

UNIVERSITÀ DEGLI STUDI DI PADOVA

## **Network Science**

A.Y. 23/24

ICT for Internet & multimedia, Data science, Physics of data

# **Community detection**

Identify communities in a network



#### Conceptual picture of a network explaining the role of community detection



- We often think of networks looking like this
- But, where does this idea come from?



# Granovetter's explanation

Bridges Weak ties

Granovetter, The strength of weak ties [1973] https://www.jstor.org/stable/pdf/2776392.pdf

- Q: How do people discovered their new jobs?
- A: Through personal contacts, and mainly through acquaintances rather than through close friends
- Remark: Good jobs are a scarce resource
- Conclusion:
- Structurally embedded edges are also socially strong, but are heavily redundant in terms of information access
- Long-range edges spanning different parts of the network are socially weak, but allow you to gather information from different parts of the network (and get a job)

Local cluster/community Strong ties



# **Community detection**

the general approach

- Granovetter's theory suggests that networks are composed of tightly connected sets of nodes (i.e., communities), loosely connected between them
- We want to be able to automatically find such densely connected group of nodes
- We look for unsupervised methods, as most of the times no ground truth is available
- We look for a measure of the goodness of a community assignment, to be able to compare the performance of different algorithms
- Applications in:
  - social networks
  - functional brain networks in neuroscience
  - scientific interactions





## The core periphery model

Lescovec, Lang, Dasgupta, Mahoney, Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters (2008)

https://arxiv.org/abs/0810.1355

#### Can we find a justification for this?



Caricature of network structure



High school Local area friends Università degli Studi di Padova

# **Overlapping communities**

to explain the core periphery model



Family

#### Wiskers

- □ are typically of size 100
- are responsible of good communities

#### Core

**Online friends** 

- denser and denser region
- □ contains 60% nodes and 80% edges
  - a region where communities overlap (as tiles)

7

## Measuring overlapping



Università degli Studi di Padova

in social networks



# Modularity

#### Measuring the goodness of a community assignment



Newman, Modularity and community structure in networks (2006) https://www.pnas.org/content/pnas/103/23/8577.full.pdf

#### Want to:

measure of how well a network is partitioned into communities (i.e., sets of tightly connected nodes)

Idea:

- "If the number of edges between two groups is only what one would expect on the basis of random chance, then few thoughtful observers would claim this constitutes evidence of meaningful community structure"
- Modularity is "the number of edges falling within groups minus the expected number in an equivalent network with edges placed at random"

Modularity



Università

**DEGLI STUDI** 

di Padova

### Number of edges falling within groups an adjacency matrix overview

$$Q_{1} = \sum_{ij} a_{ij} \cdot \eta(c_{i} = c_{j})$$
  

$$a_{ij} \text{ entries of the (binary) adjacency matrix}$$
  

$$\eta \text{ indicating function (=1 if true)}$$
  

$$c_{i} \text{ community (value) of node } i$$
  

$$a_{ijacency}$$

### Network with edges places at random Molloy-Reed model (1995)

- 1. unwire nodes by breaking edges but keep stubs (2L in number) so that nodes keep their degree
- 2. rewire stubs at random

The resulting graph may contain cycles and multiple links (but are a few)

Rewiring probability is 
$$p_{ij} = k_i k_j / 2L$$
  
number of trials  
from node i probability of  
linking to node j







# Minus expected number of edges

an adjacency matrix overview

$$Q_{2} = \sum_{ij} p_{ij} \cdot \eta(c_{i} = c_{j})$$
The null model !
$$wiring probability p_{ij} = k_{i} \cdot k_{j} / 2L$$

$$k_{i} = \sum_{j} a_{ij} = \text{node degree}$$

$$2L = \sum_{i} k_{i} = \# \text{ of stubs}$$

$$matrix \text{ collecting}$$

13





### Modularity (normalized $-1 \le Q \le 1$ )

$$Q = (Q_1 - Q_2)/2L$$
  
=  $1/2L \cdot \sum_{ij} (a_{ij} - k_i \cdot k_j / 2L) \cdot \eta(c_i = c_j)$ 

- Q > 0 if the edges within groups exceed the (expected) random number
- $\square$  Q  $\in$  [0.3,0.7] for a significant community structure
- □ Q grows with size of the graph/number of (wellseparated) clusters (Good et al, 2009) and cannot use Q to compare graphs very different in size

#### Modularity matrix formalization for undirected networks



UNIVERSITÀ

**DEGLI STUDI** 

DI PADOVA

sum of the original adjacency matrix  $D_0 = 1^{-1} A_0 1$  $\mathbf{A}_0$ entries of  $A_0$ (symmetric, can be fractional) corresponds to 2L normalised adjacency matrix  $\mathbf{A} = \mathbf{A}_0 / D_0 \leftarrow \text{corresponds to } a_{ij} / 2L$ (entries sum up to 1) normalised degree vector  $d = A 1 \leftarrow$  corresponds to k<sub>i</sub>/2L (entries sum up to 1)  $\mathbf{C} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \end{bmatrix} \bullet \begin{array}{c} \leftarrow \text{community 1} \\ \bullet & \text{community 2} \\ \bullet & \text{community 3} \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \end{array}$ — community 1 community assignment matrix (binary, one active entry per column) nodes 1 and 2 belong to community 1 nodes 4, 5 and 6 belong to community 3  $Q = \text{trace}(\boldsymbol{C} (\boldsymbol{A} - \boldsymbol{d} \boldsymbol{d}^{\mathsf{T}}))$ modularity corresponds to selecting blocks pertaining to communities 15

Modularity

Università degli Studi di Padova

another useful matrix formalization for undirected networks

 $A_0 \longrightarrow A = A_0 / D_0 \longrightarrow P_{CC} = C A C^T$ 

can be interpreted as a probability matrix linking communities, its entries are the sum of the links of **A** from community i to community j

| P <sub>11</sub> | P <sub>12</sub> | P <sub>13</sub> |
|-----------------|-----------------|-----------------|
| P <sub>21</sub> | P <sub>22</sub> | P <sub>23</sub> |
| P <sub>31</sub> | P <sub>32</sub> | P <sub>33</sub> |

can be interpreted as the probability vector of communities

 $p_{s} p_{C} = P_{CC} 1 = C A 1 = C d$ 

modularity 
$$Q = trace(P_{CC} - p_C p_C^T)$$



# The Louvain algorithm

Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding of communities in large networks (2008)

https://arxiv.org/abs/0803.0476



Phase 2: the communities found are <u>aggregated</u> (sum of links) in order to build a new network of communities with normalized adjacency matrix  $P_{CC}$ 

17



# Local changes in Louvain

as elementary calculations ensuring scalability

#### Adding a separate node to a community: increment $\Delta Q$ in modularity



Can be used (with inverse sign) to remove node *i* from a community
 Node *i* is placed in the community ensuring the maximum gain (and positive)
 Easy to calculate, i.e., scalable



### Characteristics of Louvain what makes it interesting

- Implements modularity optimization
- □ <u>Scalable</u> (low complexity)
- Effective
- Available as the reference implementation in any programming language
- A greedy technique (the order of nodes is selected at random)

can be mitigated by consensus clustering



## Consensus clustering the rationale

Applying Louvain *P* times to a network *A* yelds different partitions, but we expect that these are somehow related

| 1 | 1 | 3 | 2 |
|---|---|---|---|
| 1 | 2 | 3 | 2 |
| 2 | 3 | 2 | 1 |
| 2 | 4 | 1 | 1 |
| 3 | 5 | 1 | 1 |

P=4 community assignments

We capture the recurrent patterns through a consensus matrix **D**, whose entries correspond to the fraction of times two nodes appear in the same community





UNIVERSITÀ

**DEGLI STUDI** 

DI PADOVA

## Consensus clustering

Lancichinetti & Fortunato, Consensus clustering in complex networks (2012)

https://www.nature.com/articles/srep00336

Apply Louvain to A to yield P community detections  $C_P$  (partitions)

- 1. Compute the consensus matrix **D** 
  - >  $D_{ij}$  is the <u>fraction</u> of partitions in which vertices *i* and *j* are assigned to the <u>same cluster</u> in  $C_P$
  - entries below a chosen threshold are set to zero
- 2. Apply Louvain to **D** to yield a new  $C_P$ 
  - if the partitions are all equal, stop
  - otherwise go back to 1.

