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Luigi De Giovanni Heuristics for Combinatorial Optimization 1 / 66



Exact and heuristic methods

Exact methods: devised to provide a provably optimal solution

Heuristic methods: provides “good” solution with no optimality
guarantee

Try to devise an exact approach, first!
▶ search for an efficient algorithm (e.g. shortest path-like problem)
▶ MILP model + MILP solver
▶ exploit some special property
▶ suitable (re)formulation of the problem
▶ search for (scientific) literature
▶ ...

... otherwise, heuristics! (eur̀ıskein = to find)
▶ example: optimal transportation-network configuration (“hard”

congestion models)
▶ limited available computational resources (time, software etc.)
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When do we use heuristics?

Sometime cannot be used, since an optimal solution is mandatory!
▶ example: covering public transportation services at Deutsche Bahn

NP-hard problem ⇏ heuristics! (e.g., MILP solver are now able to
solve some of them!)

Use of heuristic to provide a “good” solution in a “reasonable”
amount of time. Some appropriate cases:

▶ limited amount of time to provide a solution (running time)
⋆ e.g., quick scenario evaluation in interactive Decision Support Systems
⋆ e.g., real time system

▶ limited amount of computational resources (memory, CPUs, hardware)

▶ limite amount of time to develop an effective solution (e.g.,
off-the-shelf solvers cannot effectively solve an available formulation)

▶ limited amount of economic resources to develop a solution algorithm
(e.g.., costs for analysers and developers) or run it (e.g., costs for
solver licenses, new hw etc.)

▶ just estimates of the problem parameters are available (and we do not
want to deal with uncertainty using robust or stochastic optimization...)
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One (among many) possible classification

Specific heuristics

exploits special features of the problem at hand

may encode the current “manual” solution, good practice

may be “the first reasonable algorithm that come to our mind”

General heuristic approaches (algorithmic “templates”)

constructive heuristics

simplified exact procedures

meta-heuristics (algorithmic improvement schemes)

approximation algorithms

hyper-heuristics

...

C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison”, ACM Computer Surveys 35:3, 2003 (p. 268-308)

K. Sörensen, “Metaheuristics – the metaphor exposed”, International Transactions in
Operational Research (22), 2015 (p. 3-18)
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Constructive heuristics

Build a solution incrementally selecting a subset of alternatives

Expansion criterion (no backtracking)

Greedy algorithms (strictly local optimality in the expansion criterion)

Initialize solution S ;

While (there are choice to make)

add to S the most convenient (and feasible) element

Widespread use:
▶ simulate practice
▶ simple implementation, small running times (∼ linear)
▶ often embedded as sub-procedure (e.g. in B&B)

Sorting elements by Dispatching rules: static or dynamic scores

Randomization (randomized scores, random among the best n etc.)

Primal / dual heuristics
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Example: greedy algorithm KP/0-1

Item j with wj and pj ; capacity W ; select items maximizing profit!

1 Sort object according to ascending
pj
wj

.

2 Initialize: S := ∅, W̄ := W , z := 0

3 for j = 1, . . . , n do

4 if (wj ≤ W̄ ) then

5 S := S ∪ {j}, W̄ := W̄ − wj , z := z + pj .

6 endif

7 endfor

Static dispatching rule
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Example: Greedy algorithm for the Set Covering Problem

SCP: given set M andM⊂ 2M , cj , j ∈M;
select a min cost combination of subsets inM whose union is M

1 Initialize: S := ∅, M̄ := ∅ , z := 0

2 if M̄ = M (⇔ all elements are covered), STOP;

3 compute the set j /∈ S minimizing the ratio
cj∑

i∈M\M̄

aij
;

4 set S := S ∪ {j}, M̄ := M̄ ∪ {i : aij = 1}, z := z + cj and go to 2.

