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1 Definition of the dual problem

Duality theory in linear programming can be viewed as a tool for checking the optimality
of a feasible solution. Given a linear programming problem in minimization form, the
idea is to provide a lower bound on the possible values that the objective function can
take over the feasible region.

Consider the following LP problem in standard form:

(LP ) z∗ = min z = cTx
s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm, and x is a vector of variables in Rn.

Definition 1 (Lower bound): Given a LP problem LP : min{cTx : Ax = b, x ≥ 0}, let
z∗ be the optimal value of the objective function. A number ` ∈ R is called a lower bound
for the problem if ` ≤ cTx for every x feasible for LP.

One way to obtain a lower bound for (LP) is the following. Choose any vector u ∈ Rm.
If x is feasible for (LP), then

uTAx = uT b.

If we also assume that cT ≥ uTA, by using x ≥ 0 we obtain:

cTx ≥ uTAx = uT b, ∀ x feasible.

In other words: given a vector u ∈ Rm, if c ≥ uTA then uT b is a lower bound for (LP).
Note that, once a lower bound ` and a feasible solution x̃ are available, if cT x̃ = `

then x̃ is optimal. For this reason, it is convenient to look for the best possible lower
bound, i.e., the largest lower bound. The best lower bound that one can obtain with this
technique is given by a suitable choice of the vector u. We then have an optimization
problem in which the decision variables are the entries of vector u:

(DP ) ω∗ = max ω = uT b
s.t. uTA ≤ cT

u free
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Problem (DP) is the dual problem of (LP). In this context, (LP) is called primal
problem, and the pair of problems (LP) and (DP) is called primal-dual pair.

Note that there is:

• a dual variable corresponding to each primal constraint;

• a dual constraint corresponding to each primal variable.

2 Duality theorems

The definition of dual problem implies the following result:

Theorem 1 (Weak duality) If x̃ is a feasible solution for (LP) and ũ is a feasible solution
for (DP), then

cT x̃ ≥ ũT b.

It immediately follows that:

Corollary 1 Given a feasible solution x̃ for (LP) and a feasible solution ũ for (DP), if
cT x̃ = ũT b then x̃ is optimal for (LP) and ũ is optimal for (DP).

The following result can also be shown:

Corollary 2 Given a primal-dual pair (LP)-(DP):

(i) if (LP) is unbounded, then (DP) is infeasible;

(ii) if (DP) is unbounded, then (LP) is infeasible.

We remark that the above implications hold in the given direction only. Indeed, there are
primal-dual pairs in which both problems are infeasible.

The following result also holds:

Theorem 2 (Strong duality): (LP) has an optimal solution x∗ if and only if (DP) has
an optimal solution u∗. In this case, cTx∗ = u∗T b.

We give a proof of one implication (namely, if (LP) has an optimal solution then (DP)
has an optimal solution), as this is interesting to us because the theory of the simplex
method is employed.
Proof: If (LP) has an optimal solution, then it has a basic optimal solution, which can

be obtained by means of the simplex method. We denote this solution by x∗ =

[
x∗
B

x∗
N

]
,

with [B | N ] being a decomposition of matrix A in its basic and non-basic columns. We
now construct a suitable vector u ∈ Rm and show that it is feasible and optimal for (DP).
Define

uT = cTBB
−1.
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Since x∗ is an optimal solution given by the simplex method, we have

c̄B = 0
c̄N ≥ 0

By the definition of reduced cost,

c̄TN = cN − cTBB
−1N = cN − uTN ≥ 0⇒ cN ≥ uTN.

We can then write

uTA = uT [B | N ] = [uTB | uTN ] = [cTBB
−1B | uTN ] = [cTB | uTN ] ≤ [cTB | cTN ] = cT .

Then uT = cTBB
−1 is a feasible solution for (DP). The corresponding value of the objective

function is
uT b = cTBB

−1b = cTBx
∗
B = cTx∗.

This shows that x∗ and u form a pair of feasible solutions for (LP) and (DP) with the
same value of the objective function. By Corollary 1, u is optimal for (DP). �

The following table summarizes the above results:

(DP)
Optimal Unbounded Infeasible

Optimal Possible (and z∗ = ω∗) NO NO
(LP) Unbounded NO NO Possible

Infeasible NO Possible Possible

3 Duality for problems in general form

The above arguments can be extended to LP problems not in standard form. The crucial
point is the following: in order for uT b to be a lower bound for cTx (uT b ≤ cTx), the
following inequalities must be satisfied:

cTx ≥ uTAx ≥ uT b.

