

Università degli Studi di Padova

Network Science
A.Y. 23/24

ICT for Internet \& multimedia, Data science, Physics of data

Centrality

Importance of nodes in a network

The notion of centrality

Centrality

From Wikipedia, the free encyclopedia

For the statistical concept, see Central tendency.
In graph theory and network analysis, indicators of centrality
 identify the most important vertices within a graph. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, and super-spreaders of disease. Centrality concepts were first developed in social network analysis, and many of the terms used to measure centrality reflect their sociological origin. ${ }^{[1]}$ They should not be confused with node influence metrics, which seek to quantify the influence of every node in the network.

Degree centrality [edit]
Main article: Degree (graph theory)

PageRank centrality

Main article: PageRank
Betweenness centrality [edit]
Main article: Betweenness centrality
Eigenvector centrality [edit]
Main article: Eigenvector centrality

Can we do this efficiently, i.e., by using automatic, reliable, and fast methods?

Degree centrality

Counting the in/out degrees of nodes

Università
degli Studi
di Padova

The degree distribution

 for an undirected network Wide range for the probability p_{k} !

LINEAR BINNING

plateau

Alternative log representations

for an undirected network

LOG-BINNING

$p_{k i}=$ fraction of nodes with degree in the range $\left[\mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}+1}\right)$ where k_{i} are uniformly distributed in the log-domain, $\mathrm{k}_{\mathrm{i}+1}=\mathrm{k}_{\mathrm{i}} \cdot \Delta$

CUMULATIVE

$p_{\text {kin }}=$ fraction of nodes with input degree equal to $\mathrm{k}_{\text {in }}$

$p_{\text {kout }}=$ fraction of nodes with output degree equal to $\mathrm{k}_{\text {out }}$

Università degli Studi di Padova

Pseudocode example

https://snap.stanford.edu/data/wiki-Vote.html

```
G = np.loadtxt('Wiki-Vote.txt').astype(int)
# adjacency matrix
N = np.max(G)
A = csr_matrix((np.ones(len(G)), (G[:, 1], G[:, 0])))
#distribution
which_deg = 0 # 0=out degree, 1=in degree
d = np.sum(A, which_deg) # out degree for each node
d = np.squeeze(np.asarray(d)) # from matrix to array
d = d[d>0] # avoid zero degree
k = np.unique(d) # degree samples
pk = np.histogram(d, k)[0] # occurrence of each degree
pk = pk/np.sum(pk) # normalize to 1
Pk = 1 - np.cumsum(pk) # complementary cumulative
```



```
fig = plt.figure()
plt.loglog(pk, 'o')
plt.title("Degree Distribution", size = 20)
plt.xlabel("k", size = 18)
plt.ylabel("p_k", size = 18)
plt.show()
```


many networks follow a power-law

$$
\ln \left(p_{k}\right)=c-\gamma \cdot \ln (k)
$$

$$
p_{k}=C \cdot k^{-\gamma}
$$

how to correctly estimate the slope γ ?

Degree distribution $p_{k}=C k^{-\gamma}$

Constant C is determined by the (approx.) normalization condition

$$
\int_{k_{\min }}^{\infty} p_{k} d k=C \cdot k_{\min }^{-(\gamma-1) /(\gamma-1)=1}
$$

$$
\text { Target PDF } p(k \mid \gamma)=(\gamma-1) / k_{\text {min }} \cdot\left(k / k_{\text {min }}\right)^{-\gamma}
$$

ML estimate for the exponent γ

the most reliable approach

ML criterion: find the γ that best fits the data

$$
\max _{\gamma} \sum_{i} \ln p\left(k_{i} \mid \gamma\right)
$$

where k_{i} is the measured degree of node i

$$
\begin{gathered}
f(\gamma)=\sum \ln \left((\gamma-1) / k_{\min }\right)-\gamma \ln \left(k_{i} / k_{\min }\right) \\
f^{\prime}(\gamma)=\sum 1 /(\gamma-1)-\ln \left(k_{i} / k_{\min }\right)=0 \\
\gamma=1+\sum_{i} 1 / \sum_{i} \ln \left(k_{i} / k_{\min }\right)
\end{gathered}
$$

MATLAB

```
which_deg = 1; % 1 = out degree
d = full(sum(A,which_deg));
d2 = d(d>=kmin); % restrict range
ga = 1+1/mean(log(d2/kmin)); % estimate the exponent
```


