COVER INEQUALITIES

mercoledì 23 novembre 2022 19:28

VALID INEQUALITIES FOR (M)ILP

	GENERAL PURROSE CUTS	CUTS CUTS
CONVEX HULL YES	GOMDRY (ILP, MLP)	ODO WTS (WEIGHTED MATCHING)
CONVEX HULL MO		NON-AGGREGATED (FACILITY LOCATION) COUER (MULTI-KNAPSACIK)

THE KNAPSACK PROBLEM 0/1

max
$$\sum_{i=1}^{m}$$
 pi xi

pi: profit of item i

ai: weight if i

b: capacity of k.

D \(\text{xi} \le 1 \) i=1...

Xi \(\text{Z} \)

$$\alpha; \beta \in \mathbb{Z}$$
(or $\alpha \sim (.c.b.)$

[2] > Z[mD can we strengthen by adding valid inequalities? · yES 1: (should know)

· 465 2 : COVER INEQUALITIES ---

COVER INEQUALITIES FOR THE KNAPSACK PROBLEM 0/1

COVER: $C \subseteq \{1...n\}$ such that $\sum_{i \in C} a_i > \beta$ $\equiv \sum_{i \in C} a_i \geq \beta + 1$

. CANNOT SELECT ALL THE ITEMS OF C!

$$x \in X \implies \sum_{i \in C} x_i < |C| = \sum_{i \in C} x_i \le |C| - 1$$

COVER INEQUALITY, VALID FOR X

EQUIVALENT FORCE :

$$|C| \equiv \sum_{i \in C} 1 \rightarrow \sum_{i \in C} (x_i - 1) \leq -1 \rightarrow \sum_{i \in C} (1 - x_i) \geq 1$$

D BETTER FORMULATION: ADD \(\subseteq (1-xi) ≥ 1, \(\forall \subseteq (2 \langle 1...) \) \(\subseteq \langle \lan

SEPARATION PROCEDURE

(SOLVE THE LINEAR RELAXATION AND OBTAIN ₹ EN)

no

DECISION VARIABLE IL= { 1 L'E L E C

(ii)
$$\sum_{i \in C} (1-\overline{z}_i) < 1$$

$$L_{D} \sum_{i \in C} \square = \sum_{i=1}^{m} \square_{x_{i}}$$

FORMULATION OF THE SEPARATION PROBLEM AS AN ICP:

$$W^*=\min \sum_{i=1}^{m} (1-\overline{x}_i) \neq i$$

$$S-t = \sum_{i=1}^{m} a_i \neq i \geq \beta+1$$

$$x \in \{0,1\}$$

· IF W < 1, ADD COVER INEQUALITY FOR C = {i=1..n | +i=1}
OTHER WISE NO VIOLATED COVER INEQUALITY EXISTS

SEPARATION PROCEDURE: INTEGRATION INTO A CUTTING PLANE PROCEDURE

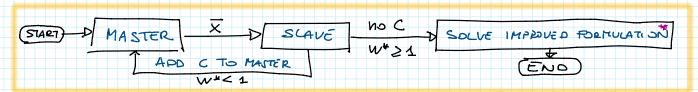
MSTER: SOLVE THE LINEAR RELAXATION

SLAVE: SOLVE THE SEPARATION PROBLEM

TRANSFORM INTO A KP-0/1 ! I'= 1-90

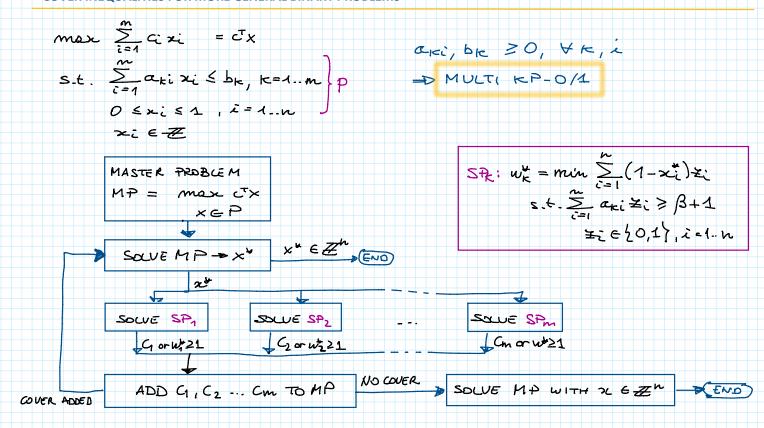
• min $\sum_{i=1}^{m} (1-\bar{x}_i) \pm i \sim \max_{i=1}^{m} (1-\bar{x}_i) (1-y_i) =$ $= -\sum_{i=1}^{m} (1-\bar{x}_i) + (1-\bar{x}_i)y_i \sim \max_{i=1}^{m} (1-\bar{x}_i)y_i$

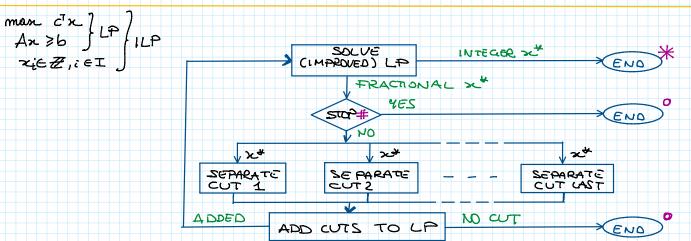
 $\sum_{i=1}^{m} a_i \pm i = \sum_{i=1}^{m} a_i (1-y_i) = \sum_{i=1}^{m} a_i - \sum_{i=1}^{m} a_i \cdot y_i \ge \beta + 1 = D$ $\sum_{i=1}^{m} a_i \cdot y_i \le \sum_{i=1}^{m} a_i - \beta - 1 \qquad (\text{Notice } \sum_{i=1}^{m} a_i > \beta)$



* USE, E.C., BER OR CUITTING PLANE WITH GORDEN CUTS (WE BONOT KNOW OF THE IMPROVED FORMULATION IS IDEAL!

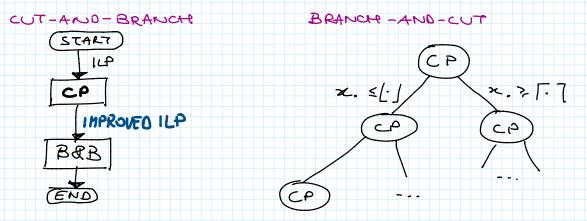
COVER INEQUALITIES FOR MORE GENERAL BINARY PROBLEMS





- # E.G. : MAX TIME , MAX LITER , MINIMUM U.B. INPROVEMENT, ...
- * CONVERCENCE TO OPTIMAL INTEGER SOLUTION [QUARANTEC]
- O EXIT WITH IMPROVED FORMULATION

CP = CUTTIN PLANE AS ABOVE, RETURNING AN IMPROVED FORMULATION
BSB = BRANCH & BOWND TO FIND AN INTEGER OPTIMAL SOUTH ON



· CP takes time but it improves bounds! (TRADE-OFF NEEDED)