Linear Programming and the Simplex method

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Mathematical Programming models

$$
\begin{array}{rll}
\min (\max) & f(x) & \\
\mathrm{s.t.} & g_{i}(x)=b_{i} \quad(i=1 \ldots k) \\
& g_{i}(x) \leq b_{i} \quad\left(i=k+1 \ldots k^{\prime}\right) \\
& g_{i}(x) \geq b_{i} \quad\left(i=k^{\prime}+1 \ldots m\right) \\
& x \in \mathbb{R}^{n}
\end{array}
$$

- $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is a vector (column) of n REAL variables;
- f e g_{i} are functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$
- $b_{i} \in \mathbb{R}$

Linear Programming (LP) models

f e g_{i} are linear functions of x

$$
\begin{array}{lll}
\min (\max) & c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} & \\
\mathrm{s.t.} & a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}=b_{i} \quad(i=1 \ldots k) \\
& a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \leq b_{i} \quad\left(i=k+1 \ldots k^{\prime}\right) \\
& a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \geq b_{i} \quad\left(i=k^{\prime}+1 \ldots m\right) \\
& x_{i} \in \mathbb{R} & (i=1 \ldots n)
\end{array}
$$

Notice: for the moment, just CONTINUOUS variables are considered!!!
We need different methods for models with integer or binary variables.

Resolution of an LP model

- Feasible solution: $x \in \mathbb{R}^{n}$ satisfying all the constraints
- Feasible region: set of all the feasible solutions x
- Optimal solution $x^{*}[\mathrm{~min}]: c^{T} x^{*} \leq c^{T} x, \forall x \in \mathbb{R}^{n}, x$ feasible.

Solving a LP model is determining if it:

- is unfeasible
- is unlimited
- has a (finite) optimal solution

Solving an LP: example

The farmer problem: max $6000 x_{T}+7000 x_{P}$

$$
\begin{array}{lrrr}
\text { s.t. } & x_{T}+x_{P} \leq 11 & 7 x_{T} \leq 70 & 3 x_{P} \leq 18 \\
& 10 x_{T}+20 x_{P} \leq 145 & x_{T} \geq 0 & x_{P} \geq 0
\end{array}
$$

Geometry of LP

The feasible region is a polyedron (intersection of a finite number of closed half-spaces and hyperplanes in \mathbb{R}^{n})

LP problem: $\min (\max)\left\{c^{T} x: x \in P\right\}, P$ is a polyhedron in \mathbb{R}^{n}.

Vertex of a polyhedron: definition

- $z \in \mathbb{R}^{n}$ is a convex combination of two points x and y if $\exists \lambda \in[0,1]$: $z=\lambda x+(1-\lambda) y$

- $z \in \mathbb{R}^{n}$ is a strict convex combination of two points x and y if $\exists \lambda \in<(0,1)>: z=\lambda x+(1-\lambda) y$.
- $v \in P$ is vertex of a polyhedron P if it is not a strict convex combination of two distinct points of P : $\nexists x, y \in P, \lambda \in(0,1): x \neq y, v=\lambda x+(1-\lambda) y$

Representation of polyhedra

$$
\begin{aligned}
& z \in \mathbb{R}^{n} \text { is convex combination of } \\
& x^{1}, x^{2} \ldots x^{k} \text { if } \exists \lambda_{1}, \lambda_{2} \ldots \lambda_{k} \geq 0: \\
& \sum_{i=1}^{k} \lambda_{i}=1 \text { and } z=\sum_{i=1}^{k} \lambda_{i} x^{i}
\end{aligned}
$$

Theorem: representation of polyhedra [Minkowski-Weyl] - case 'limited'

Polydron limited $P \subseteq \mathbb{R}^{n}, v^{1}, v^{2}, \ldots, v^{k}\left(v^{i} \in \mathbb{R}^{n}\right)$ vertices of P if $x \in P$ then $x=\sum_{i=1}^{k} \lambda_{i} v^{i}$ with $\lambda_{i} \geq 0, \forall i=1 . . k$ and $\sum_{i=1}^{k} \lambda_{i}=1$ (x is convex combination of the vertices of P)

Optimal vertex: from graphical intuition to proof

Theorem: optimal vertex(fix min objective function)
LP problem $\min \left\{c^{\top} x: x \in P\right\}, P$ non empty and limited

- LP ha optimal solution
- one of the optimal solution of LP is a vertex of P

Proof:

$$
\begin{aligned}
& V=\left\{v^{1}, v^{2} \ldots v^{k}\right\} \quad v^{*}=\arg \min _{v \in V} c^{T} v \\
& c^{T} x=c^{T} \sum_{i=1}^{k} \lambda_{i} v^{i}=\sum_{i=1}^{k} \lambda_{i} c^{T} v^{i} \geq \sum_{i=1}^{k} \lambda_{i} c^{T} v^{*}=c^{T} v^{*} \sum_{i=1}^{k} \lambda_{i}=c^{T} v^{*} \\
& \text { Summarizing: } \quad \forall x \in P, c^{T} v^{*} \leq c^{T} x
\end{aligned}
$$

We can limit the search of an optimal solution to the vertices of P !

