in numpy: numpy.fft. This module
contains several functions.
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1. The function numpy.fft.rfft calculates the FFT for a sample of real num-
bers (’r’ in rfft stands for real). It works as follows.

from numpy.fft import rfft

c=rfft(y)

where y is a real numpy array, while c is a complex numpy array. Note
that c in the above example has N/2 + 1 coefficients, because of the
property we discussed in equation 334.

To generate a complex numpy array, you should type something like

import numpy as np

c=np.array(p,complex)

where p is the number of elements and complex is the type of the array.

2. The function numpy.fft.irfft calculates the inverse FFT, i.e. takes as
an argument the Fourier coefficients c and recovers the value of the
samples:

from numpy.fft import rfft,irfft

c=rfft(y)

y2=irfft(c)

print(y2)

Note that the real numpy.array y2 has N elements, i.e. irfft reconstructs
all the N samples from the N/2 + 1 coefficients.

3. The function numpy.fft.rfft2 calculates the FFT for a generic number of
real samples in two dimensions, i.e. for samples ymn and with coefficients
cml .

4. The function numpy.fft.irfft2 calculates the inverse FFT for a generic
number of real Fourier coefficients in two dimensions.

5. The function numpy.fft.fft calculates the FFT for a generic number of
complex samples.

6. The function numpy.fft.ifft calculates the inverse FFT for a generic
number of complex Fourier coefficients.

7. The function numpy.fft.fft2 calculates the FFT for a generic number of
complex samples in two dimensions.

8. The function numpy.fft.ifft2 calculates the inverse FFT for a generic
number of complex Fourier coefficients in two dimensions.
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14. fourier transforms

Figure 73: Example signal presented in Figure 7.3 of Mark Newman, Computa-
tional Physics. This plot can be reconstructed from the file http://www-personal.
umich.edu/~mejn/cp/data/pitch.txt. See examples/fourier/. X-axis: time t,
y-axis: signal f (t). This signal has an overall wave-like shape wit a well-defined
frequency (ν = kmax/N = 16/1024 ∼ 0.0156) but also contains some noise.

14.4 Physical interpretation of the Fourier transform

The Fourier transform represents a function via a set of real or complex
sinusoidal waves. Each term in the sum in equation 333 represents a single
wave with its own well-defined frequency ν = k/N and period T = ν−1 = N/k.

If the function f (x) is a function in space, then we will have spatial fre-
quencies, if it is a function in time then we will have temporal frequencies.

Saying that any function can be expressed as a Fourier transform is equiva-
lent to saying that any function can be represented as a sum of waves of given
frequencies and the coefficients of the Fourier transform tell us how much
power is associated with each frequency, i.e. how big is the contribution of
each frequency to the sum.

The frequency associated with the largest coefficient different from the
k = 0 coefficient is then the most important frequency associated with the
data we are considering.

For example, let us consider the signal shown in Figure 73. This signal
consists of a basic wave with a well-defined frequency and period, but also
has some noise, visible as smaller wiggles in the line. If this signal were a
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14.4. physical interpretation of the fourier transform

Figure 74: Values of the Fourier coefficients |ck | versus k for the example signal
shown in Figure 73. The main spike corresponds to a frequency ν = kmax/N =
16/1024 ∼ 0.0156.
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14. fourier transforms

sound, one could hear a constant note at the frequency of the main wave, plus
a background hiss that comes from the noise.

We can calculate the Fourier transform of this signal as shown in exam-
ples/fourier/. The file fft.py contains the following lines

#examples/fourier/fft.py

#uses FFT to calculate Fourier transform of pitch.txt

import matplotlib.pyplot as plt

import numpy as np

from cmath import exp,pi

from numpy.fft import rfft,ifft

fname="pitch.txt"

y=np.genfromtxt(fname,unpack=True)

m=range(len(y))

# plot Figure 73

plt.plot(m,y)

plt.xlabel("Time $t$",fontsize=20)

plt.ylabel("$f(t)$",fontsize=20)

plt.xlim(0,1024)

plt.tight_layout()

plt.show()

# calculates Fourier transform with FFT

N=len(y)

c=rfft(y)

cabs=(abs(c))

kk=[]

maxc=0.0

maxk=0

# calculated frequency k/N corresponding to the max c_k

for k in range(N//2+1):

if((cabs[k]>maxc) and (k>0)):

maxc=cabs[k]

maxk=k/float(N)

kk.append(k)

#plots |ck| versus k (Figure 74)

plt.plot(kk,cabs)

plt.xlabel("$k$",fontsize=20)

plt.ylabel("$|c_k|$",fontsize=20)

plt.ylim(0,600)

plt.xlim(0,513)

plt.tight_layout()

plt.show()

#prints frequency corresponding to the max c_k

print(maxk,maxc)

It first reads the file pitch.txt and plots Figure 73. Then it calculates the
Fourier transform calling the function numpy.fft.rfft. Finally, it plots the value
of the absolute value of the coefficients |ck | versus k (Figure 74) and it calculates
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what is the frequency associated with the largest |ck |.
Figure 74 shows |ck | versus k. We remind that k is proportional to the

frequency of the waves (ν = k/N). There are a number of significant spikes
in the plot, corresponding to the largest values of |ck |. The highest spike
corresponds to k = 16, hence a frequency ν ∼ 0.0156 and a period T = 1/ν =
64. These are the main frequency and periodicity visible in Figure 73.

The remaining spikes in Figure 74 are harmonics of the first one: multiples
of the main frequency that tell us that the wave in the original data was not
a pure sine wave (a pure sine wave is represented with just a single term of
the appropriate frequency in the Fourier series, while any other wave requires
some additional terms). Finally, the plot shows some small, apparently random
values of |ck | creating a low-level background. These non-zero but very small
|ck | are produced by some noise in the signal, which can be considered a white
noise, because it does not show any dependence with k.

If we want to get rid of the noise, we might decide to reconstruct the
initial samples without considering the smallest |ck |. Hence, the simplest
way to de-noise a signal, is to reconstruct the original samples by doing the
inverse FFT after zeroing all the values of ck with |ck | smaller than a given
threshold. In our example, |ck | ∼ 25 seems to be a reasonable assumption for
the largest |ck | produced by the noise. If we then complete the previous script
as following

#DENOISE DATA BY REMOVING THE SMALLEST |c_k|

threshold=25. #maximum value of |c_k| that

#I consider associated with white noise

for k in range(N//2+1):

if(cabs[k]<threshold):

c[k]=0.0

y2=irfft(c)

#plots the reconstructed function "without noise"

a,=plt.plot(m,y)

b,=plt.plot(m,y2,color="red",linewidth=4)

plt.xlabel("Time $t$",fontsize=20)

plt.ylabel("$f(t)$",fontsize=20)

plt.xlim(0,1024)

plt.legend([a,b],["Signal","De-noised signal"],fontsize=15)

plt.tight_layout()

plt.show()

we obtain Figure 75, where the red line shows the reconstructed signal
after removing the noise-like coefficients. Of course, this procedure works
only if the noise is perfectly white and the final result is sensitive to the choice
of the threshold. This discussion is not a tutorial on de-noising but just a very
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14. fourier transforms

Figure 75: Blue line: same signal f (t) as a function of t presented in Figure 73. Red
thick line: de-noised signal obtained by doing the inverse FFT after zeroing all the
coefficients ck with |ck | < 25.

simplified example.

After we have reconstructed the initial samples, we have a smoother ver-
sion of the signal which, for example, can be used to calculate less noisy
numerical derivatives (see the discussion in Section 7.4).
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EXERCISE:

The file exercises/fourier/sunspots.txt (or, if you prefer to use gitlab:
the file exercises/fourier/sunspots.txt) contains the observed number
of sunspots on the Sun for each month since January 1749. The file
contains two columns: column 0 is the month and column 1 is the
number of sunspots per each month.

1. Plot the number of sunspots as a function of the month. The result
should look like Figure 76.

2. Write a script to perform the discrete Fourier transform (DFT)
and the fast Fourier transform (FFT) of the number of sunspots
as a function of the month. For the DFT, use equation 332. For
the FFT, use the numpy.fft.rfft function. Compare the different
performances. The DFT should be significantly slower than the
FFT.

3. Plot the Fourier coefficients |ck | as a function of k. The result
should look like Figure 77.

4. Calculate the period T = N/k associated with the largest |ck |. This
gives you the sunspot periodicity (t ∼ 10.9 years).

5. Try to denoise the data assuming that there is just white noise.
Plot the denoised signal. The result should look like Figure 78.
Note: for the inverse Fourier transform it is sufficient that you use
the corresponding numpy function (no need to write an indirect
DFT).
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Figure 76: Number of sunspots as a function of the month. Result of the exercise.
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Figure 77: Fourier coefficients |ck | as a function of k in the data of the sunspot
exercise.
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Figure 78: Blue line: Number of sunspots as a function of the month. Red line:
de-noised version of the data.
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15 other useful packages and
environments

15.1 The conda environment

Let’s briefly introduce CONDA. You can download the conda package and
learn more about it from https://docs.conda.io/projects/conda/en/latest/

user-guide/index.html. Conda is an open and free software, of course. If
you are using the virtual machine or the workstations at the lab P104, you do
not need to download it, because it is already installed and running (even if
you do not see it).