For instance, if the constraints are of the form Ax ≥ b, the second “≥” is guaranteed to
be true only if one imposes u ≥ 0.
Similarly, the dual constraints on u that preserve the first “≥” depend on the sign of x.
By repeating the arguments for all possible cases (all possible directions of the inequalities
and all possible signs of the variables), one obtains a table that summarizes the rules to
construct the dual problem preserving the inequalities cTx ≥ uTAx ≥ uT b.
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Primal (min cTx) Dual (maxuT b)

aTi x ≥ bi ui ≥ 0

aTi x ≤ bi ui ≤ 0

aTi x = bi ui free

xj ≥ 0 uTAj ≤ cj

xj ≤ 0 uTAj ≥ cj

xj free uTAj = cj

The above table has to be read from left to right if the primal problem is a minimization
one, and from right to left if the primal problem is a maximization one.

Note: all the results of the previous section can be generalized to any primal-
dual pair, not necessarily in standard form.

Example:

min 10x1 +20x2

s.t. 2x1 −x2 ≥ 1
x2 +x3 ≤ 2

x1 −2x3 = 3
3x2 −x3 ≥ 4

x1 ≥ 0
x2 ≤ 0

x3 free

=⇒

max u1 +2u2 +3u3 +4u4

s.t. u1 ≥ 0
u2 ≤ 0

u3 free
u4 ≥ 0

2u1 +u3 ≤ 10
−u1 +u2 +3u4 ≥ 20

u2 −2u3 −u4 = 0

4 Complementarity conditions

Consider a primal-dual pair:
(PP ) min cTx

s.t. Ax ≥ b
x ≥ 0

(DP ) max uT b
s.t. uTA ≤ cT

u ≥ 0

and vectors
x̄ ∈ Rn

ū ∈ Rm

The strong duality theorem implies the following optimality conditions :

x̄ and ū optimal for
primal and dual (resp.)

⇐⇒
x̄ is primal feasible: Ax̄ ≥ b, x̄ ≥ 0
ū is dual feasible: ūTA ≤ cT , ū ≥ 0
strong duality holds: cT x̄ = ūT b
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Although we have used a primal problem with constraint of the form “≥”, the above
conditions hold for problems in any form.

Exercise 1 Find an optimal solution for the following problem:

max z = −3x1 − x3

s.t. x1 + 2x2 + x3 = 7
2x1 + x2 + x3 = 20
x1, x2, x3 free

Hint: the presence of just equality constraints and free variables suggests the direct ap-
plication of strong duality to the problem and its dual; this yields a system of linear
equations consisting of the primal constraints, the dual constraints (which are equality
constraints because the primal variables are free) and the equality condition between the
two objective functions.

Answer: infinitely many optimal solutions of the form x1 = 11− 1
3
x3, x2 = −2− 1

3
x3.

The optimality conditions can also be written as follows:

Theorem 3 (Complementary slackness (or orthogonality) conditions) Given a primal-
dual pair

min{cTx : x ≥ 0, Ax ≥ b}
max{uT b : u ≥ 0, uTA ≤ cT}

x and u optimal for
primal and dual (resp.)

⇐⇒

Ax ≥ b, x ≥ 0 (primal feasibility)
uTA ≤ cT , u ≥ 0 (dual feasibility)
uT (Ax− b) = 0
(cT − uTA)x = 0

}
(complementarity)

More explicitly, the above complementarity conditions are the following:

uT (Ax− b) =
m∑
i=1

ui(a
T
i x− bi) = 0

(cT − uTA)x =
n∑

j=1

(cj − uTAj)xj = 0

Since all the factors in the above expressions are ≥ 0 because of the feasibility of x and
u,1 we have:

1In this form, both factors of each summand are ≥ 0 and therefore each summand is ≥ 0. In general
form, the domains of the dual variables and the directions of the dual constraints ensure that the two
factors of each summands give a product ≥ 0, and therefore the above arguments hold in general.

L. De Giovanni M. Di Summa G. Zambelli - Methods and Models for Combinatorial

Optimization

5



Review of Duality in Linear Programming

ui(a
T
i x− bi) = 0, ∀ i = 1, . . . ,m

(cj − uTAj)xj = 0, ∀ j = 1, . . . , n

The complementarity (or orthogonality) conditions must be satisfied
by all primal/dual variable/constraint pairs.