Vertex comes from intersection of generating hyperplanes

Algebraic representation of vertices

Write the constraints as equations

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+s_{1}=24 \\
& x_{1}+4 x_{2} \\
& 3 x_{1}+2 x_{2}
\end{aligned}
$$

$5-3=2$ degrees of freedom: we can set (any) two variables to 0 and obtain a unique solution!

Standard form for LP problems

$$
\begin{array}{ll}
\min & c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
\text { s.t. } & a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}=b_{i} \quad(i=1 \ldots m) \\
& x_{i} \in \mathbb{R}_{+}
\end{array} \quad(i=1 \ldots n)
$$

- minimizing objective function (if not, multiply by -1);
- variables ≥ 0;
(if not, substitution)
- all constraints are equalities;
(+/- slack/surplus variables)
- $b_{i} \geq 0$.
(if not, multiply by -1)

Standard form: example

$$
\begin{array}{ll}
\max & 5\left(-3 x_{1}+5 x_{2}-7 x_{3}\right)+34 \\
\text { s.t. } & -2 x_{1}+7 x_{2}+6 x_{3}-2 x_{1} \leq 5 \\
& -3 x_{1}+x_{3}+12 \geq 13 \\
& x_{1}+x_{2} \leq-2 \\
& x_{1} \leq 0 \\
& x_{2} \geq 0
\end{array}
$$

$$
\begin{array}{ll}
\hat{x}_{1}=-x_{1} & \left(\hat{x}_{1} \geq 0\right) \\
x_{3}=x_{3}^{+}-x_{3}^{-} & \left(x_{3}^{+} \geq 0, x_{3}^{-} \geq 0\right)
\end{array}
$$

$$
\min -3 \hat{x}_{1}-5 x_{2}+7 x_{3}^{+}-7 x_{3}^{-}
$$

$$
\text { s.t. } 4 \hat{x}_{1}+7 x_{2}+6 x_{3}^{+}-6 x_{3}^{-}+s_{1}=5
$$

$$
3 \hat{x}_{1}+x_{3}^{+}-x_{3}^{-}-s_{2}=1
$$

$$
\hat{x}_{1}-x_{2}-s_{3}=2
$$

$$
\hat{x}_{1} \geq 0, x_{2} \geq 0, x_{3}^{+} \geq 0, x_{3}^{-} \geq 0, s_{1} \geq 0, s_{2} \geq 0, s_{3} \geq 0
$$

Linear algebra: definitions

- column vector $v \in \mathbb{R}^{n \times 1}: v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$
- row vector $v^{\top} \in \mathbb{R}^{1 \times n}: v^{\top}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$
- matrix $A \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{11} & a_{12} & \ldots & a_{1 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$
- $v, w \in \mathbb{R}^{n}$, scalar product $v \cdot w=\sum_{i=1}^{n} v_{i} w_{i}=v^{T} w=w^{T} v$
- Rank of $A \in \mathbb{R}^{m \times n}, \rho(A)$, max linearly independent rows/columns
- $B \in \mathbb{R}^{m \times m}$ invertible $\Longleftrightarrow \rho(B)=m \Longleftrightarrow \operatorname{det}(B) \neq 0$

Systems of linear equations

- Systems of equations in matrix form: a system of m equations in n variables can be written as: $A x=b$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ e $x \in \mathbb{R}^{n}$.
- Theorem of Rouché-Capelli: $A x=b$ has solutions $\Longleftrightarrow \rho(A)=\rho(A \mid b)=r\left(\infty^{n-r}\right.$ solutions).
- Elementary row operations:
- swap row i and row j;
- multiply row i by a non-zero scalar;
- substitute row i by row i plus α times row $j(\alpha \in \mathbb{R})$.

Elementary operations on (augmented) matrix $[A \mid b]$ leave the same solutions as $A x=b$.

- Gauss-Jordan method for solving $A x=b$: make elementary row operations on $[A \mid b]$ so that A contains an identity matrix of dimension $\rho(A)=\rho(A \mid b)$.

Basic solutions

- Assumptions: system $A x=b, A \in \mathbb{R}^{m \times n}, \rho(A)=m, m<n$
- Basis of A : square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$
- $A=[B \mid N] \quad B \in \mathbb{R}^{m \times m}, \operatorname{det}(B) \neq 0$

$$
x=\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right], x_{B} \in \mathbb{R}^{m}, x_{N} \in \mathbb{R}^{n-m}
$$

- $A x=b \Longrightarrow[B \mid N]\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]=B x_{B}+N x_{N}=b$
- $x_{B}=B^{-1} b-B^{-1} N x_{N}$
- imposing $x_{N}=0$, we obtain a so called basic solution:

$$
x=\left[\begin{array}{c}
x_{B} \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
B^{-1} b \\
0
\end{array}\right]
$$

