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Centrality

From Wikipedia, the free encyclopedia

For the statistical concept, see Central tendency.

In graph theory and network analysis, indicators of centrality
identify the most important vertices within a graph.
Applications include identifying the most influential person(s)
in a social network, key infrastructure nodes in the Internet or
urban networks, and super-spreaders of disease. Centrality
concepts were first developed in social network analysis, and
many of the terms used to measure centrality reflect their
sociological origin.“] They should not be confused with node
influence metrics, which seek to quantify the influence of
every node in the network.

Degree centrality |edit]
Main article: Degree (graph theory)

PageRank centrality |edit]
Main article: PageRank
Betweenness centrality |edit]
Main article: Betweenness centrality
Eigenvector centrality |edit]
Main article: Eigenvector centrality
Closeness centrality |edit]

Main article: Closeness centrality
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Can we do this efficiently, i.e., by using
automatic, reliable, and fast methods? 4



Degree centrality

Counting the in/out degrees of nodes
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DI PADOVA for an undirected network

LOG-BINNING CUMULATIVE
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Py = fraction of nodes with degree in complementary cumulative
the range [ki,k.1) where k; are uniformly distr. function (CCDF)

distributed in the log-domain, ki,1=k; -A !
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Two degree distributions

for directed networks
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P«in = fraction of nodes with
input degree equal to k;,
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out

Prout = fraction of nodes with
output degree equal to Kk 8
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DI PADOVA https://snap.stanford.edu/data/wiki-Vote.html

Degree Distribution

G = np.loadtxt('Wiki-Vote.txt').astype(int)
# adjacency matrix )
N = np.max(G) .
A = csr_matrix((np.ones(len(G)), (G[:, 11, G[:, @]))) =~ \%g
-}% )

o '?.l-r.'
#distribution e
which_deg = 0 # O0=out degree, 1=in degree , , —
d = np.sum(A, which_deg) # out degree for each node ’ Tk v
d = np.squeeze(np.asarray(d)) # from matrix to array
d = d[d>0] # avoid zero degree
k = np.unique(d) # degree samples
pk = np.histogram(d, k)[@] # occurrence of each degree
pk = pk/np.sum(pk) # normalize to 1
Pk = 1 - np.cumsum(pk) # complementary cumulative

fig = plt.figure()

plt.loglog(pk, 'o0')

plt.title("Degree Distribution", size = 20)

plt.xlabel("k", size = 18)

plt.ylabel("p_k", size = 18)

plt.show() 9
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DI PADOVA typical behaviour of social networks

100 &£ °F I i i i |
"> many networks follow
102 - a power-law
pkin
104 L In(px) = ¢ - Y - In(k)
10 - Py= C- - kv
108 L
how to correctly
estimate the slope y ?
107 L,
10°

10
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approximate expression

Degree distribution p, = C k¥

Constant C is determined by the (approx.)
normalization condition

| pidk = C Ky 4/ (y=1) = 1

Target PDF p(k\Y) = (Y'1)/kmin ) (kain)_y

11
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DI PADOVA the most reliable approach

ML criterion: find the y that best fits the data
max, 3 In p(k{y)

where k; is the measured degree of node |

f(y) = 2 In((y-1)/Kmin) - ¥ IN(K; /Kmin)
Ay) = 2 1/(y-1) - In(Ki/Kmin) = O
Y = 1+ Z,- 1 /Z,-In(ki/kmin)

12
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DI PADOVA to estimate the exponent
10" ® oo discard samples in
the saturation
region
e
1072 :
Py
107

choose an
appropriate :
@\ MATLAB T

10° 10' 102 k 108 104

—

1077
which_deg = 1; % 1 = out degree

d = full(sum(A,which_deg));
d2 = d(d>=kmin); % restrict range
ga = 1+1/mean(log(d2/kmin)); % estimate the exponent

13
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DI PADOVA in real networks y € [2,9]

NETWORK N L (k) Vin Y out 4
Internet 192,244 609,066 6.34 - - 3.42*
WwWw 325,729 1,497,134 4.60 2.00 2.31 -
Mobile Phone Calls 36,595 91,826 251 4.69* 5.01* -
Email 57,194 103,731 1.81 3.43* 2.03* -
Actor Network 702,388 29,397,908 83.71 - - 2.12*
Citation Network 449,673 4,689,479 10.43 3.03* 4.00* -
Protein Interactions 2,018 2,930 290 - - 2.89*

* = good statistical fit with a power-law
** = good fit for a power-law with an exponential cutoff
Exp = good fit with an exponential distribution e-2k 14



Explaining the power-law

Preferential attachment
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d The random network is the simplest model:
pick a probability p, with O<p<1
activate each link (/,j) with probability p

. The number of links is variable

J There might be isolates

1 Easy to calculate fundamental parameters

16



Notation
Parameters

Support

PMF

CDF

Mean
Median
Mode

Variance
Skewness

Ex. kurtosis
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B(n, p)

n € {0,1,2,...} — number of trials
p € [0, 1] — success probability for
each trial

g=1-—p

k€ {0,1,...,n} — number of
successes

(:) pkq'n.—k
I,(n — k,1+ k)
np

[np] or [np]
[(n+1)p|or[(n+1)p] —1
npq

v/ Pq
1 — 6pq
npq

015 0 0xs

010

Binomial distribution

explains the degree distribution for random networks

Probability mass function

+ p~0Sand =20
* p=07 and =20
* p=05and n~40

-
A L R R R RN NN

P(k;n,p) = probability that k out of

n trials are positive, where each
IS positive with probability p

17
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DI PADOVA in random networks

d The number of neighbours is binomially
distributed

P(k;n,p) = probability that a node has exactly k
neighbours, with number of
possible neighbours n = N-1

J Average # of neighbours this defines p
(K =(N-1)p > [p = (KAN-1)
J Variance p is usually very small (since (k) < N)

0,2 = (N-1)p(1-8) = 0

tight around the mean
18
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1 Poisson distribution (easier to use)

k
x

m
—m
Plr=Fkl=—F-e™ o .
k" P ® binomial, N=21, p=0.5
0,15 e o @ binomial N=101, p=0.1
® Poisson, <k>=10
) : . .
0,05 o .
. ® [ ] ®
@ o ©®
ofe o ‘—.—’ T . T ._’_._t. PREPAPY
10 15 20

d Very good approximation of binomial for

small p (and at small k) e part
I |

m—k+1)...(n—1)n m; L n—k
nk k! ( _—)

\ J \ J/
TV TV

~ ] ~ const

19
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10° | ) 10° - : 100 F -
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No! Poisson networks are deprived of hubs

... but, nevertheless, Poisson networks capture some aspects
20
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a comparison
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Power-law is heavy tailed (presence of hubs) -

like Weibull, lognormal, Levy 21
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Nodes link to the more connected nodes

e.g., think of www

This idea has a long history

1999

1923

George Kinsley Zipf
WEALTH DISTRIBUTION
Gyorgy Pdlya ECONOMIST Herbert Alexander Simon Robert Merton Albert-Lasz|6 Barabasi & Réka Albert

POLYA PROCESS 1925 ‘ 1941  MASTER EQUATION 19068  MATTHEW EFFECT PREFERENTIAL ATTACHMENT

MATHEMATICIAN Q @ POLITICAL SCIENTIST @ SOCIOLOGIST NETWORK SCIENTISTS
: . :

| - Matthew effect: “rich gets
George Udmy Yule - Robert Gibrat : Derek de Solla Price

YULE PROCESS PROPORTIONAL GROWTH - CUMULATIVE ADVANTAGE rlcher , 1.8, hlgh connectIVIty
‘ | - quantifies attractiveness
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DI PADOVA Barabasi, Albert. "Emergence of scaling in random networks" (1999)

Start with m, nodes arbitrarily connected, with (k)=m

d Growth
add a node (the Nth) with m links that connect
the node to nodes in the network