The value of the exponent γ in real networks $\gamma \in[2,5]$

	N	L	$\langle k\rangle$	$\gamma_{\text {in }}$	$\gamma_{\text {out }}$	γ
NETWORK						
Internet	192,244	609,066	6.34	-	-	3.42^{*}
WWW	325,729	$1,497,134$	4.60	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	Exp.
Mobile Phone Calls	36,595	91,826	2.51	4.69^{*}	5.01^{*}	-
Email	57,194	103,731	1.81	3.43^{*}	2.03^{*}	-
Science Collaboration	23,133	93,439	8.08	-	-	3.35^{*}
Actor Network	702,388	$29,397,908$	83.71	-	-	2.12^{*}
Citation Network	449,673	$4,689,479$	10.43	$3.03^{* *}$	4.00^{*}	-
E. Coli Metabolism	1,039	5,802	5.58	2.43^{*}	2.90^{*}	-
Protein Interactions	2,018	2,930	2.90	-	-	2.89^{*}

* = good statistical fit with a power-law
** $=$ good fit for a power-law with an exponential cutoff
Exp $=$ good fit with an exponential distribution $e^{-a k}$

Explaining the power-law

Preferential attachment

\square The random network is the simplest model: pick a probability p, with $0<p<1$ activate each link (i, j) with probability p
The number of links is variable
\square There might be isolates
\square Easy to calculate fundamental parameters

Binomial distribution

explains the degree distribution for random networks

Notation	$B(n, p)$	Probability mass function
Parameters	$n \in\{0,1,2, \ldots\}$ - number of trials $p \in[0,1]$ - success probability for each trial $q=1-p$	
Support	$k \in\{0,1, \ldots, n\}$ - number of successes	
PMF	$\binom{n}{k} p^{k} q^{n-k}$	
CDF	$I_{q}(n-k, 1+k)$	8 . . \quad.
Mean	$n p$	
Median	$\lfloor n p\rfloor$ or $\lceil n p\rceil$	$10 \quad 20$
Mode	$\lfloor(n+1) p\rfloor$ or $\lceil(n+1) p\rceil-1$	$P(k ; n, p)=$ probability that k out of n trials are positive, where each is positive with probability p
Variance	$n p q$	
Skewness	$\frac{q-p}{\sqrt{n p q}}$	
Ex. kurtosis	$\frac{1-6 p q}{n p q}$	

Degree distribution

\square The number of neighbours is binomially distributed
$\mathrm{P}(k ; n, p)=$ probability that a node has exactly k neighbours, with number of possible neighbours $n=N-1$
\square Average \# of neighbours this defines p

$$
\langle k\rangle=(N-1) p \rightarrow p=\langle k\rangle /(N-1)
$$

\square Variance

$$
\sigma_{x}^{2}=(N-1) p(1-p) \simeq\langle k\rangle
$$

Poisson approximation

 di Padova
\square Poisson distribution (easier to use)

$$
\mathrm{P}[x=k]=\frac{m_{x}^{k}}{k!} \cdot e^{-m_{x}}
$$

\square Very good approximation of binomial for small p (and at small k)

$$
\mathrm{P}[x=k]=\underbrace{\frac{(n-k+1) \ldots(n-1) n}{n^{k}}}_{\simeq 1} \cdot \frac{m_{x}^{k}}{k!} \cdot \underbrace{\left(1-\frac{m_{x}}{n}\right)^{n-k}}_{\simeq \mathrm{const}}
$$

Università DEGLI STUDI di Padova

Are real networks Poisson?

No! Poisson networks are deprived of hubs
... but, nevertheless, Poisson networks capture some aspects

Università DEGLI STUDI di Padova

Poisson versus power law
a comparison

Power-law is heavy tailed (presence of hubs) like Weibull, lognormal, Lévy

Preferential attachment

Nodes link to the more connected nodes

e.g., think of www

This idea has a long history

György Pólya PÓLYA PROCESS mathematician

George Kinsley Zipf WEALTH DISTRIBUTION

ECONOMIST

Robert Gibrat PROPORTIONAL GROWTH ECONOMIST

Herbert Alexander Simon MASTER EQUATION POLITICAL SCIENTIST

Derek de Solla Price CUMULATIVE ADVANTAGE

Robert Merton MATTHEW EFFECT sociologist

1999

Albert-László Barabási \& Réka Albert PREFERENTIAL ATTACHMENT network scientists

Matthew effect: "rich gets richer", i.e., high connectivity quantifies attractiveness

Start with m_{0} nodes arbitrarily connected, with $\langle k\rangle=m$

- Growth
add a node (the N th) with m links that connect
the node to nodes in the network
- Preferential attachment

$$
\begin{aligned}
& p_{i}=k_{i} / \mathrm{C} \text { probability of connecting to node } i \\
& p_{i}=1 / \mathrm{C} \text { for self-loops } \\
& \qquad C=1+\sum k_{i}=1+2(N-1) m
\end{aligned}
$$

Approximate analysis

evolution of nodes degree

\square Increase in the degree (at each step)

$$
\Delta k_{i} \simeq \underset{\substack{\uparrow \\ \text { trials }}}{m} \cdot \underset{\substack{\uparrow \\ \text { probability per trial }}}{k_{i} /(1+2 m(N-1)) \simeq k_{i} / 2 N}
$$