Dynamic dispatching rule
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Greedy for SCP: sorting criterion through an exact method

min
∑
j∈M

cjxj

s.t.
∑
j∈M

aijxj ≥ 1 ∀ i ∈ M

xj ∈ {0, 1} ∀ j ∈M

1 Initialize: S := ∅, M̄ := ∅, z := 0

2 if M̄ = M (⇔ all elements are covered), STOP;

3 solve linear programming relaxation of SCP (with xj = 1 (j ∈ S), and
let x∗ be the corresponding optimal solution;

4 let j = argmax
j /∈S

x∗j ;

5 set S := S ∪ {j}, M̄ := M̄ ∪ {i : aij = 1}, z := z + cj and go to 2.
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Algorithms embedding exact solution methods: in general

Expansion criterion based on solving a sub-problem to optimality
(once or at each expansion)

Example: best (locally optimal!) element to add by MILP;

Example: locally good element to add by LP relaxation of MILP;

Normally longer running times but better final solution

“Less greedy”: solving the sub-problem involves all (remaining)
decisions variables (global optimality)

Remark: having a mathematical model is useful, even if the model does
not directly solve the problem
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Simplifying exact procedures: some examples

Run Cplex on a MILP model for a limited amount of time

Simplify an enumeration scheme (select only a limited subset of
alternatives, e.g. Beam Search)

Beam search

Partial breath-first visit ot the enumeration tree

compute a score for each node (likelihood it leads to an optimal leave)

at each level select the k best-score nodes and branch on them

Let: n levels, b branches per node, k beam size

n · k nodes in the final tree

n · b · k score evaluations

calibrate k so that specific time limits are met

Variant (with some backtrack): recovery beam search
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Beam search for KP-0/1

n = 6 items; binary branching (b = 2); k = 2;
(any reasonable) evaluation of nodes

root

x1 = 0 x1 = 1

x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0 x6 = 1

x5 = 1

x4 = 1

x3 = 1

x2 = 1 x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0 x6 = 1

x5 = 1

x4 = 1

x3 = 1

x2 = 1

44 48

34 47 48 N.A.

47 N.A. 46 48

44 47 48 N.A.

47 N.A. 48 N.A.

47 N.A 45 48

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6
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Neighbourhood Search and Local Search

How to improve over a solution?

(continuous solution space and suitable objective functions: gradient!)

combinatorial optimization: “look around”, neighborhood!

a neighbor identifies a search direction, try ‘many’ directions to find
an improving one!

Let X be a (discrete) set of feasible solutions, and consider minx∈X f (x):

the neighbourhood of a solution s ∈ X is N : s → N(s), N(s) ⊆ X

Remark: N(s) obtained by sistematically applying small changes to s
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Neighbourhood: an example

KP0/1, items i(pi ,wi ): a(3,4), b(4,5), c(5,4), d(3,3), e(8,9), f(4,7), W=20

s = {a, b, d} obj(s) = 10

N(s) = {t ⊆ X | t = s + i , i ∈ X \ s or t = s − i , i ∈ s (insert/remove)}
t1 = {b, d} obj(t1) = 7
t2 = {a, d} obj(t2) = 6
t3 = {a, b} obj(t3) = 7

t4 = {a, b, c , d} obj(t4) = 15
t5 = {a, b, d , e} infeasible
t6 = {a, b, d , f } obj(t6) = 14

Improving directions: from s to t4 and from s to t6

N ′(s) = {t ⊆ X | t = s + i − j , i ∈ X , j ∈ s (swap)}
t1 = {c , b, d} obj(t1) = 12
t2 = {e, b, d} obj(t2) = 15
t3 = {f , b, d} obj(t3) = 11
t4 = {a, c , d} obj(t4) = 11
t5 = {a, e, d} obj(t5) = 14
t6 = {a, f , d} obj(t6) = 10

t7 = {a, b, c} f (t7) = 12
t8 = {a, b, e} f (t7) = 15
t9 = {a, b, f } f (t6) = 11

improving directions:
all but t6
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Basic Local Search (LS) scheme

Determine an initial solution x ;

while (∃ x ′ ∈ N(x) : f (x ′) < f (x)) do {
x := x ′

}
return(x) (x is a local optimum*)

*Notice: “combinatorial (local) convexity” depends on x , f and on N(x)
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LS components

a method to find an initial solution;

a solution representation, which is the base for the following
elements;

the application that, starting from a solution, generates the
neighbourhood (moves);

the function that evaluates solutions;

a neighbourhood exploration strategy.
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Initial solution

random

from current practice

(fast) heuristics

randomized heuristics

...

no theoretical preference: better initial solutions may lead to worst
local optima

random or randomized + multistart
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Solution representation

Encodes the features of the solutions (≈formulation of the problem)

Very important: impact on the following design steps (related to how
we imagine the solutions and the solution space to be explored!)