- many different basic solutions by choosing a different basis of A
- variables equal to 0 are $n-m$ (or more: degenerate basic solutions)

Basic solutions and LP in standard form

 $\min c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$ $\min c^{T} x$ s.t. $\quad \begin{array}{ll}a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}=b_{i} & (i=1 \ldots m) \\ & x_{i} \in \mathbb{R}_{+} \\ & (i=1 \ldots n)\end{array} \quad$ s.t. $\quad \begin{aligned} A x & =b \\ x & \geq 0\end{aligned}, r(m)$- basis B gives a feasible basic solution if $x_{B}=B^{-1} b \geq 0$

$3 x_{1}+4 x_{2}+s_{1}$ x_{1} $+4 x_{2}$ $3 x_{1}$ $+2 x_{2}$	
	$=24$
$+s_{2}$	$=18$

1 \& 4 \& 0 \& 1 \& 0

3 \& 2 \& 0 \& 0 \& 1\end{array}\right] \quad b=\left[$$
\begin{array}{l}24 \\
20 \\
18\end{array}
$$\right]\)

Vertices and basic solution

Feasible basic solution $\rightsquigarrow n-m$ variables are $0 \rightsquigarrow$ intersection of the right number of hyperplanes \rightsquigarrow vertex!
$P L \min \left\{c^{T} x: A x=b, x \geq 0\right\} \quad P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$

Theorem: vertices correspond to feasible basic solutions (algebraic characterization of the vertices of a polyhedron)
x feasible basic solution of $A x=b \quad \Longleftrightarrow \quad x$ is a vertex of P

Corollary: optimal basic solution

If P non empty and limited, then there exists at least an optimal solution which is a basic feasible solution

Algorithm for LP (case limited): sketch

Consider all the feasible basic solutions:
(1) put the LP in standard form $\min \left\{c^{\top} x: A x=b, x \geq 0\right\}$
(2) incumbent $=+\infty$
(3) repeat
(9) generate a combination of m columns of A
(3) let B be the corresponding submatrix of A
(0) if $\operatorname{det}(B)==0$ then continue else compute $x_{B}=B^{-1} b$
(1) if $x_{B} \geq 0$ and $c_{B}^{T} x_{B}<$ incumbent then update incumbent
(8) until(no other column combinations)

Complexity: up to $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ basic solution!!!
\Rightarrow Symplex method: more efficient exploration of the basic solutions (only feasible and improving)

Example

LP problem in standard form:

$$
\begin{array}{rllllll}
\min \quad z=-13 x_{1} & -10 x_{2} & & & & \\
\text { s.t. } & 3 x_{1} & +4 x_{2} & +s_{1} & & & \\
& x_{1} & +4 x_{2} & & +s_{2} & & =20 \\
& 3 x_{1} & +2 x_{2} & & & +s_{3} & =18 \\
& x_{1} & , & x_{2} & , s_{1}, s_{2}, & s_{3} & \geq 0
\end{array}
$$

an initial basic feasible solution (vertex B):

- $B=\left[\begin{array}{lll}3 & 4 & 0 \\ 1 & 4 & 0 \\ 3 & 2 & 1\end{array}\right] \quad N=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
- $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ s_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ 9 / 2 \\ 3\end{array}\right] \quad x_{N}=\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- $z_{B}=c^{T} x=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=-71$

Example

Change basis: New basic solution \Rightarrow one non-basic variable increases affecting x_{B} and z_{B}

$$
\begin{aligned}
& x_{B}= B^{-1} b-B^{-1} N x_{N} \\
& z= c^{T} x=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T}\left(B^{-1} b-B^{-1} N x_{N}\right)+c_{N}^{T} x_{N} \\
& \quad=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N}
\end{aligned}
$$

Write x_{B} and z as functions of only non-basic variables

For the sake of manual computation, use Gauss-Jordan:

$$
\begin{gathered}
A x=b \rightsquigarrow[B N \mid b] \rightsquigarrow\left[B^{-1} B=\left|B^{-1} N=\bar{N}\right| B^{-1} b=\bar{b}\right] \\
x_{B}=\bar{b}-\bar{N} x_{N} \quad z=\ldots
\end{gathered}
$$

Example

$$
\begin{array}{llllll}
x_{1} & x_{2} & s_{3} & s_{1} & s_{2} & \bar{b}
\end{array}
$$