In other words, given feasible solutions x and u for a primal-dual pair min{cTx : x ≥
0, Ax ≥ b} and max{uT b : x ≥ 0, uTA ≤ cT}, x and u are optimal if and only if:

(1) positive primal variable xj > 0 ⇒ uTAj = cj tight dual constraint

(2) strict dual constraint uTAj < cj ⇒ xj = 0 primal variable = 0

(3) positive dual variable ui > 0 ⇒ aTi x = bi tight primal constraint

(4) strict primal constraint aTi x > bi ⇒ ui = 0 dual variable = 0

Note: the above implications hold in the given direction “⇒” only!
The above implications can be extended to primal-dual pairs in any form. For instance,

if the primal is in standard form, conditions (3) and (4) are useless, since they directly
comes from primal and/or dual feasibility.

5 The simplex method and duality

Consider an LP in standard form and the (partial) proof of the strong duality theorem
given above. As we saw, given a basis B and its simplex multipliers uT = cTBB

−1, the
condition that “the reduced cost (with respect to B) of a variable is non-negative” is
the same as the condition that “the corresponding dual constraint is satisfied by the
dual solution given by the multipliers”. In other words, given a basis, a non-negative
(resp. negative) reduced cost of a primal variable corresponds to a dual constraint that
is satisfied (resp. violated) by the multipliers associated to the basis itself. Indeed, for
a given basis, the definition of non-negative reduced cost corresponds to that of the dual
constraint associated to the multipliers:

c̄j = cj − cTBB
−1Aj ≥ 0⇔ cj − uTAj ≤ 0⇔ uTAj ≤ cj

Furthermore, the multipliers (viewed as a dual solution) and the current primal solution
always satisfy the complementary slackness conditions by construction, as we now verify.
Since the primal problem has only equality constraints (and non-negativity of the vari-
ables), the condition uT (Ax− b) = 0 comes from primal feasibility. Since xB = B−1b and
xN = 0, we have:
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(cT−uTA)x =
(
[cTB | cTN ]−uT [B | N ]

)
[xB | xN ] = cTBxB+cTNxN−cTBB−1BxB−cTBB−1NxN =

= cTBxB + 0− cTBxB − 0 = 0.

In other words, x =

[
xB

xN

]
and u = cTBB

−1 are a pair of primal-dual solutions satisfying

the complementary slackness conditions, and this is true at every iteration of the simplex
method. The simplex method can thus be interpreted in two ways:

• as a method that, at every iteration, determines a feasible primal solution and tries
to make it optimal;

• as a method that, at every iteration, determines a dual solution (the multipliers)
satisfying the complementarity conditions with a feasible primal solution, and tries
to make it feasible for the dual.

At termination, we will have a feasible primal solution and a feasible dual solution satis-
fying the complementarity conditions (and therefore optimal for the primal and the dual
problem, respectively). During the execution of the simplex method, we instead have
a primal-dual pair of solutions satisfying the complementarity conditions, but only the
primal solution is feasible, therefore we can conclude the optimality of the solutions only
when the algorithm terminates.

6 Exercises

Exercise 2 Verify whether the solution x1 = 8, x2 = 3 is optimal for the following
problem:

max z = 4x1 + 2x2

s.t. 2x1 ≤ 16

2x1 + 3x2 ≤ 25

x2 ≤ 5

x1, x2 ≥ 0

Hint. After verifying that the given solution is feasible, write the dual and
the complementarity slackness conditions. Use these conditions to find values
for the dual variables, once the primal variables have been fixed at the given
values. If (and only if) the values found for the dual variables are feasible for
the dual problem, then the given primal solution is optimal, as in this case we
have a primal-dual pair of feasible solutions satisfying the complementarity
conditions, and therefore both optimal.

Answer: the given solution is optimal.
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Exercise 3 A company needs 11 kilograms of chromium, 2 of molybdenum and 1 of man-
ganese. Two kinds of scrap steel can be purchased: one ton of the first type contains 3
kilograms of chromium and 1 of manganese, and costs 2000 euros; one ton of the sec-
ond type contains 1 kilogram of chromium and 1 of molybdenum, and costs 3000 euros.
Currently, the company purchases 3 and respectively 2 tons of first and the second type of
scrap steel.