 Preferential attachment
p; = k;/C probability of connecting to node i
p; = 1/C for self-loops
C=1+> k=1+2(N-1)m

23
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DI PADOVA with m=1

G0
1

or

G1(3)
G1(2) —e or A

or

o
]
|-

24
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DI PADOVA evolution of nodes degree

 Increase in the degree (at each step)
Aki= m -k [ (1+2m(N-1)) = k;/ 2N
tt

trials probability per trial

d  Approximation in the continuous domain
Ak, ~dk/dN - |dki/k; = 2 dNIN

 Integration
In(k;) = Y2 In(N) + cost. > k;=c N”

1 Recalling that node / joins the network at time N =/
ki(N=i)=m 2| ki(N)=m (N/i)~= |~~_"z'sthe

dynamic
exponent 25
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DI PADOVA degree distribution

d Recall k;= m (N/i)”
d The number of nodes with degree smaller than k is
ki<k =2 m(N/i)2<k

2> i>N(mlk)?> 2| N-N (mlk)?

d CDF is P, = P[k<k] = 1 - (m/k)?
d The degree distribution is
dP, /dk =| p, =2 m? | k3

26
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DI PADOVA wrap up

Depending on the implementation there might
be self/multiple links

Most nodes have a small degree (exactly m
for the youngest ones)

100 F T LT T
Hubs appear il
The average degreeis 102+ “w
(k) = 2m, and in fact ol ‘\.‘
L = Nm = V(k)N P -
107 & 29 .
The resulting degree 105 L "':'rf.‘;"‘_':...:
distribution is always o .
a power-law with i .
exponent y = 3 107 v=3
108

10° 10’ k 102
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DI PADOVA consequence of k; = m (N/i)”

(a) SINGLE NETWORK

o . 4 all nodes follow the
same dynamics

the growth is sub-
linear: nodes are
competing with the
others

100 0 e e e - W the earlier the node
| IS added, the higher

J J the degree — “first-
(b) N=107 N=10¢ N=10° mover advantage”
10° [, 1000, 1000 7, .
0y o 0  older nodes acquire
0 e LAY 00l Y more links
Py Py % Py . .
o . o  this explains the hub
e o - o formation
10° 10° 10° 8
100 10¢ 106 emv—— o4

10° 10" k 102 10° 104 10° 10" k 10> 10° 10% 10° 10" k 10> 10° 10*
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BT S Measuring preferential attachment

DI PADOVA in real networks

k [ ]
1't(k) - Z Ak:| AN under preferential
ki

attachment (k) ~ k?

L] B AL S R 102 A |
(a) CITATION (b) INTERNET e
NETWORK |
P 100 | /// @ ]
// o
r(k) ’ ®

1072

1074
absence
(k) ~ k

100 10" k 102 103 100 10" Kk 10?2 108 29
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DI PADOVA Bianconi, Barabasi. "Competition and multiscaling
in evolving networks" (2001)

The model:

J Growth — at time step N a new node =N is
added with m links and fitness 7,

 Attractiveness (or fithess) is a random number
drawn from a given distribution p(n) - a quality
of the individual to attract links

 Preferential attachment - probability of linking

to node i is proportional to both the degree
and the attractiveness, i.e., p; = km;/ ) k),

30
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DI PADOVA properties of the Bianconi-Barabasi model

we guess k; = m (N/i)?) for some £(n)
3 ' ‘ , —7 1 (b) .

(5] b(ﬂO’-\JCD*OG
T T

BARABASI-ALBERT &
MODEL

0 2000 4000 6000 8000 10000

t

(c) 3 T . Attractiveness— (d) [

9 n=0.223 g I

g 23 * n=0.185 g

g d k(t) ® 1=0.991 4

28 © | ’

8= :

E 1.5 |

3 k(t)

1 ! 1 r
0 2000 4000 6000 8000 10000 1000 5000 10000 50000 100000 31

t t
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DI PADOVA starting point

d We guess ‘ ki =m (N/i)ﬂmi)‘

triais prolbability per trial
d Increase in the degree Ak;~ m -k;n;/ ) Kn,
1 We show that Z ij]J ~ mN-C (see proof)

32
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DI PADOVA the denominator

d Analysis of denominator ) k;n,

-> average value wrtn
- hypothesis k; = m (N/i)F®)

N
d A=E[) kni]=2 E[kn] ﬁf E[kini] di
Q E[kn]=1m(NIiy)®n - p(n) dn
d Swap integrals
A= mNP@]i+0 di] 5 - p(n) dn

 Integrate constant C
A =m N [(1=RNHTT) 5 p(n) d
1-() '\
\

negligible for large Nif 0 < g <1 33



UNIVERSITA

DEGLI STUDI Approximate analysis

DI PADOVA evolution of nodes degrees

d We guess| k; = m (N/i)sm)

d Increase in the degree Ak;~ m - k;n;/ )} Kn,
d Itis) kinj= mN-C

Hence:

1. By inspection of the above
Ak, =~ m (NI 1./ N C
2. By continuum theory
Ak; =~ dk;/[dN =m B(n;) NB@)-1 j-B@i)

3. By combining the results‘ L(n) = n;/C
We conclude| k; = m (N/i)ni/C‘

34
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DI PADOVA constant C

p(m) = nlC —
C=1npmdy > 1=(f) (C-n)"n p(n) dy
1-B(n) — .
this identifies C for a given p(n)
itis ‘C > Nmax | > 1-€., <1, = the integral makes sense

\

growth with
exponent <1

italsois C < 271«

35
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DI PADOVA degree distribution

Want to identify P, = Plk;< k] = 1 — P[k; > K]
A k> kand k.= m (NIiy"'C = j< N (mlk)chi
O Hence P[k; > kin] = (m/k) ¢

d and P[k; < k|n] = 1 - (m/k) ¢

Q We have P, =1 -] (m/k) % p(n) dn

The degree distribution is

nmax

px =Py = C! k'(’C/"”)mC/”n'w(n) dn
/

weighted combination of power laws with
exponent in [2,) since Nmax < C 36
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DI PADOVA the Barabasi-Albert model

What if p(n) = 6(n-1) ?
d Coefficient C 2 since
I (C/n 1y76(m-1)dn=(C-1)y" =1

A Exponential degree k; = m (N/i) *-

Degree distribution

nmax

CI 71 M kA1) §(n-1) dn = 2 m2k 3

37
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DI PADOVA the model

What if p(n) = Tand Nya = 1 2
d Coeﬁicient C = 1.255 since

JO (Clp-1)yTdnp=1 > e2C=1-1/C
O Exponential degree k; = m (NJ/i) ¢

d Each node has its own dynamic exponent !!!

Degree distribution

1
p.= Ck jo n1 @ -Cinkim¥n dp ~| k <1+C) [ In(k)

e?— b E(b), b=C In(k/m)

exponential integral E; %9
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DI PADOVA the measured data

1 T T T T S e
107 ——  k225/lnk ]
0.8 F ~ 2255 ]
. 103 - ~k? -
0.0 L i
0.4 | 1T —
0.2 107 | ]
0 1 1 1 1 107 AETEPTETTT BT NPT . ®
0 0.2 0.4 n 0.6 0.8 1 10° 10" 102 Kk 10° 104

degree distribution p, ~ k %2/ In{k)

corrective term
39
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DI PADOVA the model

What if p(n) =a e/ (1-e2) and Nz = 1 ?