	3	4	0	1	0	24
	1	4	0	0	1	20
	3	2	1	0	0	18
$\left(R_{1} / 3\right)$						
$\left(R_{2}-R_{1} / 3\right)$	1	$4 / 3$	0	$1 / 3$	0	8
$\left(R_{3}-R_{1}\right)$	0	$8 / 3$	0	$-1 / 3$	1	12
	0	-2	1	-1	0	-6
$\left(R_{1}-1 / 2 R_{2}\right)$						
$\left(3 / 8 R_{2}\right)$	0	0	0	$1 / 2$	$-1 / 2$	2
$\left(R_{3}+3 / 4 R_{2}\right)$	0	1	0	$-1 / 8$	$3 / 8$	$9 / 2$
	0	1	$-5 / 4$	$3 / 4$	3	

$$
\begin{array}{rlrl}
x_{1} & =2-1 / 2 s_{1}+1 / 2 & s_{2} \\
x_{2} & =9 / 2+1 / 8 & s_{1}-3 / 8 & s_{2} \\
s_{3} & =3+5 / 4 s_{1}-3 / 4 & s_{2} \\
z & & \\
z=-13 x_{1}-10 x_{2} & =-71+21 / 4 s_{1}-11 / 4 s_{2}
\end{array}
$$

Example

$$
z=-71+21 / 4 \quad s_{1}-11 / 4 \quad s_{2}
$$

- In order to minimize, it is convenient to increase s_{2} (and keep $s_{1}=0$)
- Equalities have to be always satisfied...:

$$
\begin{aligned}
& x_{1}=2+1 / 2 \\
& x_{2}=9 / 2-3 / 8 \\
& s_{2} \\
& s_{3}=3-3 / 4
\end{aligned}
$$

- while preserving non-negativity:

$$
\begin{aligned}
& x_{1} \geq 0 \Rightarrow 2+1 / 2 s_{2} \geq 0 \Rightarrow s_{2} \geq-4 \quad \text { always! } \\
& x_{2} \geq 0 \Rightarrow 9 / 2-3 / 8 s_{2} \geq 0 \Rightarrow s_{2} \leq 12 \\
& s_{3} \geq 0 \Rightarrow 3-3 / 4 s_{2} \geq 0 \Rightarrow s_{2} \leq 4
\end{aligned}
$$

- New feasible and better solutions with $s_{1}=0$ and $0 \leq s_{2} \leq 4$
- $\underline{s_{2}=4} \Rightarrow s_{3}=0$: new basic, feasible and better solution

Example

New basic solution! $s_{2}($ now $>0)$ takes the place of $s_{3}($ now $=0)$:

$$
\begin{gathered}
B=\left[\begin{array}{lll}
3 & 4 & 0 \\
1 & 4 & 1 \\
3 & 2 & 0
\end{array}\right] \quad N=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \quad x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
4
\end{array}\right] \\
x_{N}=\left[\begin{array}{l}
s_{1} \\
s_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered} \quad z_{B}=c^{T} x=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=-82, ~ \$
$$

Same arguments as before: x_{B} and z as a function of x_{N} :

$$
\begin{aligned}
& x_{1}=4+1 / 3 s_{1}-2 / 3 s_{3} \\
& x_{2}=3-1 / 2 s_{1}-1 / 2 s_{3} \\
& s_{2}=4+5 / 3 s_{1}-4 / 3 s_{3} \\
& z=-82+2 / 3 s_{1}+11 / 3 s_{3}
\end{aligned}
$$

Optimal solution! Visited 2 out of $\binom{5}{3}=10$ possible basis

LP in canonical form

$\mathrm{PL} \min \left\{z=c^{\top} x: A x=b, x \geq 0\right\}$ is in canonical form with respect to basis B if all basic variables and the objective are explicitly written as functions of non-basic variables only:

$$
\begin{aligned}
z & =\bar{z}_{B}+\bar{c}_{N_{1}} x_{N_{1}}+\bar{c}_{N_{2}} x_{N_{2}}+\ldots+\bar{c}_{N_{(n-m)}} x_{N_{(n-m)}} \\
x_{B_{i}} & =\bar{b}_{i}-\bar{a}_{i N_{1}} x_{N_{1}}-\bar{a}_{i N_{2}} x_{N_{2}}-\ldots-\bar{a}_{i N_{(n-m)}} x_{N_{(n-m)}}(i=1 \ldots m)
\end{aligned}
$$

\bar{z}_{B} scalar (objective function value for the corresponding basic solution)
\bar{b}_{i} scalar (value of basic variable i)
B_{i} index of the i-th basic variable ($i=1 \ldots m$)
N_{j} index of the j-th non-basic variable $(j=1 \ldots n-m)$
$\bar{c}_{N_{j}}$ coefficient of the j-th non-basic variable in the objective function (reduced cost of the variable with respect to basis B)
$-\bar{a}_{i N_{j}}$ coefficient of the j-th non-basic variable in the constraints that makes explicit the i-th basic variable

Simplex method: optimality check

- Reduced cost of a variable: marginal unit increment of the objective function
- The reduced cost of a basis variable is $\bar{c}_{B_{i}}=0$

Theorem: Sufficient optimality conditions

Given an LP and a feasible basis B, if all the reduced costs with respect to B are ≥ 0, then B is an optimal basis

$$
\bar{c}_{j} \geq 0, \forall j=1 \ldots n \quad \Rightarrow \quad B \text { optimal }
$$

- Notice: the inverse is not true! [there may be optimal basic solutions with negative reduced costs]