\square Approximation in the continuous domain

$$
\Delta k_{i} \simeq \mathrm{~d} k_{i} / \mathrm{d} N \rightarrow \operatorname{d} k_{i} / k_{i} \simeq 1 / 2 \mathrm{~d} N / N
$$

- Integration

$$
\ln \left(k_{i}\right)=1 / 2 \ln (N)+\text { cost. } \rightarrow k_{i}=c N^{1 / 2}
$$

\square Recalling that node i joins the network at time $N=i$

$$
k_{i}(N=i)=m \rightarrow k_{i}(N)=m\left(\mathrm{~N} / \mathrm{i}^{1 / 2} \quad, \begin{array}{l}
\frac{1}{2} \text { is the } \\
\text { dynamic } \\
\text { exponent }
\end{array}\right.
$$

Approximate analysis

degree distribution

- Recall $k_{i}=m\left(\mathrm{~N} / \mathrm{i}^{1 / 2}\right.$
\square The number of nodes with degree smaller than k is

$$
\begin{aligned}
k_{i}<k & \rightarrow m(N / i)^{1 / 2}<k \\
& \rightarrow i>N(m / k)^{2} \rightarrow N-N(m / k)^{2}
\end{aligned}
$$

- CDF is $P_{k}=P\left[k_{i} \leq k\right]=1-(m / k)^{2}$
\square The degree distribution is

$$
\mathrm{d} P_{k} / \mathrm{d} k=p_{k}=2 m^{2} / k^{3}
$$

The Barabasi-Albert model

\square Depending on the implementation there might be self/multiple links
\square Most nodes have a small degree (exactly m for the youngest ones)
\square Hubs appear
\square The average degree is $\langle k\rangle=2 m$, and in fact $L=N m=1 / 2\langle k\rangle N$
\square The resulting degree distribution is always a power-law with exponent $\gamma=3$

- all nodes follow the same dynamics
\square the growth is sublinear: nodes are competing with the others
\square the earlier the node is added, the higher the degree - "firstmover advantage"
\square older nodes acquire more links
\square this explains the hub formation

Università DEGLI STUDI di Padova

Measuring preferential attachment

 in real networks

The Bianconi-Barabasi model

The model:
\square Growth - at time step N a new node $i=N$ is added with m links and fitness η_{i}
\square Attractiveness (or fitness) is a random number drawn from a given distribution $\rho(\eta)$ - a quality of the individual to attract links
\square Preferential attachment - probability of linking to node i is proportional to both the degree and the attractiveness, i.e., $p_{i}=k_{i} \eta_{\mathrm{i}} / \sum k_{j} \eta_{\mathrm{j}}$
we guess $k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)}$ for some $\beta(\eta)$

Approximate analysis starting point

\square We guess $k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)}$
and trials probability per trial
\square Increase in the degree $\Delta k_{i} \simeq m \cdot k_{i} \eta_{i} / \sum k_{j} \eta_{j}$
\square We show that $\sum k_{j} \eta_{\mathrm{j}} \simeq m N \cdot C$ (see proof)

Approximate analysis

\square Analysis of denominator $\sum k_{i} \eta_{\mathrm{i}}$
\rightarrow average value wrt η
\rightarrow hypothesis $k_{i} \simeq m(N / i)^{\beta(\eta i)}$
$\square \mathrm{A}=\mathrm{E}\left[\sum_{i} k_{i} \eta_{\mathrm{i}}\right]=\sum \mathrm{E}\left[k_{i} \eta_{\mathrm{i}}\right] \simeq \int_{i}^{N} \mathrm{E}\left[k_{i} \eta_{\mathrm{i}}\right] \mathrm{d} i$

- $\mathrm{E}\left[k_{i} \eta_{\mathrm{i}}\right]=\int m(N / i)^{\beta(\eta)} \eta \cdot \rho(\eta) \mathrm{d} \eta$
\square Swap integrals

$$
\mathrm{A} \simeq \int m N^{\beta(\eta)}\left[\int_{i}^{N} i-\beta(\eta) \mathrm{d} i\right] \eta \cdot \rho(\eta) \mathrm{d} \eta
$$

- Integrate constant C

$$
\mathrm{A} \simeq m N \cdot \underbrace{\left.\int \frac{(1-\beta(\eta)}{1-\beta(\eta)-1}\right)}_{\text {negligible for large } N \text { if } 0<\beta<1} \eta \rho(\eta) \mathrm{d} \eta \underbrace{2}
$$ di Padova

evolution of nodes degrees

\square We guess $k_{i} \simeq m(N / i)^{\beta(n i)}$
\square Increase in the degree $\Delta k_{i} \simeq m \cdot k_{i} \eta_{i} / \sum k_{j} \eta_{\mathrm{j}}$
\square It is $\sum k_{j} \eta_{\mathrm{j}} \simeq m N \cdot C$
Hence:

