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Community detection
Identify communities in a network
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Conceptual picture of a network
explaining the role of community detection
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Cluster/Community

(strong tie)

(weak tie)
Bridge

q We often think of networks looking like this
q But, where does this idea come from?



Granovetter’s explanation
Granovetter, The strength of weak ties [1973]

https://www.jstor.org/stable/pdf/2776392.pdf

4

Q: How do people discovered their new jobs?

A: Through personal contacts, and mainly through 
acquaintances rather than through close friends

Remark: Good jobs are a scarce resource
Conclusion: 
q Structurally embedded edges are also socially strong, but are 

heavily redundant in terms of information access

q Long-range edges spanning different parts of the network are 
socially weak, but allow you to gather information from different 
parts of the network (and get a job)

Local cluster/community
Strong ties

Bridges
Weak ties

https://www.jstor.org/stable/pdf/2776392.pdf


Community detection
the general approach
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q Granovetter’s theory suggests that networks are 
composed of tightly connected sets of nodes (i.e., 
communities), loosely connected between them

q We want to be able to automatically find such 
densely connected group of nodes

q We look for unsupervised methods, as most of the 
times no ground truth is available

q We look for a measure of the goodness of a 
community assignment, to be able to compare the 
performance of different algorithms

q Applications in:
social networks
functional brain networks in neuroscience
scientific interactions

REVIEW ARTICLES | INSIGHT NATURE PHYSICS DOI:10.1038/NPHYS2162

Figure 2 |A network of collaborations among scientists at a research
institute. Nodes in this network represent the scientists and there is an

edge between any pair of scientists who co-authored a published paper

during the years of the study. Colours represent communities, as

discovered using a modularity-maximization technique.

leader or principal investigator of some kind. Distinctions such as
these, which may be crucial for understanding the behaviour of
the system, become apparent only when one looks at structure on
the community level.

The network in this particular example has the nice property that
it is small enough and sparse enough to be drawn clearly on the page.
One does not need any calculations to pick out the communities in
this case: a good eye will do the job. However, when we are working
with larger or denser networks, networks that can have thousands
or even millions of nodes (or a smaller number of nodes but very
many edges), clear visualization becomes impossible and we must
turn instead to algorithmic methods for community detection and
the development of such methods has been a highly active area of
research in the past few years15.

The community-detection problem is challenging in part be-
cause it is not verywell posed. It is agreed that the basic problem is to
find locally dense regions in a network, but this is not a precise for-
mulation. If one is to create a method for detecting communities in
amechanical way, onemust first define exactly what onemeans by a
community. Researchers have been aware of this issue from the out-
set and have proposed a wide variety of definitions, based on counts
of edges within and between communities, counts of paths across
networks, spectral properties of network matrices, information-
theoretic measures, randomwalks andmany other quantities. With
this array of definitions comes a corresponding array of algorithms
that seek to find the communities so defined14,15,19–31. Unfortu-
nately, it is no easy matter to determine which of these algorithms
are the best, because the perception of good performance itself
depends on how one defines a community and each algorithm
is necessarily good at finding communities according to its own

definition. To get around this circularity, we typically take one of
two approaches. In the first, algorithms are tested against real-world
networks for which there is an accepted division into communities,
often based on additionalmeasurements that are independent of the
network itself, such as interviews with participants in a social net-
work or analysis of the text of web pages. If an algorithm can reliably
find the accepted structure then it is considered successful. In the
second approach, algorithms are tested against computer-generated
networks that have some form of community structure artificially
embedded within them. A number of standard benchmark net-
works have been proposed for this purpose, such as the ‘four groups’
networks14 or so-called the LFR benchmark networks32. A number
of studies have been published that compare the performance of
proposed algorithms in these benchmark tests33,34. Although these
approaches do set concrete targets for performance of community-
detectionmethods, there is room for debate over whether those tar-
gets necessarily align with good performance in broader real-world
situations. If we tune our algorithms to solve specific benchmark
problems we run the risk of creating algorithms that solve those
problemswell but other (perhapsmore realistic) problems poorly.

This is a crucial issue and one that is worth bearing inmind as we
take a look in the following sections at the present state of research
on community detection. As we will see, however, researchers have,
in spite of the difficulties, come up with a range of approaches that
return real, useful information about the large-scale structure of
networks, and in the process have learned much, both about indi-
vidual networks that have been analysed and about mathematical
methods for representing and understanding network structure.

Hierarchical clustering
Studies of communities in networks go back at least to the 1970s,
when a number of techniques were developed for their detection,
particularly in computer science and sociology. In computer
science the problem of graph partitioning35, which is similar
but not identical to the problem of community detection, has
received attention for its engineering applications, but the methods
developed, such as spectral partitioning36 and the Kernighan–
Lin algorithm37, have also been fruitfully applied in other areas.
However, it is thework of sociologists that is perhaps themost direct
ancestor ofmodern techniques of community detection.

An early, and still widely used, technique for detecting
communities in social networks is hierarchical clustering5,11.
Hierarchical clustering is in fact not a single technique but an
entire family of techniques, with a single central principle: if we
can derive a measure of how strongly nodes in a network are
connected together, then by grouping the most strongly connected
we can divide the network into communities. Specific hierarchical
clusteringmethods differ on the particularmeasure of strength used
and on the rules by which we group strongly connected nodes.
Most common among themeasures used are the so-called structural
equivalence measures, which focus on the number nij of common
network neighbours that two nodes i, j have. In a social network
of friendships, for example, two people with many mutual friends
are more likely to be close than two people with few and thus a
count of mutual friends can be used as a measure of connection
strength. Rather than using the raw count nij , however, one typically
normalizes it in some way, leading to measures such as the Jaccard
coefficient and cosine similarity. For example, the cosine similarity
�ij between nodes i and j is defined by

�ij =
nijp
kikj

where ki is the degree of node i (that is, the number of con-
nections it has). This measure has the nice property that its
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The core periphery model
Lescovec, Lang, Dasgupta, Mahoney, Community Structure in Large Networks: 

Natural Cluster Sizes and the Absence of Large Well-Defined Clusters (2008)
https://arxiv.org/abs/0810.1355
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Can we find a justification for this?

6 Leskovec, Lang, Dasgupta, and Mahoney

(a) Typical NCP plot (b) Caricature of network structure

Figure 2: (a) Typical network community profile plot for a large social or information network: networks have
better and better communities up to a size scale of ≈ 100 nodes, and after that size scale communities “blend-in”
with the rest of the network (red curve). However, real networks still have more structure than their randomized
(conditioned on the same degree distribution) counterparts (black curve). Even more surprisingly, if one allows
for disconnected communities (blue curve), the community quality scores often get even better (even though such
communities have no intuitive meaning). (b) Network structure for a large social or information network, as
suggested by our empirical evaluations. See the text for more information on the “core” and “whiskers,” and note
that the core in our real-world networks is actually extremely sparse.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.

A schematic picture of a typical network community profile plot is illustrated in Figure 2(a). In red
(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
This illustrates not only tight communities at very small scales, but also that at larger and larger size
scales (the precise cutoff point for which is difficult to specify precisely) the best possible communities
gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communities is quite questionable
if one models the world with an interaction graph, as in point (1) above, and if one also defines good
communities as densely linked clusters that are weakly-connected to the outside, as in hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of communities that are composed of
disconnected pieces (found according to a procedure we describe in Section 4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better community quality scores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to reproduce the phenomena we have
observed, we have examined in detail the structure of our social and information networks. Although
nearly every network is an exception to any simple rule, we have observed that an “octopus” or “jellyfish”
model [42, 152, 148] provides a rough first approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having a “core,” with no obvious underlying geometry
and which contains a constant fraction of the nodes, and then there is a periphery consisting of a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 2(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
ways—e.g., they have higher edge density in the core; the small barely-connected whisker-like pieces are
generally larger, denser, and more common than in corresponding random graphs; they have higher local

Small, peripheral 
clusters

https://arxiv.org/abs/0810.1355


Overlapping communities
to explain the core periphery model

7

Wiskers
q are typically of size 100
q are responsible of good communities
Core
q denser and denser region
q contains 60% nodes and 80% edges
q a region where communities overlap

(as tiles)

6 Leskovec, Lang, Dasgupta, and Mahoney
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that the core in our real-world networks is actually extremely sparse.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.
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(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
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gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communities is quite questionable
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nearly every network is an exception to any simple rule, we have observed that an “octopus” or “jellyfish”
model [42, 152, 148] provides a rough first approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having a “core,” with no obvious underlying geometry
and which contains a constant fraction of the nodes, and then there is a periphery consisting of a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 2(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
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Measuring overlapping
in social networks
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¡ Basic	question:	nodes	u, v share	k communities
¡ What’s	the	edge	probability?

