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Homophily and Polarization

an overview
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We have access to an unlimited amount of information, but
we follow a limited number of sources
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Polarization

Selective exposure
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Homophily (from Ancient Greek: homod, ‘together' + philié, 'friendship,
love') is the tendency of individuals to associate and bond with similar
others, as in the proverb "birds of a feather flock together."'' The
presence of homophily has been discovered in a vast array of network
studies: over 100 studies have observed homophily in some form or
another, and they establish that similarity is associated with
connection.® The categories on which homophily occurs include age,

+

gender, class, and organizational role.
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(Easley and Kleinberg, 2010)

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous

parts that are weakly connected to each other. In this social network from a town’s middle school and

high school, two such divisions in the network are apparent: one based on race (with students of different

races drawn as differently colored circles), and the other based on friendships in the middle and high schools 6
respectively [304].
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DI PADOVA on a controversial topic
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The extreme segregation of users into homogeneous
communities based on their opinion on a controversial

topic
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Echo chamber (media)

From Wikipedia, the free encyclopedia

In news media, an echo chamber is a metaphorical description of a
situation in which beliefs are amplified or reinforced by communication and
repetition inside a closed system and insulates them from rebuttal."] By
visiting an "echo chamber”, people are able to seek out information that
reinforces their existing views, potentially as an unconscious exercise of
confirmation bias. This may increase social and political polarization and
extremism.®! The term is a metaphor based on the acoustic echo chamber,
where sounds reverberate in a hollow enclosure. Another emerging term for
this echoing and homogenizing effect on the Internet within social
communities, such as Facebook, Instagram, Twitter, Reddit, etc; is cultural
tribalism.[®!
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Cinelli, Morales, Galeazzi, Quattrociocchi, Starnini (2020)
Echo chambers on social media: A comparative analysis
https://arxiv.org/pdf/2004.09603.pdf

Coexistence of
 opinion polarization with respect to a controversial topic

d homophily in interactions

To assess polarization To quantify homophily

' }

Measure individual leaning

o @R

Build interaction network

10



https://arxiv.org/pdf/2004.09603.pdf

UNIVERSITA

DECLI STUDI Echo chamber effect

DI PADOVA in social networks

> 1.0 > 1.0
£ =

§ 05 § 05 $&Q
E g N

g 0.0 .8 0.0 ‘§

5 5 O

205 205 ©

S © x?

2 -1.0 210 \e’,\

-1 0 1 -1 0 1

Individual Leaning Individual Leaning
(a) Twitter (b) Reddit
.(\06
o
00
N 210 2 10
S =
,bo o 05 o 05
9 o o
A 8 0.0 8 00
o = =
) 8 05 8 05
L : £ :
2 R
[} Q
Z-1.0 Z-1.0

-1 0 1 -1 0 1
Individual Leaning Individual Leaning 1

(c) Facebook (d) Gab



UNIVERSITA
DEGLI STUDI
DI PADOVA

Filter bubble

Filter bubble

From Wikipedia, the free encyclopedia

A filter bubble - a term coined by internet activist
Eli Pariser - is a state of intellectual isolation!’!
that allegedly can result from personalized
searches when a website algorithm selectively
guesses what information a user would like to see
based on information about the user, such as
location, past click-behavior and search
history.[?I314] As a result, users become
separated from information that disagrees with
their viewpoints, effectively isolating them in their
own cultural or ideological bubbles.”® The choices
made by these algorithms are not transparent.!!

The term was coined by internet
activist Eli Pariser circa 2010
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Assortativity

l.e., degree homophily
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d In some networks, hubs frequently connect
with other hubs

e.g., celebrity dating, actor networks

] In other cases hubs avoid connections with
other hubs

e.g., methabolic graphs, food webs (predators tend to

differentiate their diet)
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d Assortative network: high degree nodes
connect with each other avoiding low degree
nodes (tend to cliques)

J Disassortative network: opposite trend, hubs
tend to avoid each other

d Neutral network: one with random wiring, I.e.,
aside from the (marginal) degree distribution
of nodes, there is no correlation
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(dis)assortativity quantifies homophily in social
networks, e.q., effects like:

 Rich people tend to be friends with each other

1 People with the same education tend to hang out
together

l.e., we expect social networks to be assortative

17
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The degree correlation matrix Ey, 4, is visually centred around the average degree
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The degree correlation matrix
E1 ko 1s turning to the right
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The degree correlation matrix
Ex1 k2 is turning to the left
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1 Idea : inspect the degrees
of the neighbouring nodes (easier than matrices)

e

average neighbour
degree of node i is
Va(d+3+1+3)=2.75
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(dls)AssortatMty can be Imked to structural network
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Structural disassortativity in real networks

social networks are assortative, most with a structural cutoff

assortative in red
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Robustnhess

of networks to failures
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3 Would the network still @ ®)
“‘work” in the presence of
missing nodes?

d Failures can lead to

either just isolating
nodes or breaking the (c)./- o (@ ./- o,

whole network apart
Y
d What is the limit/phase
transition? ._oj.
208
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This can serve to identify:

[ robustness of air transportation under random
strikes

d robustness of social contacts even when someone
is off

o

possibility of destroying of criminal/terror networks

o

eradication of an epidemics

o

etc.
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INTERNET
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What if removals are not by chance, but caused by an
adversary with sufficient insights on our network?

d Scale-free networks 1 Attacks
are not very robust fandom Falures =
to targeted attacks 0.75 |- an adversary would
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DI PADOVA is not an option in real-world networks
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