1. By inspection of the above

$$
\Delta k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)} \eta_{i} / N C
$$

2. By continuum theory

$$
\Delta k_{i} \simeq \mathrm{~d} k_{i} / \mathrm{d} N \simeq m \beta\left(\eta_{i}\right) N^{\beta\left(\eta_{i}\right)-1} i-\beta\left(\eta_{i}\right)
$$

3. By combining the results $\beta\left(\eta_{i}\right) \simeq \eta_{i} / C$ We conclude $k_{i} \simeq m(N / i)^{n i / C}$

Approximate analysis

$$
\begin{aligned}
& \beta(\eta) \simeq \eta / C \\
& C=\frac{\int \eta \rho(\eta) \mathrm{d} \eta}{1-\beta(\eta)} \eta \underbrace{\eta_{\max }}_{\text {this identifies } \mathrm{C} \text { for a given } \rho(\eta)}(C-\eta)^{-1} \eta \rho(\eta) \mathrm{d} \eta
\end{aligned}
$$

it is $C>\eta_{\max }$, i.e., $\beta<1, \rightarrow$ the integral makes sense
it also is $C \leq 2 \eta_{\max }$

Approximate analysis

Want to identify $P_{k}=\mathrm{P}\left[k_{i} \leq k\right]=1-\mathrm{P}\left[k_{i}>k\right]$
$\square k_{i}>k$ and $k_{i}=m(N / i)^{\eta i l C} \rightarrow i<N(m / k)^{C / n i}$

- Hence $\mathrm{P}\left[k_{i}>k \mid \eta_{i}\right]=(m / k)^{C / \eta i}$
\square and $\mathrm{P}\left[k_{i} \leq k \mid \eta_{\mathrm{i}}\right]=1-(m / k)^{C / \eta i}$
\square We have $P_{k}=1-\int(m / k)^{c / \eta} \rho(\eta) \mathrm{d} \eta$

The degree distribution is

$$
\begin{gathered}
p_{k}=P_{k}^{\prime}=\int_{0}^{\eta_{\max }} k_{\substack{-(C / \eta+1)}}^{C / \eta} \eta^{-1} \rho(\eta) \mathrm{d} \eta \\
\begin{array}{c}
\text { weighted combination of power laws with } \\
\text { exponent in }[2, \infty) \text { since } \eta_{\max }<C
\end{array}
\end{gathered}
$$

Equal fitness

What if $\rho(\eta)=\delta(\eta-1)$?

- Coefficient $C_{\eta_{\text {max }}}=2$ since

$$
\int_{0}(\mathrm{C} / \eta-1)^{-1} \delta(\eta-1) \mathrm{d} \eta=(\mathrm{C}-1)^{-1}=1
$$

\square Exponential degree $k_{i} \simeq m(N / i)^{1 / 2}$
Degree distribution

$$
p_{k}=C \int_{0}^{\eta_{\max }} \eta^{-1} m^{C / \eta} k^{-(C / \eta+1)} \delta(\eta-1) \mathrm{d} \eta=2 m^{2} k^{-3}
$$

Uniform fitness

What if $\rho(\eta)=1$ and $\eta_{\text {max }}=1$?

- Coefficient $C=1.255$ since

$$
\int_{0}^{1}(\mathrm{C} / \eta-1)^{-1} \mathrm{~d} \eta=1 \rightarrow \mathrm{e}^{-2 / C}=1-1 / \mathrm{C}
$$

\square Exponential degree $k_{i} \simeq m(N / i)^{\text {nil }}$
\square Each node has its own dynamic exponent !!!

Degree distribution

$$
\begin{gathered}
p_{k}=C / k \int_{0}^{1} \eta^{-1} e^{-C \ln (k / m) / \eta} \mathrm{d} \eta \sim k^{-(1+C) / \ln (k)} \\
\mathrm{e}^{-b}-b \mathrm{E}_{1}(b), \quad b=C \ln (k / m) \\
\text { exponential integral } \mathrm{E}_{1}
\end{gathered}
$$

Università
degli Studi
di Padova

Uniform fitness

 the measured data
degree distribution $p_{k} \sim k^{-2.255} / \ln (k)$

Exponential fitness

What if $\rho(\eta)=\mathrm{a}^{-\mathrm{a} \eta} /\left(1-\mathrm{e}^{-\mathrm{a}}\right)$ and $\eta_{\max }=1$?