40

LiveJournal
social network

Amazon
product network

Ground truth - Edge probability increases with 
the number of shared communities

Feld, The focused organization of social ties, [1981]
The more different communities that two individuals 

share, the more likely is that they will be tied

Edge density is 
bigger in the 

overlap



Modularity
Measuring the goodness of a community assignment
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Modularity
Newman, Modularity and community structure in networks (2006)

https://www.pnas.org/content/pnas/103/23/8577.full.pdf
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Want to:
q measure of how well a network is partitioned into 

communities (i.e., sets of tightly connected nodes)
Idea:
q “If the number of edges between two groups is only 

what one would expect on the basis of random chance, 
then few thoughtful observers would claim this 
constitutes evidence of meaningful community 
structure” 

q Modularity is “the number of edges falling within groups 
minus the expected number in an equivalent network 
with edges placed at random” 

https://www.pnas.org/content/pnas/103/23/8577.full.pdf


Number of edges falling within groups
an adjacency matrix overview
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Q1 =  ∑ aij ⋅ "(ci = cj)

q aij entries of the (binary) adjacency matrix
q " indicating function (=1 if true)
q ci community (value) of node i

ij blocks = edges 
inside a community

adjacency 
matrix A



Network with edges places at random
Molloy-Reed model (1995)
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1. unwire nodes by breaking edges
but keep stubs (2L in number)
so that nodes keep their degree

2. rewire stubs at random 

The resulting graph may contain cycles 
and multiple links (but are a few)

Rewiring probability is pij = ki kj / 2L

number of trials 
from node i

probability of 
linking to node j



Minus expected number of edges
an adjacency matrix overview
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Q2 =  ∑ pij ⋅ "(ci = cj)

q wiring probability pij = ki⋅ kj /2L  

q ki = ∑ aij = node degree
q 2L = ∑ ki = # of stubs

ij

j

i

The null model !
blocks = edges 

inside a community

matrix collecting 
values pij



Modularity
a definition
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Modularity (normalized -1 ≤ Q ≤ 1)

Q = (Q1 – Q2)/2L 

=  1/2L⋅ ∑ (aij - ki⋅ kj /2L) ⋅ "(ci = cj)

q Q > 0 if the edges within groups exceed the 
(expected) random number

q Q ∈ [0.3,0.7] for a significant community structure
q Q grows with size of the graph/number of (well-

separated) clusters (Good et al, 2009) and cannot 
use Q to compare graphs very different in size

ij



Modularity
matrix formalization for undirected networks
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Q = trace(C (A - d dT) CT)       

original adjacency matrix 
(symmetric, can be fractional) A0

sum of the 
entries of A0

D0 = 1T A0 1

normalised adjacency matrix 
(entries sum up to 1) A = A0 /D0

normalised degree vector 
(entries sum up to 1) d = A 1

community assignment 
matrix (binary, one active 

entry per column)
C =

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

community 1

community 2

community 3

nodes 1 and 2 belong to community 1 nodes 4, 5 and 6 belong to community 3

modularity

corresponds to 2L

corresponds to ki/2L

corresponds to aij/2L

corresponds to selecting blocks pertaining 
to communities



Modularity
another useful matrix formalization for undirected networks
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Q = trace(PCC – pC pC
T)       

A0
D0 = 1T A0 1 A = A0 /D0

pC = PCC 1 = C A 1 = C d

can be interpreted as a probability 
matrix linking communities, its entries 

are the sum of the links of A from 
community i to community j

modularity

PCC = C A CT

P11

P22

P33

P12 P13

P21 P23

P31 P32

can be interpreted as the probability 
vector of communities



The Louvain algorithm
Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding

of communities in large networks (2008)
https://arxiv.org/abs/0803.0476
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The passes are 
repeated iteratively until
no increase of 
modularity is possible

Each node is
a community 
@ start

Phase 1: modularity is optimized
on the normalized ajacency matrix
A by allowing only local changes of 
communities

Phase 2: the communities found are 
aggregated (sum of links) in order to 
build a new network of communities
with normalized adjacency matrix PCC

https://arxiv.org/abs/0803.0476


Local changes in Louvain
as elementary calculations ensuring scalability
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q Can be used (with inverse sign) to remove node i from a community
q Node i is placed in the community ensuring the maximum gain (and positive)
q Easy to calculate, i.e., scalable

node i

community C
community C + node i

what makes the difference

!Q =  2 cT (ai – di d) 

Adding a separate node to a community: increment !Q in modularity
Before adding After adding

ith column of A
ith entry of dbinary vector identifying 

community C



Characteristics of Louvain
what makes it interesting
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q Implements modularity optimization
q Scalable (low complexity)
q Effective
q Available as the reference implementation in any 

programming language
q A greedy technique (the order of nodes is selected 

at random)

can be mitigated by consensus clustering



Consensus clustering
the rationale
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1 1 3 2

1 2 3 2

2 3 2 1

2 4 1 1

3 5 1 1

P=4 community 
assignments

4 3 0 0 0

3 4 0 0 0

0 0 4 2 1

0 0 2 4 2

0 0 1 2 4

5x5 consensus matrix 
(unnormalized) 

Applying Louvain  P times to a 
network A yelds different
partitions, but we expect that 
these are somehow related

We capture the recurrent patterns through 
a consensus matrix D, whose entries 
correspond to the fraction of times two 
nodes appear in the same community

network corresponding to the 
consensus matrix D

A B

C

D

E



Consensus clustering
Lancichinetti & Fortunato, Consensus clustering in complex networks (2012) 

https://www.nature.com/articles/srep00336
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Apply Louvain to A to yield P community detections CP (partitions)

1. Compute the consensus matrix D
Ø Dij is the fraction of partitions in which vertices i and j are 

assigned to the same cluster in CP
Ø entries below a chosen threshold are set to zero

2. Apply Louvain to D to yield a new CP 
Ø if the partitions are all equal, stop
Ø otherwise go back to 1.

Cycle until convergence

https://www.nature.com/articles/srep00336


Generalizing modularity
directed and signed networks
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The null model for a directed network
the role of in- and out-degree
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1. unwire nodes by breaking edges
but keep stubs and their direction
so that nodes keep their in/out degree

2. rewire stubs at random, linking output 
stubs to input stubs

Rewiring probability jài is pij = kj
out ki

in / L

number of trials 
from node j

probability of 
linking to node i

number of 
available links



Modularity
matrix formalization for directed networks

24

Q = trace(C (A - din dout
T) CT)       

original adjacency matrix 
(asymmetric, can be fractional) A0

sum of the 
entries of A0

D0 = 1T A0 1

normalised adjacency matrix 
(entries sum up to 1) A = A0 /D0

normalised in-degree vector 
(entries sum up to 1) din = A 1

community assignment matrix 
(binary, one active entry per column) C

modularity

corresponds to L

corresponds to ki
in/L

corresponds to aij/L

normalised out-degree vector 
(entries sum up to 1) dout = AT 1 corresponds to kj

out/L

Leicht and Newman, "Community structure in directed networks." (2008)
https://link.aps.org/pdf/10.1103/PhysRevLett.100.118703

not equivalent to making 
A symmetric via ½(A+AT)

https://link.aps.org/pdf/10.1103/PhysRevLett.100.118703?casa_token=ROGoOCYGJm4AAAAA:setN4sW5A0QC8hQc4xB-auAzHa8Q0YZWNPH05dbvmQZ07nvubgk4E0a1fRLkmgrf6MnpoOEncQCz


Local changes in Louvain
in the directed case
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node i

community C
community C + node i

what makes the difference

!Q =  cT (ai + ri – di
out din – di

in dout) 

Adding a separate node to a community: increment !Q in modularity

Before adding After adding

ith column of A
ith entry of din and doutbinary vector identifying 

community C ith row of A

q Keeps its simplicity
q But be aware that it is not always implemented in standard 

packages



Directed versus undirected Louvain
Dugué and Perez, Directed Louvain: maximizing modularity

in directed networks (2015)
https://hal.science/hal-01231784/document
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Directed solution using A (colors
correspond to ground thruth) Undirected solution 

using A+AT

https://hal.science/hal-01231784/document


The null model for a signed network
the role of positive and negative components
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1. unwire nodes by breaking edges
but keep stubs, their direction, and sign

2. rewire stubs at random, linking output stubs to input 
stubs, with same sign

Rewiring probability jài is pij = kj
out+ ki

in+ / L+ - kj
out- ki

in- / L-

positive 
contributions with 

positive sign

negative 
contributions with 

negative sign



Modularity
matrix formalization for signed and directed networks
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Q = ⍺ trace(C (A+ - din
+ dout

+T) CT)
- (1- ⍺) trace(C (A- - din

- dout
-T) CT)

original adjacency matrix 
(asymmetric, signed) A0 = A0

+ -A0
- D0

± = 1T A0
±1

normalised adjacency matrices 
(entries sum up to 1) A± = A0

± /D0
±

normalised in-degree vectors 
(entries sum up to 1) din

± = A± 1

community assignment matrix 
(binary, one active entry per column) C

modularity

normalised out-degree vectors 
(entries sum up to 1) dout

± = (A±)T 1

Traag, Bruggeman, "Community detection in networks with positive and negative links." (2009)
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.80.036115

mixing constant ⍺ = D0
+ /(D0

+ + D0
-)

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.80.036115?casa_token=L1UhXHmTEJwAAAAA%3AfkSvQJ_RyPW8Y6EoAdWn_BBwvaHDaxJudJ1tuvvUYQfJ-z_xFwzjwvkCGn0rErFbOWTJjVGyBvtS


Increasing the resolution
boosting or decreasing the role of the null model
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Q = trace(PCC – ! pC pC
T)       

tunable value !>1 increases the number of communities
!<1 decreases it

The resolution limit:
q prevents the algorithms in detecting small

communities 
q arises because the null model assumes that each 

node has an equal probability of connecting to 
every other node 

Can be mitigated by controlling the strength of the 
null model, i.e.:

it is implemented in 
standard packages



An application example
interconnections in brain regions through fMRI data
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fMRI correlation matrix

Can run Louvain on it to 
identify meaningful 

patterns (communities) 
for each subject



On the dependency on !
Nastaran Amini, community and hub detection in human

functional brain networks, master thesis, (2020)

31

which ! should we use? 
Select wider regions with 
concordant community 

assignments

clean thanks to 
consensus 
clustering

a measure of 
similarity, 0 if 

same 
communities are 

found for 
adjacent values 

of !



