
Methods and Models for Combinatorial Optimization

Cover inequalities

L. De Giovanni M. Di Summa

We introduce a class of inequalities, known as cover inequalities, that can be used to
improve the formulation of the knapsack problem. We will then see how these inequalities
can be applied to more general integer linear programming problems.

1 Cover inequalities for the knapsack problem

In the knapsack problem we are given n items of weight a1, . . . , an and profit p1, . . . , pn
respectively, and a bag (the knapsack) of maximum capacity β. We have to determine
a subset of the n items that can be put in the bag without exceeding the maximum
capacity, maximizing the total profit. In the following we assume that a1, . . . , an and β
are integer numbers.1 If we define binary variables x1, . . . , xn, where xi = 1 if and only if
item i is selected, we can formulate the knapsack problem as the following integer linear
programming problem:

max
n∑

i=1

pixi (1)

s.t.
n∑

i=1

aixi ≤ β, (2)

0 ≤ xi ≤ 1, i = 1, . . . , n, (3)

xi ∈ Z, i = 1, . . . , n. (4)

The feasible region of the continuous relaxation, given by constraints (2)–(3), is usually
much larger than the ideal formulation. It is then reasonable to introduce inequalities to
strengthen the formulation: these inequalities must be satisfied by all the integer solutions,
but should hopefully yield a continuous relaxation closer to the ideal formulation.

1We recall that from the perspective of implementation we always work with rational numbers. Star-
ting from rational numbers a1, . . . , an and β, we can obtain integer numbers by multiplying them by
their least common denominator. The resulting problem is equivalent to the original one, as we are only
changing the unit of measurement of weight.

1

Cover inequalities

1.1 Cover inequalities

We call cover any subset of the n items that exceeds the knapsack capacity: in other
words, a cover is a subset C ⊆ {1, . . . , n} such that∑

i∈C

ai > β.

Since a1, . . . , an and β are all integer numbers, the above condition can be restated as
follows: ∑

i∈C

ai ≥ β + 1.

Given a cover C, since it is impossible to put all the elements of C in the knapsack, at
most |C|−1 of them can be selected. This implies that the following inequality is satisfied
by all integer solutions: ∑

i∈C

xi ≤ |C| − 1.

This inequality is called cover inequality.
Notice that, since !C! is the number of variables in the sum, i.e., |C| =

∑
i∈C 1, the

inequality can be equivalently written as∑
i∈C

(1− xi) ≥ 1.

If all possible cover inequalities are added to the original formulation of the knapsack
problem, we obtain a better formulation. (However, it can be shown that this is not the
ideal formulation yet.) Unfortunately, the number of cover inequalities is exponentially
large, as in the worst case there is one cover inequality for every non-empty subset C of
{1, . . . , n}. Even though in most practical cases only some of the subsets of {1, . . . , n} are
actually covers, the number of covers is too large. The idea is then to add dynamically
the cover inequalities only when they are really needed.

1.2 Separation of cover inequalities

Suppose that we have solved the continuous relaxation (1)–(3) (for instance with the
simplex method), thus obtaining a solution x̄ that is not an integer vector. We want to
verify if there is a cover inequality violated by x̄, with the purpose of adding this inequality
to the formulation and solving the new linear programming problem. The problem of
finding a cover inequality violated by x̄, or deciding that none exists, is the separation
problem for the cover inequalities. Note that since the number of cover inequalities is
exponentially large, we cannot simply enumerate them and look for a violated one.

Deciding if there is a cover inequality violated by x̄ means deciding if there exists a
subset C ⊆ {1, . . . , n} such that

(i)
∑

i∈C ai ≥ β + 1;

L. De Giovanni M. Di Summa - Methods and Models for Combinatorial Optimization 2

Cover inequalities

(ii)
∑

i∈C x̄i > |C| − 1.

Condition (i) ensures that C is a cover, while condition (ii) says that x̄ does not satisfy
the corresponding cover inequality.

To model the above problem, we introduce binary variables z1, . . . , zn, where zi = 1 if
and only if item i is in the cover C. Condition (i) can be rewritten as follows:

n∑
i=1

aizi ≥ β + 1.

Since |C| =
∑n

i=1 zi, condition (ii) can be rewritten as follows:
n∑

i=1

x̄izi >

n∑
i=1

zi − 1, i.e.,
n∑

i=1

(1− x̄i)zi < 1.