Cycle until convergence

# Generalizing modularity

directed and signed networks



UNIVERSITÀ

**DEGLI STUDI** 

DI PADOVA

#### The null model for a directed network the role of in- and out-degree

 unwire nodes by breaking edges but keep stubs and their direction so that nodes keep their in/out degree



2. rewire stubs at random, linking output stubs to input stubs



#### Modularity matrix formalization for directed networks

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

original adjacency matrix

(asymmetric, can be fractional)

normalised adjacency matrix

normalised in-degree vector

normalised out-degree vector

(entries sum up to 1)

(entries sum up to 1)

(entries sum up to 1)



sum of the  $D_0 = 1^{\circ} A_0 1$ entries of  $A_0$ corresponds to L

 $\mathbf{A} = \mathbf{A}_0 / D_0 \leftarrow \text{ corresponds to } \mathbf{a}_{ij} / \mathbf{L}$ 

 $d_{in} = A 1 \leftarrow \text{corresponds to } k_i^{in}/L$ 

 $d_{out} = A^T \mathbf{1} \leftarrow \text{corresponds to } k_j^{out/L}$ 

not equivalent to making A symmetric via  $\frac{1}{2}(\mathbf{A}+\mathbf{A}^{\mathsf{T}})$ 

dularity 
$$Q = \text{trace}(C (A - d_{in} d_{out}^T) C^T)$$

Leicht and Newman, "Community structure in directed networks." (2008) https://link.aps.org/pdf/10.1103/PhysRevLett.100.118703

 $\mathbf{A}_0$ 

С

(binary, one active entry per column)

community assignment matrix

moc



#### Local changes in Louvain in the directed case

#### Adding a separate node to a community: increment $\Delta Q$ in modularity



packages



# Directed versus undirected Louvain

Dugué and Perez, *Directed Louvain: maximizing modularity in directed networks* (2015)

https://hal.science/hal-01231784/document





# The null model for a signed network

the role of positive and negative components

1. unwire nodes by breaking edges but keep stubs, their direction, and sign



2. rewire stubs at random, linking output stubs to input stubs, with same sign

Rewiring probability 
$$j \rightarrow i$$
 is  $p_{ij} = k_j^{out+} k_i^{in+} / L^+ - k_j^{out-} k_i^{in-} / L^-$   
positive negative contributions with positive sign negative sign

# Modularity matrix formalization for signed and directed networks

Università degli Studi di Padova



- $A_{0} = A_{0}^{+} A_{0}^{-} \qquad D_{0}^{\pm} = \mathbf{1}^{T} A_{0}^{\pm} \mathbf{1}$   $A^{\pm} = A_{0}^{\pm} / D_{0}^{\pm}$   $d_{in}^{\pm} = A^{\pm} \mathbf{1}$   $d_{out}^{\pm} = (A^{\pm})^{T} \mathbf{1}$
- original adjacency matrix (asymmetric, signed) normalised adjacency matrices (entries sum up to 1)
- normalised in-degree vectors (entries sum up to 1) normalised out-degree vectors (entries sum up to 1)
- community assignment matrix (binary, one active entry per column)

mixing constant

modularity

$$Q = \alpha \operatorname{trace}(\boldsymbol{C} (\boldsymbol{A}^{+} - \boldsymbol{d}_{in}^{+} \boldsymbol{d}_{out}^{+T}) \boldsymbol{C}^{T})$$
  
- (1-  $\alpha$ ) trace( $\boldsymbol{C} (\boldsymbol{A}^{-} - \boldsymbol{d}_{in}^{-} \boldsymbol{d}_{out}^{-T}) \boldsymbol{C}^{T}$ )

 $\alpha = D_0^{+} / (D_0^{+} + D_0^{-})$ 

Traag, Bruggeman, "Community detection in networks with positive and negative links." (2009) https://journals.aps.org/pre/pdf/10.1103/PhysRevE.80.036115

С



### **Increasing the resolution** boosting or decreasing the role of the null model

### The resolution limit:

- prevents the algorithms in detecting <u>small</u> communities
- arises because the null model assumes that each node has an equal probability of connecting to every other node

Can be mitigated by controlling the strength of the null model, i.e.:

$$Q = \text{trace}(\boldsymbol{P}_{CC} - \boldsymbol{\gamma} \boldsymbol{p}_{C} \boldsymbol{p}_{C}^{T})$$

it is implemented in standard packages

tunable value  $\gamma > 1$  increases the number of communities  $\gamma < 1$  decreases it



#### An application example interconnections in brain regions through fMRI data





## On the dependency on $\gamma$

Nastaran Amini, community and hub detection in human functional brain networks, *master thesis*, (2020)







- Can be implemented by alternate search on nodes (possibly in a random order) starting from the output of a standard Louvain approach
- It improves modularity
- □ It is <u>not</u> available in standard packages



 $Q = trace(C B C^{T})$ 

maximize

wrt  $\boldsymbol{c}_i$ 

Gets a reasonable form by writing  $\mathbf{C} = \mathbf{C}_{-i} + \mathbf{c}_i \, \delta_i^T$ *i*th column of  $\mathbf{C}$  set to  $\mathbf{0}$ binary vector active only in position i

subject to  $c_i \ge 0$ ,  $c_i^{\top} 1 = 1$ 

 $Q = \operatorname{trace}(\boldsymbol{c}_{i} \, \boldsymbol{\delta}_{i}^{T} \, \boldsymbol{B} \, \boldsymbol{\delta}_{i} \, \boldsymbol{c}_{i}^{T}) + \operatorname{trace}(\boldsymbol{C}_{\sim i} \, (\boldsymbol{B} + \boldsymbol{B}^{T}) \, \boldsymbol{\delta}_{i} \, \boldsymbol{c}_{i}^{T}) + \operatorname{const}$  $= B_{ii} |\boldsymbol{c}_{i}|^{2} + \boldsymbol{c}_{i}^{T} \, \boldsymbol{C}_{\sim i} \, (\boldsymbol{b}_{i} + \boldsymbol{r}_{i}^{T}) + \operatorname{const}$  $\stackrel{\uparrow}{i\text{th column of } \boldsymbol{B}} \quad i\text{th row of } \boldsymbol{B}$ 

column

of C



### Alternate search algorithm Part 1

Target problem:  
maximize  
wrt 
$$c_i$$
 $1/2$  a  $|c_i|^2 + c_i^T v$   
subject to  $c_i \ge 0$ ,  $c_i^T 1 = 1$   
with a =  $B_{ii}$ ,  $v = 1/2$   $C_{-i}$   $(b_i + r_i^T)$ 





### Alternate search algorithm Part 2

Case 2: a<0  
Solution: we exploit the Lagrangian  

$$L = \frac{1}{2} |c_i|^2 - c_i^T u + \lambda (c_i^T 1 - 1)$$
if the global minimum  
is below 0, then 0 is  
the best choice  

$$c_i = [u - \lambda 1]^+ \text{ where } \lambda \text{ is such that } 1^T [u - \lambda 1]^+ = 1$$
positive part operator: [x]<sup>+</sup> is x for x>0 and 0 otherwise



#### Alternate search algorithm Identifying the correct $\lambda$



Solution: sort vector  $\boldsymbol{u}$  in decreasing order  $\rightarrow \boldsymbol{g}$ 



if  $\lambda$  is in between  $g_2$  and  $g_3$ , then it must be that  $g_1 + g_2 - 2g_3 \ge 1$ 

*z* = [cumsum(*g*<sub>1:N-1</sub>) − (1:N-1) · *g*<sub>2:N</sub>, ∞]
 let *z<sub>n</sub>* be the first entry of *z* satisfying *z<sub>n</sub>* ≥ 1
 hence λ lies between *g<sub>n</sub>* and *g<sub>n+1</sub>* (use *g<sub>N+1</sub>* = -∞)