1. Verify that the current strategy is the cheapest one.

2. Check whether the optimal strategy may change after the availability of two new
types of scrap steel. One ton of the third type contains 2 kilograms of chromium and
1 of manganese, and costs 1500 euros; one ton of the fourth type one contains 2
kilograms of chromium and 1 of molybdenum, and costs 4000 euro.

3. Check whether the optimal strategy may change after the availability of a new type
of scrap steel containing 2 kilograms of chromium, 2 of molybdenum and 2 of man-
ganese, and costing 5500 euro per ton.

Resolution (sketch). We first write the model for the problem. We use
variable xi for the tons of scrap steel of type i = 1, 2 that should be purchased.

min z = 2x1 + 3x2

s.t. 3x1 + x2 ≥ 11 (u1)

x2 ≥ 2 (u2)

x1 ≥ 1 (u3)

x1, x2 ≥ 0

Solving point 1 simply means verifying that the solution x1 = 3, x2 = 2 is
optimal (for instance, by using the complementarity conditions).

Answer to point 1: yes, the strategy is optimal.

In order to solve point 2, we note that the two new scrap types correspond
to two new primal variables. Thus, in the dual problem we have two new
constraints (2u1 + u3 ≤ 1.5 and 2u1 + u2 ≤ 4). Since the dual now has more
constraints, the optimal solution of the dual problem cannot improve: either
it remains unchanged (if it does not violate the new constraints) or it deteri-
orates (if the previous optimal solution violates at least one new constraint).
Therefore two cases are possible:

(a) the constraints are satisfied by the optimal dual variables found at point
1. Then the dual optimal solution is unchanged and, by strong duality,
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so is the primal optimal solution. This means that the availability of new
scrap types does not affect the optimality of the current strategy.2

(b) the constraints are not satisfied by the optimal dual variables found at
point 1. Then the optimal dual solution changes; in particular, it cannot
increase, as there are new constraints (recall that the dual problem is
a maximization one). Again by strong duality, the new primal optimal
value will be equal to the new dual optimal value, and therefore smaller
than (or equal to) the old one. It follows that the current strategy may
improve.3

Answer to point 2: case (a).

The resolution of point 3 is similar; in this case the optimal strategy of the
company changes.

Answer to point 3: case (b).

Exercise 4 Given the problem

max z = x1 − x2

s.t. x2 ≤ 1

2x1 + x2 ≤ 5

−x1 − 3x2 ≤ 10

−x1 − x2 ≤ 2

x1 ≥ 0, x2 free

verify whether the solutions xa = [2,−4] and xb = [5,−5] are optimal.

2As an exercise, we give a more formal proof of the fact that if the new dual constraints are satisfied
by the previous optimal dual solution u then the previous primal optimal solution is still optimal. We
note that:

• the primal solution x1 = 3, x2 = 2, x3 = x4 = 0 is feasible also for the new problem, as the
contribution of the new variables is 0;

• the number of dual variables is unchanged (because the number of primal constraints is still 3) and
the dual solution u found at point 1 satisfies the complementarity conditions also with the new primal
solution x1 = 3, x2 = 2, x3 = x4 = 0. This is because x3 · (corresponding dual constraint) = 0 and
x4 ·(corresponding dual constraint) = 0; furthermore, ui ·(corresponding new primal constraint) = 0
⇔ ui · (corresponding old primal constraint) = 0 for i = 1, 2, 3, as the contribution of the new
variables x3 and x4 is 0.

Therefore, if the dual constraints are satisfied, we have a primal-dual pair of feasible solutions satisfying
the complementary slackness conditions, and therefore optimal.

3As an alternative proof, by using the more formal approach in footnote 2, we would have a pair of
primal-dual solutions still satisfying the complementarity conditions, but the dual solution would not be
feasible and therefore we cannot conclude that the two solutions are optimal.
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We can again apply the complementarity conditions. Note that the second
dual constraint will be an equation, as x2 is a free variable. Thus it cannot
be used to impose a complementarity conditions, but it can be used directly
as one of the equations in the system that one writes to find a dual solution
satisfying the complementarity conditions.

Answer: xa is not optimal (the unique dual solution obtained by the system
of equations violates the first dual constraints, so that there not exits any
dual solution which is simultaneously feasible and satisfying complementarity
conditions with respect to solution xa); xb is optimal (the unique dual solution
obtained by the system of equalities is also dual-feasible).
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