Conda is an ‘open source package management system and environment
management system that runs on Windows, macOS and Linux. Conda quickly
installs, runs and updates packages and their dependencies. Conda easily cre-
ates, saves, loads and switches between environments on your local computer.
It was created for Python programs, but it can package and distribute software
for any language.’ (the quotes indicate that these sentences were taken from
the conda website).

Translated into simpler and less celebratory words: conda is a software
package with which you can create one or more environments, i.e. “virtual
spaces” where you can install software that is different from the one you have
on your computer, without the risk of conflicts with other programs installed
on your computer. The rest of the software on your computer is not affected
by conda, it does not know anything about conda.

Basically, the main advantage of using conda is that you can install and
un-install software without the risk of screwing up your computer operating
system and other installed software8.

The packages that you install through conda work only inside conda do
not affect your overall system. Hence, you can install through conda packages
that otherwise would be conflicting with your system.

You can set up different environments with different kind of softwares
depending on what you need (e.g. one with python3 and one with python2)
and running them at the same time without conflicts.

It is extremely user friendly and safe. You can install software through
conda by simply typing:

conda install software_name

What conda does not do:

• it is not a virtual machine (but you can install it inside a virtual machine);

• it does not support an operating system different from the one you have
on your computer. E.g., if you are a windows user you must install conda

8Note, for example, that if you screw up when you install python on ubuntu, you might
screw up your entire computer, because ubuntu is basically built through python. If you do the
installation inside conda, this does not affect your operating system
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for windows, if you are a mac user you must install the version for mac
OS, if you are a linux user the one for linux.

There are two different ways you get conda:

• ANACONDA: complete version, needs disk space (∼ 3 Gb initially, but
it can easily grow to ∼ 10 Gb if you install more software later on);

• MINICONDA: lighter version, much less space (∼ 400 Mb) but less
features

The name “CONDA” refers only to the package manager (the package which
allows you to install software in a new environment) and is included in both
the anaconda and miniconda software distributions. I suggest full anaconda if
you have space

To install conda on your laptop, go here https://docs.conda.io/en/

latest/ and follow the instructions for your operating system. If you have
problems, ask me. After you install conda, you have to activate it by typing

conda activate

To exit conda

conda deactivate

If you use the virtual machine or the workstations at the lab P104 you do
not need to install conda: it is already there even if you do not see it.

If you install conda, all the packages we will be talking about in the next
sections are automatically installed together with conda. Hence, it is quite a
good investment to spend ∼ 15 minutes of your life installing conda.

15.2 jupyter-notebook

Project jupyter https://jupyter.org/ includes several other features besides the
notebook, but the notebook is definitely the most used and famous. Jupyter
Notebook is an open-source web application that allows you to create and
share documents that contain live code, equations, visualizations and narrative
text.

If you have conda, jupyter-notebook should be already installed inside
conda and can be simply started by typing jupyter-notebook on your com-
mand line. It launches a web browser interface that allows to enter and run
blocks of code.

If you have conda, but jupyter-notebook is not installed (quite strange),
install it doing

conda install jupyter

Let’s look at the example file examples/jupyter/hermite.ipynb.
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Run it with

jupyter-notebook hermite.ipynb

My warning: it is terribly easy to forget re-running some blocks, even if
you change them. Please be careful.

My suggestion: notebook is very user-friendly when you are creating a
new script (especially for plotting), but it might be less useful when you go to
production (e.g., if you want to launch it on a remote server with many cores
but limited options for internet access and graphics interface). Once you are
sure your script works with the notebook, you can save it as a plain python
script and run it as a plain python script.

Very popular: jupyter notebook is becoming increasingly popular in the
scientific community. For example, all the LIGO–Virgo code is done with
notebooks.

15.3 Using file formats other than plain text files

Broadly speaking, all kind of files can be divided into just two major families:
text files and binary files.

Text files:

A text file is a file that contains plain, human-readable text (with numbers
and/or words). When I open a text file with a text editor (e.g. emacs, gedit), I
can read its content directly. For example, ASCII files and CSV files are text
files. At the beginning of the course we have already discussed how we can
open, read and write plain text files.

Binary files:

A binary file is a computer file that is not a text file. “Binary files are usually
thought of as being a sequence of bytes, which means the binary digits (bits)
are grouped in eights. Binary files typically contain bytes that are intended to
be interpreted as something other than text characters” (source: Wikipedia).
In the following, we will see one example of a binary file which is the HDF5
file format.

Python can open a generic binary file, for reading or writing, with the
function open, just by adding the “b” option. For example

f=open("mybinfile","rb")

f2=open("mybinfile2","wb")

which opens file mybinfile for reading and mybinfile2 for writing.
The main problem is how to actually read and interpret the information

inside the binary file after I have opened it with the function open. To read
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a binary file, I need more information on how the content of the binary file
is organized. This information can be, at least partially, retrieved inside the
binary file itself. See the specific example of the HDF5 file below.

The correct reading of some (but not all!) binary file formats might be lim-
ited by the endiannes of the machine where the file was generated. Endianness
is the ordering of bytes in computer memory storage or during transmission.
Endiannes can be either big-endian or little-endian. A big-endian system
stores the most significant byte of a word at the smallest memory address
and the least significant byte at the largest. Vice versa, a small-endian sys-
tem stores the most significant byte of a word at the largest memory address
and the least significant byte at the smallest. Big-endianness is the dominant
ordering in networking protocols (the most significant byte is transmitted
first). Conversely, little-endianness is the dominant ordering for processor
architectures (e.g., x86).

Since binary files are just sequences of bytes, a binary file produced by a
small-endian system has an internal ordering that is totally different from a
binary file produced by a big-endian system and vice versa. This might have
disruptive impact on your analysis.

In many contemporary binary file formats (e.g. HDF5) this issue is cured
by information stored inside the file: the user does not need to care about
endianness, because the file handles it on its own. When you have to work
with a binary file format you have never used before, just check how it handles
endianness.

ASCII files

An ASCII File is a file that contains unformatted ASCII text: just plain,
human-readable text using only ASCII characters. Hence an ascii file is a
specific type of text file that contains only ASCII characters. ASCII file is
often used as a synonym of text file.

Technically speaking, ASCII (American Standard Code for Information
Interchange) is a character encoding standard for electronic communication.
In particular, ASCII is an encoding representing each typed character by a
number between 0 and 255 (i.e., a number that can be stored into a byte). It
was published in 1963 and reviewed in 1967. It might be soon replaced by
UTF-8, which stores each character into up to 4 bytes, allowing to include
all the characters from, e.g., Greek, Cyrillic and Arabic, and most characters
from, e.g., Chinese, Japanese and Korean.

258



15.3. using file formats other than plain text files

Encoding for Dummies

Let’s open a short parenthesis on character representation in computers.
As you know already from previous courses (hopefully), the smallest
unit of storage of data into your computer is the bit. The bit stores just
a 0 or a 1. Groups of 8 bits are called bytes.
Numbers on a computer are represented as binary numbers (e.g.,
100101 = 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 37).
Hence, representing a number on a computer usually requires more
than one bit (only 0 and 1 require just one bit).
Characters other than numbers are stored in a computer by associating
to each of them a given number. The correspondence between a given
character and a given number is established by the character encoding
standard we choose.
ASCII is one of such character encoding standards that establish a one-
to-one correspondence between characters and numbers. In particularly,
the ASCII standard allocates up to one byte per each character. Since
the maximum number that can be stored into one byte is 255 (because
256 = 28 = 100000000), ASCII can contain only up to 256 characters.
Actually, it contains only 128 characters by convention. Hence, the
ASCII is a 7-bit encoding.
Figure 79 shows the current ASCII table, with the correspondence
between characters and numbers.
ASCII allows to represent most of the characters present in Latin-based
alphabets, but misses several alphabets.
The 8-bit Unicode Transformation Format (UTF-8) uses up to 4 bytes to
store characters and includes all the characters present in Latin-based
alphabets, Greek, Cyrillic, Arabic, and several other alphabets. UTF-8
also includes most characters from, e.g., Chinese, Japanese and Korean.
For this reason, UTF-8 is increasingly popular and might replace ASCII
as standard.
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Figure 79: ASCII table.
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Figure 80: Cartoon of the structure of an HDF5 file.