O C rapidly converges to C=1
1 1.2 N\
| (Clm-1)"p(n)dn =1

N\
0 \

1.05

d Exponential degree k; =~ m (N/i)'¢
d Each node has its own dynamic exponent !!!
Degree distribution

1
pi= Ck | " @ Cmtami p(n) dy ~| k1+0/ In(k)

| .

exponential integral E,
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DI PADOVA the www

105 | — Month 3
Month 6 ]
--- Exponential distribution
_ 104 L
a=4.6
103 L
102 '
0 0.5 1 n 1.5

degree distribution p, ~| k %/ In(k)

41
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DEGLI STUDI
DI PADOVA of the Albert-Barabasi model

Elementary Processes Affecting the Network Topology

A.L. Barabasi, Network science

A summary of the elementary processes dis- ~
cussed in this section and their i:npa:'t on the q\‘\\}‘_—
.:r.'g.'cc.:ist:iputm:. Ear_"t'mu:vdr:l is defined as Q‘Q‘_/ - ) )
sl i MRSie-A TRt et SR http://barabasi.com/networksciencebook
&/
&/ 7 ”
&/ Ch.3 “Random networks
S/
</

Ch.4 “The scale-free property”

/ |+ S
AGING [ o5 Y\
/TR~ (8N [ 4 | Ch.5 “The Barabasi-Albert model”

| N __ Ch.6 "Evolving networks”

Vv ' I". |
ERNAL L r=rs r>re
‘_‘}‘_{i—— — —WKS ", f Stretched Exponential
) \ ] Exponential

ﬂ (k. k)= (A+Bk)(A+B k] N\

TALATTRACTWEES
T M) =A+k T

42
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Properties of the power-law

scale-free and random networks
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DI PADOVA natural cutoff under the power-law

Degree distribution p, = C k¥ with C = (y-1) K,in¥"

The size of the largest hub is captured by
| ppdk=C - Kk ¥/ (y-1) = 1IN

K
max pk

\
0 K> K

Kooy = Koyin N 70 -7) is the natural cutoff
it explains large hubs

47
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DI PADOVA of the power-law

Q (k)= [™ kn p, dk with p,= C k

= C (Knax™"" = Kein"¥*7)[(N-y+1)
=C kminn_y” ' (N 1) - 1) / (n'y+1)

 They diverge with N if y < n+1

mean (n=1) doesn't diverge fory = 2
variance (n=2) diverges fory < 3

and the network does not have a scale
(scale-free regime)

48
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e S The scale-free regime
DI PADOVA for 2<y<3
ANOMALOUS SCALE-FREE RANDOM
REGIME REGIME REGIME
No large network Indistinguishable
can exist here from a random network
Q.
QL D S N3 @V&\Q
N D N\ AN
«*\00\\'@0Q~ i\@'\‘?@ ) ’\Q\;\ﬁ’ s /\\QV\ \/&0@@\%\»\\%
$$<§?\§j\ & ¥ qux\\é N S N
>
1 2 3 Y
<k> DIVERGES <k> FINITE k) FINITE
=3
<k2> DIVERGES y=2 (k*) DvERGES : . k2 EINA
k. ~N l (d) ~ N
CRITICAL
POINT
large hubs f (d)~ InlnN hubs
radically are not

k_. GROWS FASTER THAN N shrink
distances

ULTRA-SMALL
WORLD

significantly
large
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DEGLI STUDI _ )
DI PADOVA Watts, Strogatz, «Collective dynamics of

small-world networks», (1998)

In real networks distance between two randomly
chosen nodes is generally short

Milgram [1967]. 6 degrees of separation

What does this mean?
We are more connected than we think 50
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DEGLI STUDI Distances in random graphs

DI PADOVA theoretical result

A we reach (k) nodes in one hop, (k)? in two, (k)3
In three, etc.

d an estimate of the average distance (d) is
found by solving for N = (k)% to have

(d) =In(N) /'In((k))

 (d) is often taken as an estimate of the network
diameter d, .,

e.g.: on earth we are N=7-107 individuals,
with (k)=1000 acquaintances each - (d) = 3.28

51
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DEGLI STUDI Distances in random graphs

DI PADOVA fitting with real data

InN

NETWORK N L (k) (d) d . In(k)
Internet 192,244 609,066 6.34 6.98 26 6.58 v/
WWW 325,729 1,497,134 4.60 11.27 93 8.31 v
Mobile Phone Calls 36,595 91,826 2.51 11.72 39 1M.42
Email 57,194 103,731 1.81 5.88 18 18.4

v
Actor Network 702,388 29,397,908 83,71 3,91 14 3.04¢
Citation Network 449,673 4,707,958 10.43 11,21 42 5.55
Protein Interactions 2,018 2,930 2.90 R.61 14 74 f

Very good fit | Correct at least as order of magnitude 52



UNIVERSITA

DECLI STUDI Distances in scale-free networks

DI PADOVA the ultra-small-world

1 The average distance increases as In(In(N)),
much slower than N or In(N)

e.g. inwww N=7-10°, In(N)=22.7, In(In(N))=3.12 (very small)

127

10
RANDOM NETWORK
8 i i i
distance of a node of (¢

degree (k) fromanode 6 ; | | 5
of degree Kiarget 4 \  SCALE-FREE

2 L

T R ST R ST T
0 10 20 30 40 5”0 60 70 80 Q0 100

target

 The large hubs radically shrink the distance

between nodes - ultra small world s



UNIVERSITA C u ri OSi ty

DEGLI STUDI
DI PADOVA wrong perception of the ultra-small-world

In many social experiments people avoided
hubs for entirely perceptual reasons (e.g., they
assumed they are busy, better use them only if

really needed)

We live in a ultra-small-world, but we perceive
that we are more distant from others than we

really are!
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UNIVERSITA

DEGLI STUDI Friendship paradox

DI PADOVA my friends are more popular than me (Feld 1991)

d Can be observed in the ultra-small-world
under the presence of big hubs

J Rationale: a node is very likely to be
connected to a big hub, having a very large
number of connections

1 # of friends (in the average) = (k)
1 # of friends of friends =~ N

95



UNIVERSITA

DEGLI STUDI Take aways

DI PADOVA for degree centrality

Do not use it for resizing nodes according to
their importance (will use PageRank for this)

Provide useful information in the form of a
degree distribution

Always plot degree distributions in the log scale

Always evaluate their slope y, but please use
the ML approach: y provides useful insights on
the network

Preferential attachment and attractiveness can
be measured if you have temporal info on the
network

oDo0 O O

L

56



PageRank centrality

Google’s approach to centrality




UNIVERSITA

DECLI STUDI How to organise the web?

DI PADOVA links as votes

1 the higher (and stronger)

the number of incoming \
links, the more important \ ' //
a node "

J the more important a
node, the more valuable
the output links

58



U : 'S Vi
NIVERSITA The Google S view

DEGLI STUDI
DI PADOVA quoting (o)

d PageRank works by counting the number and
quality of links to a page to determine a rough
estimate of how important the website is

d The underlying assumption is that more important
websites are likely to receive more links from

other websites
D)
o ﬁ P—=

PageRank

59



UNIVERSITA

DEGLI STUDI - A random walk on www
the rationale behind PageRank

DI PADOVA

O attime t, a web surfer is at page i with probability Py

 let the surfer choose with equal probability one of the
sites linked by site /

-1 1
Pir1,3= 73 Pyit 5 Pt Ve Pr

Va3 Py

73 Py y
Pt i 8 Prk
i‘ . ‘4”0' \ Kk
J

this identifies a Markov chain

U U

after a while probabilities settle to a steady state = the

PageRank vector
60



UNIVERSITA
DEGLI STUDI

Example

DI PADOVA of the random walk effect on a friends’ network

t=1 2

3 4 5

0.1667 0.1806 0.1991 0.1723 0.2025
_ 0.1667 0.0972 0.1505 0.1040 0.1436
Oliver 0.1667 0.0972 0.1366 0.1179 0.1287

Giulia

10

0.1783
0.1153
0.1242
0.2020
0.2649
0.1153

Thomas

0.2222 0.1574 0.2168 0.1614
0.3056 0.2060 0.2851 0.2203
0.0972 0.1505 0.1040 0.1436

20 50 75 100

0.1848 0.1874 0.1875 0.1875 Giulia
0.1222 0.1249 0.1250 0.1250 Marc
0.1248 0.1250 0.1250 0.1250 Oliver
0.1917 0.1876 0.1875 0.1875 Thomas
0.2543 0.2501 0.2500 0.2500 Sarah
0.1222 0.1249 0.1250 0.1250 Anna