Modularity in overlapping communities
relaxing the reference model
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Q = trace(C B CT),     B = A - dindout
T

Target problem: 
maximize

wrt C subject to C ≥ 0
CT 1 = 1
C binary

we drop the binary condition to 
allow for overlapping communities

q Can be implemented by alternate search on nodes 
(possibly in a random order) starting from the output 
of a standard Louvain approach

q It improves modularity
q It is not available in standard packages



Alternate search basics
optimizing the community coefficients of node i
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Q = trace(C B CT)
Target problem: 

maximize
wrt ci subject to ci ≥ 0, ci

T 1 = 1

ith column of C set to 0

C = C~i + ci !i
T

Gets a reasonable form 
by writing

binary vector active 
only in position i

Q = trace(ci !i
T B !i ci

T) + trace(C~i (B+BT) !i ci
T) + const

= Bii |ci |2 + ci
T C~i (bi+ri

T ) + const

ith column of B

ith column of C only

ith row of B

Here ci
is the ith
column 

of C



Alternate search algorithm
Part 1
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½ a |ci |2 + ci
T v

Target problem: 
maximize

wrt ci subject toci ≥ 0, ci
T 1 = 1

with a = Bii , v = ½ C~i (bi+riT ) 

Case 1: a≥0 argmax ½ a |ci |2 + ci
T v

subject toci ≥ 0, ci
T 1 = 1

Solution: ci = !j ,   j = argmaxi vi

the value lies in the range of the 
values of v

we force it to the maximum value of v

concave



Alternate search algorithm

Part 2

35

Case 2: a<0 argmin ½ |ci |
2

- ci
T u

subject to ci ≥ 0, ci
T 1 = 1

Solution:

ci = [u - ! 1]
+

where ! is such that 1T
[u - ! 1]

+ = 1

u = -v/a

positive part operator: [x]
+

is x for x>0 and 0 otherwise

we exploit the Lagrangian

L = ½|ci |
2

- ci
T u + ! (ci

T 1 - 1)

∇L = ci  - u + ! 1 = 0 if the global minimum 

is below 0, then 0 is 

the best choice

convex



Alternate search algorithm
Identifying the correct !
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Problem find ! such that 1T [u - ! 1]+ = 1

Solution: sort vector u in decreasing order à g

if ! is in between g2 and g3, 
then it must be that            

g1 + g2 - 2g3 ≥ 1

g1 g2 g3g4g5 g6
!

q z = [ cumsum(g1:N-1) – (1:N-1) ⋅ g2:N, ∞ ]
q let zn be the first entry of z satisfying zn ≥ 1
q hence ! lies between gn and gn+1 (use gN+1= -∞) 

q therefore ! = (sum(g1:n) - 1) / n ≥ gN+1



Modularity in overlapping communities
comments
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q It provides a binary outcome only for Bii ≥ 0 (single 
community)

q In all other cases the result is fractional (multiple 
communities) but not all the communities are 
necessarily active

q Would be nice to see it implemented by someone 
in the class J



The spectral approach
for modularity optimization

38



The two communities case
a compact modularity expression

39

Q = trace(C B CT),     B = A - d dTmodularity

what if we have only two 
communities ? 

C = v
1 - v

community 1

community 2

idea: signed vector s = 2v - 1 v = ½ (1 + s)
1 - v = ½ (1 - s)

+1s identify community 1, 
and -1s identify community 2

Q = ½ s B sT since B 1 = 0



The two communities case
an optimization overview
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Q = ½ s B sT
Target problem: 

maximize wrt the binary vector s

a non trivial NP problem

We exploit the eigendecomposition of B
q B = ∑ bi bi

T !i

q bi normalized eigenvector |bi|=1
q !i eigenvalue

Q = ½ ∑ (bi
T s)2 !i

Target problem revisited: 
maximize

i

What if we only keep the 
strongest component?



Spectral approach
to modularity optimization

41

Q = ½ (b1
T s)2 !1

Target problem relaxed: 
maximize

strongest (positive) 
eigenvalues = sign(b1)

q it is a simple approach (e.g., related to PCA 
decomposition) that needs to be recursively applied

q Can be refined by switching community of nodes if 
modularity increases 

q Can also be refined by exploiting more than one 
eigenvalue

q Still, its performance is rather poor, and for this 
reason it is deprecated



Takeaways
for modularity

42

q Modularity is a key performance metric in 
community detection

q Optimizing modularity through the Louvain 
approach is the bare minimum required in 
any project

q Implementation of generalized modularity 
(directed, signed, overlapping) is highly 
welcome to get a top grade 



The normalized cut criterion
an old (worth citing) alternative to modularity

43



The minimum cut criterion
towards an alternative measure

44

q We want to partition an (undirected) graph in two 
disjoint groups

q A good partition is one that
maximizes the # of within-group connections
minimizes the # of between-group connections

the minimum cut criterion

also this criterion is needed
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Normalized cuts (Shi and Malik, Normalized cuts and image segmentation, 2000)

Example

A =

2

6666666666666666666666666664

1 1
1 1 1 1

1 1 1
1 1 1 1 1 1

1 1
1 1 1

1 1 1
1 1 1 1 1

1 1
1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1
1

3

7777777777777777777777777775

28 16

cut = 2

1

Ncut = 2

30
+ 2

20

= 1

6

Ncut = 1

49
+ 1

1
= 50

49

52 / 105

The normalized cut criterion
two community case

45

Ncut(A,B) =                     + 
cut(A,B) cut(B,A)
assoc(A) assoc(B)

q Produces more balanced partitions
q Avoids single nodes, Ncut = 1/1 + 1/(L-1) = L/(L-1) ≃ 1

sum of the links that connect 
the two communities

sum of the links departing 
from each community



The normalized cut criterion
general case versus modularity

46

Ncut = Σ (pi – Pii) / pi  > 0

A0
D0 = 1T A0 1 A = A0 /D0

pC = PCC 1 = C A 1 = C d

can be interpreted as a probability 
matrix linking communities, its entries 

are the sum of the links of A from 
community i to community j

PCC = C A CT

P11

P22

P33

P12 P13

P21 P23

P31 P32

can be interpreted as the probability 
vector of communities

Q = Σ (Pii – pi
2) < 1

i i

normalized cut

to be minimized to be maximized

modularity



The normalized cut criterion
two communities case

47

Ncut = cut
assoc1

+ cut
assoc2

= cut
assoc1 assoc!

= 1 − s A sT
1 − (s d)2

d = A 1A = 

Laplacian matrix   L 1 = 0

C =         = ½ v1

v2

1 + s
1 - s

cut = v1 A v2
T = ¼ (1 - s A sT)

assoc1 = v1 d = ½ (1 + s d)
assoc2 = 1- assoc1 = ½ (1 - s d)

Ncut = s L sT
1 − (s d)2 ,     L = diag(d) - A



Solving the binary case
an NP complex problem

48

minimize 
s L sT

1 − (s d)2

s. to s ∈ {±1}N

reference norm, 
weighted by dwork on s

s = a1 + b u, with <u,1>d = u d = 0
|u|d2 = 1

s L sT = b2 u L uT

s d = <s,1>d = a <1,1>d + b <u,1>d = a  

1 = |s|d2 = a2 |1|d2 + b2|u|d2 - 2ab <u,1>d = a2+b2

minimize u L uT

s. to |u|d2 = 1
u d = 0
s = a1 + 1−a2 u ∈ {±1}N

by construction 
sign(s) = sign(u) 

since |a|<1

an NP complex 
problem

still an NP complex problem
(but we can relax the binary constraint)



Spectral clustering
a suboptimum solution to the Ncut criterion in the binary case
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minimize u L uT

s. to |u|d2 = 1
u d = 0

sign(s) = sign(u)

v = diag(d)½ u  
sign(v) = sign(u)

minimize v L1 vT

s. to |v|2 = 1
v d = 0

sign(s) = sign(v)

L1 = I - diag(d)-½ A diag(d)-½
normalized Laplacian

positive semidefinite matrix

2 ≥ !1 ≥ !2 ≥ … ≥ !N-1 ≥ !N = 0

eN = deN-1 is Fiedler’s eigenvector
!N-1 is the algebraic connectivity

v = eN−1
sign(s) = sign(eN−1 )

Shi and Malik, “Normalized cuts and image 
segmentation," 2000 

Ng, Jordan, Weiss, "On spectral clustering: 
analysis and an algorithm," 2002



An example
of spectral clustering

50
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The spectral partitioning algorithm (Shi and Malik, Normalized cuts and image segmentation, 2000)

An example (of spectral partitioning)

xN =
p

d , �̆N = 0

•
••

•

•••
•
••

•••••
•

xN�1, �̆N�1 = 0.096

•••
•
••

•
•••

••
•••

•

xN�2, �̆N�2 = 0.441

••
•
•
••

•
•
•
•

••

••

••

vN = 1

••••••••••••••••

vN�1

••••••

•
•
••

••
••

••

vN�2

••
•

•
••

••

•
•

••

••

•

•
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eN eN-1 eN-2

Fiedler’s 
eigenvector 

provides the best 
partition

Introduction Dendrograms Girvan–Newman Modularity Spectral clustering Insights

The spectral partitioning algorithm (Shi and Malik, Normalized cuts and image segmentation, 2000)