- C rapidly converges to $\mathrm{C}=1$

$$
\int_{0}^{1}(\mathrm{C} / \eta-1)^{-1} \rho(\eta) \mathrm{d} \eta=1
$$

[Exponential degree $k_{i} \simeq m(N / i)^{\text {nil } C}$
E Each node has its own dynamic exponent !!!
Degree distribution

$$
p_{k}=C / k \int_{0}^{1} \eta^{-1} e^{-C \ln (k / m) / \eta} \rho(\eta) \mathrm{d} \eta \sim k^{-(1+C) / \ln (k)}
$$

Università DEGLI STUDI dI Padova

Exponential fitness

degree distribution $p_{k} \sim k^{-2} / \ln (k)$

Other ideas for extension

 of the Albert-Barabasi modelElementary Processes Affecting the Network Topology
A summary of the elementary processes discussed in this section and their impact on the degree distribution. Each model is defined as extensions of the Barabási-Albert model.

A.L. Barabási, Network science

 http://barabasi.com/networksciencebookCh. 3 "Random networks"
Ch. 4 "The scale-free property"
Ch. 5 "The Barabási-Albert model"
Ch. 6 "Evolving networks"

Properties of the power-law
 scale-free and random networks

Degree distribution $p_{k}=C k^{-\gamma}$ with $C=(\gamma-1) k_{\text {min }}{ }^{\gamma-1}$

The size of the largest hub is captured by

$$
\int_{k}^{\infty} p_{k} d k=C \cdot k_{\max }{ }^{-(\gamma-1)} /(\gamma-1)=1 / N
$$

$$
k_{\max }=k_{\min } N^{1 /(\gamma-1)}
$$

is the natural cutoff it explains large hubs

$$
\begin{aligned}
-\left\langle k^{n}\right\rangle & =\int_{k_{\text {min }}}^{k_{\text {max }}} k^{n} p_{k} d k \quad \text { with } p_{k}=C k^{-\gamma} \\
& =C \cdot\left(k_{\max }^{n-\gamma+1}-k_{\min }^{n-\gamma+1) /(n-\gamma+1)}\right. \\
& =C k_{\min }-\gamma+1 \cdot(N-1+n(\gamma-1)-1) /(n-\gamma+1)
\end{aligned}
$$

- They diverge with N if $\gamma<n+1$ mean ($n=1$) doesn't diverge for $\gamma \geq 2$ variance ($n=2$) diverges for $\gamma<3$ and the network does not have a scale (scale-free regime)

Università DEGLI STUDI di Padova

The scale-free regime

 for $2<\gamma<3$ANOMALOUS REGIME
No large network can exist here

SCALE-FREE
 REGIME

RANDOM
 REGIME

Indistinguishable from a random network

Small world property Watts, Strogatz, «Collective dynamics of small-world networks», (1998)

In real networks distance between two randomly chosen nodes is generally short
Milgram [1967]: 6 degrees of separation

What does this mean?

We are more connected than we think

Distances in random graphs

we reach $\langle k\rangle$ nodes in one hop, $\langle k\rangle^{2}$ in two, $\langle k\rangle^{3}$ in three, etc.
\square an estimate of the average distance $\langle d\rangle$ is found by solving for $N=\langle k\rangle^{(d\rangle}$ to have

$$
\langle d\rangle=\ln (\mathrm{N}) / \ln (\langle k\rangle)
$$

$\square\langle d\rangle$ is often taken as an estimate of the network diameter $d_{\text {max }}$
e.g.: on earth we are $N=7 \cdot 10^{9}$ individuals, with $\langle k\rangle=1000$ acquaintances each $\rightarrow\langle d\rangle=3.28$

Distances in random graphs

 fitting with real data

Very good fit! Correct at least as order of magnitude
\square The average distance increases as $\ln (\ln (N))$, much slower than N or $\ln (N)$
e.g. in www $N=7 \cdot 10^{9}, \ln (N)=22.7, \ln (\ln (N))=3.12$ (very small)

The large hubs radically shrink the distance between nodes \rightarrow ultra small world

In many social experiments people avoided hubs for entirely perceptual reasons (e.g., they assumed they are busy, better use them only if really needed)

We live in a ultra-small-world, but we perceive that we are more distant from others than we really are!
\square Can be observed in the ultra-small-world under the presence of big hubs
\square Rationale: a node is very likely to be connected to a big hub, having a very large number of connections
\square \# of friends (in the average) $=\langle k\rangle$
\square \# of friends of friends $\simeq N$
\square Do not use it for resizing nodes according to their importance (will use PageRank for this)
\square Provide useful information in the form of a degree distribution
\square Always plot degree distributions in the log scale
\square Always evaluate their slope γ, but please use the ML approach: γ provides useful insights on the network
\square Preferential attachment and attractiveness can be measured if you have temporal info on the network

PageRank centrality

Google's approach to centrality

Università

How to organise the web?

links as votes
\square the higher (and stronger) the number of incoming links, the more important a node
\square the more important a node, the more valuable the output links

\square PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is
\square The underlying assumption is that more important websites are likely to receive more links from other websites