HDF5 file format:

HDF5 (Hierarchical Data Format version 5) is a powerful open-source binary
file format for big data. It is increasingly used for astrophysical data (e.g.,
LOFAR data) and for astrophysical simulations (e.g., the eagle simulation
project, Schaye et al. 2015). Python has a user-friendly package to read HDF5,
called h5py (https://docs.h5py.org/en/stable/quick.html). It is already
installed in conda, otherwise you can install it with

conda install h5py

An HDF5 file is a container for two kinds of objects: datasets, which are
array-like collections of data, and groups, which are folder-like containers that
hold datasets and other groups. The most fundamental thing to remember
when using h5py is: Groups work like dictionaries, and datasets work like
numPy arrays.

You can think of a HDF5 file as a well-organized bundle of directories and
files contained in these directories, all stored in the same file. The groups of
the HDF5 file have the same role as the directories, while the datasets are
equivalent to the files. To summarize (see also Figure 80):

• Group: A folder like element within an HDF5 file that might contain
other groups OR datasets within it.

• Dataset: The actual data contained within the HDF5 file. Datasets are
often (but don’t have to be) stored within groups in the file.

In practice, the first thing to do is to open a file for reading
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import h5py

f = h5py.File(’mytestfile.hdf5’, ’r’)

The File object is your starting point. What is stored in this file?

Check the lecture on python dictionaries. Groups are like Python dictio-
naries, thus we can check the keys,

key = list(f.keys())

print(key)

This command prints a list whose elements are the keys of the dictionary.
We can use them to access the values of the dictionary, which are our dataset
object:

a = list(f.keys())[0]

dset = f[a]

In the following example (examples/hdf5/read_hdf5.py), we read one of
the HDF5 files of the eagle cosmological simulation (http://icc.dur.ac.
uk/Eagle/). Note that if the dictionary is particularly nested / complex, the
most effective way to proceed is to know what is the organization of the keys
(e.g., in this case you can know it by reading the documentation of the eagle

simulation).
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#examples/hdf5/read_hdf5.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.colors as colors

import h5py as h5

#read a snapshot of a galaxy from EAGLE

Gnr = 7 #group

Sgrn = 0 #subgroup

fname="GalaxySample_Gnr"+str(Gnr)+"Sgrn"+str(Sgrn)+"_ce1515R0.5_GW_DNS_25Mpc_merge28.h5"

f = h5.File(fname, "r")

print(list(f.keys()))

# the first key is the galaxy label

Galaxy_label = list(f.keys())[0]

#Galaxy_label = "Group_"+str(Gnr)+"SubGroup_"+str(Sgrn)

# the further keys are the properties of the galaxy

# here we specify the coordinates of each star and the mass

coord = "Coordinates_stars"

mass = "mstars"

#print(f[Galaxy_label][mass])

m_stars = np.asarray(f[Galaxy_label][mass]) #Mass in 10^10Msunh

pos_stars = np.asarray(f[Galaxy_label][coord]) #Coordinates in Mpc/h

x_stars = pos_stars[:,0]

y_stars = pos_stars[:,1]

z_stars = pos_stars[:,2]

mtot=0.0

xcm=ycm=zcm=0.0

mtot=sum(m_stars)

xcm=sum(x_stars*m_stars)/mtot

ycm=sum(y_stars*m_stars)/mtot

zcm=sum(z_stars*m_stars)/mtot

x_stars-=xcm

y_stars-=ycm

z_stars-=zcm

print(xcm)

print(x_stars)

#plt.scatter(x_stars,y_stars)

lims=[[-0.5,0.5],[-0.23,0.3]]

plt.hist2d(x_stars,y_stars,range=lims,normed=True,bins=200,norm=colors.LogNorm())

plt.xlabel("x [Mpc/h]")

plt.ylabel("y [Mpc/h]")

plt.show()
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Figure 81: Projected positions of the stellar particles of a Milky-Way galaxy at z = 0
from the eagle simulation.

This script produces Figure 81.

JSON file format:

JSON stands for JavaScript Object Notation, hence it is based on the JavaScript
programming language and is particularly optimized for data exchanges
between client and server, i.e. through the web. It is a text file. Its format
is independent of Java, so that JSON can be read and written also in other
programming languages. Overall, a JSON is similar to a python dictionary.
It is used by astrophysicists when large databases are shared via web, for
example by the illustris cosmological simulation project [Vogelsberger et al.,
2014].

A JSON file can be read in python with the json package, which basically
converts the JSON to a dictionary. In order to read a JSON file, you need
to know the keys of the “dictionary”: this depends on your specific case. In
contrast, converting a python dictionary to a json file is trivial: you define a dic-
tionary and then convert it with the function json.dumps(dictionaryname).
For example (see the file examples/json/json_write_read.py),
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#examples/json/json_write_read.py

import json

##python dictionary

mycat = {

"name": "Ettore",

"age": 10.0,

"color": "white-read",

"spots": "tabby"

}

#transform python dict into json (without writing file)

print(json.dumps(mycat))

#transform python dict into json and writes file

f=open(’mycat.json’,’w’,encoding=’utf-8’)

json.dump(mycat,f, ensure_ascii=False, indent=4)

f.close()

#reads from previously created file

f=open(’mycat.json’)

data = json.load(f)

f.close()

print(data[’name’]) #print the value associated with key name

print(data[’age’]) #print the value associated with key age

CSV file format:

CSV stands for comma-separated values. A CSV is a text file that uses
commas to separate values. It is commonly adopted for tabular data with
numbers and text. The ideal way to read a CSV file in python is via pandas.
Hence, we will talk more about CSV reading and writing when we discuss
pandas.

FITS file format:

The Flexible Image Transport System (FITS) is an open-source file format
useful for storage, transmission and processing of data: formatted as multi-
dimensional arrays (for example a 2D image), or tables. FITS is the most
commonly used digital file format in astronomy.

Every FITS is composed of one or more headers, containing metadata,
and of one or more data objects. The header is usually a human readable
ASCII text. A FITS file may contain several extensions, and each of these may
contain a data object. For example, it is possible to store x-ray and infrared
exposures in the same file. FITS is also often used to store non-image data,
such as spectra, photon lists, data cubes, or structured data such as multi-table
databases. The astropy package astropy.io.fits is warmly suggested to read
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and create FITS files in python.

15.4 Scipy

Scipy (https://www.scipy.org/) is a python based ecosystem of open-source
software for mathematics, science, and engineering. Some of the core packages
are:

• numpy: no need to add more;

• matplotlib: no need to add more;

• scipy library: it provides many user-friendly and efficient numerical rou-
tines, such as routines for numerical integration, interpolation, optimiza-
tion, linear algebra, and statistics. We have seen many of them during
this course. See the documentation: https://docs.scipy.org/doc/;

• IPython: an architecture for interactive computing (http://ipython.
org/). It initially included jupyter, which is now on its own;

• SymPy: a python library for symbolic mathematics (https://www.sympy.
org/). It aims to become a full-featured computer algebra system (CAS)
while keeping the code as simple as possible in order to be comprehensi-
ble and easily extensible. SymPy is used, e.g., by Spyder;

• pandas: an open source data analysis and manipulation tool, built on top
of the Python programming language (https://pandas.pydata.org/).
We will talk about pandas later in this chapter.

Out of this list of packages, the scipy library is what we usually refer to,
when we talk about scipy. We have already seen many examples of scipy, in-
cluding scipy.optimize (to do fits), scipy.interpolate (to interpolate functions),
scipy.integrate (to integrate functions). It is definitely my preferred python
package after numpy and matplotlib. It is impossible to discuss all the features
of scipy here: just browse them when you need some new functions to do
some operation/analysis.

15.5 Astropy

The package astropy https://www.astropy.org/ collects several different
sub-packages intended for the usage of professional astrophysicists. The sub-
packages do very different tasks. An example of the most commonly used
sub-packages can be found here below.

• astropy.cosmology: contains classes for representing cosmologies and
utility functions for calculating commonly used quantities that depend
on a cosmological model. This includes distances (proper, comoving
and angular distances), ages, and lookback times corresponding to a
measured redshift.
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Name Reference H0 [km s−1 Mpc−1] ΩM Flat
WMAP5 Komatsu et al. 2009 70.2 0.277 Yes
WMAP7 Komatsu et al. 2011 70.4 0.272 Yes
WMAP9 Hinshaw et al. 2013 69.3 0.287 Yes
Planck13 Planck Collab 2013, Paper XVI 67.8 0.307 Yes
Planck15 Planck Collab 2015, Paper XIII 67.7 0.307 Yes

The cosmological parameters are currently provided for five different
sets of measure as you can see from cosmology.parameters.available
and from Table 15.5. Of course, using the most recent cosmology is
the better choice, unless you are working with something that was ob-
tained with a different cosmology (e.g., the outputs of a cosmological
simulation). For example, if I need to analyze the data from the illus-

tris cosmological simulations [Vogelsberger et al., 2014], I have to use
WMAP9 for consistency, because this simulation was run with WMAP9
cosmology.