61



UNIVERSITA

e S Matrix formalization

DI PADOVA of the random walk

Pt = M py

 p; stochastic vector
(positive entries which sum

up to 7) ,

d M normalized adjacency
matrix (column stochastic) 1

M = A diag’(d)

d = AT 1 output degree
vector M =

Wl

o

N[ —
N

o

Wl W[+
N
NN =
Wl
N

d p. =M p.converges to an
eigenvector of M (with |
eigenvalue 7)

N

nol—

WIHWIH
Wl |
N
[
[

d p. =d for undirected 4
networks where A = AT columns sum to 1 62



UNIVERSITA

DECLI STUDI Problems in the random walk

DI PADOVA dead ends and spider traps

With high probability the surfer ends in:

d Dead ends: some nodes do not have a way out
= zero valued columns of M

d Spider traps: some set of nodes do not have a
way out, and further induce a periodic
behaviour

63



UNIVERSITA

DEGLI STUDI Tel epo rtation

DI PADOVA as a method to overcome problems

|dea:

1 the surfer does not necessarily
move to one of the links of the
page she/he is viewing

 with a certain probability, might jump to a random
page

4d pur=cMp;+(1-c) q
l the remaining 7 - ¢ = 15% of the times
the surfer moves at random according
to a probability vector q independent
of the node she/he is in, e.g., g = 1/N
for uniform probability

damping factor, typically ¢ = 0.85,
meaning that 85% of the times the
surfer moves to one of the links of
the page

64



UNIVERSITA
DEGLI STUDI
DI PADOVA

PageRank with restart

or simply PageRank

dead ends

no dead ends

normalization

no spider traps

Markov chain

PageRank equation

original adjacency matrix

AO/ (can be fractional)

teleportation

A = A, + b e +—— indicating vector
of dead ends

M= A diag'(d), d=AT1

M,=cM~+ (1-c)q 1"
equivalent formulation
matrix is no more sparse

=M
Prs1 1P PageRank centrality vector
r=cMr+ (1-c)q, r=p.
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UNIVERSITA

Example

of PageRank with restart on a friends’ network

DEGLI STUDI
DI PADOVA

t=1 2 3 4 5
0.1667 0.1785 0.1919 0.1754 0.1912
_ 0.1667 0.1076 0.1461 0.1176 0.1382
Oliver 0.1667 0.1076 0.1361 0.1246 0.1302
0.1667 0.2139 0.1671 0.2035 0.1746
0.1667 0.2847 0.2128 0.2614 0.2276
0.1667 0.1076 0.1461 0.1176 0.1382
Marc
Giulia
10 20 50 75
0.1820 0.1839 0.1840 0.1840 0.1840 Giulia
0.1273 0.1293 0.1294 0.1294 0.1294 Marc
0.1283 0.1285 0.1285 0.1285 0.1285 Ojiver
Thomas 0.2449 0.2419 0.2417 0.2417 0.2417 Sarah
0.1273 0.1293 0.1294 0.1294 0.1294 Anna
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UNIVERSITA

mcustpr Gonvergence properies of PageRank

DI PADOVA

PageRank |
The == vector is the -
probability p; for large t 0|

It corresponds to the stationary | "

behaviour of the Markov chain

10

p. IS unique

p.. is a stochastic vector (with
positive entries summing to 7)

p.. depends on the choice of the s

teleportation vector q (and of ¢) o
p.. converges in few iterations, "

typically pyo= p-

107}

107}

10}
:

10

an overview

683400

e/ 341170
/5

'»é.‘ f{*!g

6834 pages o

20 30 40 50 60

MNumber of itarations
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U A .y
DRGLL STUD, Hubs and Authorities

DI PADOVA what we can get from PageRank

 Authority (quality as a content provider)

nodes that contain useful ° Hub.
information, or having .gﬂ?omy
a high number of edges

pointing to them .
(e.g., course homepages) Hub ® :ub ¢
= PageRank vector

(related to the in-degree of nodes) ®
[

d Hub (quality as an expert)

trustworthy nodes, or nodes that link

to many authorities (e.g., course bulletin)
= PageRank vector starting from A"
(related to the out-degree of nodes)

authority or hub?

AN 3
> 3 \".:‘!"
‘!i
RN 1
SR
] £

\\ .

i
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UNIVERSITA

DEGLI STUDL Example of PageRank centrality

DI PADOVA wikipedia administrator elections and vote history data
https://shap.stanford.edu/data/wiki-Vote.html

Authorities Hubs

69
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UNIVERSITA

DEGLI STUDL PageRank versus degree centrality

DI PADOVA wikipedia administrator elections and vote history data

Authorities Hubs

PageRank authority . PageRank hub

0.004 x

JUUS

......

“.
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1

.....

0.0050 0.0075
out-degree
70



UNIVERSITA

o Sy PageRank versus degree authorities

DI PADOVA wikipedia administrator elections and vote history data

Degree PageRank

ok, i

71
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UNIVERSITA

o Sy PageRank versus degree authorities

DI PADOVA wikipedia administrator elections and vote history data

Degree PageRank

72



UNIVERSITA

DECLI STUDI PageRank versus degree hubs

DI PADOVA wikipedia administrator elections and vote history data

Degree PageRank

73



UNIVERSITA

DECLI STUDI PageRank versus degree hubs

DI PADOVA wikipedia administrator elections and vote history data

Degree PageRank

74



UNIVERSITA

I — PageRank on a semantic network

C/ e ()Q DI PADOVA 2019 hashtag network related to #climatechange
AT (from Twitter, after #gretathunberg)

. ausvotes "

fndaysi!l‘future Sl

Chma‘.su'lke Chmatee}nergency S ausvotas2019
schoolstnl(e4chmate Z, extinctionrebellion STt

- cllmateaét;onnow cllmatecr iSiS -

cdnpoh

chmatechan eisreal
pari greement

climateaction greennewdeal

actonclimate :
) fossitfullEC

worldenvironmentday AW
] clim‘atev

energy

carbon renewab‘eenergy
globalwarming renewables

s ) green
earthday solar

savetheplanet ; ;
3 earth ~°  environment S Jsc s

waltsliution
sustainability

innovation




UNIVERSITA

DEGLI STUDI Readin gs

DI PADOVA on PageRank

0 Brin and Page, “The anatomy of a large-scale hypertextual web
search engine,” 1998

O Page, Brin, Motwani, Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web,” 1999

http://ilpubs.stanford.edu/422/1/1999-66.pdf

Google

Scholar

https://scholar.google.com/

76


http://ilpubs.stanford.edu/422/1/1999-66.pdf
https://scholar.google.com/

Convergence properties

of PageRank power iterations




UNIVERSITA

DEGLI STUDI The condensation graph

DI PADOVA ordering an adjacency matrix

d  Strong connectivity induces a
partition in disjoint strongly
connected sets V4, V,, ..., Vg

O By reinterpreting the sets as
nodes we obtain a
condensation graph g* where
= is an edge if a connection
exists between sets V>V,

78




UNIVERSITA

meustnt Properties of the condensation graph

DI PADOVA ordering an adjacency matrix

O gG” does not contain cycles Q

otherwise the sets in the cycle would be strongly connected

G has at least one root and one leaf

and every node in the graph can be reached from one
of the roots

O G* allows a particular reordering

where node n; does not reach any of the nodes n; with j<i

procedure: identify a root n; and remove it from the
network, then identify a new root; cycle until all nodes have .
been selected

79



UNIVERSITA

DEGLI STUDI Matrix representation

DI PADOVA of the condensation graph

The condensation graph ordering induces a block-lower-triangular
matrix structure on the adjacency matrix