A random walk on www

\square at time t, a web surfer is at page i with probability $p_{t, i}$
\square let the surfer choose with equal probability one of the sites linked by site i

$$
p_{t+1,3}=1 / 3 p_{t, i}+1 / 5 p_{t, j}+1 / 8 p_{t, k}
$$

\square this identifies a Markov chain
\square after a while probabilities settle to a steady state = the PageRank vector

Example

of the random walk effect on a friends' network

Matrix formalization

[. $\boldsymbol{p}_{t+1}=M p_{t}$

- \boldsymbol{p}_{t} stochastic vector
(positive entries which sum up to 1)
- M normalized adjacency matrix (column stochastic)
- $\boldsymbol{M}=\boldsymbol{A} \operatorname{diag}^{-1}(\boldsymbol{d})$
$\square \boldsymbol{d}=\boldsymbol{A}^{\top} 1$ output degree vector
- $\boldsymbol{p}_{\infty}=\boldsymbol{M} \boldsymbol{p}_{\infty}$ converges to an eigenvector of \boldsymbol{M} (with eigenvalue 1)
- $\mathbf{p}_{\infty}=\mathbf{d}$ for undirected networks where $\mathbf{A}=\mathbf{A}^{\top}$

With high probability the surfer ends in:
\square Dead ends: some nodes do not have a way out = zero valued columns of \boldsymbol{M}
\square Spider traps: some set of nodes do not have a way out, and further induce a periodic behaviour

Teleportation

Idea:

\square the surfer does not necessarily move to one of the links of the page she/he is viewing

\square with a certain probability, might jump to a random page
$\square \boldsymbol{p}_{t+1}=\mathrm{c} \boldsymbol{M} \boldsymbol{p}_{t}+(1-c) \boldsymbol{q}$ the remaining $1-c=15 \%$ of the times the surfer moves at random according to a probability vector \boldsymbol{q} independent of the node she/he is in, e.g., $\boldsymbol{q}=1 / \mathrm{N}$ for uniform probability

PageRank with restart
 or simply PageRank

dead ends
no dead ends
normalization

$$
M=A \operatorname{diag}^{-1}(d), \quad d=A^{\top} \mathbf{1}
$$

no spider traps

$$
\begin{aligned}
& M_{1}=c M+(1-c) \underset{\text { equivalent formulation }}{ } \boldsymbol{1}^{\top} \\
& \text { matrix is no more sparse }
\end{aligned}
$$

Markov chain

$$
\begin{aligned}
& \boldsymbol{p}_{t+1}=\boldsymbol{M}_{1} \boldsymbol{p}_{t} \\
& \boldsymbol{r}=c \boldsymbol{M} \boldsymbol{r}+(1-c) \boldsymbol{q}, \quad \text { PageRank ce }
\end{aligned}
$$

of PageRank with restart on a friends' network

Università DEGLI STudi di Padova

Convergence properies of PageRank

PageRank

\square The vector is the probability \boldsymbol{p}_{t} for large t

- It corresponds to the stationary behaviour of the Markov chain
- p_{∞} is unique
- p_{∞} is a stochastic vector (with positive entries summing to 1)
- \boldsymbol{p}_{∞} depends on the choice of the teleportation vector \boldsymbol{q} (and of c)
- \boldsymbol{p}_{∞} converges in few iterations, typically $\boldsymbol{p}_{40} \simeq \boldsymbol{p}_{\infty}$

Hubs and Authorities

what we can get from PageRank

\square Authority (quality as a content provider)

nodes that contain useful information, or having a high number of edges pointing to them (e.g., course homepages)
= PageRank vector
(related to the in-degree of nodes)
\square Hub (quality as an expert)
trustworthy nodes, or nodes that link to many authorities (e.g., course bulletin) $=$ PageRank vector starting from $\mathbf{A}_{0}{ }^{\top}$ (related to the out-degree of nodes)

authority or hub?

Università DEGLI STudi di Padova

Example of PageRank centrality

 wikipedia administrator elections and vote history data https://snap.stanford.edu/data/wiki-Vote.html
Authorities

Università DEGLI STudi di Padova

PageRank versus degree centrality

wikipedia administrator elections and vote history data

Authorities

PageRank authority

Hubs

PageRank hub

Università DEGLI STUDI di Padova

PageRank versus degree authorities

wikipedia administrator elections and vote history data

Degree

PageRank

Università DEGLI STUDI di Padova

PageRank versus degree authorities

wikipedia administrator elections and vote history data

Degree

PageRank

Università DEGLI STudi di Padova

PageRank versus degree hubs

 wikipedia administrator elections and vote history data
Degree

PageRank

PageRank versus degree hubs

 wikipedia administrator elections and vote history data
Degree

PageRank

Università degli Studi di Padova

PageRank on a semantic network

2019 hashtag network related to \#climatechange (from Twitter, after \#gretathunberg)

Brin and Page, "The anatomy of a large-scale hypertextual web search engine," 1998

- Page, Brin, Motwani, Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," 1999