An example

vN�1

vN�2

•1
•
2

•3

•
4

•
5•6

•7 •8

•9

•10

•11 •12

•13•
14

•15

•16
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eN-1

eN-2

but we can also use 
more eigenvectors for 
an enhanced partition 
effect (clustering can 
be performed on the 
new representation)

Ng, Jordan, Weiss, "On spectral clustering: 
analysis and an algorithm," 2002



network
NCP = network 

community profile

co
nd

uc
ta

nc
e
!

community size

The network community profile
and the role of conductance in the binary community case

51

conductance ! = cut / min(assoc, 1-assoc)
run your community detection 
algorithm(s) many times, for 

communities of the same size keep 
the one giving the lowest 

conductance value  

local minima  
identify good 

communities in our 
network



Typical	example:	General	Relativity	collaborations
(n=4,158, m=13,422)

11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 29

[Internet Mathematics ‘09]

The V shape of the NCP
explaining the core-periphery structure

52

q Dips in the graph correspond to the good communities
q Slope corresponds to the dimensionality of the network
q The V shape is common in large (social) networks
q Best communities have about 100 nodes à wiskers
q Large communities get worse performance à core



Takeaways
for conductance and the normalized cut criterion

53

q Normalized cut is an old quality measures that set the 
beginning of image segmentation (clustering) algorithms

q It only works for unsigned undirected graphs
q Its outcomes correlates in general with modularity, although the 

literature suggests it is a weaker measure 
q It is an alternative to modularity, better suited as a quality 

measure rather than as an optimization approach
q Do not spend any time in implementing any normalised cut 

optimization
q The performance of the spectral approach is weak, and for this 

reason it is deprecated (but will turn out useful later on)
q The network community profile provides an interesting view on 

the network structure, would like to see it implemented in jour 
projects



Infomap
an approach based on PageRank and information theory

54



The InfoMap principle
Rosvall, Bergstrom. "Maps of random walks on complex

networks reveal community structure." (2008) 
https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105?download=true

55

The most compact way of 
describing a random walk 
through a network is by 
encoding node entries according 
to their probability p (e.g., 
PageRank) using the Huffman
procedure that guarantees an 
average encoding length 

L ≳ H(p) = ∑ pi log(1/pi)

entropy based on the 
probability vector p

https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105?download=true


The InfoMap principle
the community view

56

Under a community assignment 
we can code the community we 
are in (each time we switch
community) and, separately, the 
nodes visited inside each 
community (+ the exiting state)

L ≳ PS H(sc) + ∑ Pi H(ui )

entropy based on the 
probability vector r

switching 
probability

probability of being 
in community i

community ranking 
(probability vector) 

under a switch

nodes ranking 
(probability vector) 
inside community i

(nodes include exit to 
another community)



The InfoMap principle
rationale

57

qWe want to optimize L wrt the 
community assignment 

qMore compact encoding = 
better community assignment

qWe expect that this 
corresponds to keeping the 
random walk inside the 
communities 

qA flow-based optimization
qDifferent (but related to) from 

modularity (strength-based)entropy based on the 
probability vector r



PageRank for nodes
node probability in a random walk with restart
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T = c M + (1-c) 1 1T / N

adjacency matrix (can be fractional)

transition probability 
matrix

random walk with restart 
formalization

M = A diag-1(d),       d = AT1

equally likely 
teleport vector

pt+1 = T pt , p = p∞Markov chain

PageRank equation p = T p 
= c M p + (1-c) 1/N

PageRank 
centrality vector

p is a stochastic vector whose entry pi is the 
probability of ending in node i à node view

transition probability 
matrix 1TT = 1T



PageRank for communities
extending the idea under a community assignment
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node 
view pn = Tn|n pn

transition probability matrix 1TTn|n = 1T

probability (PageRank) 
vector at steady state

Pnn = Tn|n diag(pn)
joint probability matrix at steady 
state Pnn 1 = pn , 1T Pnn = pnT

community 
view Pcc = C PnnCT joint probability matrix at steady 

state Pcc 1 = pc , 1T Pcc = pcT

Tc|c = Pcc diag(pc)-1 transition probability 
matrix 1TTc|c = 1T

pc = Pcc 1 = C pn probability vector at 
steady state pc = Tc|c pc



The community view
generating the entry codes
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node view community view
[Tc|c]11

[Tc|c]22

[Tc|c]33 [Tc|c]44

[Tc|c]42

[Tc|c]43

[T
c|c ]34

[T
c|
c] 2
4

[T c
|c
] 32[T c

|c
] 23

[Tc|c]12

[Tc|c]21

[Tn|n]21 no self-loops

self-loops do not 
explain switches 

between 
communities



View inside a community
generating nodes codes and exit codes
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node view

[Tn|n]21 [Tn|n]21

exit state 
(other 

communities)

Ci =
I 0
0T 1T

all nodes external to the 
community are put in a single 

entity (exit state)

all nodes internal to the 
community are kept separate

inside-the-community view
no self-loop

community i



Steady state probabilities
for community switch and inside communities
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S = [T - diag(T)] [I - diag(T)]-1 Si = [Ti - lowel(Ti)] [I - lowel(Ti)]-1
switching probability matrix 1TS = 1T

P = C Pnn CT

T = P diag(p)-1
p = P 1 Pi = Ci Pnn Ci

T

Ti = Pi diag(pi)-1
pi = Pi 1

q = [I - diag(T)] p
= p - vdiag(P)

eigenvector
zi = [I - lowel(Ti)] pi

= pi - vlowel(Pi)

keeps only the bottom right element

ui = zi / Pi

Pi = 1Tzi  

normalized
sc = q / Ps

Ps = 1Tq

community switch
inside community i

last element is qi



Wrap-up on InfoMap
works also with overlapping communities

63

adjacency matrix (can be fractional)

transition probability 
matrix

PageRank vector

M = A diag-1(d),       d = AT1

r = c M r + (1-c) 1/N

Here ci
is the ith
row of C

!" = $" diag )

*" = 1 − 1 − - $".
/ !". − - $" 0 !"1q vector entries

node domain

communities domain

2 3 = −4
5
65 log

65
∑5 65

entropy function
InfoMap 2 : + 4

<
2([*?, !?])



The InfoMap algorithm
an iterative procedure

64

q Assign every node to a community
q Merge the two communities that provide the 

best improvement in the InfoMap measure, 
until convergence

q Refine of the result by simulated annealing, 
moving one node per time

Not strikingly different from Louvain



Application example
map of science based on citation patterns as in 2008

65



Takeaways
for InfoMap

66

q InfoMap is an alternative quality metric to 
modularity 

q It is especially useful when the information 
available explains flows in the network

q Its fairly easy to calculate, which makes it a 
scalable approach

q Code for the standard approach is available 
on the web but only for non-overlapping 
communities



Normalized mutual information
a measure based on statistics

67



Venn diagram
on the statistical dependence among two discrete random variables

68

PXY
pX = PXY 1
pY = PXYT 1

joint probability matrix
projection on X

projection on Y

H(X) = !
"
#$ log(1/#$)

entropy of X

H(Y) = !
,
#- log(1/#-)

entropy of Y

joint entropy H(X,Y) = !
",,

/$- log(1//$-)

mutual information

I(X;Y) = !
",,

/$- log(/$-/#$#-)

information 
carried by X

information 
carried by Y

how much information of Y is 
explained by X (or viceversa)



Normalized mutual information
in unsupervised community detection

69

PC,C = C A CT

C community assignment to be assessed for quality

pC = PC,C 1

statistical dependencies about 
being in a community and 

ending in another

NMI(C) = I(C;C)
H(C)

CC
fraction of knowledge related to the 

community we will end up in (between 
0 and 1, equal to 1 for statistically 

independent communities)

probability of 
ending in a 
community

can also use H(C,C), but its 
interpretation is weaker

ending community starting 
community

We assume a true 
joint probability 

description Pnn is 
available, e.g., a 

normalized 
adjacency A



Wrap-up
on metrics for community detection

72



Takeaways
on quality measures – unsupervised community detection
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quality measure approach un
di

re
ct

ed

di
re

ct
ed

ov
er

la
pp

in
g

si
gn

ed

Modularity number of links inside communities, 
compares to a random model

YES YES YES YES

Conductance, Ncut number of links outside communities 
divided by total links of the community

YES NO YES NO

Normalized mutual 
information

fraction based on entropies and mutual 
information

YES YES YES NO

InfoMap average encoding length under a 
PageRank information flow

YES YES YES NO

would be nice to see these in your projects



BigCLAM
a simple statistical inference model for community detection
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The statistical inference approach
statistically modeling a graph

76

q Let p(A|!) be a probabilistic model describing a network 
(i.e., its adjacency matrix A) through some parameters !

q The parameters ! are assumed to capture relevant 
information about the network, e.g., its community 
structure

q An a priori statistical description p(!) of the parameters 
can also be available, in case it is not simply set p(!)=1 
(i.e., consider equally likely parameters)

q Since, for a given network, A is known, the optimal
parameters fit is found by the maximum a posteriori (MAP) 
principle 

"! = argmax ! p(A|!) p(!)