Example: KP-0/1

- list of loaded items

- characteristic (binary) vector

- ordered item sequence

Decoding may be needed

Example: KP-0/1

- list and vector representation: immediate decoding

- ordered sequence: a solution is derived by loading items in the given
order up to saturating the knapsack
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Neighbourhood (moves)

A neighborhood function N : x → N(x) defines the elements of a solution
x and a modifying action (or move) that perturbs x

Given a solution x (neighbourhood centre), we apply a move to each
element of x and we obtain a set of neighbour solutions (neighborhood)

Example: add/remove neighborhood for KP-0/1:

solution x : a subset S of items

solution element: an item i

add/remove move: if i ∈ S , remove it from S , f i /∈ S , add it to from S ,

neighborhood: all the items subsets obtained from S by adding/removing one item

Example: 2-opt neighborhood for TSP:

solution x : a sequence Σ of cities

solution element: a sub-sequence

2-opt move: reverse the subsequence in Σ

neighborhood: all the sequences obtained from Σ by reversing any subsequence
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Neighbourhood design

Normally, implicit definition by moves (how to perturb)

Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; (iv) ...

Neighbourhood size: number of neighbour solutions

Evaluation complexity: should be quick! possibly incremental
evaluation

Neighbourhood complexity: time to explore (evaluate) all the
neighbour solutions of a the current one (efficiency!)

Neighbourhood strength: ability to produce good local optima
(notice: local optima depend also on the neighbourhood definition)

little perturbations, small size, fast evaluation, less strong .vs. large
perturbation, large size, slow evaluation, larger improving power

Connection: any solution x ∈ X can be obtained from any y ∈ X by
a sequence of moves (desireble feature)
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Neighbourhood: KP/0-1 example

Insertion neighbourhood has O(n) size; Swap neigh. has O(n2) size

A stronger neigh. by allowing also double-swap moves, size O(n4)

An insertion or a swap move can be incrementally evaluated in O(1)

Overall neigh. complexity: insertion O(n), swap O(n2)

Insertion neigh. or Swap neigh. are not connected.
Insertion+removing neigh. is connected
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Neighbourhood definition: solution representation is
important!

Insertion, swapping, removing moves are based on list or vector
representation!

Difficult to implement (and imagine) them on the ordered-sequence
representation

For the ordered-sequence representation, moves that perturb the
order are more natural, e.g., pairwise interchange:

▶ from 1− 2− 3− 4− 5− 6− 7
to 1− 6− 3− 4− 5− 2− 7 (pairwise interchange 2 and 6)
or 5− 2− 3− 4− 1− 6− 7 (pairwise interchange 1 and 5)
or ...

▶ size is O(n2), connected (with respect to maximal solutions)
▶ neigh. evaluation in O(n) (no fully-incremental evaluation)
▶ overall complexity O(n3)
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Solution evaluation function

Evaluation is used to compare neighbours to the centre solution (and
between each others)

Normally, the objective function

May include some extra-feature (e.g. combined by means of a
weighted sum) to identify “more promising” solutions

▶ In KP-0/1, “prefer” solutions with larger residual capacity

f̃ (X ) =
∑

i∈X pi + ϵ
(
W −

∑
i∈X wi

)
May include penalty terms (e.g. infeasibility level to allow visiting
infeasible solutions)

▶ In KP-0/1, let X be the subset of loaded items

f̃ (X ) = α
∑

i∈X pi − βmax
{
0,
∑

i∈X wi −W
}

(α, β > 0)

it potentially activates “removing” move in a connected
“insertion+removing” neighbourhood

Luigi De Giovanni Heuristics for Combinatorial Optimization 22 / 66



Exploration strategies

Which improving neighbour solution to select?

Stepest descent strategy: the best neighbour (all evaluated!)

First improvement strategy: the first improving neighbour. Sorting
matters! (heuristic, random)

Granularization: apply a filter (deterministic rules, a pre-trained
classifier) to exclude part of the neighbours

Possible variants:

random choice among the best k neighbours

store interesting second-best neighbours and use them as recovery
starting points for LS
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Sample application to TSP

First question: is LS justified? Exact approaches exists, not suitable
for large instances and small running times. Notice that TSP is
NP-Hard

Notation and assumptions:

G = (V ,A) (undirected)

G is complete

|V | = n

cost cij (may be = cji in the symmetric case)

Define all the elements of LS
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LS for TSP: initial solution by Nearest Neighbour heuristic

1 select node i0 ∈ V ; cost = 0, Cycle = {i0}, i = i0.