3 2 5 1 2

1
3
1

N =
N+

W=
NN =
W=

N | =
=

WIHW| Y
W

1
! 3 I

blocks in the diagonal are irreducible = no block-diagonal form ! g



UNIVERSITA

DECLI STUDI Perron-Frobenius theorem

DI PADOVA

of the condensation graph

the eigenvalues of the diagonal blocks,
except for the leaves, lie inside the unit
circle, i.e., |1|<1

3 2 5 1 2
_1_____
3
1
1
1
L 2
2
T T
M= 3 1 1 1 2
l2 i 3
3 2l
3
1 1
2 I 3
- SEN LN S
11 1l 1

N[
Y

each leaf-block has at
least one eigenvalue in
the unit circle; 1=1is
always available, the
others are distinct

81



UNIVERSITA

DECLI STUDI The teleportation effect

DI PADOVA it implies only one leaf

before
after

N

Teleport
set is here

Hence M, carries only one eigenvector associated
with the eigenvalue 1=1

82



UNIVERSITA
DEGLI STUDI
DI PADOVA

Lemma

on generalized eigenvectors

3 PageRank matrix M;=c M+ (1-¢c) q 17

3 Normalization property 1" M, = 17 Alili
A Jordan form M;=VJ V-7 J= xT
carries the right (generalized) carries the A1
eigenvectors e; of M, eigenvalues of M, An|
TTM, V=11V - 1TV (J-1)=0
=1TVJ —— -
p only one
value is 0

Hence 17 e;= 0 for i>1, i.e., except for the eigenvector

associated with eigenvalue 1 83



UNIVERSITA

DEGLI STUDI Main result

DI PADOVA for the eigenstructure of the PageRank matrix

M,e=cMe+ (1-c) g e, for i>1

same eigenvalues of M,
but multiplied by c !!!

d M, has one eigenvalue equal to 1
d The remaining eigenvalues satisfy [1| < cC

Haveliwala and Kamvar, “The second eigenvalue of the Google matrix,” 2003

http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf
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UNIVERSITA

DEGLI STUDI Convergence properties

DI PADOVA of the PageRank power iteration

p:=M;p=Mip,= VJ'VTp,

gets large for high multiplicity max eigenvalue multiplicity

' !
d pp.l, < Kctt ™'~ K ct

d Triangular inequality: lp;.+-pl, S 2K ¢

1 Precision &: lp;.-pl, < &

1 Iterations required:| t = [In(2/¢) + In(K)] / In(1/c)
f [

precision 102 > 7.6 c=0.85> 1/In(1/c) =6

Is usually small

—> fast algorithm
85



Local PageRank

measuring similarity/closeness among nodes




U A .
wusm  Measuring closeness: LocalPageRank

DEGLI STUDI
DI PADOVA for the eigenstructure of the PageRank matrix

d Measure similarity /
closeness to node / by
applying PageRank with
teleport set S={1}, i.e.,
with q-= 6i

Result

J Measures direct and
Indirect multiple
connections, their quality,
degree or weight



UNIVERSITA

DEGLI STUDI Exam P le

DI PADOVA who’s Sara’s best friend?

t=1 2 3 4 5

0.2125 0.1222 0.2096 0.1290
0.2125 0.0319 0.1705 0.0708
0.2125 0.0921 0.1369 0.1127
0 0.2408 0.0617 0.2043
0.1500 0.4811 0.2508 0.4125
0.2125 0.0319 0.1705 0.0708

Oliver

Giulia

10 20 50 75 100

0.1743 0.1653

0.1238 0.1144 0.1138 0.1138 0.1138 Marc
0.1206 0.1199 0.1199 0.1199 0.1199 Oliver
0.1285 0.1426 0.1434 0.1434 0.1434 Thomas
0.3290 0.3435 0.3444 0.3444 0.3444 Sarah
0.1238 0.1144 0.1138 0.1138 0.1138 Anna

Thomas
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UNIVERSITA
DEGLI STUDI

DI PADOVA

Example

who’s Giulia’s best friend?

t=1 2
1.0000

0
0
0
0
0

0.1500

Oliver 0.2833
0.2833

0.2833

Giulia

10
0.2909
0.0848
0.1309
0.1763
0.2324
0.0848

Thomas

3

0.4109
0.1405
0.1027
0.0425
0.1629
0.1405

20

0.2985
0.0926
0.1313
0.1645
0.2204
0.0926

4

0.2403
0.0467
0.1510
0.2358
0.2795
0.0467

50

0.2989
0.0931
0.1314
0.1638

0.0931

5

0.3404
0.1262
0.1275
0.1078
0.1719
0.1262

75
0.2989
0.0931
0.1314
0.1638

0.0931

100
0.2989 Giulia
0.0931 Marc
0.1314 OQljver
0.1638 Thomas

0.0931 Anna
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UNIVERSITA

DEGLI STUDI Exam P le

DI PADOVA what is the most related conference to ICDM?

Top 10 ranking results

LICAI
Philip S. Yu
KDD 0.008

0.007
0.009

0.011

0.005" < ICML >

SDM R. Ramakrishnan 0.005

) CIKM ._-0.004 \ CbE
AAAI M. Jordan o 0.004 2 00s 0'005\ —
NIPS :  ECML / <;;§iﬁ$IGMO£§;,;f,\>
: DMKD j;
Confer.ence Author ICDM = inférnational conf. on data mining

KDD = knowledge discovery and data mining
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UNIVERSITA

DEGLI STUDL Local PageRank versus degree

DI PADOVA authorities

Local PageRank 1-hop out-neighbours

i
® ° Pr ‘. f‘k .~ .
® ® o > ‘. Py .Q Y » P,
@ ’ ® ...0 ~ L o.'. 2 »®

o (4
(] < * a ... P .." L

L [ o0 (78 ° L : 2

-
Bl 2% ° g c*v' piRe
“ » :o. = re - © P [

3 v‘o. ot ¢ .‘(. ).'.A
] il =% o Y » v ® ¢ i
! 4 e o* * «%p® o
o L s »"s 3
° i
#® 0, *e .o o o o
P ‘ ..‘l »
a g S ¢ &
-
o .' - %9 el
° L L ]
o » se S
L ° e 0
° s
® n

neighbours authority score =

local node = neighbours
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UNIVERSITA

e st ON the complexity of Local PageRank

DI PADOVA approximate PageRank

Andersen, Chung, Lang, “Local graph partitioning using
PageRank vectors,” 2006

https://ieeexplore.ieee.org/stamp/stamp.ijsp?arnumber=4031383

use institutional Sign In with your unipd credentials
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UNIVERSITA

DECLI STUDI Approximate PageRank algorithm

DI PADOVA the push operation

degree of node i

d Startfromu=0and v=Q precision / sum of the degrees

J To all the nodes j satisfying v; > € d/D apply the
push operation

only one active

uconstanty — L, yt =y + (1-0) O «—— elementin position i
increases with value v,

valways/v =v-6+cM$§

positive

Returns u = r with precision |r- u|; < ¢
It is simple
93



UNIVERSITA

DEGLI STUDI Linearity of PageRank

DI PADOVA to build a lemma for the proof

column stochastic matrix 1T M = 1T

4 PageRank equationr,=cMr,+ (71-c) q
/ .

stochastic ranking vector stochastic Teleport vector

1Tr,=1,r,20 1T7g=1

d Alternative equation r,= (I- ¢ M) (1-c) q

l linear in q

rau+bv = aru'l'brv

94



UNIVERSITA

DEGLI STUDI Modifying the PageRank equation

DI PADOVA the lemma for the proof

one-step random walk

/

J PageRank equation r,=c ry,+ (71-c) q

4

d ry=(-cM)’(1-c) q
ad r,=(1-c) 2 (c M)<q

Q Mr,=(1-c) 2 (c M)M q

d Mr,=ry,

95



UNIVERSITA

DEGLI STUDI Main property of push: r,= u +r,

DI PADOVA almost there

d Atstarting pointu=0andv=qimply r,=0+r,
 The following steps are proved by induction

u"=u+(1-c)é
vi=v-d+cMé

l by linearity

ut+r,.=u+(1-c)S+r,-rs+crys
|_'_l

l rs-(1-c) 8

+ —_— —_—
ut+r,=u+r, =r,

96



UNIVERSITA

DECLI STUDI Precision guarantee: |r, - u|, < ¢

DI PADOVA and the result is proved

d The push property implies r, =u +r,
d Hence|r,-uli=|r|1=1"r,

d The PageRank equationisr=cMr,+ (1-c) v

Q Hence 1'r=c1"Mr,+ (1-c)1"vsothat1'r,=1"v
-

1T

Asaresult|ry,-ul,=1"v<Xed/D=¢
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Execution Time, t [s]