The BigCLAM statistical model
for binary adjacency matrices A

77

communities are described through probabilities 
pc that express the probability that a link 

between two nodes (inside the community) is 
active, these are collected in vector p

we assume 
overlapping
communities

the map from nodes to communities 
is collected in a C x N membership 
matrix C whose ith column ci is a 

binary vector identifying the 
communities to which node i belongs

ci = [0 1 1 0 1] tells that 
node i belongs to 

communities 2, 3, and 5



The BigCLAM statistical model
probability of not activating an edge

78

Probability Qij that edge (i,j) is not active                       
is the probability that it is not active in any                     
of the communities linking i and j, that is

Qij = ∏"#$%∩$' (1−pc)

log(Qij) = ∑"#$%∩$' log(1−pc) = ciT diag log(1-p) cj

Q = exp(-CT diag(q) C) , q = -log(1-p) > 0

communities in 
common 

between i and j

Here ci
is the ith
column 

of C



The BigCLAM statistical model
Yang & Leskovec, Overlapping community detection at scale: 

a nonnegative matrix factorization approach,  (2013)

The graph probability description p(A|C,q) therefore is

p(A|Q) = ∏ ",$ ∈ℰ (1−Qij) ∏ ",$ ∉ℰ Qij

edge set ℰ = {(i,j) | aij = 1}

maximize p(A|Q)
wrt C, q 
s.to Q = exp(-CT diag(q) C)

C binary, q > 0

NP complex 
reference 
optimization problem

need to set the number C of 
communities, A is binary

79



Model relaxation
a relaxed counterpart to the optimization problem

log p(A|M) = ∑ ",$ ∈ℰ log(1−Qij) + ∑ ",$ ∉ℰ log(Qij)

= ∑ ",$ ∈ℰ log
1−Qij

Qij
+ ∑",$ log(Qij)

= −∑ ",$ ∈ℰ g mi
Tmj − ∑",$ mi

Tmj

we relax the binary constraint 
(and include q into C)

maximize p(A|C,q)
wrt C, q 
s.to Q = exp(-CT diag(q) C)

C binary, q > 0

maximize log p(A|M)
wrt M 
s.to Q = exp(-MT M)

M > 0

log(Qij) = -mi
T mj

80g x = −log(ex − 1)

we add some 
log(Qij) here

we obtain an overlapping community 
assignment by normalizing 

M = sqrt(diag(q)) C by column

Here mi
is the ith
column 

of M



The BigCLAM algorithm
a gradient descent search for the optimum

min ∑",$∈&"
g mi

Tmj + ∑",$ mi
Tmj

wrt mi > 0  

81

g x = −log(ex − 1) convex for x>0neighbours 
of node i

convex problem with 
linear constraints

g′ x = −1/(1 − e−x)

can be solved using 
gradient descent methods 
and standard algorithms

∇12 = 3
$∈&"

2 g’ mi
T mj mj +3

$
2 mj

g’’ x = e−x/(1 − e−x)2



BigCLAM quality performance
compared to state-of-the-art algorithms at the time

82

Measures

Normalized Mutual Information
Number of Communities

-index
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Figure 7: Performance of detecting ground-truth communities. While being 10 to 100 times faster than competing approaches
BIGCLAM also achieves overall best performance in the “accuracy” of detected communities.
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Measures Community QualityOverlap Quality Overlap Coverage Community Coverage
Methods B BIGCLAML Link Clustering C Clique Percolation Mixed-Membership Stochastic Block ModelsM

Network N E

PPI (Y2H) 1,647 2,518
PPI (AP/MS) 1,004 8,319
PPI (LC) 1,213 2,556
PPI (All) 1,647 12,784
Metabolic 1,042 8,756
Philosophers 1,218 5,972
Word Association 5,018 55,232

Figure 8: Experiments on the data and evaluation metrics used in Ahn et al. [1]. N : Number of the nodes, E: Number of the edges.

Since l1 regularization introduces sparsity to matrix F , we only
need to keep track of latent factors with non-zero value, which de-
creases the memory requirements of our method. We use λ = 10
for Amazon, Youtube, and DBLP and λ = 5000 for LiveJournal.
We update Fu (Solving Eq. 3) for multiple nodes in parallel. With
20 threads, it takes about one day to fit BIGCLAM to the LiveJour-
nal network (4M nodes, 35M edges).

As our baselines from the previous experiments do not scale to
these networks, we consider two well-known graph partitioning
methods as baselines: Metis [16] and Graclus [6]. For Graclus
and Metis, we set the number of communities to detect K to be
the number of ground-truth communities and use the same K for
BIGCLAM as well.

Similarly to experiments in Figure 7, we measure the accuracy
of detected communities using F-1 score and Omega index (NMI
is omitted as all the methods perform the same). Moreover, notice
that grund-truth communities in our data are partially annotated as
some nodes might not indicate their memberships.This means it is
important to quantify the Recall of a given method. We define Re-
call as the average Recall of best-matching detected communities:

Recall(C∗, Ĉ) =
1

|C∗|
∑

Ci∈C∗

Rc(Ci, ˆCg(i))

where Rc(Ci, Ĉj) is the recall of Ĉj under the best matching g.
Since the two baselines (Graculus and Metis) perform very sim-

ilarly in all metrics, we take just the best value among the two in
each case rather than showing the result of baselines separately. For
each network and each score, we pick the best score x among the
two baselines and compute the relative improvement of BIGCLAM

over the x, i.e., Score(BIGCLAM)−x
x . Table 2 shows the relative im-

provement of BIGCLAM over the baselines. For example, 0.21 for

Dataset Ω-Index F-1 Recall
LiveJournal 2.70 0.21 0.43
Youtube 1.60 0.39 0.82
Amazon 0.00 0.00 0.23
DBLP 0.10 0.03 0.29
Average 1.10 0.16 0.44

Table 2: Relative improvement of BIGCLAM over Metis and
Graclus in detecting communities in large scale networks. Pos-
itive value indicates that BIGCLAM outperforms the baselines.

F-1 in LiveJournal means that BIGCLAM achieves 21% higher F-1
score than the best baseline (Metis in this case).

Overall, BIGCLAM outperforms the baselines in nearly all cases.
On average, BIGCLAM achieves 110% higher Omega index, 16%
higher F-1 score, and 44% higher average Recall, which means that
BIGCLAM achieves 57% relative improvement on average among
the three scores. Furthermore, BIGCLAM outperforms the base-
lines in every measure and every network. The absolute value of
the scores of BIGCLAM is 0.11 (Omega index), 0.13 (F-1 score),
and 0.32 (Recall). Overall, the results emphasize the need for a
scalable and accurate overlapping community detection method as
graph partitioning methods fail to detect overlapping communities.
Results demonstrate that BIGCLAM could be the needed solution.

7. CONCLUSION
In this paper we developed a novel large scale community detec-

tion method that accurately discovers the overlapping community
structure of real-world networks. We identified a set of networks
where nodes explicitly state their ground-truth community mem-
bership and studied the connectivity of ground-truth communities
and their overlaps. We observed that the overlaps of communi-
ties are more densely connected than the non-overlapping parts of
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Figure 7: Performance of detecting ground-truth communities. While being 10 to 100 times faster than competing approaches
BIGCLAM also achieves overall best performance in the “accuracy” of detected communities.
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Figure 8: Experiments on the data and evaluation metrics used in Ahn et al. [1]. N : Number of the nodes, E: Number of the edges.

Since l1 regularization introduces sparsity to matrix F , we only
need to keep track of latent factors with non-zero value, which de-
creases the memory requirements of our method. We use λ = 10
for Amazon, Youtube, and DBLP and λ = 5000 for LiveJournal.
We update Fu (Solving Eq. 3) for multiple nodes in parallel. With
20 threads, it takes about one day to fit BIGCLAM to the LiveJour-
nal network (4M nodes, 35M edges).

As our baselines from the previous experiments do not scale to
these networks, we consider two well-known graph partitioning
methods as baselines: Metis [16] and Graclus [6]. For Graclus
and Metis, we set the number of communities to detect K to be
the number of ground-truth communities and use the same K for
BIGCLAM as well.

Similarly to experiments in Figure 7, we measure the accuracy
of detected communities using F-1 score and Omega index (NMI
is omitted as all the methods perform the same). Moreover, notice
that grund-truth communities in our data are partially annotated as
some nodes might not indicate their memberships.This means it is
important to quantify the Recall of a given method. We define Re-
call as the average Recall of best-matching detected communities:

Recall(C∗, Ĉ) =
1

|C∗|
∑

Ci∈C∗

Rc(Ci, ˆCg(i))

where Rc(Ci, Ĉj) is the recall of Ĉj under the best matching g.
Since the two baselines (Graculus and Metis) perform very sim-

ilarly in all metrics, we take just the best value among the two in
each case rather than showing the result of baselines separately. For
each network and each score, we pick the best score x among the
two baselines and compute the relative improvement of BIGCLAM

over the x, i.e., Score(BIGCLAM)−x
x . Table 2 shows the relative im-

provement of BIGCLAM over the baselines. For example, 0.21 for

Dataset Ω-Index F-1 Recall
LiveJournal 2.70 0.21 0.43
Youtube 1.60 0.39 0.82
Amazon 0.00 0.00 0.23
DBLP 0.10 0.03 0.29
Average 1.10 0.16 0.44

Table 2: Relative improvement of BIGCLAM over Metis and
Graclus in detecting communities in large scale networks. Pos-
itive value indicates that BIGCLAM outperforms the baselines.

F-1 in LiveJournal means that BIGCLAM achieves 21% higher F-1
score than the best baseline (Metis in this case).