 $\Box \text{ therefore } \lambda = (\operatorname{sum}(\boldsymbol{g}_{1:n}) - 1) / n \ge \boldsymbol{g}_{N+1}$


UNIVERSITÀ

DI PADOVA

#### Modularity in overlapping communities DEGLI STUDI comments

- $\Box$  It provides a binary outcome only for  $B_{ii} \ge 0$  (single) community)
- □ In all other cases the result is fractional (multiple communities) but not all the communities are necessarily active
- Would be nice to see it implemented by someone in the class 😳

## The spectral approach

for modularity optimization

### The two communities case

a compact modularity expression



modularity 
$$Q = \text{trace}(C B C^{T}), \quad B = A - d d^{T}$$
  
what if we have only two  
communities ?  $C = \begin{pmatrix} v \\ 1 - v \end{pmatrix} \leftarrow \text{community 1}$   
idea: signed vector  $s = 2v - 1$   $v = \frac{1}{2}(1 + s)$   
 $1 - v = \frac{1}{2}(1 - s)$   
+1s identify community 1,  
and -1s identify community 2  
 $Q = \frac{1}{2} s B s^{T} \leftarrow \text{since } B 1 = 0$ 



Target problem:<br/>maximize $Q = \frac{1}{2} \mathbf{s} \mathbf{B} \mathbf{s}^{T}$ wrt the binary vector  $\mathbf{s}$ 1a non trivial NP problem

We exploit the eigendecomposition of **B**   $\square \mathbf{B} = \sum \mathbf{b}_i \mathbf{b}_i^T \lambda_i$   $\square \mathbf{b}_i$  normalized eigenvector  $|\mathbf{b}_i|=1$  $\square \lambda_i$  eigenvalue

What if we only keep the strongest component?

Target problem revisited: maximize

$$Q = \frac{1}{2} \sum_{i} (\boldsymbol{b}_{i}^{T} \boldsymbol{s})^{2} \lambda_{i}$$

### Spectral approach to modularity optimization

Università degli Studi di Padova



- it is a simple approach (e.g., related to PCA decomposition) that needs to be recursively applied
- Can be refined by switching community of nodes if modularity increases
- Can also be refined by exploiting more than one eigenvalue
- Still, its performance is rather poor, and for this reason it is deprecated





- Modularity is a key performance metric in community detection
- Optimizing modularity through the Louvain approach is the bare minimum required in any project
- Implementation of generalized modularity (directed, signed, <u>overlapping</u>) is highly welcome to get a top grade

## The normalized cut criterion

an old (worth citing) alternative to modularity



### The minimum cut criterion

towards an alternative measure



- We want to partition an (undirected) graph in two disjoint groups
- A good partition is one that maximizes the # of within-group connections minimizes the # of between-group connections the minimum cut criterion



### The normalized cut criterion

general case versus modularity

Università degli Studi di Padova

$$\mathbf{A}_{0} \longrightarrow \mathbf{A} = \mathbf{A}_{0} / \mathbf{D}_{0} \longrightarrow \mathbf{P}_{CC} = \mathbf{C} \mathbf{A} \mathbf{C}^{T}$$
$$\mathbf{D}_{0} = \mathbf{1}^{T} \mathbf{A}_{0} \mathbf{1} \longrightarrow \mathbf{A} = \mathbf{A}_{0} / \mathbf{D}_{0} \longrightarrow \mathbf{P}_{CC} = \mathbf{C} \mathbf{A} \mathbf{C}^{T}$$

can be interpreted as a probability matrix linking communities, its entries are the sum of the links of **A** from community i to community j



can be interpreted as the probability vector of communities

 $p_{C} = P_{CC} \mathbf{1} = C \mathbf{A} \mathbf{1} = C \mathbf{d}$ 

normalized cut

$$Ncut = \sum_{i} (p_i - P_{ii}) / p_i > 0$$

to be minimized

modularity

$$Q = \sum_{i} \left( P_{ii} - p_i^2 \right) < 1$$

to be maximized



$$C = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{1} + \mathbf{s} \\ \mathbf{1} - \mathbf{s} \end{bmatrix}$$

$$A = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{1} + \mathbf{s} \\ \mathbf{1} - \mathbf{s} \end{bmatrix}$$

$$d = A \mathbf{1} \longrightarrow \operatorname{assoc}_1 = \mathbf{v}_1 \mathbf{d} = \frac{1}{2} \begin{bmatrix} \mathbf{1} - \mathbf{s} \mathbf{A} \mathbf{s}^T \end{bmatrix}$$

$$\operatorname{assoc}_2 = \mathbf{1} - \operatorname{assoc}_1 = \frac{1}{2} \begin{bmatrix} \mathbf{1} - \mathbf{s} \mathbf{d} \end{bmatrix}$$

$$\operatorname{Ncut} = \frac{\operatorname{cut}}{\operatorname{assoc}_1} + \frac{\operatorname{cut}}{\operatorname{assoc}_2} = \frac{\operatorname{cut}}{\operatorname{assoc}_2} = \frac{1 - \mathbf{s} \mathbf{A} \mathbf{s} \mathbf{T}}{1 - (\mathbf{a} \mathbf{d})^2}$$

assoc<sub>1</sub> assoc<sub>2</sub> assoc<sub>1</sub> assoc<sub>2</sub> 
$$1 - (sd)^2$$
  
Laplacian matrix  
 $L = diag(d) - A$   
Laplacian matrix



UNIVERSITÀ DEGLI STUDI DI PADOVA

minimize 
$$\frac{s L s T}{1 - (s d)^2}$$
s. to  $s \in \{\pm 1\}^N$ 
  
an NP complex problem
$$s L s^T = b^2 u L u^T$$

$$s d = \langle s, 1 \rangle_d = a \langle 1, 1 \rangle_d + b \langle u, 1 \rangle_d = a$$

$$1 = |s|_d^2 = a^2 |1|_d^2 + b^2 |u|_d^2 - 2ab \langle u, 1 \rangle_d = a^2 + b^2$$

minimize 
$$\boldsymbol{u} \perp \boldsymbol{u}^T$$
  
s. to  $|\boldsymbol{u}|_d^2 = 1$   
 $\boldsymbol{u} \boldsymbol{d} = 0$   
 $\boldsymbol{s} = a\boldsymbol{1} + \sqrt{1-a^2} \boldsymbol{u} \in \{\boldsymbol{\pm},\boldsymbol{1}\}^N$ 

by construction sign(*s*) = sign(*u*) since |a|<1

still an NP complex problem (but we can relax the binary constraint)

### Spectral clustering

a suboptimum solution to the Ncut criterion in the binary case

Università degli Studi di Padova

minimize 
$$v L_1 v^T$$
  
s. to  $|v|^2 = 1$   
 $v \sqrt{d} = 0$   
 $v \sqrt{d} = 0$   
 $v = \operatorname{diag}(d)^{\frac{1}{2}} u$   
 $\operatorname{sign}(v) = \operatorname{sign}(u)$   
 $u d$ 

sign(s) = sign(v)

sign(**s**) = sign(**u**)

normalized Laplacian  $L_1 = I - \text{diag}(d)^{-\frac{1}{2}} A \text{diag}(d)^{-\frac{1}{2}}$ 

positive semidefinite matrix

$$2 \ge \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{N-1} \ge \lambda_N = 0$$

 $\mathbf{e}_{N-1}$  is Fiedler's eigenvector  $\lambda_{N-1}$  is the algebraic connectivity

Shi and Malik, "Normalized cuts and image segmentation," 2000 Ng, Jordan, Weiss, "On spectral clustering: analysis and an algorithm," 2002

$$\mathbf{v} = \mathbf{e}_{N-1}$$
  
sign( $\mathbf{s}$ ) = sign( $\mathbf{e}_{N-1}$ )