Simplex method: basis change

- From feasible basis B, obtain a \tilde{B} adjacent, feasible, improving
- One column (\approx variable) enters and one variable leaves the basis
- Entering variable (improvement): any $x_{h}: \bar{c}_{h}<0$

$$
z=\bar{z}_{B}+\bar{c}_{h} x_{h}=\bar{z}_{\tilde{B}} \leq \bar{z}_{B}
$$

- Leaving variable (feasibility): [min ratio rule]

$$
\begin{gathered}
x_{B_{i}} \geq 0 \Rightarrow b_{i}-\bar{a}_{i h} x_{h} \geq 0, \forall i \Rightarrow x_{h} \leq \frac{\bar{b}_{i}}{\bar{a}_{i h}}, \forall i: \bar{a}_{i h}>0 \\
t=\arg \min _{i=1 \ldots m}\left\{\frac{\bar{b}_{i}}{\bar{a}_{i h}}: \bar{a}_{i h}>0\right\} \\
x_{h}=\frac{\bar{b}_{t}}{\bar{a}_{t h}} \geq 0 \Rightarrow x_{B_{t}}=0\left[x_{B_{t}} \text { leaves the basis! }\right]
\end{gathered}
$$

Simplex method: check for unlimited LP

- Let $x_{h}: \bar{c}_{h}<0$.

$$
\begin{aligned}
z & =\bar{z}_{B}+\bar{c}_{h} x_{h} \\
x_{B_{i}} & =\bar{b}_{i}-\bar{a}_{i h} x_{h}(i=1 \ldots m)
\end{aligned}
$$

- If $a_{i h} \leq 0, \forall i=1 \ldots m$, feasible solution with $x_{h} \rightarrow+\infty$

Condition of unlimited LP

There exists a basis such that

$$
\exists x_{h}:\left(\bar{c}_{h}<0\right) \wedge\left(\bar{a}_{i h} \leq 0, \quad \forall i=1 \ldots m\right)
$$

Simplex method: summary

Init: PL in standard form $\min \left\{c^{T} x: A x=b, x \geq 0\right\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to B

$$
\begin{aligned}
z & =\bar{z}_{B}+\bar{c}_{N_{1}} x_{N_{1}}+\bar{c}_{N_{2}} x_{N_{2}}+\ldots+\bar{c}_{N_{(n-m)}} x_{N_{(n-m)}}(i=1 \ldots m) \\
x_{B_{i}} & =\bar{b}_{i}-\bar{a}_{i N_{1}} x_{N_{1}}-\bar{a}_{i N_{2}} x_{N_{2}}-\ldots-\bar{a}_{i N_{(n-m)}} x_{N_{(n-m)}}(i=1
\end{aligned}
$$

if $\left(\bar{c}_{j} \geq 0, \forall j\right)$ then B is an optimal basis: stop
if $\left(\exists h: \bar{c}_{h}<0\right.$ and $\left.\bar{a}_{i h} \leq 0, \forall i\right)$ then unlimited LP: stop
Entering variable: any $x_{h}: \bar{c}_{h}<0$
Leaving variable: $x_{B_{t}}$ with $t=\arg \min _{i=1 \ldots m}\left\{\frac{\bar{b}_{i}}{\overline{\bar{a}}_{i h}}: \bar{a}_{i h}>0\right\}$
$B \leftarrow B \oplus A_{h} \ominus A_{B_{t}}$ [basis change]
until (LP optimum found or unlimited)

Simplex tableau

- Represent the canonical form, can be used to operate Gauss-Jordan
- Objective function as a constraint (imposing the value of a new variable z):

$$
z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \quad \rightsquigarrow \quad c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}-z=0
$$

Tableau in canonical form

- Elementary row (z included) operations: up to reading x_{B} (and z) as functions of x_{N}

Tableau and canonical form

	$x_{B_{1}}$...	$\chi_{B_{m}}$		${ }^{N_{1}}$...	${ }^{N_{N_{n-m}}}$	
-z	0	..	0	\square	\ldots	$\square \bar{c}_{N_{1}}$		$\bar{c}_{N_{n-}}$
$x_{B_{1}}$	1		0	\square		$\square \bar{a}_{1 N_{1}}$		$\bar{a}_{1 N_{n}}$
$x_{B_{i}}$				\square		$\square \bar{a}_{i} N_{1}$		$\bar{a}_{i} N_{n}$
$\chi_{B_{m}}$	0		1	\square	\ldots	$\square \bar{a}_{m N_{1}}$		\bar{a}_{m}

$$
\begin{aligned}
z & =\bar{z}_{B}+\bar{c}_{N_{1}} x_{N_{1}}+\bar{c}_{N_{2}} x_{N_{2}}+\ldots+\bar{c}_{N_{(n-m)}} x_{N_{(n-m)}} \\
x_{B_{i}} & =\bar{b}_{i}-\bar{a}_{i N_{1}} x_{N_{1}}-\bar{a}_{i N_{2}} x_{N_{2}}-\ldots-\bar{a}_{i N_{(n-m)}} x_{N_{(n-m)}}(i=1 \ldots m)
\end{aligned}
$$