Consider the following integer linear programming problem:

max
n∑

i=1

(1− x̄i)zi (5)

s.t.
n∑

i=1

aizi ≥ β + 1, (6)

0 ≤ zi ≤ 1, i = 1, . . . , n, (7)

zi ∈ Z, i = 1, . . . , n. (8)

(Note that the x̄i’s are known values and not variables.) The constraints ensure that the
zi variables define a cover. Let z̄ be the optimal (integer) solution of this problem. If the
optimal value is smaller than 1, then

∑n
i=1(1 − x̄i)z̄i < 1, which, as seen above, means

that the cover inequality defined by z̄ is violated by x̄. Otherwise, if the optimal value is
≥ 1, then there is no cover inequality violated by x̄, as in this case

∑n
i=1(1− x̄i)zi ≥ 1 for

any vector z defining a cover.
We can then decide if there is a cover inequality violated by x̄ (and find it) by solving

the integer linear programming problem (5)–(8). Note that this problem is very similar
to the original knapsack problem (1)–(4), and therefore it would probably be better to
solve directly the original problem rather than solving a similar problem just to find a new
inequality to include in the formulation (and then iterate this procedure!). Nonetheless,
we will see below that this approach is much more promising in more general situations.

2 Cover inequalities for general binary problems

Consider a general integer linear programming problem in which all variables are binary:

max cTx (9)

s.t. Ax ≤ b, (10)

0 ≤ xi ≤ 1, i = 1, . . . , n, (11)

xi ∈ Z, i = 1, . . . , n. (12)

L. De Giovanni M. Di Summa - Methods and Models for Combinatorial Optimization 3

Cover inequalities

where A ≥ 0.
A crucial observation is that every single constraint of the system Ax ≤ b can be seen

as a knapsack-type constraint of the form (2). In other words, if we replace the system
Ax ≤ b with any of its constraints, and remove all the others, we obtain a relaxation
of the problem that looks exactly like a knapsack problem. It is then possible to add
to the formulation the cover inequalities associated with each of the knapsack problems
obtained this way (i.e., removing all constraints but one). The number of possible cover
inequalities will be huge, but we can employ the approach described above to add the
inequalities only when they are really needed.

Suppose that we have solved the continuous relaxation (9)–(11), thus obtaining a non-
integer solution x̄. For each knapsack problem obtained by removing all the constraints
of the system Ax ≤ b except one, we ask ourselves whether there is a cover inequality
violated by x̄. To this purpose, it is sufficient to solve a problem of the form (5)–(8). If
the optimal value of this problem is smaller than 1, then we have found a cover inequality
violated by x̄ that can be added to the formulation; otherwise there is no cover inequality
violated by x̄. We can then solve the new continuous relaxation (including the cover
inequalities that have been added) and iterate this procedure until the current solution
satisfies all cover inequalities. The resulting algorithm is the following:

Generation of cover inequalities

1. Solve the continuous relaxation (9)-(11) and let x̄ be the optimal

solution obtained.

2. If x̄ is integer, then STOP: optimal integer solution.

3. For each constraint of the system Ax ≤ b, solve the corresponding

integer linear programming problem (5)-(8) (where a1, . . . , an and β are

the coefficients and the right-hand side of the constraint). Let z̄
be the optimal integer solution obtained.

4. If the optimal value of problem (5)-(8) is smaller than 1, then z̄
gives a cover inequality violated by x̄, defined by C = {i : z̄i = 1}.

5. If for all the problems (5)-(8) solved at the previous step the

optimal value is ≥ 1, then there is no cover inequality violated

by x̄: STOP.

6. Add to the formulation all the cover inequalities found above, solve

the new linear programming problem, let x̄ be its optimal solution

and go to step 2.

With the above algorithm we have to solve many problems of the form (5)–(8), which
are integer linear programming problems and therefore hard in general. However, problem

L. De Giovanni M. Di Summa - Methods and Models for Combinatorial Optimization 4

Cover inequalities

(5)-(8) is one of the simplest integer linear programming problems and therefore, although
in principle an exponential time might be needed to solve it, in practice an optimal solution
can be found in a reasonable amount of time.

As seen above, the algorithm terminates when the current solution does not violate
any cover inequality.2 Of course it is possible to stop the algorithm before its natural
termination if we think that the inequalities that we have added are sufficient to give
a good formulation of the problem. In both cases, if x̄ is not integer, we can apply
the Branch-and-Bound method. The fact that some cover inequalities have been added
allows us to start from a better formulation and usually makes the Branch-and-Bound
method terminate in a shorter time. This kind of approach, in which the formulation
is strengthened with valid inequalities and then Branch-and-Bound is applied, is called
cut-and-branch. If valid inequalities are added at every node of the Branch-and-Bound
tree, then the method is called branch-and-cut.

Exercises

1. In which cases a cutting plane method is sufficient to solve an ILP?

2. How can we improve the performance of the branch-and-bound method for ILP
using cutting planes?

3. Use the OPL project “multiKP” (see resources) to configure different solution me-
thods (corresponding to “pure” branch-and-bound or branch-and-cut with different
types of enabled cuts) and compare the related solution processes in terms of, e.g.

• overall running time,

• number of explored branch-and-bound-nodes,

• quality of the linear relaxation,

• progress of the optimality gap over time.

2Note however that when this happens, x̄ might still be non-integer, because the cover inequalities are
not sufficient to describe the ideal formulation of the problem (which is not known).

L. De Giovanni M. Di Summa - Methods and Models for Combinatorial Optimization 5