10°

101 B

10° 4

1071 1

1077 4

10—3 R

UNIVERSITA

DEGLI STUDI Scalability properties

DI PADOVA of Local PageRank using Approximate PageRank

(Francesco Barbato & Tommaso Boccato, 2020)

Execution Time on Single Core

} Intel on iMac, Weighted Algorithm

Intel on iMac, Unweighted Algorithm Ol
}  AMD on Linux, Weighted Algorithm
¥ AMD on Linux, Unweighted Algorithm

102 103 10¢ 10°
Number of nodes, N

Quasi-linear behaviour = scalability of Local PageRank 98



UNIVERSITA

DECLI STUDI Beware of the Lazy PageRank

DI PADOVA which is suggested in the paper

d Lazy PageRankr=a M, r+ (1-a) q
M,=bl+ (1-b) M

1 Lazy because a fraction b of the times the surfer
stays where she/he is

d Equivalenttor=cMr+ (1-c) q
c=a(71-b)/(1-ab) < a

-—
slower algorithm, as its
convergence speed
depends on a>c, better
use c directly!

99



UNIVERSITA

DEGLI STUDI Appl ication #1

DI PADOVA the link prediction task

Recommendation in social networks

People You May Know

Given a graph at time

Oc T, can we output a oc
0\ l ranked list of links .9 l
I Ng—8 thatarepredictedto 4\ qp
a @ec appear in the graph a

time: | at time T+x ? time: Tex  9€

100



UNIVERSITA

DEGLI STUDI Application #1

DI PADOVA random walk with restart (RWR) method

Local PageRank teleportqtion
vector to node i

| l

r=cMr;+ (1-c) O,

Likelihood of activating the link (i,j)

Lrwr(i)) = 1 + 1

/ '\ Select the highest values of Lryr
for recommendation pourposes

101



UNIVERSITA

DEGLI STUDI Application #1

DI PADOVA the resorse allocation (RA) counterpart

Leali) = ) 110

ke NN N; < common
neighbours

related to a two-hop RWR

r, ~(1-c) % (c M)" 9,

\ n=0
\ to have
/

\ rj = (1-c) c?/ d; Lga(i))
Lrwr(7) = (1-c) ¢ (1/d; +1/d;) Lra(if)
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UNIVERSITA

DEGLI STUDI Appl ication #1

DI PADOVA performance metrics

fraction of links correctly guessed
(out of 100 recomendations)

Prec{sion CN LP ACT
USAIr 0.59 0.61 0.49
NetScience 0.26 020N 0.19
Power 0.11 0.13 0.08
Yeast 0.67 0.8 0.57
C.elegans 0.12 0.14 0.07
HSM LRW SRW
0.28 0.64(3) 0.67(3)
0.25 0.54(2) 0.54(2)
0.00 0.08(2) 0.11(3)
0.84 0.86(3) 0.73(9)
0.08 0.14(3) 0.14(3)

Among the best performance in social networks

But not strikingly good compared to simpler

methods (e.g., RA = resource allocation)
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UNIVERSITA

DEGLI STUDI Application #2

DI PADOVA TopicSpecific PageRank

4 Bias the random walk towards a topic specific teleport set S
of nodes, i.e., make sure that q is active in S only

S should contain only pages that are relevant to the topic
Result

d The random walk deterministically ends in a small set E,
containing S, and being in some sense close to it

E

p. is active in E only
104



UNIVERSITA

DEGLI STUDI Application #2

DI PADOVA assigning documents to topics in semantic networks

Tweet 1 is assigned
to Topic 1 Il
Topic 4

0 1234

1"
N

Tweets

Hashtags

105



Signed PageRank

modifications for signed networks




UNIVERSITA

e S PageRank in signed networks

DI PADOVA Jung, Jim, Sael, Kang, “Personalized ranking in signed networks

using signed random walk with restart,” 2016
https://ieeexplore.ieee.orql/iel7/7837023/7837813/07837935.pdf

|dentify + (favourable) and — (adversarial)
paths, i.e., ranking values r, and r. for
positive and negative surfers

Extract positive A, and negative A.
contributionsto A = A, - A.

Normalize the absolute value, to
get M. and M. (with normalized M.+M.)

Run a signed random walk

r.=cM.,r.+cMr +(1-c) q

Y

@»@» o i N

r=cMr.+cM.r

(O O O (O
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UNIVERSITA

DEGLI STUDI Signed PageRank

DI PADOVA power iteration

M. M.
M M.

(column) normalized

damping factor M = adjacency matrix

r=cMr+ (1_(;) qo- teleportation vector

q
r. _
PageRanKector (centrality) r = } 9=,
r.

signed centrality outcome Fy. = F, - r.

r.=cM._r, + (1-0) q - can be signed

M..= A diag'(|]A|"1)
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UNIVERSITA

DEGLI STUDI Exam P le

DI PADOVA who’s Giulia’s best friend?

t=1 2 3 4 5
1.0000 0.1500 0.4109 0.2403 0.3404
0 -0.1405 -0.0467 -0.1262
-0.2833 -0.1027 -0.1510 -0.1275
0.2833 0.0425 0.2358 0.1078
0.2833 0.1629 0.2795 0.1719
0 -0.1405 -0.0467 -0.1262

OO OOoO0o

Giulia

10 20 50 75 100

0.2909 0.2985 0.2989 0.2989 0.2989 Giulia
-0.0848 -0.0926 -0.0931 -0.0931 -0.0931 Marc
-0.1309 -0.1313 -0.1314 -0.1314 -0.1314 Oliver

0.1763 0.1645 0.1638 0.1638 0.1638 Thomas
Thomas 0.2324 0.2204
-0.0848 -0.0926 -0.0931 -0.0931 -0.0931 Anna

109



Preventing spamming

on the role of the teleport vector




UNIVERSITA

DEGLI STUDI S pam farm

DI PADOVA how to boost PageRank for a web page

Accessible Owned

Inaccessible

N\

1. Get as many links as possible
from accessible pages (e.g.,

blog comments pages) Millions of

farm pages

2. Construct link farm to get a
PageRank multiplier effect
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UNIVERSITA

DEGLI STUDI Google bombs

DI PADOVA in 2004 US elections

Web |Images Groups News Froogle Local more »

y . ; Advanced Search
GO ()8 le |m|serable failure Search ~re—

Web Results 1 - 10 of about 969,000 for miserable failure. (0.06 seconds)

Biography of President George W. Bush
Biography of the president from the official White House web site.

www.whitehouse_gov/president/gwbbio_html - 29k - Cached - Similar pages
Past Presidents - Kids Only - Current News - President
More results from www whitehouse_qgov »

Welcome to MichaelMoore.com!

Official site of the gadfly of corporations, creator of the film Roger and Me

and the television show The Awful Truth. Includes mailing list, message board, ...
www.michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas | 'Miserable failure' links to Bush

Web users manipulate a popular search engine so an unflattering description leads
to the president’s page.
news.bbc.co.uk/2/hi/americas/32968443 stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure

A search for miserable failure on Google brings up the official George W.