Google

https://scholar.google.com/

Convergence properties

of PageRank power iterations
\square Strong connectivity induces a partition in disjoint strongly connected sets $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{\mathrm{K}}$

- By reinterpreting the sets ás nodes we obtain a condensation graph \mathcal{G}^{*} where $i \rightarrow j$ is an edge if a connection exists between sets $\mathcal{V}_{i} \rightarrow \mathcal{V}_{j}$

Properties of the condensation graph

ordering an adjacency matrix

- $\quad \mathcal{G}^{*}$ does not contain cycles
otherwise the sets in the cycle would be strongly connected
- \mathcal{G}^{*} has at least one root and one leaf
and every node in the graph can be reached from one of the roots
- \boldsymbol{G}^{*} allows a particular reordering
where node n_{i} does not reach any of the nodes n_{j} with $j<i$
procedure: identify a root n_{1} and remove it from the network, then identify a new root; cycle until all nodes have been selected

Matrix representation

of the condensation graph

The condensation graph ordering induces a block-lower-triangular matrix structure on the adjacency matrix

blocks in the diagonal are irreducible = no block-diagonal form! 80

Perron-Frobenius theorem

of the condensation graph

the eigenvalues of the diagonal blocks, except for the leaves, lie inside the unit circle, i.e., $|\lambda|<1$

each leaf-block has at least one eigenvalue in the unit circle; $\lambda=1$ is always available, the others are distinct
before

Hence M_{1} carries only one eigenvector associated with the eigenvalue $\lambda=1$

\square PageRank matrix $\boldsymbol{M}_{1}=c \boldsymbol{M}+(1-c) \boldsymbol{q} \mathbf{1}^{\top}$
\square Normalization property $\mathbf{1}^{\top} \boldsymbol{M}_{1}=\mathbf{1}^{\top}$
\square Jordan form $\boldsymbol{M}_{1}=\mathbf{V} \boldsymbol{J} \boldsymbol{V}^{-1}$

$$
\begin{aligned}
1^{\top} M_{1} V & =1^{\top} V \\
& =1^{\top} V J \Longrightarrow \underbrace{\boldsymbol{1}^{\top} V}_{\rho} \underbrace{(J-I)}_{\substack{\text { onlyon } \\
\text { vilueis } 0}}=0
\end{aligned}
$$

Hence $\mathbf{1}^{\top} \mathbf{e}_{i}=0$ for $i>1$, i.e., except for the eigenvector associated with eigenvalue 1

Main result

for the eigenstructure of the PageRank matrix

$M_{1} \mathbf{e}_{i}=c \boldsymbol{M} \mathbf{e}_{i}+(1-c)$ q1 $\mathbf{e}_{i} \quad$ for $i>1$

same eigenvalues of \mathbf{M},
but multiplied by c !!!

[\boldsymbol{M}_{1} has one eigenvalue equal to 1
\square The remaining eigenvalues satisfy $|\lambda| \leq c$

Haveliwala and Kamvar, "The second eigenvalue of the Google matrix," 2003

Convergence properties

$$
\boldsymbol{p}_{t}=\boldsymbol{M}_{1} \boldsymbol{p}_{t-1}=\boldsymbol{M}_{1}^{t} \boldsymbol{p}_{0}=\boldsymbol{V} \boldsymbol{J}^{t} \boldsymbol{V}^{-1} \boldsymbol{p}_{0}
$$

gets large for high multiplicity
$\square\left\|p_{t}-\boldsymbol{p}_{\infty}\right\|_{2} \leq \stackrel{\downarrow}{K} \mathrm{c}^{t} t^{\stackrel{\downarrow}{m-1}} \sim K \mathrm{c}^{t}$
\square Triangular inequality: $\left\|p_{t+1}-p_{t}\right\|_{2} \lesssim 2 K \mathrm{c}^{t}$
\square Precision ε : $\left\|\boldsymbol{p}_{t+1}-\boldsymbol{p}_{t}\right\|_{2}<\varepsilon$

- Iterations required: $t=[\ln (2 / \varepsilon)+\ln (K)] / \ln (1 / \mathrm{c})$
precision $10^{-3} \rightarrow 7.6 \xrightarrow{ } \begin{aligned} & \text { Is usually small } \\ & \rightarrow \text { fast algorithm }\end{aligned}$

Local PageRank

measuring similarity/closeness among nodes

Measuring closeness: LocalPageRank

 for the eigenstructure of the PageRank matrix
Idea

- Measure similarity / closeness to node i by applying PageRank with teleport set $S=\{i\}$, i.e., with $q=\delta_{i}$

Result
\square Measures direct and indirect multiple connections, their quality, degree or weight

Example

who's Sara's best friend?

Example

 who's Giulia's best friend?