Retrieving an intial feasible basis: two-phases method

- Phase I: solve an artificial problem

$$
\begin{aligned}
w^{*}=\min w= & 1^{T} y=y_{1}+y_{2}+\cdots+y_{m} \\
\text { s.t. } & A x+l y=b \\
& x, y \geq 0
\end{aligned} \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right] \in \mathbb{R}_{+}^{m}
$$

If $w^{*}>0$, the original problem is unfeasible, stop!
If $w^{*}=0$, then $y=0$

- if some y in the (degenarate) basis, change basis to put all y out, thus obtaining an x_{B} feasible for the original problem!
- Phase II: solve the problem starting from the provided basis B

Simplex algorithm with matrix operations (i)

$$
\begin{aligned}
& \min z=c^{T} x \quad \min z=c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \\
& \text { s.t. } \quad A x=b \\
& x \geq 0 \\
& \text { standard form } \\
& \text { with (feasible) basis } \\
& x_{B}=B^{-1} b-B^{-1} N x_{N} \\
& z=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N} \\
& -z \quad+\bar{c}_{N}^{T} x_{N}=-z_{B} \\
& \text { - } \bar{b}=B^{-1} b \\
& I x_{B}+\bar{N} x_{N}=\bar{b} \\
& \text { - } z_{B}=c_{B}^{T} B^{-1} b \\
& \text { - } \bar{N}=B^{-1} N \\
& \text { canonical (or tableau) form } \\
& \text { - } \bar{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} B^{-1} N
\end{aligned}
$$

Simplex algorithm with matrix operations (ii)

Map the coefficients of the canonical form...

$$
\begin{aligned}
& z=\bar{z}_{B}+\bar{c}_{\nu_{1}} x_{N_{1}}+\bar{c}_{\nu_{2}} x_{\nu_{2}}+\ldots+\bar{c}_{\nu_{(n-m)}} x_{\nu_{(n-m)}} \\
& x_{\beta_{1}}=\bar{b}_{i}-\bar{a}_{i \nu_{1}} x_{\nu_{1}}-\bar{a}_{i \nu_{2}} x_{\nu_{2}}-\ldots-\bar{a}_{i \nu_{(n-m)}} x_{\nu_{(n-m)}} \\
& x_{\beta_{m}}=\bar{b}_{i}-\bar{a}_{i \nu_{1}} x_{\nu_{1}}-\bar{a}_{i \nu_{2}} \quad x_{\nu_{2}} \quad-\ldots-\bar{a}_{i \nu_{(n-m)}} x_{\nu_{(n-m)}} \\
& -z+\bar{c}_{N}^{T} x_{N}=-z_{B}
\end{aligned}
$$

... into matrix operations

$$
I x_{B}+\bar{N} x_{N}=\bar{b}
$$

- $\bar{b}=B^{-1} b$
- $z_{B}=c_{B}^{\top} B^{-1} b$
- $\bar{N}=B^{-1} N$
- $\bar{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} B^{-1} N$
- $\bar{b}_{i}=\left[B^{-1} b\right]_{i}$
- $u^{T}=c_{B}^{T} B^{-1} \quad z_{B}=u^{T} b$
- $\bar{N}_{\nu_{j}}=B^{-1} N_{\nu_{j}}$
- $\bar{c}_{\nu_{j}}=\left[\bar{c}_{N}^{\top}\right]_{\nu_{j}}=c_{\nu_{j}}-u^{T} N_{\nu_{j}}$

The (revised) simplex algorithm

(1) Let $\beta[1], \ldots, \beta[m]$ be the column indexes of the initial basis
(2) Let $B=\left[A_{\beta[1]}|\ldots| A_{\beta[m]}\right]$ and compute B^{-1} e $u^{T}=c_{B}^{T} B^{-1}$
(3) compute reduced costs: $\bar{c}_{h}=c_{h}-u^{T} A_{h}$ for non-basic variables x_{h}
(9) If $\bar{c}_{h} \geq 0$ for all non-basic variables x_{h}, STOP: B is optimal
(5) Choose any x_{h} having $\bar{c}_{h}<0$
(1) Compute $\bar{b}=B^{-1} b=\left[\bar{b}_{i}\right]_{i=1}^{m}$ e $\bar{A}_{h}=\bar{N}_{h}=B^{-1} A_{h}=\left[\bar{a}_{i h}\right]_{i=1}^{m}$
(1) If $\bar{a}_{i h} \leq 0, \forall i=1 \ldots m$, STOP: unlimited
(8) Determine $t=\arg \min _{i=1 \ldots m}\left\{\bar{b}_{i} / \bar{a}_{i h}, \bar{a}_{i h}>0\right\}$
(0) Change basis: $\beta[t] \leftarrow h$.
(10) Iterate from Step 2