Here is a simple example of usage of this package (see examples/as-
tropy/simple_cosmology.py):

>>> from astropy.cosmology import Planck15 as cosmo

>>> cosmo.H(0.0) # prints H_0

<Quantity 67.74 km / (Mpc s)>

>>> cosmo.comoving_distance([0.5, 1.0, 1.5])

>>> #comoving distance at z=0.5,1.0,1.5

<Quantity [1945.56126208, 3395.90531198, 4479.04518283] Mpc>

>>> cosmo.luminosity_distance(4.) #luminosity distance at z=4

<Quantity 36697.036387 Mpc>

>>> cosmo.age(0) # age of the Universe at z=0

<Quantity 13.7976159 Gyr>

>>> cosmo.age(6.) # age of the Universe at z=6

<Quantity 0.93139078 Gyr>

cosmo.lookback_time(0.8) # loockback time at z=0.8

<Quantity 7.02634875 Gyr>

• astropy.constants contains the definition of some of the most impor-
tant astrophysical quantities. For example (see examples/astropy/sim-
ple_constants.py):
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>>> from astropy import constants as const

>>> const.G

<<class ’astropy.constants.codata2018.CODATA2018’>

name=’Gravitational constant’ value=6.6743e-11

uncertainty=1.5e-15 unit=’m3 / (kg s2)’ reference=’CODATA 2018’>

>>> const.G.cgs

<Quantity 6.6743e-08 cm3 / (g s2)>

>>> const.c

<<class ’astropy.constants.codata2018.CODATA2018’>

name=’Speed of light in vacuum’ value=299792458.0

uncertainty=0.0 unit=’m / s’ reference=’CODATA 2018’>

>>> const.M_sun

<<class ’astropy.constants.iau2015.IAU2015’> name=’Solar mass’

value=1.988409870698051e+30 uncertainty=4.468805426856864e+25

unit=’kg’ reference=’IAU 2015 Resolution B 3 + CODATA 2018’>

>>> const.L_sun

<<class ’astropy.constants.iau2015.IAU2015’>

name=’Nominal solar luminosity’ value=3.828e+26 uncertainty=0.0

unit=’W’ reference=’IAU 2015 Resolution B 3’>

>>> const.e

<<class ’astropy.constants.codata2018.EMCODATA2018’>

name=’Electron charge’ value=1.602176634e-19 uncertainty=0.0

unit=’C’ reference=’CODATA 2018’>

>>> const.h

<<class ’astropy.constants.codata2018.CODATA2018’> name=’Planck constant’

value=6.62607015e-34 uncertainty=0.0 unit=’J s’ reference=’CODATA 2018’>

I can know the value and the units of a constant by typing .value and
.unit. For example,

>>> cons.G.cgs.value

6.674299999999999e-08

>>> cons.G.cgs.unit

Unit("cm3 / (g s2)")

On the astropy webpage you can find a complete list of the constants in-
cluded in this sub-package (https://docs.astropy.org/en/stable/
constants/index.html).
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• astropy.units handles some common units and unit conversions.

Here below, you see an example of how to associate a quantity with units
(see examples/astropy/simple_units.py):

>>> import numpy as np

>>> from astropy import units as u

>>> 42.0 * u.meter

<Quantity 42. m>

>>> [1., 2., 3.] * u.m

<Quantity [1., 2., 3.] m>

>>> np.array([1., 2., 3.]) * u.m

<Quantity [1., 2., 3.] m>

You can get the unit and value using the unit and value commands:

>>> l = 42.0 * u.meter

>>> l.value #value of l

42.0

>>> l.unit #units of l

Unit("m")

Unit conversions are done using the .to() function:

>>> x = 1.0 * u.parsec

>>> x.to(u.cm)

<Quantity 3.08567758e+18 cm>

In several cases, especially if you are working with N−body simulations,
you want to work with dimensionless quantities. To make a quantity
dimensionless you have to use the dimensionless_unscaled unit, e.g.:

>>> l = 1.0 * u.dimensionless_unscaled

>>> l.unit

Unit(dimensionless)

note that there is no other way in astropy to get rid of units after you
assign them.
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Figure 82: Least square fit with astropy.modeling.

• astropy.io.fits: astropy.io takes care of reading from files and printing to
files (IO stands for input output, as usual). The .fits package is designed
to read FITS files, which are particularly common among observers. The
basic commands to open a FITS file with astropy are:

from astropy.io import fits

fits_image_filename = fits.util.get_testdata_filepath(’test0.fits’)

mydata = fits.open(fits_image_filename)

mydata.info()

where .info() displays the header of the FITS file. See the example: ex-
amples/astropy/simple_fits.py.

• astropy.modeling provides several tools to do fits. For example, you can
see below an alternative to the least-square fit methods of scipy: the
function astropy.modeling.fitting.LinearLSQFitter() that can be used
with or without weights. The example below is adapted from the astropy
web page. You can find it also in examples/astropy/fit_astropy.py. The
result is shown in Fig. 82.
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import numpy as np

import matplotlib.pyplot as plt

from astropy.modeling import models, fitting

# define a model for a line

line_orig = models.Linear1D(slope=1.0, intercept=0.5)

# generate x, y data non-uniformly spaced in x

# add noise to y measurements

npts = 30

x = np.random.uniform(0.0, 10.0, npts)

y = line_orig(x)

yunc=np.zeros(npts,float) # error array

np.random.seed(10)

yunc[0:int(npts/2)] = np.absolute(np.random.normal(0.5, 1.5, int(npts/2)))

#half of the data have "good" measurement errors

np.random.seed(17)

yunc[int(npts/2):npts] = np.absolute(np.random.normal(0.5, 3., int(npts/2)))

#half of the data have "bad" measurement errors

y += np.random.normal(0.0, yunc, npts)

# initialize a linear fitter

fit = fitting.LinearLSQFitter()

# initialize a linear model

line_init = models.Linear1D()

# fit the data with the fitter without weights

fitted_line1 = fit(line_init, x, y)

# fit the data with the fitter with weights

fitted_line2 = fit(line_init, x, y, weights=1.0/yunc)

# plot

plt.figure()

plt.errorbar(x, y, yerr=yunc, fmt=’ko’, label=’Data’)

plt.plot(x, line_orig(x), ’b-’, label=’Simulation Model’)

plt.plot(x, fitted_line1(x), ’k’,linestyle=’--’, dashes=(3, 5), \

label=’Fit w/o weights’)

plt.plot(x, fitted_line2(x), ’r’,linestyle=’--’, dashes=(3, 5), \

label=’Fit w/ weights’)

plt.xlabel(’x’)

plt.ylabel(’y’)

plt.legend(loc="upper left")

plt.show()

You can also do sigma clipping: when fitting, there may be data that
are outliers from the fit that can significantly bias the fitting. These
outliers can be identified and removed from the fitting iteratively. Note
that the iterative sigma clipping assumes all the data have the same
uncertainties for the sigma clipping decision. The example below is
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taken from astropy web page. Fig. 83 shows the result. You can find this
file in examples/astropy/fit_astropy_sigmaclip.py

import numpy as np

import matplotlib.pyplot as plt

from astropy.stats import sigma_clip

from astropy.modeling import models, fitting

# define a model for a line

line_orig = models.Linear1D(slope=1.0, intercept=0.5)

# generate x, y data non-uniformly spaced in x

# add noise to y measurements

npts = 30

np.random.seed(10)

x = np.random.uniform(0.0, 10.0, npts)

y = line_orig(x)

yunc = np.absolute(np.random.normal(0.5, 2.5, npts))

y += np.random.normal(0.0, yunc, npts)

# make true outliers

y[3] = line_orig(x[3]) + 6 * yunc[3]

y[10] = line_orig(x[10]) - 4 * yunc[10]

# initialize a linear fitter

fit = fitting.LinearLSQFitter()

# initialize the outlier removal fitter

or_fit = fitting.FittingWithOutlierRemoval(fit, sigma_clip, niter=3, sigma=3.0)

# initialize a linear model

line_init = models.Linear1D()

# fit the data with the fitter

fitted_line2 = fit(line_init, x, y)

fitted_line, mask = or_fit(line_init, x, y, weights=1.0/yunc)

filtered_data = np.ma.masked_array(y, mask=mask)

# plot

plt.figure()

plt.errorbar(x, y, yerr=yunc, fmt="ko", fillstyle="none", \

label="Clipped Data")

plt.plot(x, filtered_data, "ko", label="Fitted Data")

plt.plot(x, line_orig(x), ’b-’, label=’Simulation Model’)

plt.plot(x, fitted_line(x), ’k’,linestyle=’--’, dashes=(3, 5), \

label=’Fitted Model’)

plt.plot(x, fitted_line2(x), ’r’,linestyle=’--’, dashes=(3, 5), \

label=’Fitted Model w/ sigmaclip’)

plt.xlabel(’x’)

plt.ylabel(’y’)

plt.legend()

plt.show()
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Figure 83: Least square fit with astropy.modeling and sigma clipping.