2 select j = arg min
j∈V \Cycle

{cij}

3 set Cycle = Cycle ∪ {j}; cost = cost + cij
4 set i = j

5 if still nodes to be visited, go to 2

6 Cycle = Cycle ∪ {i0}; cost = cost + cii0

O(n2) (or better): simple but not effective (too greedy, last choices
are critical)

repeat with different i0

randomize Step 2
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LS for TSP: Best Insertion

1 Choose the nearest nodes i and j : C = i − j − i , cost = cij + cji
2 select the node r = argmini∈V \C{cir + crj − cij : i , j consecutive in C}
3 modify C by inserting r between nodes i and j minimizing

cir + crj − cij
4 if still nodes to be visited, go to 2.

O(n3): rather effective

may randomize initial pair and/or r selection
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LS for TSP: Nearest/Farthest Insertion

1 Choose the two nearest/farthest nodes i and j an build the initial
cycle C = i − j − i

2 select the node r = argminv∈V \C /maxv∈V \C {cvj : j ∈ C}
3 modify C by inserting r between pairs of consecutive nodes i and j in

the current cycle such that cir + crj − cij is minimized

4 if still nodes to be visited, go to 2.

O(n3): rather effective (farthest version better, more balanced cycles)

may randomize initial pair and/or r selection
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LS for TSP: Solution Representation

arc representation: arcs in the solution, e.g. as a binary adjacency
matrix

adjacency representation: a vector of n elements between 1 and n
(representing nodes), v [i ] reports the node to be visited after node i

path representation: ordered sequence of the n nodes (a solution is
a node permutation!)
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LS for TSP: k-opt neighbourhoods

Concept: replace k arcs in with k arcs out [Lin and Kernighan, 1973]
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LS for TSP: k-opt neighbourhoods

In terms of path representation, 2-opt is a substring reversal

Example: < 1, 2, 3, 4, 5, 6, 7, 8, 1 > −→ < 1, 2, 6, 5, 4, 3, 7, 8, 1 >

2-opt size: (n−1)(n−2)
2 = O(n2)

k-opt size: O(nk)

Neighbour evaluation: incremental for the symmetric case, O(1)

2-opt move evaluation: reversing sequence between i and j in the
sequence < 1 . . . h, i , . . . , j , l , . . . , 1 >

Cnew = Cold − chi − cjl + chj + cil

which k? k = 2 good, k = 3 fair improvement, k = 4 little
improvement
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LS for TSP: evaluation function and exploration strategy

No specific reason to adopt special choices:

Neighbours evaluated by the objective function (cost of the related
cycle)

Steepest descent (or first improvement)
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Neighbourhood search and Trajectory methods

LS trades-off simplicity/efficiency and effectiveness, but it gets stuck
in local optima

Need to escape from local optima (only convexity implies global
optimality)

- Random multistart (random initial solutions)

- Variable neighbourhood (change neighbourhood if local optimum)

- Randomized exploration strategy (e.g. random among best k neigh)

- Backtrack (memory and recovery of unexplored promising neighbours)

- ...

Neighbourhood search or Trajectory methods: a walk trough the
solution space, recording the best visited solution
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Avoiding loops

A walk escaping local optima may worsen the current solution and fall
into loops

In order to avoid loops:

- (only improving solutions are accepted = LS)

- randomized exploration
▶ alternative random ways
▶ does not exploit information on the problem (structure)
▶ e.g. Simulated Annealing

- memory of visited solutions
▶ store visited solution and do not accept them
▶ structure can be exploited
▶ e.g. Tabu Search

Notice. Visiting a same solution is allowed: we just need to avoid
choosing the same neighbour
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Simulated Annealing [Kirkpatrick, 1983]

Metaphor: annealing process of, e.g., metals.
Alternate warming/cooling to obtain “optimal” molecular structure

search scheme (one possible):

Determine an initial solution x
intialize: best solution x∗ ← x and iteration k = 0
repeat
k ← k + 1
generate a (random) neighbour y
if y is better than x∗, then x∗ ← y
Loss = max{0, f (y)− f (x)} (minimization problems)1

accept y with probability p = exp

(
− Loss

T (k)

)
if accepted, x ← y

until (no further neighbours of x , or max trials)
return x∗

1Loss = max{0, f (x)− f (y)} (maximization problems)
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SA: cooling schedule

Parameter T (k): temperature, cooling schedule

T (first) > T (last): the probability of accepting not improving
solutions is decreasing over time