#### An example of spectral clustering





### The network community profile

and the role of conductance in the binary community case

### **conductance** $\phi = \text{cut} / \min(\text{assoc}, 1 - \text{assoc})$





### The V shape of the NCP

explaining the core-periphery structure



Dips in the graph correspond to the good communities

- □ Slope corresponds to the dimensionality of the network
- □ The V shape is common in large (social) networks
- □ Best communities have about 100 nodes → wiskers
- □ Large communities get worse performance  $\rightarrow$  core



# Takeaways for conductance and the normalized cut criterion

- Normalized cut is an old quality measures that set the beginning of image segmentation (clustering) algorithms
- □ It only works for unsigned undirected graphs
- Its outcomes correlates in general with modularity, although the literature suggests it is a weaker measure
- It is an alternative to modularity, better suited as a quality measure rather than as an optimization approach
- Do not spend any time in implementing any normalised cut optimization
- The performance of the spectral approach is weak, and for this reason it is <u>deprecated</u> (but will turn out useful later on)
- □ The network community profile provides an interesting view on the network structure, would like to see it implemented in jour projects

# Infomap

#### an approach based on PageRank and information theory



### The InfoMap principle

Rosvall, Bergstrom. "Maps of random walks on complex networks reveal community structure." (2008)

https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105?download=true

The most compact way of describing a random walk through a network is by encoding node entries according to their probability **p** (e.g., PageRank) using the Huffman procedure that guarantees an average encoding length

 $L \gtrsim H(\mathbf{p}) = \sum p_i \log(1/p_i)$ entropy based on the probability vector  $\mathbf{p}$ 



55



UNIVERSITÀ **DEGLI STUDI** DI PADOVA

#### The InfoMap principle the community view



111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 000 111 0001 0 111 010 100 011 00 111 00 011 110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011 10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

Under a community assignment we can code the community we are in (each time we switch community) and, separately, the nodes visited inside each community (+ the exiting state)



inside community *i* (nodes include exit to another community) 56



#### The InfoMap principle rationale



- We want to optimize L wrt the community assignment
- More compact encoding = better community assignment
- We expect that this corresponds to keeping the random walk inside the communities
- □ A flow-based optimization
- Different (but related to) from modularity (strength-based)



### PageRank for nodes

00011

58

node probability in a random walk with restart



**p** is a stochastic vector whose entry  $p_i$  is the probability of ending in node  $i \rightarrow node$  view

| UNI<br>BUDIES<br>DEC<br>DI P | versità<br>li Studi<br>adova extendi                                                                   | PageRank for communities extending the idea under a community assignment                                            |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| node<br>viev                 | $\boldsymbol{p}_n = \boldsymbol{T}_{n n} \boldsymbol{p}_n \longleftarrow \mathbf{transition probabil}$ | probability (PageRank)<br>– vector at steady state<br>ity matrix $1^T \mathbf{T}_{n n} = 1^T$                       |  |  |  |
|                              | $P_{nn} = T_{n n} \operatorname{diag}(p_n)$                                                            | ) $\checkmark$ joint probability matrix at steady state $P_{nn}$ $1 = \mathbf{p}_n$ , $1^T P_{nn} = \mathbf{p}_n^T$ |  |  |  |
| community<br>view            | $\boldsymbol{P}_{cc} = \boldsymbol{C} \boldsymbol{P}_{nn} \boldsymbol{C}^{T} \boldsymbol{\leftarrow}$  | joint probability matrix at steady<br>state $P_{cc}$ <b>1</b> = $p_c$ , <b>1</b> <sup>T</sup> $P_{cc}$ = $p_c^T$    |  |  |  |
|                              | $\boldsymbol{p}_{c} = \boldsymbol{P}_{cc} \boldsymbol{1} = \boldsymbol{C} \boldsymbol{p}_{n}$          | probability vector at<br>steady state $p_c = T_{c c} p_c$                                                           |  |  |  |
|                              | $\boldsymbol{T_{c c}} = \boldsymbol{P_{cc}} \operatorname{diag}(\boldsymbol{p_c})$                     | ) <sup>-1</sup> $\leftarrow$ transition probability<br>matrix $1^T \mathbf{T}_{c c} = 1^T$<br>59                    |  |  |  |





### View inside a community

generating nodes codes and exit codes

#### node view



#### inside-the-community view



all nodes internal to the community are kept separate



community are put in a single entity (exit state) <sup>61</sup>



### Steady state probabilities

for community switch and inside communities



switching probability matrix  $\mathbf{1}^T \mathbf{S} = \mathbf{1}^T$  $\mathbf{S} = [\mathbf{T} - \operatorname{diag}(\mathbf{T})] [\mathbf{I} - \operatorname{diag}(\mathbf{T})]^{-1}$ 

eigenvector q = [I - diag(T)]p

 $= \boldsymbol{p} - vdiag(\boldsymbol{P})$ 

normalized  

$$\mathbf{s}_c = \mathbf{q} / P_s$$
  
 $P_s = \mathbf{1}^T \mathbf{q}$ 



$$\mathbf{P}_{i} = \mathbf{C}_{i} \mathbf{P}_{nn} \mathbf{C}_{i}^{\mathsf{T}} \mathbf{p}_{i} = \mathbf{P}_{i} \mathbf{1}$$
$$\mathbf{T}_{i} = \mathbf{P}_{i} \operatorname{diag}(\mathbf{p}_{i})^{-1}$$

keeps only the bottom right element  $\mathbf{S}_{i} = [\mathbf{T}_{i} - \text{lowel}(\mathbf{T}_{i})] [\mathbf{I} - \text{lowel}(\mathbf{T}_{i})]^{-1}$ 

$$\mathbf{p}_{i} = [\mathbf{I} - \text{lowel}(\mathbf{T}_{i})] \mathbf{p}_{i}$$
$$= \mathbf{p}_{i} - \text{vlowel}(\mathbf{P}_{i})$$

$$\boldsymbol{u}_i = \boldsymbol{z}_i / \boldsymbol{P}_i$$
$$\boldsymbol{P}_i = \boldsymbol{1}^{\mathsf{T}} \boldsymbol{z}_i$$

last element is q<sub>i</sub>



UNIVERSITÀ **DEGLI STUDI** di Padova

# Wrap-up on InfoMap works also with overlapping communities

|                                        | adjacency matrix (can be fractional)                                                                                                                                                                                                            |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| transition probability<br>matrix       | $M = A \operatorname{diag}^{-1}(d),  d = A^{T}1$                                                                                                                                                                                                |  |  |  |  |
| PageRank vector                        | r = c M r + (1-c) 1/N                                                                                                                                                                                                                           |  |  |  |  |
| node domain                            |                                                                                                                                                                                                                                                 |  |  |  |  |
| communities domain<br>q vector entries | $z_{i} = c_{i} \operatorname{diag}(r)$ $q_{i} = \left(1 - (1 - c)\frac{c_{i}1}{N}\right)z_{i}1 - c c_{i} M z_{i}^{T}$ Here $c_{i}$ is the <i>i</i> th row of $C$ $q_{i} = \left(1 - (1 - c)\frac{c_{i}1}{N}\right)z_{i}1 - c c_{i} M z_{i}^{T}$ |  |  |  |  |
| InfoMap                                | $f(\boldsymbol{q}) + \sum_{i} f([\boldsymbol{q}_{i}, \boldsymbol{z}_{i}])$<br>entropy function<br>$f(\boldsymbol{x}) = -\sum_{j} x_{j} \log\left(\frac{x_{j}}{\sum_{i} x_{i}}\right)$ 63                                                        |  |  |  |  |



#### The InfoMap algorithm an iterative procedure

- Assign every node to a community
- Merge the two communities that provide the best improvement in the InfoMap measure, until convergence
- Refine of the result by simulated annealing, moving one node per time

Not strikingly different from Louvain



#### Application example map of science based on citation patterns as in 2008







- InfoMap is an alternative quality metric to modularity
- It is especially useful when the information available explains flows in the network
- Its fairly easy to calculate, which makes it a scalable approach
- Code for the standard approach is available on the web but only for non-overlapping communities

## Normalized mutual information

a measure based on statistics



I(X;Y)