• astropy.convolution provides convolution functions and kernels that
offer improvements compared to the SciPy scipy.signal convolution
routines, especially when astrophysical images are concerned.

Convolution here means masking some pixels of an image that are
“wrong” and substituting their value with a new value interpolated
between neighboring pixels with a kernel function. A pixel could be
“wrong” when, e.g., it is affected by a cosmic ray, or when it is saturated
because of a very bright star, or when that specific pixel is dead on the
CCD.

The improvements of astropy.convolution with respect to scipy.signal
are:

– Proper treatment of NaN values (ignoring them during convolution
and replacing NaN pixels with interpolated values)

– A single function for 1D, 2D, and 3D convolution

– Improved options for the treatment of edges

– Both direct and Fast Fourier Transform (FFT) versions

– Built-in kernels that are commonly used in Astronomy

The following thumbnails show the difference between scipy.signal.convolve
and astropy.convolution functions on an astronomical image that con-
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Figure 84: Data reconstruction with astropy.convolution. Upper left: original
image. The red crosses indicate pixels that contain a NaN value. Lower left: re-
construction of the image with astropy.convolution, which masks NaN pixels and
substitutes them with an interpolation of the values of the neighboring pixels (in
this case with a 2D Gaussian kernel density). Upper right: reconstruction of the
image with scipy.signal.colvolve. Lower right: reconstruction of the image with
scipy.signal.convolve after the pixels with value NaN are replaced with pixels of
value 0.

tains NaN values. scipy’s function essentially returns NaN for all pixels
that are within a kernel of any NaN value, which is often not the de-
sired result. This example is taken from https://docs.astropy.org/

en/stable/convolution/index.html. More details on how to perform
convolution can be found at the aforementioned link. Figure 84 shows
the outputs.
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import numpy as np

import matplotlib.pyplot as plt

from astropy.io import fits

from astropy.utils.data import get_pkg_data_filename

from astropy.convolution import Gaussian2DKernel

from scipy.signal import convolve as scipy_convolve

from astropy.convolution import convolve

# Load the data from data.astropy.org

filename = get_pkg_data_filename(’galactic_center/gc_msx_e.fits’)

hdu = fits.open(filename)[0]

# Scale the file to have reasonable numbers

# (this is mostly so that colorbars do not have too many digits)

# Also, we crop it so you can see individual pixels

img = hdu.data[50:90, 60:100] * 1e5

# This example is intended to demonstrate how astropy.convolve and

# scipy.convolve handle missing data, so we start by setting the

# brightest pixels to NaN to simulate a "saturated" data set

img[img > 2e1] = np.nan

# We also create a copy of the data and set those NaNs to zero. We will

# use this for the scipy convolution

img_zerod = img.copy()

img_zerod[np.isnan(img)] = 0

# We smooth with a Gaussian kernel with x_stddev=1 (and y_stddev=1)

# It is a 9x9 array

kernel = Gaussian2DKernel(x_stddev=1)

# Convolution: scipy’s direct convolution mode spreads out NaNs (see

# panel 2 below)

scipy_conv = scipy_convolve(img, kernel, mode=’same’, method=’direct’)

# scipy’s direct convolution mode run on the ’zero’d’ image will not

# have NaNs, but will have some very low value zones where the NaNs were

# (see panel 3 below)

scipy_conv_zerod = scipy_convolve(img_zerod, kernel, mode=’same’,

method=’direct’)

# astropy’s convolution replaces the NaN pixels with a kernel-weighted

# interpolation from their neighbors

astropy_conv = convolve(img, kernel)

# Now we do a bunch of plots. In the first two plots, the originally masked

# values are marked with red X’s

plt.figure(1, figsize=(12, 12)).clf()

ax1 = plt.subplot(2, 2, 1)

im = ax1.imshow(img, vmin=-2., vmax=2.e1, origin=’lower’,

interpolation=’nearest’, cmap=’viridis’)

y, x = np.where(np.isnan(img))

ax1.set_autoscale_on(False)

ax1.plot(x, y, ’rx’, markersize=4)

ax1.set_title("Original")

ax1.set_xticklabels([])

ax1.set_yticklabels([])
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ax2 = plt.subplot(2, 2, 2)

im = ax2.imshow(scipy_conv, vmin=-2., vmax=2.e1, origin=’lower’,

interpolation=’nearest’, cmap=’viridis’)

ax2.set_autoscale_on(False)

ax2.plot(x, y, ’rx’, markersize=4)

ax2.set_title("Scipy")

ax2.set_xticklabels([])

ax2.set_yticklabels([])

ax4 = plt.subplot(2, 2, 3)

im = ax4.imshow(astropy_conv, vmin=-2., vmax=2.e1, origin=’lower’,

interpolation=’nearest’, cmap=’viridis’)

ax4.set_title("Default astropy")

ax4.set_xticklabels([])

ax4.set_yticklabels([])

ax3 = plt.subplot(2, 2, 4)

im = ax3.imshow(scipy_conv_zerod, vmin=-2., vmax=2.e1, origin=’lower’,

interpolation=’nearest’, cmap=’viridis’)

ax3.set_title("Scipy nan->zero")

ax3.set_xticklabels([])

ax3.set_yticklabels([])

plt.show()

The above example can be found in examples/astropy/astropy_convolution.py.

• astropy.coordinates provides tools to use the main astrophysical coor-
dinate systems (RA and DEC in different flavours).

15.6 Introduction to PANDAS

Pandas (https://pandas.pydata.org/) is a python package. It is particularly
designed for (big) data analysis. The name pandas is derived from the term
"panel data", an econometrics term for data sets that include observations over
multiple time periods for the same individuals” [source Wes McKinney (2011):
"pandas: a Foundational Python Library for Data Analysis and Statistics",
https://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/

pyhpc2011_submission_9.pdf].
Pandas should be installed by default with anaconda, but if your conda

installation does not include pandas you can type

conda install pandas

The two primary components of pandas are the Series and DataFrame. A
Series is essentially a single column, and a DataFrame is a multi-dimensional
table made up of a collection of Series.

The simple lines of code that we will comment in the following Sections can
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be found in examples/pandas/simple_pandas.py, or, if you prefer jupyter-
notebook, in examples/pandas/simple_pandas.ipynb.

15.6.1 Series

You can create a Series starting from a python dictionary, from a list or from
a numpy array. In the list case

import pandas as pd

a=[17.,13.,11.,0.]

s1 = pd.Series(a)

print(s1)

The output is

0 17.0

1 13.0

2 11.0

3 0.0

dtype: float64

The second column of the output contains the values from the list: these
are the values of the series now. The first column contains the indexes of the
list values. In the default version, the indexes are integers from 0 on. The last
row specifies the data type: our list was a list of floats hence the data type
is “float64”. If I had a list of mixed types (e.g. b=[17.,13.,’ciao’,’meow’]), the
Series would have a ’dtype: object’.

I can decide the indexes as I want, for example:

import pandas as pd

a=[17.,13.,11.,0.]

ind=[’a’,’b’,’c’,’d’]

s1 = pd.Series(a,index=ind)

print(s1)

Alternatively, we can create a series from a dictionary (see the properties
of dictionaries from the chapter about python):
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import pandas as pd

mycat = {

"color": "red",

"fur": "short",

"spots": "tabby"

}

s2=pd.Series(mycat)

print(s2)

This print returns

color red

fur short

spots tabby

dtype: object

that is the keys of the dictionary are now indexes and the values of the
dictionary are values of the series.

I can change the indexes of the series as many times as I want with the
.index command.

s2.index= ["qui","quo","qua"]

print(s2)

which yields

qui red

quo short

qua tabby

dtype: object

We can slice a Series in the same exact way as a numpy array:

import pandas as pd

a=[17.,13.,11.,0.]

s1 = pd.Series(a)

b= s1[:3]

print(b)

The output is
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0 17.0

1 13.0

2 11.0

dtype: float64

We can use .append() as we did for lists:

import pandas as pd

a=[17.,13.,11.,0.]

b=[0.,2.,5.]

s1 = pd.Series(a)

s2 = pd.Series(b)

s3 = s1.append(s2)

print(s3)

The output is

0 17.0

1 13.0

2 11.0

3 0.0

0 0.0

1 2.0

2 5.0

dtype: float64

And I can remove elements from the Series with .drop

import pandas as pd

a=[17.,13.,11.,0.]

s1 = pd.Series(a,index=["a","b","c","d"])

s1 = s1.drop("d")

print(s1)

The output is

a 17.0

b 13.0

c 11.0

dtype: float64

I can do operations on Series.

• .add() sums up two series
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a=[17.,13.,11.,0.]

s1 = pd.Series(a)

b=[2.,3.,4.,5.,6.,7.,9.]

s2=pd.Series(b)

s3=s1.add(s2)

print(s3)

0 19.0

1 16.0

2 15.0

3 5.0

4 NaN

5 NaN

6 NaN

dtype: float64

I can do a sum between Series, and the result of the sum looks like a
vector sum, similar to numpy arrays, but, unlike numpy arrays, I can
sum two series with a different length and the elements for which the
sum is not defined are labeled as NaN. Very dangerous.