Bush biography from the US White House web site. Dismissed by Google as not a ...
searchenginewatch_com/sereport/article php/3296101 - 45k - Sep 1, 2005 - Cached - Similar pages 112




UNIVERSITA

DEGLI STUDI PageRank analysis

DI PADOVA of spam farms

Accessible Owned
_ 1 0 1 ;
7 ? : 0
0
acc. 0
7 ? : 0
M = 0
t] 0 017 710 |1 1
K
0 0 ) 0
owned ;
- ? -
accessible t owned
teleportation value to pages
ranking due to accessible pages owned by the spammer

ry =la+ cKr, + (1 —¢)q,

r, = c%rt + (1 —¢)q, 113

r=cMr+ (1-c) q



UNIVERSITA

DEGLI STUDI PageRank outcome

DI PADOVA of spam farms

teleportation value to pages

ranking due to owned by the spammer

accessible pages

a cK +1
Ty = 2—|—
1—c 1+ ¢

do

scaling factor (=3.6) spam factor (can be made

as large as desired)

sSOlution teleport only to trusted pages (i.e., set q, = 0)
can also be used as a method to identify spam farms
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Row-normalized PageRank

For spreading information over the network




UNIVERSITA

DEGLI STUDI Row-normalized PageRank

DI PADOVA an overview

PageRank equation r=cMr+ (1-c) q row-normalized
M=diag'(d)A,d=A1 M71=1
Markov chain  p,,=c M p;+ (1-¢) q

Po —q
M,=cM+ (1-c)q V'
viM=vT
vig=1

same properties of column-normalized PageRank:
M, has one eigenvalue equal to 1
0 The remaining eigenvalues satisfy |A1| < c

116



UNIVERSITA

DEGLI STUDI Row-normalized PageRank

DI PADOVA interpreting its action

A node gathers the average value of the neighbour
nodes pointing to it
Pte13=C /5 ( Ppeit+ Pt Pei) +(1-C) Q3

73 Py y
Pt 3 Ptk
i. . ‘{pw’ \ k
J

It is a way of spreading the original information g over
the network
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UNIVERSITA
DEGLI STUDI
DI PADOVA

Semantic network example

agency = action and goal orientation, sense of which

is necessary for people to attempt social change

q values of agency (in colour)
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UNIVERSITA

DEGLI STUDI Take aways

DI PADOVA for PageRank centrality

 This is the metric to be used it for resizing nodes
according to their importance

 Provides elaborate information on the relevance
of nodes in the network

 For directed networks, it can be used in both its
authority and hub forms

1 Can also be put in the form of a PageRank
distribution

d Can be used in different useful ways, e.g., to
evaluate similarity or closeness, to spread
information

d Exploit its potential at your best
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HITS centrality

a (less interesting) alternative to PageRank




e HITS centrality

DEGLI STUDI
DI PADOVA hubs and authorities

HITS — hubs and authorities

Kleinberg, J.M.

1999

«Authoritative sources in a
hyperlinked environment»
Journal of the ACM

https://www.cs.cornell.edu/home/kleinber/auth.pdf

Conceptually similar to PageRank

Provides scores for authorities and hubs,
separately, as PageRank can do

We deprecate its use
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https://www.cs.cornell.edu/home/kleinber/auth.pdf

UNIVERSITA

DEGLI STUDI HITS equations

DI PADOVA authorities score

Na
5 Phoa
A, , = weight of connection 4 > 2 N P\,ﬁ‘(\’b
p— /P\'l'\‘(\'\ —\"(\A‘
"a;] 0 1 1INN1 1. 0 0 0 0 07 Ak 207\, x W
L o0 1 0000 0 O hs - "
a3 1101000000 hs 2 Ayhy 3
a4 11 101000O0°0 @
es| [t 0010111 11 : Aot he| 7%
a | [0 0O 0O 01 01 0 0O he ’
ar 000O0OT1T1TU0TUO0TUO0OFO hy 1 4
as 000 0100UO0T10 hs
ag 0000100100 ho
Lagg] L0 0 0 0100 0 0 0] Lhof
a= Ah
t t
authority scores hub scores
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UNIVERSITA

DEGLI STUDI HITS equations

DI PADOVA hubs score

= weight of connection 2 > 3 _ Nla«"ii

— S N X9
~hy7 1ol 1 1 0 0 0 0 07" flah 224
@ 1jod1 1.0 0 0 0 0 O as a,
. 1{1]Jo 1 0 0 0 0 0 0 as 2 Az a3
ha 1111 010 0 0 00 as P,
hs | |1]oJo 10 1 1 1 1 1 as Asz % o
he | —O0J0JO 0 1 0 1 0 0 O ag ’
h- oloJo 0 1. 1.0 0 0 0 ar 1 4
hs ofoJo o 1. 0 0 0 1 0 as
ho ololo 0 1. 0 0 1 0 0 ag
_hlo_ L 0OJogo0 01 0 0 O O O 110

~
]
1N
~
Q
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DEGLI STUDI

DI PADOVA

HITS equations

hubs and authorities

o Ah

— Cp - AT

hubs / \ authorities

‘ h:cMh‘

Cc = Cg

—ATA

Ch

S

‘a:ca-Ah‘

O The formula says we are interested
in the (principal) eigenvector of

matrix M = AT .

A

O Can be obtained by standard linear

algebra algori

thms

12% 12%

@

15% 15%

@ @,

18%

6%

6%

4%
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UNIVERSITA

i Power iteration method

DI PADOVA for HITS

0. Start from an

initial guess

1. Let the time go by
‘ a1 = M a

product by a sparse

matrix (twice) M = A AT

2. Keep normalizing
(divide ay,, by the sum
of elements)

3. Stop when a
converges (few iterations?)
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UNIVERSITA

DEGLI STUDI Convergence properties

DI PADOVA for HITS

O llara.ll, < VN - (1,/1,)

d A,largest eigenvalue of M

1 A, second largest eigenvalue of U

0 Triang. inequality llayay, ,l, < 2N -(1,/1,)!

Worst case result: N =109 10.3
. : : low if 1, close to A,
0 Precision ¢ implies: laray l,<e /77"

1 Iterations required: |t = [In(2/)+%2In(N)] / In(A,/15,)
f

10-3 precision 2> 7.6 126




Eigenvector and Kats

centralities

other (less interesting) alternatives to PageRank




UNIVERSITA

I T Eigenvector and Kats centralities

DI PADOVA an overview

- with constant term without constant term

;-3 PageRank Degree
N
[ r=cMr+(1c)q r=Mr
é
E Katz Eigenvector
£ r=cAr+1 r=cAr
:
c
=
/ The absence of normalization
r=(-cA)'1 makes them less robust and
=X (c A1 meaningful compared to PageRank

They are deprecated 128
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Katz

their graphical interpretation

Eigenvector
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Closeness and Harmonic

centralities

importance of nodes as spreaders of information




UNIVERSITA

DEGLI STUDI Closeness centrality

DI PADOVA a definition

Closeness centrality

From Wikipedia, the free encyclopedia

In a connected graph, closeness centrality (or closeness) of a node is
a measure of centrality in a network, calculated as the reciprocal of the
sum of the length of the shortest paths between the node and all other ,&\G
nodes in the graph. Thus, the more central a node is, the closer it is to .\0‘(\
N\
all other nodes. N\
& ¥

: - O @ L0
Closeness was defined by Bavelas (1950) as the reciprocal of the «\e A\ 6\(\
[1][2] . " O
farness,''/'“ that is: 2 (e B

1
C(z) = . & 98”2
2y d(y, @) e 50

where d(y, x) is the distance between vertices x and y. When ‘\({\0(
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UNIVERSITA

DEGLI STUDI An example

DI PADOVA on how to calculate closeness centrality

count the lengths of the shortest paths

leading to Giulia Closeness
1+2+1+2+1=7
0.1250 Marc
0.1250 Oliver

Oliver
0.1667 Sarah

0.1250 Anna
Sarah is the
preferred node for

spreading
information

C(Giulia) =1/7
=0.1429

Thomas
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UNIVERSITA

DEGLI STUDI Closeness versus degree centrality

DI PADOVA a graphical interpretation

133




UNIVERSITA

DEGLI STUDI Harmonic centrality

DI PADOVA a definition

In disconnected graphs |edi]