H(Y|X)

information carried by Y

mutual information how much information of Y is explained by X (or viceversa) H(X,Y)joint entropy  $H(X,Y) = \sum P_{xy} \log(1/Pxy)$ 

H(X|Y)

$$I(X;Y) = \sum_{x,y} P_{xy} \log(P_{xy}/pxpy)$$

information

carried by X

68



### Normalized mutual information

in unsupervised community detection

C community assignment to be assessed for quality

statistical dependencies about being in a community and ending in another

 $\boldsymbol{P}_{\mathrm{C,C}} = \boldsymbol{C} \boldsymbol{A} \boldsymbol{C}^{\mathrm{T}}$ 

probability of ending in a community

 $p_{\rm C} = P_{\rm C.C} 1$ 

We assume a true joint probability description *P<sub>nn</sub>* is available, e.g., a normalized adjacency *A* 

fraction of knowledge related to the community we will end up in (between 0 and 1, equal to 1 for statistically independent communities)  $NMI(C) = \frac{I(C;C)}{H(C)}$ can also use H(C,C), but its interpretation is weaker 69

### Wrap-up on metrics for community detection



# on quality measures – unsupervised community detection

| quality measure               | approach                                                                    | undirected | directed | overlapping | signed |
|-------------------------------|-----------------------------------------------------------------------------|------------|----------|-------------|--------|
| Modularity                    | number of links inside communities, compares to a random model              | YES        | YES      | YES         | YES    |
| Conductance, Ncut             | number of links outside communities divided by total links of the community | YES        | NO       | YES         | NO     |
| Normalized mutual information | fraction based on entropies and mutual information                          | YES        | YES      | YES         | NO     |
| InfoMap                       | average encoding length under a<br>PageRank information flow                | YES        | YES      | YES         | NO     |

would be nice to see these in your projects



a simple statistical inference model for community detection


## The statistical inference approach statistically modeling a graph

- □ Let  $p(\mathbf{A}|\gamma)$  be a probabilistic model describing a network (i.e., its adjacency matrix  $\mathbf{A}$ ) through some parameters  $\gamma$
- The parameters  $\gamma$  are assumed to capture relevant information about the network, e.g., its community structure
- An a priori statistical description  $p(\gamma)$  of the parameters can also be available, in case it is not simply set  $p(\gamma)=1$ (i.e., consider equally likely parameters)
- Since, for a given network, A is known, the optimal parameters fit is found by the maximum a posteriori (MAP) principle

 $\hat{\gamma} = \operatorname{argmax}_{\gamma} p(\boldsymbol{A}|\gamma) p(\gamma)$ 



# The BigCLAM statistical model

for binary adjacency matrices A

communities are described through probabilities p<sub>c</sub> that express the probability that a link between two nodes (inside the community) is active, these are collected in vector **p** 



we assume overlapping communities

the map from nodes to communities is collected in a  $C \times N$  membership matrix C whose *i*th column  $c_i$  is a binary vector identifying the communities to which node *i* belongs

 $c_i = [0 \ 1 \ 1 \ 0 \ 1]$  tells that node *i* belongs to communities 2, 3, and 5 DEL CONTRACTOR

#### Università degli Studi di Padova

## The BigCLAM statistical model

probability of not activating an edge

Probability  $Q_{ij}$  that edge (i,j) is not active is the probability that it is not active in any communities in of the communities linking *i* and *j*, that is common between *i* and *j*  $Q_{ii} = \prod_{c \in Mi \cap Mi} (1 - p_c)$ Here  $c_i$ is the *i*th  $\log(Q_{ij}) = \sum_{c \in Mi \cap Mj} \log(1 - p_c) = \mathbf{c}_i^T \operatorname{diag} \log(1 - p) \mathbf{c}_j$ column of C  $\mathbf{Q} = \exp(-\mathbf{C}^T \operatorname{diag}(\mathbf{q}) \mathbf{C}), \ \mathbf{q} = -\log(\mathbf{1} - \mathbf{p}) > \mathbf{0}$ 

The BigCLAM statistical model

Yang & Leskovec, Overlapping community detection at scale: a nonnegative matrix factorization approach, (2013)



The graph probability description p(A|C,q) therefore is

$$\mathbf{O}(\mathbf{A}|\mathbf{Q}) = \prod_{(i,j)\in\mathcal{E}} (1-Q_{ij}) \prod_{(i,j)\notin\mathcal{E}} Q_{ij}$$

edge set  $\mathcal{E} = \{(i,j) \mid a_{ij} = 1\}$ 

maximize  $p(\boldsymbol{A}|\boldsymbol{Q})$ wrt  $\boldsymbol{C}, \boldsymbol{q}$ s.to  $\boldsymbol{Q} = \exp(-\boldsymbol{C}^{T} \operatorname{diag}(\boldsymbol{q}) \boldsymbol{C})$  $\boldsymbol{C}$  binary,  $\boldsymbol{q} > \boldsymbol{0}$ 

Università degli Studi

DI PADOVA

NP complex reference optimization problem

need to set the number C of communities, **A** is binary



## Model relaxation

a relaxed counterpart to the optimization problem

maximize p(A|C,q)wrt C, qs.to  $Q = \exp(-C^{T} \operatorname{diag}(q) C)$ C bipery, q > 0

we relax the binary constraint (and include **q** into **C**) maximize log p(A|M)wrt Ms.to  $Q = \exp(-M^{T} M)$ M > 0

we obtain an overlapping community
 assignment by normalizing
 M = sqrt(diag(q)) C by column

$$\log p(A|M) = \sum_{(i,j)\in\mathcal{E}} \log(1-Q_{ij}) + \sum_{(i,j)\notin\mathcal{E}} \log(Q_{ij}) \log(Q_{ij}) = -m_i^T m_j$$
  
Here  $m_i$   
is the *i*th  
column  
of  $M$ 

$$= \sum_{(i,j)\in\mathcal{E}} \log\left(\frac{1-Q_{ij}}{Q_{ij}}\right) + \sum_{i,j} \log(Q_{ij}) \qquad \text{we add some} \log(Q_{ij}) \qquad \text{we add some} \log(Q_{ij}) + \sum_{i,j} \log(Q_{ij}) \qquad \text{we add some} \log(Q_{ij}) \qquad \text{we add some} \log(Q_{ij}) \qquad \text{here} \log(Q_{ij}) \qquad \text{we add some} \qquad \text{we add some} (Q_{ij}) \qquad \text{we add some}$$



UNIVERSITÀ **DEGLI STUDI** DI PADOVA

# The BigCLAM algorithm

a gradient descent search for the optimum





# **BigCLAM** quality performance

compared to state-of-the-art algorithms at the time



BigCLAM complexity compared to state-of-the-art algorithms at the time

UNIVERSITÀ

**DEGLI STUDI** 

DI PADOVA







- A simple statistical inference model to explain the concept
- A proof of concept
- Highly scalable
- Applicable to binary symmetric adjacency matrices only
- Literature shows its performance may be not striking with synthetic networks
- Would be interesting to see it implemented in your projects <sup>3</sup>

# **Stochastic Block Models**

SBM for community detection



UNIVERSITÀ **DEGLI STUDI** DI PADOVA

# Stochastic block model - SBM

for a binary adjacency matrix

- probability block matrix **B**
- **B** is not stochastic, simply  $0 \le B \le 1$
- $B_{ab}$  expresses the probability that a node in community a links to a node in community b
- community indicator vector c
- c<sub>i</sub> expresses the community of node i
- edges are Bernoulli distributed (conditioned on their group memberships) with probability  $B_{c_ic_i}$

i < j for undirected networks

Stochastic model:  $p(\boldsymbol{A}|\boldsymbol{B},\boldsymbol{c}) = \prod_{i,j} (B_{c_i c_j})^{a_{ij}} (1 - B_{c_i c_j})^{1-1}$ 

binary adjacency matrix

can also be expressed in terms of the community assignment matrix C R

$$c_{i}c_{j} = [\mathbf{C}^{\mathsf{T}} \mathbf{B} \mathbf{C}]_{ij} = \mathbf{c}_{i}^{\mathsf{T}} \mathbf{B} \mathbf{c}_{j}$$