• .sub() subtracts one series from the other;

• .mul() multiplies one series by the other;

• .div() divides one series by the other;

• .median() calculates the median value of a series:

s3.median()

15.5

Note that median as well as all the other operators ignores the NaN
elements (or the inf elements, if there were some): again, this is dan-
gerous.

• .max() finds the maximum of the series;

• .min()finds the minimum of the series.

15.6.2 DataFrame

First, how do I create a DataFrame? I need a matrix (e.g. from numpy array)
and (if I want) a set of indexes for each row and a set of indexes for each
column:
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>>> import pandas as pd

>>> import numpy as np

>>> index=np.arange(0,3,1)

>>> index

array([0, 1, 2])

>>> columns=["A","B","C","D","E"]

>>> num_arr=np.random.randn(3,5) #creates a 3x5 matrix of random numbers

>>> num_arr

array([[-0.46259011, 0.38687888, -0.91409853, -0.80747588, 2.15977694],

[ 1.71789861, 0.21272667, -0.42692957, 0.54132848, 0.125578 ],

[-0.64931233, -0.02896975, -1.79764273, 1.05789862, -0.28482786]])

>>> df1 = pd.DataFrame(num_arr, index=index, columns=columns)

>>> df1

A B C D E

0 -0.462590 0.386879 -0.914099 -0.807476 2.159777

1 1.717899 0.212727 -0.426930 0.541328 0.125578

2 -0.649312 -0.028970 -1.797643 1.057899 -0.284828

The print looks like a ordered, nice table. It is almost the same as a data
sheet. It looks even better if you use jupyter-notebook.

The matrix I obtained above from numpy can be provided also with a
dictionary. The dictionary automatically provides the names of the columns,
e.g.:

data = {’animal’ : [’cat’,’cat’,’dog’,’rabbit’,’cat’,’dog’],

’age’ : [’7’, ’10’, ’4’, ’2’, ’3’, ’3’],

’visit day’: [’yesterday’,’today’,’today’,’today’,’tomorrow’,’tomorrow’]}

names = [’Molly’,’Ben’,’Rustie’,’Bax’,’Vampire’,’Tornado’]

df2 = pd.DataFrame(data,index=names)

This yields the dataframe:

animal age visit day

Molly cat 7 yesterday

Ben cat 10 today

Rustie dog 4 today

Bax rabbit 2 today

Vampire cat 3 tomorrow

Tornado dog 3 tomorrow

Let us have a quick overview of the main functions and features of
DataFrames.

• The command .head(n) allows me to see the first n rows of my dataframe:

df2.head(2)

prints the rows of Molly and Ben.

• Similarly .tail(n) shows the last n rows of my dataframe.
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• The commands

df2.index

df2.columns

df2.values

give the indexes of the rows, those of the columns and the values of the
dataframe. The format of the values is basically that of a numpy array.

• Minimal statistical information can be obtained with df2.describe().

• If you want to transpose the dataframe you can do df2.T

• If you want to sort the data, based on one of their values, use df2.sort_values():

df2.sort_values(by="age")

where you realize that the sorting is alphabetic and not numeric, because
the column age is assumed to be made of strings.

• You can slice a DataFrame as a Series and a numpy array:

df2[1:3]

which prints only the first two rows.

• Alternatively, you can use the .iloc command to slice a DataFrame:

df2.iloc[1:3]

which gives exactly the same output as df2[1:3].

.iloc allows you to pick up also a specific element:

df2.iloc[0,1]

gives the zeroth row, first column element (starting from zero, of course),
which in our example is 7.

• Or you can slice based on column names:

df2[[’animal’,’age’]]

which returns only the two requested columns.

We can use this to make operations on one entire column (or more). For
example
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>>> df2[’animal’]=df2[’age’]+df2[’visit day’]

>>> df2[’animal’]

Molly 7yesterday

Ben 10today

Rustie 4today

Bax 2today

Vampire 3tomorrow

Tornado 3tomorrow

Name: animal, dtype: object

In this case the sum is the sum of strings, because I have no floats or
integers, but if I do the same with a numeric column, I can get the
algebraic sum.

I can use the same command to generate new columns, for example:

>>> df2[’New col’]=df2[’animal’]+df2[’age’]

>>> df2

animal age visit day New col

Molly cat 7 yesterday cat7

Ben cat 10 today cat10

Rustie dog 4 today dog4

Bax rabbit 2 today rabbit2

Vampire cat 3 tomorrow cat3

Tornado dog 3 tomorrow dog3

• .drop(columns=[’New col’]) allows me to remove one column:

>>> df2 = df2.drop(columns=[’New col’])

>>> df2

animal age visit day

Molly cat 7 yesterday

Ben cat 10 today

Rustie dog 4 today

Bax rabbit 2 today

Vampire cat 3 tomorrow

Tornado dog 3 tomorrow

• You can make a copy of a DataFrame with .copy():

df3 = df2.copy()

• With .loc[], we can find some specific elements
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>>> df2.loc[df2["age"] == "3"]

animal age visit day

Vampire cat 3 tomorrow

Tornado dog 3 tomorrow

We can combine conditions:

>>> df2.loc[(df2["age"] == "3") & (df2["animal"] == "cat")]

animal age visit day

Vampire cat 3 tomorrow

Note that the & stands for the usual python and (&& of C and C++).
Similarly, the or condition is given by | instead of the usual python or (||
of C and C++).

Moreover, we can actually change the value of a datum in the DataFrame.
For example

>>> df2.loc[’Bax’,’age’]=1.5

>>> df2

animal age visit day

Molly cat 7 yesterday

Ben cat 10 today

Rustie dog 4 today

Bax rabbit 1.5 today

Vampire cat 3 tomorrow

Tornado dog 3 tomorrow

• The .str.contains() help us finding specific strings in the columns.

>>> df2.loc[df2[’animal’].str.contains(’cat’)]

animal age visit day

Molly cat 7 yesterday

Ben cat 10 today

Vampire cat 3 tomorrow

With the ∼ symbol we look only in these values that do not contain the
searched string:

df2.loc[~df2[’animal’].str.contains(’cat’)]

animal age visit day

Rustie dog 4 today

Bax rabbit 2 today

Tornado dog 3 tomorrow
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• The .median() calculates the median. For example

df2[[’age’]].median()

age 3.5

dtype: float64

• The .isnull() function looks for no values, like a NaN.

• Conditional changes: based on a condition, I might want to change one
or more columns.

>>> df2.loc[df2[’animal’] == ’cat’, ’visit day’] = ’today’

>>> df2

animal age visit day

Molly cat 7 today

Ben cat 10 today

Rustie dog 4 today

Bax rabbit 2 today

Vampire cat 3 today

Tornado dog 3 tomorrow

• .groupby() allows to divide data by categories and analyze them sepa-
rately. E.g.,

>>> df2.groupby([’animal’]).mean()

age

animal

cat 6.666667

dog 3.500000

rabbit 2.000000

It averages the only quantity it can (ages, which are now seen as floats),
divided by every type of animal. In the same way I can do .median(),
.sum() and many other operations.

Operations like this are particularly useful if I have a big data set and I
do not want to analyze it all: I can just choose a subset.

15.6.3 Reading/Writing DataFrame from/to files

• .to_csv(’namefile.csv’) saves my DataFrame to a new CSV file called
namefile.csv:

df2.to_csv(’vet_visits.csv’)
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• pd.read_csv(’namefile.csv’) reads from the CSV file and already ar-
ranges the data into a DataFrame:

df_vet = pd.read_csv(’vet_visits.csv’)

print(df_vet)

Prints

Unnamed: 0 animal age visit day

0 Molly cat 7 yesterday

1 Ben cat 10 today

2 Rustie dog 4 today

3 Bax rabbit 2 today

4 Vampire cat 3 tomorrow

5 Tornado dog 3 tomorrow

Note, however, that our original indexes (Molly, Ben, Rustie, Bax, Vam-
pire, Tornado) are now considered part of the values and new default
indexes (0,1,2,3,4,5) have been added.

If we are working with really big data we might want to read the input
not all together but in multiple chunks, e.g.

df = pd.read_csv("saved.csv",chunksize=10000)

where after chunksize I indicate the number of rows each chunk should
contain

>>> for df in pd.read_csv(’vet_temp.csv’,chunksize=2):

... print(df)

...