Overall, BIGCLAM outperforms the baselines in nearly all cases.
On average, BIGCLAM achieves 110% higher Omega index, 16%
higher F-1 score, and 44% higher average Recall, which means that
BIGCLAM achieves 57% relative improvement on average among
the three scores. Furthermore, BIGCLAM outperforms the base-
lines in every measure and every network. The absolute value of
the scores of BIGCLAM is 0.11 (Omega index), 0.13 (F-1 score),
and 0.32 (Recall). Overall, the results emphasize the need for a
scalable and accurate overlapping community detection method as
graph partitioning methods fail to detect overlapping communities.
Results demonstrate that BIGCLAM could be the needed solution.

7. CONCLUSION
In this paper we developed a novel large scale community detec-

tion method that accurately discovers the overlapping community
structure of real-world networks. We identified a set of networks
where nodes explicitly state their ground-truth community mem-
bership and studied the connectivity of ground-truth communities
and their overlaps. We observed that the overlaps of communi-
ties are more densely connected than the non-overlapping parts of
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BigCLAM complexity
compared to state-of-the-art algorithms at the time
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6.1 Experiments on synthetic networks
Using synthetic networks we investigate the scalability and con-

vergence of the BIGCLAM optimization problem.

Convergence of BIGCLAM. Non-negative matrix factorization is
non-convex which means that gradient based approaches do not
guarantee to find an optimal solution. To verify that our fitting
algorithm does not suffer too much from local optima, we conduct
the following experiment on synthetic networks. We generated 100
synthetic networks using the AGM model [35]. For each of these
networks, we then fit BIGCLAM using 10 different random starting
points and attempt to recover the true community affiliations.

In 98% of cases our fitting algorithm finds true communities
with reliable accuracy (F1-score of node community memberships
higher than 0.85), and in 27% of cases our algorithm discovers the
communities almost perfectly (F1-Score > 0.95). This result sug-
gests that the optimization space has several local optima which
almost equivalent to the global optimum.

Scalability of BIGCLAM. We also evaluate the scalability of BIG-
CLAM by measuring the running time on the networks of increas-
ing sizes.For comparison, we compare the runtime of the following
overlapping community detection methods:

• NMF: Least squares non-negative matrix factorization. We solve
the following problem: argmaxFuk≥0 ||A−F ·F T ||F where A
is an adjacency matrix of a given network. We used a projected
gradient descent as we do with BIGCLAM.

• BIGCLAM(Naive): BIGCLAM without the optimization in Eq. 4.

• LC: Link Clustering method [1].

• CPM: Clique Percolation method [25].

• MMSB: Mixed-Membership Stochastic Blockmodel [2].

Link Clustering, Clique Percolation Method and Mixed Mem-
bership Stochastic Blockmodels are considered the state-of-the-art
overlapping community detection methods. We used the imple-
mentation of LC and CPM in the Stanford Network Analysis Plat-
form2. For MMSB we used publicly-available ‘LDA’ R package.
For CPM, we use the clique size k = 5 for CPM. For MMSB,
we set the number of communities to detect to K = 10. We also
consider NMF and BIGCLAM (Naive) so that we can compare the
performance gain due to the optimization described in Eq. 4.

Figure 5 shows the results. NMF, BIGCLAM(Naive) and MMSB
scale to networks of around 1,000. LC and CPM scale to networks
of about 10,000 and then their runtime becomes prohibitively large.
On the other hand BIGCLAM can process networks with hundreds
of thousands of nodes within 20 minutes. This means that BIG-
CLAM can easily process networks 10 to 100 times larger than
other approaches (and while also more accurately detecting com-
munities). Last, note that the optimization of BIGCLAM defined
in Eq. 4 speeds up the algorithm for around 100 times and is thus
essential for making BIGCLAM scale to large networks.

6.2 Experiments using real ground-truth
We also examine the performance of BIGCLAM using the 6 net-

works with ground-truth communities that we described in Sec-
tion 3. In these networks nodes explicitly state their ground-truth
community memberships which allows us to quantify the ‘accu-
racy’ of community detection methods by evaluating the level of
correspondence between detected and ground-truth communities.
Experimental setup. We are given an unlabeled undirected net-
work G (with known ground-truth communities C∗) we aim to dis-

2SNAP: http://snap.stanford.edu/snap
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Figure 5: Algorithm runtime comparison. BIGCLAM runs 10
to 100 faster than competing approaches.

Figure 6: Sampling subnetworks of G.

cover communities Ĉ such that discovered communities Ĉ closely
match the ground-truth communities C∗.

Even though our algorithm can process the networks described
in Table 1, all the baseline methods do not scale to networks of
such size. To allow for comparison between our and the baseline
methods we use the following evaluation scenario where the goal
is to obtain a large set of relatively small subnetworks with over-
lapping community structure. To obtain one such subnetwork we
pick a random node u in the given graph G that belongs to at least
two communities. We then take the subnetwork to be the induced
subgraph of G consisting of all the nodes that share at least one
ground-truth community membership with u. Figure 6 illustrates
how a subnetwork (right) is created from G(V,E) (left) based on
the red node u. Note that on average 95% of all ground-truth com-
munities overlap which means that this procedure does not bias
towards overlapping communities. In our experiments we created
500 different subnetworks for each of the six datasets.
Baselines for comparison. For baselines we choose three most
prominent overlapping community detection methods: Link clus-
tering (LC) [1], Clique Percolation Method (CPM) [25], and the
Mixed-Membership Stochastic Block Model (MMSB) [2].

These methods have a number of parameters that need to be set.
For CPM, we set the clique size k = 5 since the number of commu-
nities discovered by CPM with k = 5 best approximates the true
number of communities. For MMSB, we have to set the number of
communities K as an input parameter. We use the Bayes Informa-
tion Criterion to choose K. While we require “hard” community
memberships, MMSB returns stochastic node memberships to each
of the K communities. Thus, we assign a node to a community if
the corresponding stochastic membership is non-zero. We also con-
sidered Infomap [27], which is the-state-of-the-art non-overlapping
community detection method. We omit the results as the perfor-
mance of the method was not competitive.

Evaluation metrics. The availability of ground-truth communi-
ties allows us to quantitatively evalute the performance of commu-
nity detection algorithm. Without ground-truth such evaluation is
simply not possible. For evaluation we use metrics that quantify
the level of correspondence between the detected and the ground-
truth communities. Given a network G(V, E), we consider a set of
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Takeaways
for BigCLAM

84

q A simple statistical inference model to explain the 
concept

q A proof of concept
q Highly scalable
q Applicable to binary symmetric adjacency matrices only 
q Literature shows its performance may be not striking 

with synthetic networks
q Would be interesting to see it implemented in your 

projects J



Stochastic Block Models
SBM for community detection
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Stochastic block model - SBM
for a binary adjacency matrix
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q probability block matrix B
q B is not stochastic, simply 0 ≤ B ≤ 1

q Bab expresses the probability that a node in community a links 
to a node in community b

q community indicator vector c
q ci expresses the community of node i
q edges are Bernoulli distributed (conditioned on their group

memberships) with probability !"#"$

Stochastic model:

binary adjacency matrix

p(A|B,c) = ∏#,$ !"#"$
'#$ 1 − !"#"$

*+'#$

!"#"$ = [CT B C]ij = ciT B cj

can also be expressed in terms of the 
community assignment matrix C

i < j for undirected networks

Here ci
is the ith
column 

of C



SBM examples
assortative and ordered communities case
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.5 .1 .1 .1 .1

.1 .5 .1 .1 .1

.1 .1 .5 .1 .1

.1 .1 .1 .5 .1

.1 .1 .1 .1 .5

assortative communities

.5 .3

.3 .5 .3

.3 .5 .3

.3 .5 .3

.3 .5

ordered communities

B = 



SBM examples
random and core-periphery communities case
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.2 .2 .2 .2 .2

.2 .2 .2 .2 .2

.2 .2 .2 .2 .2

.2 .2 .2 .2 .2

.2 .2 .2 .2 .2

random graph

.7 .24 .14 .09 .05

.24 .42 .14 .09 .05

.14 .14 .25 .09 .05

.09 .09 .09 .15 .05

.05 .05 .05 .05 .09

core-periphery structure

B = 



Some remarks
on the SBM model
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q SBM can naturally handle directed and undirected networks

q for undirected networks we force B to be symmetric

q we relax this assumption for directed networks: in this way the 

probability of a link running in one direction is different of the 

probability that a link runs in the opposite direction

q SBM can also naturally handle overlapping communities, as

CT B C makes sense also in this case

q closely related to BigCLAM

log p(A|B,c) = ∑",$ %&' log 1 − -&' + 1 − %&' log -&'
-&'= 1- ciTB cj≅ exp(−ciTB cj)

SBM assumption BigCLAM assumption, with diagonal B



Compact form
for binary A and non-overlapping communities
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log p(A|B,C) = ∑",$ %&' log +,",$ + 1 − %&' log 1 − +,",$

max 3
4,5

678 log +45 + 978 − 678 log 1 − +45

s. to = ≥ 0, M = C A CT, N = C 1 1T CT

number of active links 
between communities

max number of links 
between communities

max 3
4,5

678 log 645 + 978 − 678 log 978 − 678

−978 log 945
s. toM = C A CT, N = C 1 1T CT

@+45= 645/945



Degree-corrected SBMs
Karrer, Newman. "Stochastic blockmodels and 

community structure in networks." (2011)
https://www.asc.ohio-state.edu/statistics/dmsl/Karrer_Newman_2010.pdf
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log p(A|B,C) = ∑",$ %&' log +&,'-.".$ − +&,'-.".$

node-dependent parameters added

max 3
4,5

678 log 645/:78

s. toM = C A CT, N = M 1 1T MT

this is PCC this is pC pCT

this is mutual 
information I(C;C)