Here  $c_i$ is the *i*th column of C

# SBM examples assortative and ordered communities case

Università degli Studi di Padova





#### assortative communities

|            | .5 | .1 | .1 | .1 | .1 |
|------------|----|----|----|----|----|
|            | .1 | .5 | .1 | .1 | .1 |
| <b>B</b> = | .1 | .1 | .5 | .1 | .1 |
|            | .1 | .1 | .1 | .5 | .1 |
|            | .1 | .1 | .1 | .1 | .5 |

#### ordered communities

- **.5** .3
- .3 .5 .3
  - .3 <mark>.5</mark> .3
    - .3 **.5** .3
      - .3 **.5**

## SBM examples

random and core-periphery communities case

Università degli Studi di Padova



#### random graph

| <b>B</b> = | .2 | .2 | .2 | .2 | .2 |
|------------|----|----|----|----|----|
|            | .2 | .2 | .2 | .2 | .2 |
|            | .2 | .2 | .2 | .2 | .2 |
|            | .2 | .2 | .2 | .2 | .2 |
|            | .2 | .2 | .2 | .2 | .2 |



core-periphery structure

| .7  | .24 | .14 | .09 | .05 |
|-----|-----|-----|-----|-----|
| .24 | .42 | .14 | .09 | .05 |
| .14 | .14 | .25 | .09 | .05 |
| .09 | .09 | .09 | .15 | .05 |
| .05 | .05 | .05 | .05 | .09 |



## Some remarks on the SBM model

- SBM can naturally handle directed and undirected networks
- for undirected networks we force **B** to be symmetric
- we relax this assumption for directed networks: in this way the probability of a link running in one direction is different of the probability that a link runs in the opposite direction
- SBM can also naturally handle overlapping communities, as
   C<sup>T</sup> B C makes sense also in this case
- closely related to BigCLAM

 $\log p(\boldsymbol{A}|\boldsymbol{B},\boldsymbol{c}) = \sum_{i,j} a_{ij} \log(1 - Q_{ij}) + (1 - a_{ij}) \log(Q_{ij})$  $Q_{ij} = 1 - \boldsymbol{c}_i^{\mathsf{T}} \boldsymbol{B} \boldsymbol{c}_j \cong \exp(-\boldsymbol{c}_i^{\mathsf{T}} \boldsymbol{B} \boldsymbol{c}_j)$ SBM assumption BigCLAM assumption, with diagonal **B** 



**Compact form** for binary **A** and non-overlapping communities

$$\log p(\boldsymbol{A}|\boldsymbol{B},\boldsymbol{C}) = \sum_{i,j} a_{ij} \log(B_{c_i c_j}) + (1 - a_{ij}) \log(1 - B_{c_i c_j})$$

$$\max \sum_{u,v} m_{uv} \log(B_{uv}) + (n_{uv} - m_{uv}) \log(1 - B_{uv})$$
  
s. to  $B \ge 0$ ,  $M = C \land C^{\mathsf{T}}$ ,  $N = C \land 1 \land^{\mathsf{T}} C^{\mathsf{T}}$   
number of active links max number of links  
between communities  $\oint \hat{B}_{uv} = m_{uv}/n_{uv}$   
$$\max \sum_{u,v} m_{uv} \log(m_{uv}) + (n_{uv} - muv) \log(n_{uv} - muv)$$
  
$$-nuv \log(n_{uv})$$
  
s. to  $M = C \land C^{\mathsf{T}}$ ,  $N = C \land 1 \land^{\mathsf{T}} C^{\mathsf{T}}$ 



## **Degree-corrected SBMs**

Karrer, Newman. "Stochastic blockmodels and community structure in networks." (2011)

https://www.asc.ohio-state.edu/statistics/dmsl/Karrer\_Newman\_2010.pdf





## Further remarks on the SBM model

- approximations make the problem simple
- can naturally handle undirected and weighted networks, and overlapping communities, but we are forcing its interpretation
- the degree-corrected model indentifies mutual information *I(C;C)* as the cost measure: strongly related to NMI: strenghtens that result
- can be optimized by

Gibbs sampling/Simulated annealing, Gradient descent, Expectation Maximization, Variational inference

## Mixed membership SBM

ACCXNII HIT

f(

UNIVERSITÀ

**DEGLI STUDI** 

DI PADOVA

Airoldi, et al. "Mixed membership stochastic blockmodels." (2008) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119541/pdf/nihms54993.pdf

$$\log p(\boldsymbol{A}|\boldsymbol{C},\boldsymbol{B}) = \sum_{i,j} a_{ij} \log(\boldsymbol{c}_i^T \boldsymbol{B} \boldsymbol{c}_j) + (1 - aij) \log(1 - \boldsymbol{c}_i^T \boldsymbol{B} \boldsymbol{c}_j)$$
Here  $\boldsymbol{c}_i$  is the *i*th coumn of  $\boldsymbol{C}$ 
we use a variational approach
$$\log(\boldsymbol{c}_i^T \boldsymbol{B} \boldsymbol{c}_j) = \log\left(\sum_{m,n} \rho_{ijmn} \frac{c_{im} Bmn cjn}{\rho_{ijmn}}\right) \ge \sum_{m,n} \rho_{ijmn} \log\left(\frac{c_{im} Bmn cjn}{\rho_{ijmn}}\right)$$
distribution function, sums up to 1
$$\varphi_{ijmn} = \frac{c_{im} Bmn cjn}{\boldsymbol{c}_i^T \boldsymbol{B} \boldsymbol{c}_j}$$

$$\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{\rho}, \boldsymbol{\mu}) = \sum_{i,j,m,n} a_{ij} \rho_{ijmn} \log\left(\frac{c_{im} Bmn cjn}{\rho_{ijmn}}\right) + (1 - aij) \mu_{ijmn} \log\left(\frac{c_{im} (1 - B_{mn}) c_{in}}{\mu_{ijmn}}\right)$$

$$\max_{\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{\rho}, \boldsymbol{\mu}} = \sum_{i,j,m,n} a_{ij} \rho_{ijmn} \log\left(\frac{c_{im} Bmn cjn}{\rho_{ijmn}}\right) + (1 - aij) \mu_{ijmn} \log\left(\frac{c_{im} (1 - B_{mn}) c_{in}}{\mu_{ijmn}}\right)$$

$$\max_{\boldsymbol{C}, \boldsymbol{C}, \boldsymbol{\rho}, \boldsymbol{\mu}} = \sum_{i,j,m,n} a_{ij} \rho_{ijmn} \log\left(\frac{c_{im} Bmn cjn}{\rho_{ijmn}}\right) + (1 - aij) \mu_{ijmn} \log\left(\frac{c_{im} (1 - B_{mn}) c_{in}}{\mu_{ijmn}}\right)$$