Example: “stepwise” cooling schedule, defined by parameters

- initial T (maximum)
- number of iterations at constant T
- T decrement
- minimum T

+ (one of) the first NS metaphors

+ provably converges to the global optimum (in theory, under strong
assumptions)

+ simple to implement

– there are better (on-the-field) NS metaheuristics!
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Tabu Search [Fred Glover, 1989]

Memory is used to avoid cycling: store information on visited
solutions (allows exploiting structure of the problem)

Basic idea: store visited solutions and exclude them (= make tabu)
from neighbourhoods

Implementation by storing Tabu List of the last t solutions

T (k) := {xk−1, xk−2, . . . , xk−t}

at iteration k , avoid cycles of length ≤ t

t is a parameter to be calibrated (see example*)

From N(x) to N(x , k): the neighborhood of a same solution may be
different at different times, it depends in iteration k

Notice. Visiting a same solution is allowed: we just need to avoid
choosing the same neighbour (recall N(x , k) ̸= N(x , l), see
example**)
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*Example: tabu list length
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**Example: re-visiting solutions
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Storing “information” instead of solutions

Tabu List (may) store information on the last t solutions (short term
memory)

E.g., often moves are stored instead of solutions because of

+ efficiency (checking equality between full solutions may take long
time and slow down the search)

+ storage capacity (storing full solution information may take large
memory)

- may declare more tabu directions (see aspiration)

Example: TSP, 2-opt. TL stores the last t pairs of arcs added (to
avoid arcs or involved nodes)

In any case, t (tabu tenior) has to be calibrated:

- too small: TS may cycle

- too large: too many tabu neighbours
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Aspiration criteria

By storing “information”, unvisited solutions may be declared as tabu

If a tabu neighbour solution satisfies one or more aspiration criteria,
tabu list is overruled

Aspiration criterion: a solution is “interesting”, e.g. the solution is
the best found so far (not visited before!)
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Stopping criteria

(A solution is found satisfying an optimality certificate, if available...)

Maximum number of iterations, or time limit *

Maximum number of NOT IMPROVING iterations *

Empty neighbourhood and no overruling
▶ perhaps t is too long
▶ perhaps visit non-feasible solutions (e.g. COP with many constraints):

modifying the evaluation function, alternate dual and primal search

* parameter to be calibrated
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TS basic scheme

Input: neigh. function N, evaluation function f̃ , objective function f , tabu tenure t

Notation: incumbent-current-neighbor solution x∗-x-y , iteration counter k, Tabu List T

Determine an initial solution x ; k := 0, T (k) = ∅, x∗ = x ;

repeat

let y = arg best
(
{f̃ (y), y ∈ N(x , k)}∪

{y ∈ N(x) \ N(x , k) | y satisfies aspiration}
)

compute T (k + 1) from T (k) by inserting y (or move x 7→ y ,
or information) and, if |T (k)| ≥ t, removing the elder solution
(or move or information)

if f (y) better than f (x∗) then let x∗ := y
x = y , k++

until (stopping criteria)

return (x∗).

Same basic elements as LS (+ tabu list, aspiration, stop)
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Intensification and diversification phases

Intensification explores more solutions in a small portion of the
solution space: solutions with similar features

Diversification moves the search towards unexplored regions of the
search space: solutions with different features

the basic search scheme may be improved by alternating
intensification and diversification, to find and exploit new promising
regions and, hence, new (and possibly better) local optima

in TS, memory may play a role (store information on visited
solutions, e.g. to allow avoiding the same features during
diversification)

▶ e.g., in TSP, maintain statistics on how many times each arc has been
included in a visited solution and either (i) fix more frequent arcs for
intensification or (ii) exclude more frequent arcs for diversification

Intensification and diversification are general principle
that can be applied to any metaheuristics (not only to TS)
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Intensification

enumerate (implicitly) all the solutions in a (small) region where good
solutions have been found (e.g. fix some variables in a MILP model
and run a solver)

temporarily use a more detailed neighbourhood (e.g. allowing many
possible moves)

relax aspiration criteria

modify evaluation function to penalize far away solutions
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Diversification

use “larger” neighbourhoods (e.g. k-opt → (k + 1)-opt in TSP, until
a better solution is found [Variable Neighborhood Descent])