Unnamed: 0 animal age visit day

0 Molly cat 7 yesterday

1 Ben cat 10 today

Unnamed: 0 animal age visit day

2 Rustie dog 4 today

3 Bax rabbit 2 today

Unnamed: 0 animal age visit day

4 Vampire cat 3 tomorrow

5 Tornado dog 3 tomorrow

There are several similar commands to read/write into other file formats,
for example

• .to_excel(namefile) saves the DataFrame to an excel data sheet
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• pd.read_excel(namefile) reads an excel data sheet to a DataFrame

• pd.read_json(namefile) reads a JSON file (which is essentially a stored
Python dictionary)

15.6.4 Visualization in pandas

Pandas uses matplotlib. You do not have to import matplotlib because it
is already included in pandas. I am not a big fan of this. I suggest using
matplotlib out of pandas.

EXERCISE:

The file “examples/pandas/Skyserver_SQL2_27_2018 6_51_39 PM.csv”
contains the first 10000 entries from the Sloan Digital Sky
Survey DR14 (https://skyserver.sdss.org/dr14/en/help/docs/
introduction.aspx). Using a python notebook, read this to a
DataFrame. Select the g and r columns and make a color magnitude
diagram g versus g–r. Use hist2d to plot it reasonably (because there
are too many points for a scatter plot: it would be too crowded). The
result should look like Figure 85. This example is shown in
examples/pandas/SDSS.py or, if you prefer jupyter-notebook, in
examples/pandas/SDSS.ipynb.

Sources of for pandas:

• https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/

• https://www.youtube.com/watch?v=vmEHCJofslg

• https://www.youtube.com/watch?v=PfVxFV1ZPnk
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Figure 85: Color magnitude diagram from the SDSS sample.
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Figure 86: Some cartoons from xkcd are just immortal https://xkcd.com/.

16 notions of machine learning in
astrophysics

Most of this chapter is based on Interpretable Machine Learning: A Guide
for Making Black Box Models Explainable, by Christoph Molnar https://

christophm.github.io/interpretable-ml-book/ (Creative Commons Li-
cense).

16.1 What is Machine learning?

Machine Learning is a set of methods that allow computers to learn from data, in
order to make predictions. For example, to predict the value of a house, the
computer would learn patterns from past house sales.

Machine learning is a paradigm shift from "normal programming" where
all instructions must be explicitly given to the computer to "indirect program-
ming" that takes place through providing data (Fig. 86).

We will focus on supervised machine learning, which covers all prediction
problems where we have a training dataset, i.e. a dataset for which we already
know the outcome of interest (e.g. past house prices) and want to learn to
predict the outcome for new data.

The goal of supervised learning is to learn a predictive model that maps
features of the data (e.g. house size, location, floor type, ...) to an output (e.g.
house price). If the output is categorical (e.g., dog or cat, yes or not, this flower
is a daisy or an iris or a rose), the task is called classification, and if it is
numerical, it is called regression (e.g., the house price is 200k EUR, the black
hole mass is 106 M�).

289

https://xkcd.com/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


16. notions of machine learning in astrophysics

The machine learning algorithm learns a model by estimating parameters
(like weights) or learning structures (like trees). The algorithm is guided by
a score or loss function that is minimized. In the house value example, the
machine minimizes the difference between the estimated house price and the
predicted price.

The typical steps in machine learning are the following.

• Step 1: Data collection. The more, the better. This will be the training
sample.

• Step 2: Enter this information into a machine learning algorithm that
generates a prediction.

• Step 3: Use model with new data. Try to predict some properties of the
new data based on what you have learned from the training sample.

Pros of this procedure: Machines are faster than humans at repetitive
taskes (and often cheaper);

Cons: Insights about the data and the task the machine solves is hidden in
increasingly complex models. The procedure might be opaque.

Let us see now some basic definitions necessary to understand the next
sections.

• A Machine Learning Model is the program that maps inputs to predic-
tions.

• A Black Box Model is a system that does not reveal its internal mecha-
nisms. In machine learning, "black box" describes models that cannot
be understood by looking at their parameters (e.g. a neural network).
The opposite of a black box is sometimes referred to as White Box or
interpretable model. Interpretable Machine Learning refers to methods
and models that make the behavior and predictions of machine learning
systems understandable to humans.

• A Dataset is a table with the data from which the machine learns. The
dataset contains the features and the target to predict. When used to
induce a model, the dataset is called training data.

• An Instance is a row in the dataset. An instance consists of the feature
values x(i) and, if known, the target outcome yi .
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• The Features are the inputs used for prediction or classification. A
feature is a column in the dataset. The matrix with all features is called
X. The vector of a single feature for all instances is xj and the value for

the feature j and instance i is x
(i)
j . In the example of house prices, the

features are, e.g., house size, location, floor type.

• The Target (or the Outcome) is the information the machine learns to
predict. In mathematical formulas, the target is usually called yi for a
single instance. In the example of house prices, the target is the price of
the house, which is known for the training sample and unknown for the
new data.

• A Machine Learning Task is the combination of a dataset with features
and a target. Depending on the type of the target, the task can be for
example classification, regression, survival analysis, clustering, or outlier
detection.

• The Prediction is what the machine learning model "guesses" what the
target value should be based on the given features. The model prediction
will be denoted by f̂ (x(i)) or y.

16.2 Interpretability and Machine Learning

There is no mathematical definition of interpretability. Non-mathematical def-
initions include “Interpretability is the degree to which a human can understand
the cause of a decision”9 and “Interpretability is the degree to which a human can
consistently predict the model’s result”10.

Machine learning techniques have some degree of interpretability if, for
example, they provide a summary statistics for each feature (for example
the importance of a feature to reach the final prediction). In some cases, the
summary statistics can be visualized.

16.3 Decision Tree

A decision tree is currently one of the most popular algorithms for supervised
machine learning, especially because of its interpretability.

Tree based models split the data multiple times according to certain cut-
off values in the features. Through splitting, different subsets of the dataset
are created, with each instance belonging to ONLY one subset. The final sub-
sets are called terminal or leaf nodes and the intermediate subsets are called
internal nodes or split nodes. To predict the outcome in each leaf node, the
average outcome of the training data in this node is used. Trees can be used
for classification and regression.

There are various algorithms that can grow a tree. They differ in the
possible structure of the tree (e.g. number of splits per node), the criteria

9https://arxiv.org/abs/1706.07269
10https://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability
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how to find the splits, when to stop splitting and how to estimate the simple
models within the leaf nodes.

The classification and regression trees (CART) algorithm is probably the
most popular algorithm for tree induction. We will use CART because there is
already a nice set of functions to do decision trees in the scikit-learn package
of python and CART is used in this package: https://scikit-learn.org/
stable/modules/tree.html#tree-algorithms

Inside conda, you can easily install scikit-learn by typing, as usual

conda install scikit-learn

Figure 87 is a simple schematic representation of a decision tree. Instances
with a value greater than 3 for feature_x1 end up in the lower-right leaf on.
For all other instances, an additional feature (feature_x2) is evaluated. If
feature_x2 ≤ 1 they are assigned to the lower-left leaf, otherwise to the third
remaning leaf. The final leaves contain 88, 93 and 179 instances, respectively.

Figure 87: Example of a simple decision tree (from Christoph Molnar’s book).

The following formula describes the relationship between the outcome y
and features x.
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y = f (x) =
M∑

m=1

cm I {x ∈ Rm} (338)

Each instance x falls into exactly one leaf node Rm. I {x ∈ Rm} is the identity
function that returns 1 if x belongs to the subset Rm and 0 otherwise. If an
instance xi falls into the leaf node Rl , the predicted outcome is yi = cl , where
cl is the average of all training instances in leaf node Rl , i.e.

cl =
1
N

N∑
i=1

c̃(xi), (339)

where N is the number of instances in subset Rl and the c̃(xi) is the value of
the outcome of instance xi .

But where do the subsets come from? CART takes a feature and determines
which cut-off point minimizes the variance of y for a regression task or
the Gini index of the class distribution of y for classification tasks. The
variance tells us how much the y values in a node are spread around their
mean value. The Gini index tells us how "impure" a node is, e.g. if all classes
have the same frequency, the node is impure, if only one class is present, it is
maximally pure.

The Gini index is given by

G =

N∑
i=1

N∑
j=1
|c̃i − c̃j |

2 N
N∑
i=1

c̃i

(340)

If all the differences |c̃i − c̃j | are close to zero, then the Gini index is close to
zero, meaning that there is no much difference between the value of the target
of each instance in the leaf node. In this case, the node is maximally pure.

The algorithm tries to create subsets by trying different groupings of
categories. After the best cutoff per feature has been determined, the algorithm
selects the feature for splitting that would result in the best partition in terms
of the variance or Gini index and adds this split to the tree.

The algorithm continues this search-and-split recursively in both new
nodes until a stop criterion is reached. Possible criteria for stop are: A min-
imum number of instances that have to be in a node before the split, or the
minimum number of instances that have to be in a terminal node.

• Interpretability: The interpretation is simple: Starting from the root
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node, you go to the next nodes and at each bifurcation you know which
subsets of data you are looking at. Once you reach the leaf node, the
node tells you the predicted outcome. All the bifurcations are connected
by ’AND’.