## Equations update alternating search for the maximum

#### dummy distributions update

$$\rho_{ijmn} = \frac{c_{im} Bmn cjn}{c_i^T B c_j}$$
$$\mu_{ijmn} = \frac{c_{im} c_{jn} - cim B_{mn} c_{jn}}{1 - c_i^T B c_j}$$

mixing matrix update

$$B_{mn} = \frac{\sum_{i,j} a_{ij} \rho_{ijmn}}{\sum_{i,j} a_{ij} \rho_{ijmn} + (1 - a_{ij}) \mu_{ijmn}} < 1$$

community assignment update (normalized)

$$c_{im} = \frac{\sum_{j,n} a_{ij} \rho_{ijmn} + (1 - a_{ij}) \mu_{ijmn} + a_{ji} \rho_{jinm} + (1 - a_{ji}) \mu_{jinm}}{\sum_{j} 2}$$

simple algorithm, but not really scalable
 soft community assignments
 binary matrix A





binary form of the standard SBM contribution, e.g., adjacency matrix based on binomial (active/inactive link) true weights of the  $\log p(\boldsymbol{A}|\boldsymbol{B},\boldsymbol{\theta},\boldsymbol{C}) = \lambda \sum \log p_{binomial}(aij|m_{ij} = \boldsymbol{c}_i^T \boldsymbol{B} \boldsymbol{c}_j)$ adjacency matrix mixing parameter  $\rightarrow + (1 - \lambda) \sum a_{ij} \log p_{ij} (w_{ij} | \boldsymbol{\theta}_{ij} = \boldsymbol{c}_i^T \boldsymbol{\theta} \boldsymbol{c}_j)$ additional SBM contribution, parameters for weights, to model edge stenght community based chosen distribution for

weights, e.g., Gaussian



# Weighted SBM a few plausible distributions



UNIVERSITÀ DEGLI STUDI DI PADOVA

$$\log p(\boldsymbol{A}|\boldsymbol{L},\boldsymbol{C}) = \sum_{i,j} a_{ij} \log(\boldsymbol{c}_i^T \boldsymbol{L} \boldsymbol{c}_j) - w_{ij} \boldsymbol{c}_i^T \boldsymbol{L} \boldsymbol{c}_j$$
can be converted in useful form by variational  
inequality (it exploits the concavity of log(x))  
same here, thanks to concavity of  
both functions -x<sup>2</sup> and -1/x  

$$\log p(\boldsymbol{A}|\boldsymbol{M},\boldsymbol{\Sigma},\boldsymbol{C}) = \frac{1}{2} \sum_{i,j} -a_{ij} \log(\boldsymbol{c}_i^T \boldsymbol{\Sigma} \boldsymbol{c}_j) - a_{ij} \frac{(w_{ij} - \boldsymbol{c}_i^T \boldsymbol{M} \boldsymbol{c}_j)^2}{\boldsymbol{c}_i^T \boldsymbol{\Sigma} \boldsymbol{c}_j}$$
-log(x) is convex, so in this case the  
approach does not work  
variational Bayes solutions are needed  
for overlapping communities!



### Takeaways for stochastic block models

- an advanced generative model to capture the underlying network structure
- easily extendable to a many different scenarios
- optimization problem is difficult to solve (but efficient methods exist)
- not fully scalable
- some models (e.g., degree-corrected SBM) provide results related to NMI, and modularity
- performance not always striking with synthetic networks
- □ would be interesting to see it implemented in your projects ☺

# Dendrograms

### an older (but still in use) approach to community detection



### Dendrograms overall idea for community detection

Zachary's karate club network



social ties and rivalries in a university club; during observation conflict led the group to split





# Modularity in dendrograms

for selecting the number of clusters



... but NMI, normalized cut or InfoMap measures would also work

102



### Two approaches to dendrograms

Dendrograms is an hierarchical clustering algorithm that can be approached in two ways:

- Agglomerative: progressively <u>add</u> edges, from the strongest and ending with the weakest ones; new <u>connected</u> components that arise identify a new (upper) dendrogram level
- Divisive: progressively <u>delete</u> edges, from the strongest and ending with the weakest ones; new <u>disconnected</u> components that arise identify a new (lower) dendrogram level

Performance strongly depends on the chosen weight (local weight definitions typically provide weak solutions)



## Girvan-Newman method

a divisive approach

Girvan, Newman. "Community structure in social and biological networks." (2002) <u>https://www.pnas.org/doi/full/10.1073/pnas.122653799</u>

Repeat until no edges are left in the graph:

- (re)calculate edge betweenness in the current graph complexity O(LN) by using a smart algorithm
- remove edges with highest betweenness

Complexity  $O(L^2N) \rightarrow$  pretty scalable

Recalculation step is essential to detect meaningful communities

May provide poor results: useful method, far from perfect



## Edge betweeness

a generalization of node betweenness





$$b_{ij} = \sum_{(k,\ell)\in\mathcal{N}^2} \frac{\sigma_{k,\ell}(i,j)}{\sigma_{k,\ell}}$$

**UNIVERSITÀ** 

**DEGLI STUDI** 

DI PADOVA

where  $\sigma_{kl}$  is the # of shortest paths connecting *k* to *l*, and  $\sigma_{kl}(i,j)$  the subset of these including edge (i,j)

- expresses centrality of a link in the network
- □ can be normalized to range [0,1]

$$(b_{ij} - b_{min}) / (b_{max} - b_{min})$$







... then repeat for all other nodes!!! O(LN) 107



# Agglomerative clustering

a toy example based on Euclidean distance



### Algorithm

- Start with each node being a separate community
- Progressively add a community to the one that is closer



### HDBSCAN an agglomerative approach

K = number of nearest neighbours to be considered

this sets the core distance of a node



the mutual reachability distance between two nodes is the maximum between their effective distance and their core distances



under this metric dense points (with low core distance) remain the same distance from each other but sparser points are pushed away to be at least their core distance away from any other point



### HDBSCAN the clusters hierarchy

#### Step 1

by using the mutual reachability distance, build a minimum spanning tree (a spanning three whose sum of the edge weights is as small as possible)



### Step 2

build a cluster hierarchy by adding links in the spanning tree in order of distance, starting from the links with smaller distance (agglomerative approach)





# HDBSCAN identifying good communities

#### Step 3

simplify the hierarchy by removing (from top to bottom) those branches that have size less than the minimum cluster size parameter, to avoid outliers



### Step 4 identify a stability value for each cluster as



keep the parent cluster ( $\checkmark$ ) if its stability is bigger than the sum of the stabilities of its two child clusters, otherwise iterate (keep the communities that last longer)



#### Università **DEGLI STUDI** di Padova

# A comparison example https://hdbscan.readthedocs.io/en/latest/index.html

Clusters found by KMeans



Clusters found by AgglomerativeClustering







outliers due to minimum cluster size


## Complexity comparison

https://hdbscan.readthedocs.io/en/latest/index.html



113



## HDBSCAN parameters

main parameters

| <pre>class hdbscan.hdbscanHDBSCAN min_cluster_size = 5, min_samples = None,</pre> | <pre>N(<br/>parameter K identifying the core distance,<br/>set by default to min_cluster_size<br/>(small K → true distances and few outliers,<br/>larger K → many outliers)</pre>                                                                             |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| metric = 'euclidean',                                                             | how to calculate distances from data<br>vectors, e.g., 'cosine', 'dice', 'euclidean' –<br>can also be 'precomputed' from a<br>similarity matrix <b>A</b> in which case $d_{ij}=1/a_{ij}$ or<br>if correlation values <b>A</b> are available $d_{ij}=1-a_{ij}$ |
| <pre>algorithm = 'best', approx_min_span_tree = True, &lt;</pre>                  | —— options for the spanning tree algorithm                                                                                                                                                                                                                    |
| <pre>cluster_selection_method = 'eom', </pre>                                     | the more elaborate excess of mass<br>approach ('eom'), or simply select                                                                                                                                                                                       |
| allow_single_cluster = False)                                                     | leaves ('leaf') for a finer partition                                                                                                                                                                                                                         |



# HDBSCAN in BERTopic

### clustering documents into different topics

1. each document is mapped into an embedding (vector) by BERT

2. cosine metric is used to identify distances among documents

3. HDBSCAN is run to identify topics



- 0\_team\_game\_25
- 1\_game\_year\_baseball
- 2\_patients\_medical\_msg

topic 1

- 3\_key\_clipper\_chip
- 4\_israel\_israeli\_jews
- 5\_drive\_scsi\_drives
- 6\_post\_jim\_context
- 7\_gun\_guns\_firearms
- 8\_god\_atheists\_atheism
- 9\_xterm\_echo\_x11r5
- 10\_modem\_port\_serial
- 11\_jpeg\_image\_gif
- 12\_gay\_sex\_sexual
- 13\_amp\_stereo\_condition
- 14\_car\_mustang\_cars
- 15\_space\_launch\_moon
- 16\_espn\_game\_pt
- 17\_spacecraft\_solar\_space
- 18\_printer\_print\_hp
- 19\_mhz\_clock\_speed
- 20\_bike\_bikes\_miles
- 21\_health\_tobacco\_disease
- 22\_ram\_drive\_meg
- 23\_fbi\_gas\_bds
- 24\_hell\_god\_jesus
- 25\_window\_widget\_application
  - 26\_3d\_conference\_nok 115
- 27\_monitor\_monitors\_vga