Example

Solve:

$$
\begin{array}{rrrrrrl}
\max & 3 x_{1} & + & x_{2} & - & 3 x_{3} & \\
\text { s.t. } & 2 x_{1} & + & x_{2} & - & x_{3} & \leq \\
& x_{1} & + & 2 x_{2} & - & 3 x_{3} & \leq \\
& 2 x_{1} & + & 2 x_{2} & - & x_{3} & \leq \\
& x_{1} \geq 0 & , & x_{2} \geq 0 & , x_{3} \leq 0 & &
\end{array}
$$

Standard form

$$
\left.\begin{array}{rllllllll}
\min & -3 x_{1} & -x_{2} & -3 \hat{x}_{3} & & & & \\
\text { s.t. } & 2 x_{1} & +x_{2} & +\hat{x}_{3} & +x_{4} & & & & =2 \\
& x_{1} & +2 x_{2} & +3 \hat{x}_{3} & & +x_{5} & & =5 \\
& 2 x_{1} & +2 x_{2} & +\hat{x}_{3} & & & +x_{5} & =6 \\
& x_{1} & , & x_{2} & , & \hat{x}_{3} & , x_{4} & x_{5}, & x_{6}
\end{array}\right) \geq 0
$$

Matrices and initial basis

$$
\begin{aligned}
& \min -3 x_{1}-x_{2}-3 \hat{x}_{3} \\
& \text { set. } 2 x_{1}+x_{2}+\hat{x}_{3}+x_{4}=2 \\
& x_{1}+2 x_{2}+3 \hat{x}_{3}+x_{5}=5 \\
& 2 x_{1}+2 x_{2}+\hat{x}_{3}+x_{6}=6 \\
& x_{1}, x_{2}, \hat{x}_{3}, x_{4}, x_{5}, x_{6} \geq 0 \\
& A=\left[A_{1}\left|A_{2}\right| A_{3}\left|A_{4}\right| A_{5} \mid A_{6}\right]=\left[\begin{array}{l|l|l|l|l|l}
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
2 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right] \\
& x^{\top}=\left[\begin{array}{llllll}
x_{1} & x_{2} & \hat{x}_{3} & x_{4} & x_{5} & x_{6}
\end{array}\right] \quad c^{\top}=\left[\begin{array}{llllll}
-3 & -1 & -3 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Feasible initial basis (suppose given): $B=\left[A_{4}\left|A_{5}\right| A_{6}\right]$

$$
\beta[1]=4 \quad \beta[2]=5 \quad \beta[3]=6
$$

Iteration 1: steps 2-5

$$
\left.\begin{array}{l}
x_{B}^{T}=\left[\begin{array}{lll}
x_{4} & x_{5} & x_{6}
\end{array}\right] \quad c_{B}^{T}=\left[\begin{array}{ll}
0 & 0
\end{array} 0\right.
\end{array}\right] \quad \begin{aligned}
& B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& u^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
& \bar{c}_{1}=c_{1}-u^{\top} A_{1}=-3-\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=-3-0=-3 \\
& \bar{c}_{2}=c_{2}-u^{\top} A_{2}=-1-\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=-1-0=-1 \quad h=2\left(x_{2} \text { enters }\right) \\
& \bar{c}_{3}=c_{3}-u^{\top} A_{3}=-3-\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=-3-0=-3
\end{aligned}
$$

Iteration 1: steps 6-9

$$
\begin{aligned}
& \bar{b}=B^{-1} b=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right] \begin{array}{l}
x_{4} \\
x_{5} \\
x_{6}
\end{array} \\
& \bar{A}_{h}=B^{-1} A_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
\end{aligned}
$$

$$
t=\arg \min \left\{\begin{array}{ccc}
\frac{2}{1} & \frac{5}{2} & \frac{6}{2}
\end{array}\right\}=\arg \left(\frac{2}{1}\right)=1 \quad \rightsquigarrow x_{4} \text { leaves }
$$

$$
\beta[1]=2 \quad \text { (column } 2 \text { replaces } \beta[1] \text { that was } 4)
$$

Iteration 2: steps 2-5

$$
\begin{gathered}
x_{B}^{T}=\left[\begin{array}{lll}
x_{2} & x_{5} & x_{6}
\end{array}\right] \quad c_{B}^{T}=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right] \\
B=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] \\
u^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right] \\
\bar{c}_{1}=c_{1}-u^{T} A_{1}=-3-\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=-3-(-2)=-1 \\
\bar{c}_{3}=c_{3}-u^{T} A_{3}=-3-\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=-3+1=-2 \quad h=3 \\
\bar{c}_{4}=c_{4}-u^{T} A_{4}=0-\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=0-(-1)=1
\end{gathered}
$$

(\hat{x}_{3} enters)

Iteration 2: steps 6-9

$\bar{b}=B^{-1} b=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right] \begin{aligned} & x_{2} \\ & x_{5} \\ & x_{6}\end{aligned}$
$\bar{A}_{h}=B^{-1} A_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$
$t=\arg \min \left\{\begin{array}{lll}\frac{2}{1} & \frac{1}{1} & X\end{array}\right\}=\arg \left(\frac{1}{1}\right)=2 \quad \rightsquigarrow x_{5}$ leaves
$\beta[2]=3 \quad($ column 3 replaces column $\beta[2]$ that was 5$)$