▶ in the case of tabu search, if more neighbourhoods are used, they rely
on independent tabu lists

modify the evaluation function to promote far away solutions

use the last local minimum to build a far-away (“complementary”)
solution to start a new intensification

use a long term memory to store the “more visited” features and
exclude them (or penalize them in the evaluation function)

▶ as a quick-and-dirty approximation, use a dynamic tabu list length t: t
is short during intensification and long during diversification (we may
start with small t = t0 and increment it as long as we do not find
improving solutions, until a maximum t is reached or an improvement
resets t = t0 for a new intensification)
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Example: Tabu Search for Graph Coloring

R V

G

RV

G

vertex 1 v. 2

v. 3

v. 4v. 5

v. 6

1 2 3 4 5 6

R RV VG G

f = 3

R V

R

VR

V

vertex 1 v. 2

v. 3

v. 4v. 5

v. 6

1 2 3 4 5 6

R VV RR V

f = 2

move: change the color of one node at a time (no new color). 12 neighbours:
VVGRVG, GVGRVG, RRGRVG, RGGRVG, RVRRVG etc. none feasible!

objective function to evaluate: little variations (plateau!)

f̃ that penalizes non-feasibilities, includes (weighted sum) other features, but ...
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Too many constraints: change perspective!

Given a k-coloring, search for a (k − 1)-coloring

Initial solution: delete one color by changing it in one of the others

Evaluation f̃ : number of monochromatic edges, to be minimized
(minimize non-feasibilities2)

Move: as before, change the color of one vertex

Granular TS: consider only nodes belonging to monochromatic edges

Tabu list: last t pairs (v , r) (vertex v kept color r)

if f̃ = 0, new feasible solution with k − 1 colors: set k = k − 1 and
start again!

2Searching for solutions that minimize constraint infeasibilities is also said “dual
search”, as opposed to the usual search for better solutions in terms of objective
function, also said “primal search”
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Population based heuristics

At each iteration

a set 3 of solutions (population) is maintained

some solutions are recombined 4 to obtain new solutions (among which a
better one, hopefully)

Several paradigms (often just the metaphor changes!5)

Evolutionary Computation (Genetic algorithms)

Scatter Search and path relinking

Ant Colony Optmization

Swarm Optmization

etc.

General purpose (soft computing), easy to implement (rather than effective!)

3In trajectory/based metaheuristics, a single
4In trajectory/based metaheuristics, perturbation, move
5K. Sörensen, “Metaheuristics – the metaphor exposed”
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Genetic Algorithms [Hollande, 1975]
Metaphore: biological evolution as an optimization process:

Survival of the fittest ↭ Optimization
Individual ↭ Solution

Chromosome ↭ Encoding
Fitness ↭ Objective function

Encode solutions of the specific problem.

Create an initial set of solutions (initial population*).

Repeat

Select* pairs (or groups) of solutions (parent).

Recombine* parents to generate new solutions (offspring).

Evaluate the fitness* of the new solutions

Replace* the population, using the new solutions.

Until (stopping criterion)

Return the best generated solution.

* Genetic Operators
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Encoding: chromosome, sequence of genes

KP 0/1: binary vector, n genes = 0 / 1

1 0 0 1 1 0 0 0 1 0

TSP: path representation: n genes = cities

3 2 6 1 8 0 4 7 1 5

Normally, each gene is related to one of the decision variables of the
Combinatorial Optimization Problem (COP)

Encoding is important and affects following design steps (like solution
representation in neighbourhood search)

Decoding to transform a chromosome (or individual) into a solution
of the COP (in the cases above it is straightforward)
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Encoding: chromosome, sequence of genes

Job shop scheduling problem instance:

Job machine , tij
1 A , 5 B , 4 C , 4
2 B , 2 A , 6 C , 5
3 C , 4 B , 2 A , 2
4 C , 4 A , 5 B , 4

Solution Encoding: n ∗m genes = jobs (gives priority)

4 2 1 1 3 4 2 3 1 2 3 4

Solution Decoding: from job priority to actual task starting times

4

2

1

1

3

4 2

3

1 2

3

4

C

B

A

t0 5 10 15 20
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Genetic operators

Initial population: random + some heuristic/local search
▶ random → initial diversification (very important!!!)