# HDBSCAN in BERTopic

hierarchical clustering of topics

#### HDBSCAN hierarchy of topics, with those selected







- an advanced agglomerative method to identify communities (clusters)
- works on distance (or similarity) data
- □ fully scalable
- it implements overlapping communities (soft clustering)
- striking performance with communities that are not exaggeratedly overlapping in space
- it naturally generates outliers, since small clusters are dropped
- mostly dependent on the min\_cluster\_size parameter

# **Clique** percolation

what should never be used for overlapping community detection



### Clique percolation general idea

### Idea

Two nodes belong to the same community if they can be connected through adjacent k cliques

*k* clique
Fully connected graph of *k* nodes
Adjacent *k* cliques
Overlap in *k*-1 nodes



Adjacent 4-cliques

4-clique



Non-adjacent 4-cliques







- □ simple approach (too simple?)
- reasonably scalable
- it implements overlapping communities
- very poor performance
- □ it is based on a wrong overlapping model



# Wrap-up on community detection



# Algorithms for unsupervised community detection

| /ES        | YES | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                                                                                                   |
|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|            |     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES                                                                                  | YES                                                                                                                               |
| YES        | YES | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                                                                                   | YES                                                                                                                               |
| (ES        | YES | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                                                                                   | YES                                                                                                                               |
| NO         | NO  | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                                                                                   | YES                                                                                                                               |
| <b>YES</b> | YES | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES                                                                                  | NO                                                                                                                                |
| <b>YES</b> | YES | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES                                                                                  | NO                                                                                                                                |
| /ES        | YES | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO                                                                                   | NO                                                                                                                                |
| <b>YES</b> | NO  | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES                                                                                  | YES                                                                                                                               |
| /ES        | NO  | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                                                                                   | NO                                                                                                                                |
|            |     | Image: Second | SYESYESSYESYESSYESYESSYESYESONOYESSYESNOSYESYESSYESYESSYESNOSYESNOSNOYESSNOYESSNOYES | SimilarYESYESYESYESYESNOYESYESNOYESYESYESNOYESNOYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYESYES |



# on community detection development



1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 \_\_\_\_

> Fortunato, "Community detection in graphs." (2010) https://doi.org/10.1016/j.physrep.2009.11.002

Fortunato, Newman. "20 years of network community detection." (2022) https://www.nature.com/articles/s41567-022-01716-7

Clement, Wilkinson. "A review of stochastic block models and extensions for graph clustering." (2019) https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0232-2

Di, et al. "A survey of community detection approaches: From statistical modeling to deep learning." (2021) <u>https://ieeexplore.ieee.org/abstract/document/9511798</u>

Xing, et al. "A comprehensive survey on community detection with deep learning." (2022). https://doi.org/10.1109/TNNLS.2021.3137396



### SBMs in multi-layer networks some readings

De Bacco, Power, Larremore, Moore, "Community detection, link prediction, and layer interdependence in multilayer networks." (2017)

core.ac.uk/download/pdf/146486854.pdf

Contisciani, Power, De Bacco. "Community detection with node attributes in multilayer networks." (2020)

www.nature.com/articles/s41598-020-72626-y

Contisciani, Battiston, De Bacco. "Inference of hyperedges and overlapping communities in hypergraphs." (2022)



www.nature.com/articles/s41467-022-34714-7



### Python software tools a few of the many available





Š

**Network Data Collections.** Find and interactively **VISUALIZE** graph data and **EXPLORE** hundreds of network datasets

| 👬 ANIMAL SOCIAL NETWORKS    | 816 | TINTERACTION NETWORKS     | 29   | SCIENTIFIC COMPUTING       | 11  |
|-----------------------------|-----|---------------------------|------|----------------------------|-----|
| BIOLOGICAL NETWORKS         | 37  | X INFRASTRUCTURE NETWORKS | 8    | SOCIAL NETWORKS            | 77  |
| BRAIN NETWORKS              | 116 | Nabeled Networks          | 105  | <b>f</b> FACEBOOK NETWORKS | 114 |
| COLLABORATION NETWORKS      | 20  | MASSIVE NETWORK DATA      | 21   | TECHNOLOGICAL NETWORKS     | 12  |
|                             | 646 | Semiscellaneous networks  | 2669 | WEB GRAPHS                 | 36  |
| <b>99</b> CITATION NETWORKS | 4   | POWER NETWORKS            | 8    | O DYNAMIC NETWORKS         | 115 |
| ECOLOGY NETWORKS            | 6   | PROXIMITY NETWORKS        | 13   | C TEMPORAL REACHABILITY    | 38  |
| \$ ECONOMIC NETWORKS        | 16  | GENERATED GRAPHS          | 221  | <b>m</b> BHOSLIB           | 36  |
| EMAIL NETWORKS              | 6   | RECOMMENDATION NETWORKS   | 36   | THI DIMACS                 | 78  |
| GRAPH 500                   | 8   | ROAD NETWORKS             | 15   | DIMACS10                   | 84  |
| HETEROGENEOUS NETWORKS      | 15  | <b>W</b> RETWEET NETWORKS | 34   | I NON-RELATIONAL ML DATA   | 211 |

with users at







- Louvain community detection is the bare minimum for any project
- want to see different metrics on it (modularity, Ncut, NMI, InfoMap) though
- comparing the performance of Louvain with algorithms available in the literature is a plus
- a very good project would implement an algorithm, e.g., overlapping Louvain/InfoMap/NMI or BigCLAM/MM-SBM

# **Correlation networks**

a few insights



Università degli Studi di Padova

## How can you correlate data? an overview

Cosine similarity  

$$\cos(x, y) = \frac{x^T y}{|x|_2 |y|_2} \mod 2$$
positive for positive valued data x and y

Pearson correlation coefficient always with a sign  

$$r(\mathbf{x}, \mathbf{y}) = \frac{(\mathbf{x} - m_x)^T (\mathbf{y} - m_y)}{\sigma_x \sigma_y}$$

Sørensen-Dice coefficient  

$$dice(x, y) = \frac{x^T y}{\frac{1}{2}|x|_1 + \frac{1}{2}|y|_1}$$
for binary data  
(it is an F1 score)  
always positive

131



## Tax questionnaire example Pearson correlation used



## Tax questionnaire example signed (and soft) Louvain community detection





### Tax questionnaire example how Louvain solves correlation inconsistencies





## Motion patterns in VR example studying immersive environments



# Cluster 1: walking from a distance



**Cluster 2: walking** 

PC PC I d

Cluster 3: standing still

motion behaviours detected by Louvain on Pearson correlations over (filtered) motion patterns



# fMRI data example

#### fMRI = functional magnetic resonance imaging



Pearson's correlation coefficient

but be aware that the data
waveforms, prior to correlation,
are highly polished (e.g., from
motion-related artifacts and
physiological noise fluctuations,
multiple-echoes, etc.)

with Louvain we can identify community patterns  $P = C^T C$ whose similarity can be captured by the Dice coefficient







#### **UNIVERSITÀ DEGLI STUDI** DI PADOVA

#### Louvain communities for community patterns = behaviours















I1 Pattern 5

534 S

Sur Sur

Ē

VIS

CAPE C

ER C

2



NS





community assignments in cluster 1 (one per column)





## Partial correlation to remove counfounding contributions

partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed

when determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest

$$partial(x, y) = \frac{e_x^T e_y}{|e_x|_2 |e_y|_2}$$

$$e_x = (I - Z(Z^T Z)^{-1} Z^T) x$$

$$projection on the space orthogonal to span(Z)$$

$$collection of data vectors, other than x and y, plus the constant vector 1$$



### Tax questionnaire example with partial correlation





**UNIVERSITÀ** 

**DEGLI STUDI** 

DI PADOVA

### A personality network example Costantini et al. (2015)