Iteration 3: steps 2-5

$$
\begin{gathered}
x_{B}^{T}=\left[\begin{array}{lll}
x_{2} & \hat{x}_{3} & x_{6}
\end{array}\right] \quad c_{B}^{T}=\left[\begin{array}{lll}
-1 & -3 & 0
\end{array}\right] \\
B=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 3 & 0 \\
2 & 1 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{rrr}
3 & -1 & 0 \\
-2 & 1 & 0 \\
-4 & 1 & 1
\end{array}\right] \\
u^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{lll}
-1 & -3 & 0
\end{array}\right]\left[\begin{array}{rrr}
3 & -1 & 0 \\
-2 & 1 & 0 \\
-4 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & -2 & 0
\end{array}\right] \\
\bar{c}_{1}=c_{1}-u^{T} A_{1}=-3-\left[\begin{array}{lll}
3 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=-3-(4)=-7 \\
h=1
\end{gathered}
$$

It is not necessary to compute all reduced costs, stop as soon one of them is negative!

Iteration 3: steps 6-9

$\bar{b}=B^{-1} b=\left[\begin{array}{rrr}3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right] \begin{aligned} & x_{2} \\ & \hat{x}_{3} \\ & x_{6}\end{aligned}$
$\bar{A}_{h}=B^{-1} A_{1}=\left[\begin{array}{rrr}3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{r}5 \\ -3 \\ -5\end{array}\right]$
$t=\arg \min \left\{\frac{1}{5} \quad X \quad X\right\}=\arg \left(\frac{1}{5}\right)=1 \quad \rightsquigarrow x_{2}$ leaves
$\beta[1]=1 \quad($ column 1 replaces column $\beta[1]$ that was 2$)$

Iteration 4

$$
\begin{gathered}
x_{B}^{T}=\left[\begin{array}{lll}
x_{1} & \hat{x}_{3} & x_{6}
\end{array}\right] \quad c_{B}^{T}=\left[\begin{array}{lll}
-3 & -3 & 0
\end{array}\right] \\
B=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 0 \\
2 & 1 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{rrr}
3 / 5 & -1 / 5 & 0 \\
-1 / 5 & 2 / 5 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
u^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{lll}
-3 & -3 & 0
\end{array}\right]\left[\begin{array}{rrr}
3 / 5 & -1 / 5 & 0 \\
-1 / 5 & 2 / 5 & 0 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
-6 / 5 & -3 / 5 & 0
\end{array}\right] \\
\bar{c}_{2}=c_{2}-u^{T} A_{2}=-1-\left[\begin{array}{ll}
-6 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=-1-(12 / 5)=7 / 5 \\
\bar{c}_{4}=c_{4}-u^{T} A_{4}=0-\left[\begin{array}{lll}
-6 / 5 & -3 / 5 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=0-(6 / 5)=6 / 5 \\
\bar{c}_{5}=c_{5}-u^{T} A_{5}=0-\left[\begin{array}{lll}
-6 / 5 & -3 / 5 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=0-(3 / 5)=3 / 5
\end{gathered}
$$

Optimal solution

Standard form (the one we solved by simplex method):

- $x_{B}^{*}\left[\begin{array}{l}x_{1} \\ \hat{x}_{3} \\ x_{6}\end{array}\right]=B^{-1} b=\left[\begin{array}{rrr}3 / 5 & -1 / 5 & 0 \\ -1 / 5 & 2 / 5 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{r}1 / 5 \\ 8 / 5 \\ 4\end{array}\right]$
- $x_{1}^{*}=1 / 5 ; x_{2}^{*}=0 ; \hat{x}_{3}^{*}=8 / 5 ; x_{4}^{*}=0 ; x_{5}^{*}=0 ; x_{6}^{*}=4$
- $z_{M I N}^{*}=c^{T} x^{*}=c_{B}^{T} x_{B}^{T}=\left[\begin{array}{lll}-3 & -3 & 0\end{array}\right]\left[\begin{array}{r}1 / 5 \\ 8 / 5 \\ 4\end{array}\right]=-27 / 5$

Optimal solution for the initial problem:

- $x_{1}^{*}=1 / 5$
- $x_{2}^{*}=0$
- $x_{3}^{*}=-\hat{x}_{3}^{*}=-8 / 5$
- first constraint satisfied with equality $\left(\right.$ since $\left.x_{4}^{*}=0\right)$
- second constraint satisfied with equality $\left(\right.$ since $\left.x_{5}^{*}=0\right)$
- third constraint satisfied with a slack of $4\left(\right.$ since $\left.x_{6}^{*}=4\right)$
- $z_{M A X}^{*}=-z_{M I N}^{*}=27 / 5$.