• Feature importance: The overall importance of a feature in a decision
tree can be computed in the following way: Go through all the splits
for which the feature was used and measure how much it has reduced
the variance or Gini index compared to the parent node. The sum of all
importances is scaled to 100. This means that each importance can be
interpreted as share of the overall model importance.

16.4 Example: the iris flowers

scikit-learn contains several test examples. Let’s take the iris sample, which
contains the main features of 150 iris flowers. Each flower has 4 features: sepal
length in cm, sepal width in cm, petal length in cm, petal width in cm. The
target is the variety of the iris, i.e. setosa, versicolor or virginica.

We can apply a decision tree to this sample with the scope of performing
a classification: classify an iris into one of the three above varieties (setosa,
versicolor or virginica), based on the aforementioned four features.

We can do as follows
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from sklearn.datasets import load_iris

from sklearn import tree

import matplotlib.pyplot as plt

import graphviz

iris = load_iris()

print(iris.data)

print(iris.target)

print(iris.feature_names)

print(iris.target_names)

clf = tree.DecisionTreeClassifier(max_depth=4)

clf = clf.fit(iris.data,iris.target)

tree.plot_tree(clf)

plt.show()

dot_data = tree.export_graphviz(clf, out_file=None,

feature_names=iris.feature_names,

class_names=iris.target_names,

filled=True, rounded=True,

special_characters=True)

graph = graphviz.Source(dot_data)

graph.render("iris")

This script imports the iris dataset and the CART tree from scikit-learn
(which is called sklearn), then calls the tree by assuming that the maximum
number of splitting will be four (tree.DecisionTreeClassifier(max_depth=4))
and performs the tree algorithm onto the iris sample (clf.fit). Finally, the
function tree.plot_tree plots the result. As an alternative, if we want a more
understandable tree (where labels are included), we can use the package
graphviz (also available within conda) and obtain the tree that is shown in
Figure 88.

But now we have a problem: we have used all our iris dataset as a training
set, to allow our computer to learn the classification. How can we test whether
the computer has learned in a smart way or not?

For example, we can do a cross validation (https://scikit-learn.org/
stable/modules/cross_validation.html#cross-validation), i.e. we can
remove a part of the data, perform the tree classification on the remaining
data and then use the part we removed as a test to check the goodness of the
algorithm. Since we already know the targets of the withheld part, we can
compare the outcomes we get from the tree with the targets that we already
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petal length (cm) ≤ 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.043

samples = 46
value = [0, 1, 45]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.041

samples = 48
value = [0, 47, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

gini = 0.444
samples = 3

value = [0, 2, 1]
class = versicolor

sepal length (cm) ≤ 5.95
gini = 0.444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

gini = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

gini = 0.0
samples = 2

value = [0, 0, 2]
class = virginica

Figure 88: The iris classification tree.

know, to see how good our algorithm was. Actually, cross validation repeats
this procedure for each subset of data.

In the basic approach, called k−fold cross-validation, the training set is
split into k smaller sets. The following procedure is followed for each of the k
“folds”:

• A model is trained using k − 1 of the folds as training data;

• the resulting model is validated on the remaining part of the data (i.e., it
is used as a test set to compute a performance measure such as accuracy).

The performance measure reported by k−fold cross-validation is then the aver-
age of the values computed in the loop. This approach can be computationally
expensive, but does not waste too much data (as is the case when fixing an
arbitrary validation set), which is a major advantage in problems such as
inverse inference where the number of samples is very small. See Figure 89
for a schematic representation.

We can introduce cross validation into our iris example as follows.
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Figure 89: Schematic representation of the k−fold cross-validation.

from sklearn.datasets import load_iris

from sklearn import tree

from sklearn.model_selection import train_test_split, cross_val_score

import matplotlib.pyplot as plt

X, y = load_iris(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.4, random_state=0)

clf = tree.DecisionTreeClassifier(max_depth=4)

clf = clf.fit(X_train,y_train)

tree.plot_tree(clf)

plt.show()

a=clf.score(X_test, y_test)

print(a)
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The output is a = 0.95 (the higher this number the better).
Now, if you have a sample of iris, you can measure their sepals, petals and

apply your tree to a totally new set of data. Enjoy.
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17 sorting algorithms

Sorting refers to arranging the elements of an array (or list) in a descending
or ascending order. It might seems useless for astrophysics, but instead it is a
must for a fast treatment of data, whenever the data are BIG (e.g. files with
millions or billions of rows).

For example, suppose that we have a file with a catalogue of a billion of
stars. Each star is uniquely identified by its ID (for example this ID is a uint64).
Suppose that we want to search for a specific star in the array, let say the one
with ID 16409309430. If the stellar catalogue was SORTED by stellar IDs our
search can be significantly sped up, thanks to a smart usage of file reading
and “continue” or “break” (see the exercise).

Herebelow, we discuss bubble sort, selection sort, quicksort and merge sort
which are four of the most used sorting algorithms. Other popular sorting algo-
rithms include insertion sort and count sort (see https://www.hackerearth.

com/practice/notes/sorting-code-monk/ for more details).

17.1 Bubble Sort

This algorithm is based on the idea of repeatedly comparing pairs of adjacent
elements and then switching their positions if they exist in the wrong order.

See Figure 90 to understand how it works Complexity: The complexity of

Figure 90: Visualization of the bubble sort algorithm.

bubble sort is O(N2), because for every element we iterate over the the entire
array each time.

17.2 Selection Sort

This algorithm is based on the idea of finding the minimum or maximum
element in the unsorted array and then putting it in its correct position for a
sorted array.
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Figure 91: Visualization of the selection sort algorithm.

We have our list a = [7,5,4,2] and we need to sort it in ascending order.
Let’s find the minimum element in the array i.e., 2 and then replace it with
the first position’s element, i.e., 7. Now we find the second smallest element
in the remaining unsorted array and put it at the second position and so on.
See figure 91 to see how it works.

Complexity: The complexity of bubble sort is O(N2), because for every
element we iterate almost over the the entire array each time.

17.3 Quicksort

Quicksort is a divide and conquer algorithm. Divide and conquer algo-
rithms consist in recursively breaking down a problem into two or more
sub-problems of the same or related type, until these become simple enough
to be solved directly. The solutions to the sub-problems are then combined
to give a solution to the original problem (see https://www.techiedelight.

com/divide-and-conquer-interview-questions/ for more details).
Like all divide and conquer algorithms, it first divides a large array into

two smaller sub-arrays and then recursively sorts the sub-arrays. It works
through 3 steps:

- Pivot selection: pick an element, called a pivot, from the array (usually
the leftmost or the rightmost element of the partition.

- Partitioning: reorder the array so that all elements ≤ (≥ ) pivot come
before (after) the pivot. After this partitioning the pivot is in its final
location.
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Figure 92: Visualization of the quick sort algorithm.

- Recur: recursively apply the above steps separately to the sub-array of
elements with smaller values and greater values than the pivot.

This procedure is summarized in Figure 92. See https://www.techiedelight.
com/quicksort/ for more details.

Complexity: quicksort scales as fast as O(N log N) at its best and as slow
as O(N2) at its worst.

17.4 Merge Sort

Merge sort is a divide and conquer algorithm, too. Like all divide and conquer
algorithms, merge sort divides a large array into two smaller sub-arrays and
then recursively sorts the subarrays. The procedure consists in two steps:

- divide the unsorted array into n subarrays, each of size 1 (an array of
size 1 is considered sorted);

- repeatedly merge subarrays to produce new sorted subarrays until only
1 array is left (the one array is sorted).

This procedure is summarized in Figure 93. See https://www.techiedelight.
com/merge-sort/ for more details.
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Figure 93: Visualization of the merge sort sort algorithm.
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EXERCISE:

Write your own sorting script (in python) for at least two of the afore-
mentioned sorting algorithms. Use them to order this embarassingly
simple list a=[9,-3,5,2,6,8,-6,1,3].
Suggestion for the merge sort and quick sort algorithms: the ordering
function calls itself.

EXERCISE:

The file illustris3_135.dat contains a list of stellar particles from the
Illustris cosmological simulation [Vogelsberger et al., 2014]. The first
column is the ID of each particle (the ID is a uint64). Use your preferred
sorting algorithm to order the IDs.
Now, redo the sorting exercise using the function sorted already built-
in python. The built-in function is probably much faster than your
sorting algorithm (to estimate execution time, run the script with ’time
python namefile.py’).
Syntax: sorted(array), where array is the array to be sorted. The function
sorted uses the timsort algorithm, which is a bit more complex than the
simple ones we presented in these lectures (see https://en.wikipedia.
org/wiki/Timsort).
To give you an idea, the script using sorted should take ∼ 15 seconds
with a decent quad-core laptop, while a script with a good home-made
quicksort algorithm should take ∼ 50 seconds on the same laptop (i.e.
3 − 4 times more). If your home-made algorithm is much slower than
that you might try to improve it (but optimization is not requested for
the exam).
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