▶ heuristic (randomized) → faster convergence (not too many heuristic
solutions, otherwise fast convergence to local optimum)

▶ Remark: in population based heuristics, a local optimum does not
correspond to a single solution, but to a population made of identical
(or very similar) individuals, i.e., loss of population diversity such
that recombination is not able to generate improving individuals

Fitness: (variants of the) objective function (see Neighbourhood
Search)
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Genetic operators: Selection

Selection: larger fitness ⇝ larger probability to be selected

Notice: even worse individual should be selected with small
probability to (avoid premature convergence!): they may contain
good features (genes), even if their overall fitness is poor

Mode 1: select one t-uple of individuals to be combined at a time

Mode 2: select a subset of individuals to form a mating pool, and
combine all the individual in the mating pool.
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Genetic operators: Selection schemes

pi : probability of selecting individual i ; fi : fitness of i

In general, compute pi such that the higher fi , the higher pi

Montecarlo: pi is proportional to fi

pi = fi /
N∑

k=1

fk fi : fitness of i

Super-individuals may be selected too often

Linear ranking: sort individual by increasing fitness and σi is the

position of i , set pi =
2σi

N(N + 1)

[
= constant · σi (linear in σi )

]
n-tournament: in order to select one individual, first select a small
subset of n individuals uniformly in the population, then select the
best individual in the subset
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Genetic operators: recombination [crossover]

From n ≥ 1 parents, obtain m offspring different but similar

offspring inherits genes (features) from one of the parents at random

Uniform (probability normally depends on the parent fitness)

1 0 0 1 1 0 0 0 1 0 parent 1 (fitness 8)
0 0 1 0 1 0 1 1 0 1 parent 2 (fitness 5)

1 0 0 0 1 0 0 1 0 0 offspring

k-cut-point: “adjacent genes represents correlated features”

cut point cut point

* * * * * * * * * * parent 1
+ + + + + + + + + + parent 2

* * * + + + + + * * offspring 1
+ + + * * * * * + + offspring 2
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Mutation

After or during crossover, some genes are randomly changed

Mutation is primarily intended to avoid genetic drift: statistical
arguments show that a single gene tends to take the same value in
all the individuals of the population, which implies loss of genetic
diversity (loss of diversity in a single gene)

▶ Even if individuals may be different from each other according to other
genes (population diversity is preserved, e.g., thanks to the other
genetic operators), one gene is the same for every individual (genetic
drift): e.g, in KP/0-1, we have different solutions in the population,
but all of them include item ’4’

Mutation’s effects and side effects (sometimes we want them!):
▶ (re)introduce genetic diversity (= diversity in each gene)
▶ slow population convergence (for a good trade-off, normally we change

very few genes with very small probability)
▶ can be used to obtain, as a side effect, chromosome diversity (i.e.

diversification, diversity among individuals), if more genes with larger
probability undergo mutation (simple way to diversify the population,
often not the best one)
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Integrating Local Search

Local search may be used to improve offspring (simulate children
education)

Replace an individual with the related local minimum

May lead to premature convergence

Efficiency may degrade! Suggestions:
▶ use simple and fast LS
▶ apply to a selected subset of individuals
▶ more sophisticated NS only at the end, as post-optimization
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Crossover, mutation and non-feasible offspring

Crossover/mutation operators may generate unfeasible offspring. We can:

Reject unfeasible offspring

Penalize (modified fitness)

Repair (during the decoding)

Design specific operators guaranteeing feasibility. E.g. for TSP:
▶ Order crossover (provides similar offspring because reciprocal order is

maintained for most pairs)

1 4 9 2 6 8 3 0 5 7 parent 1
0 2 1 5 3 9 4 7 6 8 parent 2

1 4 9 2 3 6 8 0 5 7 offspring 1
0 2 1 4 9 3 5 7 6 8 offspring 2

▶ Mutation by substring reversal (= 2-opt)

1 4 9 2 6 8 3 0 5 7
−→ ←− −→
1 4 8 6 2 9 3 0 5 7
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Generational Replacement

Generational replacement: old individuals are replaced by offspring

Steady state: a few individuals (likely the worst ones) are replaced

Elitism: a few individuals (likely the best ones) are kept

Best individuals: generate R new individuals from N old ones; keep
the best N among the N + R

Population management: keep the population diversified, whilst
obtaining (at least one) better and better solution

Acceptance criteria for new individuals (e.g. fitness)

Diversity threshold (e.g. Hamming distance)

Variable threshold to alternate intensification and diversification
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Stopping criteria

Time limit

Number of (not improving) iterations (=generations)

Population convergence: all individuals are similar to each other
(pathology: not well designed or calibrated)
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Observations

Advantages: general, robust, adaptability (just an encoding and a
fitness function!)