Poisson 
approximation

> ?; A =

CDE, ? = 0
A CDE, ? = 1
A?CDE

?!
, otherwise

binary A, 
non-overlapping 

communities



Further remarks
on the SBM model
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q approximations make the problem simple

q can naturally handle undirected and weighted networks, 
and overlapping communities, but we are forcing its
interpretation

q the degree-corrected model indentifies mutual
information I(C;C) as the cost measure: strongly related
to NMI: strenghtens that result

q can be optimized by

Gibbs sampling/Simulated annealing, Gradient descent, 
Expectation Maximization, Variational inference



Mixed membership SBM
Airoldi, et al. "Mixed membership stochastic blockmodels." (2008)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119541/pdf/nihms54993.pdf
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!"# $%& ' $( = !"# *
+,-

.%(/0
1%/ 2/0 1(0

.%(/0
≥*

+,-
.%(/0 log

1%/ 2/0 1(0

.%(/0

.%(/0 =
1%/ 2/0 1(0

$%& ' $(

f(', 7, 8, 9) = ∑;,<,+,- =%( .%(/0 log
>;+ ?+- ><-

@;<+-
+ 1 − =%( D%(/0 log

>;+ EF?+- ><-
G;<+-

we use a variational approach

distribution function, 
sums up to 1

equality for

/=H',7log I J ', 7 = /=H',7,8,9 f(', 7, 8, 9)
can use an alternating minimization approach

Here ci is 
the ith

coumn of C

log I J 7, ' =*
;,<

=%( log $%& ' $( + 1 − =%( log 1 − $%& ' $(

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119541/pdf/nihms54993.pdf


Equations update
alternating search for the maximum
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dummy distributions update

!"# =
∑&,( )*+ ,*+-.

∑&,( )*+ ,*+-./ 01)*+ 2*+-.
< 1

34" =
∑+,. 546 746"# + (1 − 546)=46"# + 564 764#" + (1 − 564)=64#"

∑+ 2

746"# =
34" !"# 36#
?4@ A ?6

=46"# =
34"36# − 34"!"# 36#

1 − ?4@ A ?6

mixing matrix update

community assignment update (normalized)

q simple algorithm, but not really scalable

q soft community assignments

q binary matrix A

none is 0, 
need to threshold



Weighted SBM
Christopher, Jacobs, Clauset. "Learning latent block

structure in weighted networks." (2015)
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log $ % &, (, ) = +,
-,.
log $/0123045(407|307 = 90: & 97)

+(1 − +),
-,.
407 log $? (@07|A07 = 90: ( 97)

binary form of the 
adjacency matrix 

(active/inactive link)
standard SBM contribution, e.g., 

based on binomial

additional SBM contribution, 
to model edge stenght

mixing parameter

true weights of the 
adjacency matrix

parameters for weights, 
community based

chosen distribution for 
weights, e.g., Gaussian



Weighted SBM
a few plausible distributions
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normal

exponential

log-normal
−½ log 2&'2 −½

( − ) 2

'2

log * − *(
− log Γ , -, + , − 1 log ( − (-

−½ log 2&'2 − log(() −½
log(() − ) 2

'2

gamma



Weighted SBM
the exponential and Gaussian case
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log $ % &, (, ) = ½+
,,-
−/01 log 203 ( 21 − /01 401 − 203 & 21 2

203 ( 21

log $ % 6, ) =+
,,-
/01 log 203 6 21 − 401 203 6 21

can be converted in useful form by variational 
inequality (it exploits the concavity of log(x))

same here, thanks to concavity of 
both functions –x2 and -1/x

-log(x) is convex, so in this case the 
approach does not work

variational Bayes solutions are needed 
for overlapping communities!



Takeaways
for stochastic block models
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q an advanced generative model to capture the underlying 
network structure

q easily extendable to a many different scenarios

q optimization problem is difficult to solve (but efficient methods 
exist)

q not fully scalable
q some models (e.g., degree-corrected SBM) provide results 

related to NMI, and modularity

q performance not always striking with synthetic networks
q would be interesting to see it implemented in your projects J



Dendrograms
an older (but still in use) approach to community detection
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Dendrograms
overall idea for community detection

101

1 - instructor
34 - president
Correct but node 3

Zachary’s karate club network

social ties and rivalries in a 
university club; during observation 
conflict led the group to split



Modularity in dendrograms
for selecting the number of clusters

102

… but NMI, normalized cut or InfoMap measures would also work



Two approaches
to dendrograms
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Dendrograms is an hierarchical clustering algorithm that can be 
approached in two ways:

q Agglomerative: progressively add edges, from the strongest and 
ending with the weakest ones; new connected components that 
arise identify a new (upper) dendrogram level

q Divisive: progressively delete edges, from the strongest and 
ending with the weakest ones; new disconnected components 
that arise identify a new (lower) dendrogram level

Performance strongly depends on the chosen weight (local weight 
definitions typically provide weak solutions)



Girvan-Newman method
a divisive approach
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Repeat until no edges are left in the graph:

q (re)calculate edge betweenness in the 
current graph – complexity O(LN) by 
using a smart algorithm

q remove edges with highest
betweenness

Complexity O(L2N) à pretty scalable

Recalculation step is essential to detect 
meaningful communities
May provide poor results: useful method, far 
from perfect

Girvan, Newman. "Community structure in social and biological networks." (2002)
https://www.pnas.org/doi/full/10.1073/pnas.122653799

https://www.pnas.org/doi/full/10.1073/pnas.122653799


Edge betweeness
a generalization of node betweenness
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bij = 

where !kl is the # of shortest paths
connecting k to l, and !kl (i,j) the 
subset of these including edge (i,j)
q expresses centrality of a link in 

the network
q can be normalized to range [0,1]

( bij – bmin ) / ( bmax – bmin )

edge betweenness in a 
cellular call network



Calculating betweeness
Part 1
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1

2 3

4 5

6

1

2

Breadth first search 
(from node 1)

3

1

2 3

4 5

6

Count # of shortest paths 
(from node 1)

1

1

1

2
1

3



Calculating betweeness
Part 2
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1

2 3

4 5

6

Measure edge flow 
(fractions)

1

1

1

2
1

3

2/3

1/3

1 1/2
1/2

1 1
1

2 3

4 5

6

Measure edge betweenness 
(from node 1)

1+4/3+5/6=19/6

1+2/3=5/31+1/3=4/3

1

2/31/3

1

1/2 1/2

1 1

2/3
1/3 

4/3
5/6

5/6

19/6

1+5/6=11/6

11/6

… then repeat for all other nodes!!! O(LN)



Agglomerative clustering
a toy example based on Euclidean distance
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DendrogramNetwork

Algorithm

q Start with each node being a separate community
q Progressively add a community to the one that is closer



HDBSCAN
an agglomerative approach
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K = number of nearest neighbours
to be considered

this sets the core distance of a 
node

the mutual reachability distance 
between two nodes is the 
maximum between their effective 
distance and their core distances

under this metric dense points (with low core distance) 
remain the same distance from each other but sparser
points are pushed away to be at least their core distance
away from any other point



HDBSCAN
the clusters hierarchy
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Step 1
by using the mutual reachability 
distance, build a minimum 
spanning tree (a spanning three 
whose sum of the edge weights 
is as small as possible)

Step 2
build a cluster hierarchy by adding links 
in the spanning tree in order of distance, 
starting from the links with smaller 
distance (agglomerative approach)



HDBSCAN
identifying good communities
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Step 3
simplify the hierarchy by removing (from 
top to bottom) those branches that have 
size less than the minimum cluster size
parameter, to avoid outliers 

Step 4
identify a stability value for each 
cluster as

∑" #
$"
− #

$&'()*

small branches 
departing from 

the main 
community

a community 
splitting in two distance at which 

node n fell out of 
the cluster

distance at 
which the 

cluster is born

keep the parent cluster (⭐) if 
its stability is bigger than the 
sum of the stabilities of its two 
child clusters, otherwise iterate 
(keep the communities that last 
longer)

⭐ ⭐
⭐



A comparison example
https://hdbscan.readthedocs.io/en/latest/index.html

112

outliers due 
to minimum 
cluster size



Complexity comparison
https://hdbscan.readthedocs.io/en/latest/index.html

113



HDBSCAN parameters
main parameters
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the more elaborate excess of mass 
approach (’eom’), or simply select 
leaves (‘leaf’) for a finer par::on

parameter K identifying the core distance, 
set by default to min_cluster_size

(small K à true distances and few outliers, 
larger K à many outliers)

class hdbscan.hdbscan_.HDBSCAN(
min_cluster_size = 5,
min_samples = None,

metric = 'euclidean’,

algorithm = ‘best’,
approx_min_span_tree = True,

cluster_selection_method = 'eom’,

allow_single_cluster = False)

how to calculate distances from data 
vectors, e.g., ‘cosine’, ’dice’, ‘euclidean’ –

can also be ‘precomputed’ from a 
similarity matrix A in which case dij=1/aij or 
if correlation values A are available dij=1-aij

options for the spanning tree algorithm



HDBSCAN in BERTopic
clustering documents into different topics

115

1. each document 
is mapped into an 

embedding
(vector) by BERT

2. cosine metric is 
used to iden=fy 
distances among 

documents

3. HDBSCAN is run 
to identify topics

topic 1
topic 1



HDBSCAN in BERTopic
hierarchical clustering of topics
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HDBSCAN hierarchy of topics, with those selected