When a graph is not strongly connected, a widespread idea is that of using the sum of
reciprocal of distances, instead of the reciprocal of the sum of distances, with the
convention 1/00 = 0:

1
He) = 2 Gy

yFT

The most natural modification of Bavelas's definition of closeness is following the
general principle proposed by Marchiori and Latora (2000)1°! that in graphs with infinite
distances the harmonic mean behaves better than the arithmetic mean. Indeed,
Bavelas's closeness can be described as the denormalized reciprocal of the arithmetic
mean of distances, whereas harmonic centrality is the denormalized reciprocal of the
harmonic mean of distances.
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e st lOsSeness versus harmonic centrality

DI PADOVA a graphical interpretation

Harmonic

135




Betweenness centrality

importance of nodes as bridges or brokers




UNIVERSITA

DEGLI STUDI Betweenness centrality

DI PADOVA a definition

Betweenness centrality

From Wikipedia, the free encyclopedia

In graph theory, betweenness centrality is a measure of centrality
in a graph based on shortest paths. For every pair of vertices in a

connected graph, there exists at least one shortest path between \(\6‘5
the vertices such that either the number of edges that the path ) 0\(\\0
passes through (for unweighted graphs) or the sum of the weights 68““\0\
of the edges (for weighted graphs) is minimized. The betweenness e(\O 6‘\
centrality for each vertex is the number of these shortest paths that \6'«\ © (o\(*
pass through the vertex. \\0(\6 a\g‘(\e‘ dge‘

G S\

Betweenness centrality was devised as a general measure of
centrality:[” it applies to a wide range of problems in network
theory, including problems related to social networks, biology,
transport and scientific cooperation. Although earlier authors have
intuitively described centrality as based on betweenness, Freeman
(1977) gave the first formal definition of betweenness centrality. 137
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DEGLI STUDI
DI PADOVA

An example

on how to calculate betweenness centrality

count the # of shortest paths

Betweenness
passing through Sarah 1.3333 Giulia
o (count a fraction if more than one path) 0.3333 Marc
ver 1+1+05+05+05=35 0 Oliver
Oliver 3.5000 Sarah
0.3333 Anna
0.5 Marc

e
——

Giulia

Thomas

Thomas 138
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e st Closeness vs betweenness centrality

DI PADOVA

a graphical interpretation

o Closeness

A3 N

il:‘". ) -%

Closeness is a measure of center of
gravity (best node to spread info)

MINNE

Minnesota road network g 1

Nati

Betweenness

Betweenness is a measure of
brokerage (i.e., being a bridge) ;5



UNIVERSITA

e stunt Betweenness vs PageRank centrality

DI PADOVA wiki vote network

Betweenness PageRank
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e stunt Betweenness vs PageRank centrality

DI PADOVA a correlation view

Betweenness l

PageRank

141



Clustering coefficient

how tightly linked is the network locally




UNIVERSITA

DEGLI STUDI Clusteri ng coefficient

DI PADOVA a definition

Local clustering coefficient |edit]

The local clustering coefficient of a vertex (node) in a graph
quantifies how close its neighbours are to being a clique
(complete graph). Duncan J. Watts and Steven Strogatz
introduced the measure in 1998 to determine whether a graph

is a small-world network. . c),o\\\\
\ O
e
K e
: 0% v 1% o?
e L $° ae® §P 3, o
o 4 \\0‘. (ate ® & @ ] ’<>\\(\ 3 ®06\
AN P @ ™ k0
° . F Q2 a©
.7./ N _} \ (@Q\(\ .40
. “/ /X 0) @\\\
o .l \\/’/.\.//‘.\ . 0(()
g ° o
[ & / \\./ \.
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UNIVERSITA

DEGLI STUDI Triadic closure

DI PADOVA in social networks

Triadic closure

Forbidden triad (Aand C are likely to be friends)
[ A (A ]
"
B - O B aC

Triadic closure

O A and C are likely to have the opportunity to meet
because they have a common friend B

O The fact that A and C is friends with B gives them the
basis of trusting each other

B may have the incentive to bring A and C together, as it
may be hard for B to maintain disjoint relationships

Granovetter, The strength of weak ties [1973] 444
https://www.jstor.org/stable/pdf/2776392.pdf
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UNIVERSITA

DEGLI STUDI Local clustering coefficient

DI PADOVA a measure of triadic closures

O 9‘9’:

Local Clustering coefficient C;counts the fraction of
pairs of neighbours N; which form a triadic closure with

node |
equal to diag(A3)

1
.= f tej
Ci= NN =1, 2 tcidk

where fc = 1 if the triplet (i,/, k) forms a triadic closure,

and zero otherwise
145
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DEGLI STUDI Local clustering coefficient

DI PADOVA examples

not connected weakly connected strongly connected
neighbourhood neighbourhood neighbourhood
<C>=0 <C>=0.766 <C>=1

C,=0 C,=72= 3/(4x3/2) C,=1= 6/(4x3/2)
C2=C3=%
Cy=Cs=1 146
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DEGLI STUDI Clustering coeft. vs degree centrality

DI PADOVA a correlation view

citation network from arXiv’s High Energy Physics / Phenomenology section

(o]

10° N
— when person has

many friends,

these friends

have less edges

among them,

which is to be

expected since a

person with many

friends is likely to

have friends from

more diverse

communities, and

a paper getting

cited many times

is likely to be

+ - cited by papers

. from more

107 R T e diverse areas 147

Degree

. e L] Sed 4 Sed 4vd 2
LB L L R ERAL . L1110

Local clustering coefficient
o
||
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DEGLI STUDI Warnin g

DI PADOVA

But clustering coefficient is generally hard to see and
visual interpretation is considered unreliable

148
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Visual example

DEGLI STUDI
DI PADOVA
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UNIVERSITA

DEGLI STUDI Take aways

DI PADOVA for Closeness, Betwenness and Clustering coefficient

d Closeness, betweenness and clustering
coefficient are alternative centrality
measures that have a different view wrt
PageRank

d They provide useful insights especially in
social networks, as they are linked to

sociology concepts

J Closeness and betweenness are based on
distances, that require algorithms that are
less scalable than PageRank

d Exploit their potential at your best
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Wrap-up

on centrality measures




UNIVERSITA

DEGLI STUDI Take aways

DI PADOVA on centrality measures

Centrality measure Technical property m
Degree (in/out) Measures number (and Cohesion
quality) of direct connections  Entrepreneurship
Attractiveness Measures the speed of Dinamicity
growing of a node’s degree Enterprising
PageRank Measures number (and Cohesion
(authorities/hubs) quality) of direct and indirect  Entrepreneurship
connections Similarity/Friendship
with a direction - Dependence
Closeness Measures length of shortest  Visual centrality
paths Significant spreading points
Outliers/Ostracism
Betweenness Measures number of shortest Brokerage
paths Structural holes
Clustering coeff. Measures number of triadic  Centrality in a community
closures Cohesion of the neighbourhood
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UNIVERSITA

DEGLI STUDI More on the meaning

DI PADOVA https://reticular.hypotheses.org/1745

Visual analysis

Overall organisation o

Clusters (highly connected) o> »e

Sparse areas (less connected)

Cliques and strongly connected components  Betweenness centrality
Disconnected components Number of times being on the shortest

Center/Periphery path between two other nodes

Number of Triangles
Number of times
connecting two nodes
that are also connected

Degree centrality
Number of connections

‘\?/‘ PageRank centrality

Score based on the Global metrics

connections to high- . S Number of nodes: 652
ecoring nodes Closeness centrality o Number of edges: 5629
Average length of the shortest c 0o © Density: 2%

4/. path to all other nodes Diameter: 7

O < o ()>® Clustering coefficient: 0.321

Number of triangles: 6919
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