Disadvantages: many parameters! (you may save time in developing
the code but spend it in calibration)

Overstatement: complexity comes back to the user, that should find
the optimal combination of the parameters.
Normally, the designer should provide the user with a method able to
directly find the optimal combination of decision variables. In fact,
the algorithm designer should also provide the user with the
parameter calibration!

Genetic algorithms are in the class of weak methods or soft
computing (exploit little or no knowledge of the specific problem)
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Validating optimization algorithms

Some criteria:

(Design and implementation time / cost)

Efficiency (running times)

Effectiveness (quality of the provided solutions)

Reliability, if stochastic (every run provides a good solution)

Evaluation/validation techniques:

Computational experiments. Steps
▶ desing and implementation of the optimization algorithm
▶ benchmark selection (real, literature, ad-hoc): “many” instances
▶ parameter calibration (before -not during- test)*
▶ test (notice: multiple [e.g. 10] running if stochastic)*
▶ statistics (including reliability) and comparison with alternative*

Probabilistic analysis (more theoretical, e.g. probability of optimum)

Worst case analysis (performance guarantee, often too pessimistic)

*see lab example (tabu tenure calibration, tests with multiple runs, statistics and results)
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Parameter calibration (or estimation)

Pre-deployment activity (designer should do, not the user!)

Estimation valid for every instance (for evaluation purposes)

Standard technique:

▶ select an instance subset (= training set)
▶ extensive runs on the training set
▶ take interaction among parameters into account
▶ stochastic components make the calibration harder

Advanced techniques:

▶ Black box optimization
▶ Automatic estimation (e.g. i-race package, off-line application of
machine learning techniques)

▶ Adaptivity: parameters are changed at running time, following
the search history (e.g., adjusting tabu tenure by cycle-checking,
“on-line” application of machine learning techniques)
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Warning: metaheuristc principles .vs. metaphores

Many (good) metaheuristics are inspired by (good) metaphores

Recent literature proposed a true tsunami of “novel” metaheuristic
methods, most of them based on a metaphor of some natural or
man-made process: the behavior of any species (bees, wasps, monkeys,
apes, birds etc.), the flow of water, musicians playing together etc.

Actually, the basic principles are often not novel, but the same as for
trajectory or population based methods

Good or new metaphores do not necessarily lead to good or new
metaheuristics!

Golden Rule

An algorithm is good if it provides good results (validation!), and not if it
is described by a suggestive metaphor. See Sörensen, 2015

Luigi De Giovanni Heuristics for Combinatorial Optimization 64 / 66



Hybrid metaheuristics: very brief introduction!

Integration between different techniques, at different levels (components,
concepts, etc.). Examples:

population based + trajectory methods (find good regions +
intensification)

tabu search + simulated annealing
Matheuristics (hot research topic, thesis avaialble!)

▶ mathematical programming driven constructive heuristics
▶ exact methods to find the best move in large neighbourhoods
▶ heuristics to help exact methods (e.g. primal and dual bounds)
▶ Rounding heuristics, fixing heuristics
▶ Local branching
▶ ...

Data driven optimization (hot research topic, thesis avaialble!)
▶ Machine Learning to set optimization model parameters
▶ Artificial Intelligence to detect or learn promising regions or search

directions (e.g., ML-driven granular search, ML-driven kernel search)
▶ ...

...
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Ideas from sample applications [see proposed readings]
Two-level local search heuristic for pickup/delivery problems in express freight trucking

Neighbor solution evaluation is difficult: second level local search heuristic

Tabu Search (intensification) + Variable Neighborhood Search (diversification)

Randomization (further diversification)

efficiency: granular exploration + parallel implementation + fast route sequencing

Data-driven matheuristic for the Air Traffic Flow Management Problem

Takes advantage from data repositories on historically flown trajectories

Specific Integer Programming formulation including user preferences and
predefined routes

Model components (routes and preference parameters) determined through Data
Analytics (cluster analysis, tree classifiers)

Granular exploration of very large neighborhoods through Integer Programming
and Data Analytics (good move classifiers)

Evolving Neural Networks Through Augmenting Topologies

Evolutionary algorithm, crossover as “union” of nodes and connections

Mutation operators obtained by neighborhood moves (+/- node; +/- connection;
change weight)

Independent evolution and management of “species” (subsets of similar solutions)
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