Takeaways
for HDBSCAN
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q an advanced agglomerative method to identify 
communities (clusters)

q works on distance (or similarity) data 
q fully scalable
q it implements overlapping communities (soft 

clustering)
q striking performance with communities that are not 

exaggeratedly overlapping in space
q it naturally generates outliers, since small clusters 

are dropped
q mostly dependent on the min_cluster_size

parameter



Clique percolation
what should never be used for overlapping community detection
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Clique percolation
general idea
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¡ Two	nodes	belong	to	the	same	community	if	
they	can	be	connected	through	adjacent	k-
cliques:

11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 8

4-clique

Adjacent 4-cliques

Communities for k=4

[Palla et al., ‘05]

Non-adjacent 4-cliques

Idea
q Two nodes belong to the same community if they 

can be connected through adjacent k cliques

k clique
q Fully connected graph of k nodes
Adjacent k cliques
q Overlap in k-1 nodes



Clique percolation
the algorithm

120
11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 10

(1) Graph (2) Clique overlap 
matrix

(3) Thresholded
matrix at 3

(4) Communities
(connected components)

¡ Start	with	graph
¡ Find	maximal	
cliques

¡ Create	clique	
overlap	matrix

¡ Threshold	the	
matrix	at	value	k-1
§ If !"# < % − 1 set	0

¡ Communities	are	
the	connected	
components	of	
the	thresholded
matrix

Cliques

C
liq

ue
s

Overlap 
size

(1) identify cliques

(2) Build a 
clique overlap 
matrix

(3) Set a threshold 
(the one providing 
the richest
community structure 
= most widely 
distributed cluster 
sizes)

overlap in 2 nodes



Takeaways
for clique percolation
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q simple approach (too simple?)
q reasonably scalable
q it implements overlapping communities
q very poor performance
q it is based on a wrong overlapping model

q do not use it!

¡ Many	overlapping	community	detection	
methods	make	an	implicit	assumption:	
§ Edge	probability	decreases	with	the	
number	of	shared	communities

38

Network Adjacency matrix

Nodes

N
od

es

Is this true?

fewer 
connections in 

the overlap



Wrap-up
on community detection
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Algorithms
for unsupervised community detection
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algorithm rationale w
ei
gh
te
d

di
re
ct
ed

ov
er
la
pp
in
g

si
gn
ed

sc
al
ab
le

Louvain optimizes modularity YES YES YES YES YES

Spectral clustering optimizes Ncut based on the 
normalized Laplacian YES YES YES NO YES

Infomap optimizes the InfoMap measure YES YES YES NO YES

BigCLAM model based approach NO NO YES NO YES

SBM model based approach YES YES NO YES NO

MM-SBM model based approach YES YES YES YES NO

Girvan-Newman divisive dendrogram based on 
betweenness YES YES NO NO NO

HDBSCAN agglomerative approach based on 
distances YES NO YES YES YES

Clique percolation approach based on cliques 
overlapping YES NO YES NO NO



Timeline
on community detection development
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6k

4k

2k

8k

community 
detection papers 

in Scopus
(deep learning is only 

10 times bigger)



Readings
on community detection approaches and measures
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Fortunato, "Community detection in graphs." (2010) 
https://doi.org/10.1016/j.physrep.2009.11.002

Fortunato, Newman. "20 years of network community detection." (2022)
https://www.nature.com/articles/s41567-022-01716-7

Clement, Wilkinson. "A review of stochastic block models and extensions
for graph clustering." (2019)

https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0232-2

Di, et al. "A survey of community detection approaches: From statistical
modeling to deep learning." (2021)

https://ieeexplore.ieee.org/abstract/document/9511798

Xing, et al. "A comprehensive survey on community detection with deep
learning." (2022).

https://doi.org/10.1109/TNNLS.2021.3137396

https://doi.org/10.1016/j.physrep.2009.11.002
https://www.nature.com/articles/s41567-022-01716-7
https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0232-2
https://ieeexplore.ieee.org/abstract/document/9511798
https://doi.org/10.1109/TNNLS.2021.3137396


SBMs in multi-layer networks
some readings
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q De Bacco, Power, Larremore , Moore, "Community 
detection, link prediction, and layer interdependence in 
multilayer networks." (2017)

core.ac.uk/download/pdf/146486854.pdf

q Contisciani, Power, De Bacco. "Community detection with 
node attributes in multilayer networks." (2020)

www.nature.com/articles/s41598-020-72626-y

q Contisciani, Battiston, De Bacco. "Inference of hyperedges
and overlapping communities in hypergraphs." (2022)

www.nature.com/articles/s41467-022-34714-7

https://core.ac.uk/download/pdf/146486854.pdf
https://www.nature.com/articles/s41598-020-72626-y
https://www.nature.com/articles/s41467-022-34714-7


Python software tools
a few of the many available
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q NetworkX networkx.org/documentation/stable/index.html

louvain_communities L
girvan_newman

q iGraph python.igraph.org/en/stable/

community_infomap
community_edge_betweenness
community_optimal_modularity
louvain.find_partition J

q SciKit Learn scikit-learn.org/stable/modules/classes.html#

sklearn.cluster.SpectralClustering

q GitHub
BigCLAM github.com/RobRomijnders/bigclam
Mixed membership SBM github.com/aburnap/Mixed-Membership-Stochastic-Blockmodel
Multilayer SBM github.com/MPI-IS/multitensor + github.com/mcontisc/MTCOV

weighted, directed, 
non-overlapping

weighted, undirected, 
non-overlapping

unweighted, directed, 
overlapping

https://networkx.org/documentation/stable/index.html
https://python.igraph.org/en/stable/
https://scikit-learn.org/stable/modules/classes.html
https://github.com/RobRomijnders/bigclam
https://github.com/aburnap/Mixed-Membership-Stochastic-Blockmodel
https://github.com/MPI-IS/multitensor
https://github.com/mcontisc/MTCOV


Network repository
https://networkrepository.com/index.php
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https://networkrepository.com/index.php


Takeaways
for your projects
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q Louvain community detection is the bare minimum for any 
project

q want to see different metrics on it (modularity, Ncut, NMI, 
InfoMap) though

q comparing the performance of Louvain with algorithms available 
in the literature is a plus

q a very good project would implement an algorithm, e.g., 
overlapping Louvain/InfoMap/NMI or BigCLAM/MM-SBM



Correlation networks
a few insights

130



How can you correlate data?
an overview
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Cosine similarity

norm 2

Pearson correlation coefficient

r ", $ = " − '( ) ($ − '+)
-( -+

cos ", $ = ")$
" 2 |$|2

positive for positive 
valued data x and y

always with a sign

Sørensen-Dice coefficient
dice ", $ = ")$

½ " 1 +½|$|1
for binary data    

(it is an F1 score) 
always positive



Tax questionnaire example
Pearson correlation used
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x and y data are 
values (binary or 
not) for different 

categories among 
a wide set of 

people interviewed

(can do the same 
with posts and 

sentiment analysis 
over the posts)



Tax questionnaire example
signed (and soft) Louvain community detection
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positive and 
negative attitudes, 

although 
negatively 

correlated, appear 
in the same 

community !?!?!

Louvain reveals 
categories that are 

related one 
another 



Tax questionnaire example
how Louvain solves correlation inconsistencies
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the two tax 
topics do not 
correlate!!!

positive and 
negative attitudes 
do not correlate!!!
but both correlate 
with the rest of the 

community

reordered 
correlation 

matrix



Motion patterns in VR example
studying immersive environments
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Cluster 1: walking 
from a distance

motion behaviours 
detected by Louvain 

on Pearson
correlations over 
(filtered) motion 

patterns 

Cluster 2: walking 
closely

Cluster 3: 
standing still

original 
pointcloud distorted 

pointcloud



fMRI data example
fMRI = functional magnetic resonance imaging
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Pearson’s correlation 
coefficient

but be aware that the data 
waveforms, prior to correlation, 
are highly polished (e.g., from 
motion-related artifacts and 
physiological noise fluctuations, 
multiple-echoes, etc.)

with Louvain we can identify 
community patterns P = CT C

whose similarity can be 
captured by the Dice coefficient



fMRI data example
Louvain communities for community patterns = behaviours
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community 
assignments 
in cluster 1 

(one per column)

average 
representative 

of cluster 5 
(by consensus 

clustering)



Partial correlation
to remove counfounding contributions

138

partial correlation measures the degree of association between
two random variables, with the effect of a set of controlling random 
variables removed

when determining the numerical relationship between two variables of interest, using
their correlation coefficient will give misleading results if there is another confounding
variable that is numerically related to both variables of interest

partial ', ) = +,-+.
+, 2 |+.|2

+, = 1 − 3 3-3 453- '

collection of data 
vectors, other than x

and y, plus the 
constant vector 1

projection on the space 
orthogonal to span(Z)



Tax questionnaire example
with partial correlation
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positive, neutral 
and negative 
attitudes now 

belong to different 
communities



Sincerity

Negative links are displayed in red

Modesty

Greed-
avoidanceFairness

Fearfulness
Dependence

Anxiety

Sentimentality

Inquisitiveness

Unconventionality

Aestethic appreciation
Creativity

Organization

Perfectionism

PrudenceDiligence Patience

Flexibility

Gentleness

Forgiveness

Sociability

Social boldness

Social self-esteem

Liveliness

A personality network example
Costantini et al. (2015)
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