Top 10 ranking results

Local PageRank versus degree

authorities

Local PageRank

1-hop out-neighbours

neighbours authority score = local node \rightarrow neighbours

On the complexity of Local PageRank

Andersen, Chung, Lang, "Local graph partitioning using PageRank vectors," 2006
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4031383
use institutional Sign In with your unipd credentials

Approximate PageRank algorithm

\square Start from $\boldsymbol{u}=\mathbf{0}$ and $\boldsymbol{v}=\boldsymbol{q}$
degree of node i

- To all the nodes \underline{i} satisfying $\underline{v}_{i}>\varepsilon d_{i} / D$ apply the push operation

Returns $\boldsymbol{u} \simeq \boldsymbol{r}$ with precision $|\boldsymbol{r}-\boldsymbol{u}|_{1}<\varepsilon$ It is simple

Linearity of PageRank

to build a lemma for the proof

column stochastic matrix $1^{\top} M=1^{\top}$
\square PageRank equation $\boldsymbol{r}_{q}=c \boldsymbol{M} \boldsymbol{r}_{q}+(1-c) q$

\square Alternative equation $r_{q}=(I-c M)^{-1}(1-c) q$

$$
\boldsymbol{r}_{a u+b v}=a \boldsymbol{r}_{u}+b \boldsymbol{r}_{v}
$$

Università DEGLI STUDI di Padova

Modifying the PageRank equation

the lemma for the proof
\square PageRank equation $\boldsymbol{r}_{q}=c \boldsymbol{r}_{M q}+(1-c) \boldsymbol{q}$

$$
\begin{aligned}
& M \\
& \square \boldsymbol{r}_{q}=(\boldsymbol{I}-c \boldsymbol{M})^{-1}(1-c) \boldsymbol{q} \\
& \text { - } \boldsymbol{r}_{q}=(1-c) \Sigma(c \boldsymbol{M})^{k} q \\
& \square \boldsymbol{M} r_{q}=(1-c) \sum(c \boldsymbol{M})^{k} \boldsymbol{M} \boldsymbol{q} \\
& \text { - } \boldsymbol{M} \boldsymbol{r}_{q}=\boldsymbol{r}_{M q}
\end{aligned}
$$

Università DEGLI STudi di Padova

Main property of push: $\boldsymbol{r}_{q}=\boldsymbol{u}+\boldsymbol{r}_{v}$ almost there
\square At starting point $\boldsymbol{u}=\mathbf{0}$ and $\boldsymbol{v}=\boldsymbol{q}$ imply $\boldsymbol{r}_{q}=\mathbf{0}+\boldsymbol{r}_{q}$
\square The following steps are proved by induction

$$
\begin{aligned}
& \boldsymbol{u}^{+}=\boldsymbol{u}+(1-c) \boldsymbol{\delta} \\
& \boldsymbol{v}^{+}=\boldsymbol{v}-\boldsymbol{\delta}+c \boldsymbol{M} \boldsymbol{\delta} \\
& \mathbf{u}^{+}+\boldsymbol{r}_{v^{+}}=\boldsymbol{u}+(1-c) \boldsymbol{\delta}+\overbrace{\boldsymbol{r}_{v}-\boldsymbol{r}_{\delta}+\underbrace{c \boldsymbol{r}_{M \delta}}}^{\text {by linearity }} \\
& \mathbf{u}^{+}+\boldsymbol{r}_{v^{+}}=\boldsymbol{u}+\boldsymbol{r}_{v}=\boldsymbol{r}_{q}
\end{aligned}
$$

Precision guarantee: $\left|\boldsymbol{r}_{q}-\boldsymbol{u}\right|_{1}<\varepsilon$

\square The push property implies $\boldsymbol{r}_{q}=\boldsymbol{u}+\boldsymbol{r}_{v}$
\square Hence $\left|\boldsymbol{r}_{q}-\boldsymbol{u}\right|_{1}=\left|\boldsymbol{r}_{v}\right|_{1}=\mathbf{1}^{\top} \boldsymbol{r}_{v}$
\square The PageRank equation is $r_{v}=c \boldsymbol{M} r_{v}+(1-c) v$
\square Hence $1^{\top} \boldsymbol{r}_{v}=c \mathbf{1}^{\top} \boldsymbol{M} \boldsymbol{r}_{v}+(1-c) \mathbf{1}^{\top} \boldsymbol{v}$ so that $\mathbf{1}^{\top} \boldsymbol{r}_{v}=\mathbf{1}^{\top} \boldsymbol{v}$ 1^{\top}

As a result $\left|\boldsymbol{r}_{q}-\boldsymbol{u}\right|_{1}=\mathbf{1}^{\top} \boldsymbol{v}<\Sigma \varepsilon d_{i} / D=\varepsilon$

Scalability properties

of Local PageRank using Approximate PageRank

(Francesco Barbato \& Tommaso Boccato, 2020)
Execution Time on Single Core

Quasi-linear behaviour = scalability of Local PageRank

Beware of the Lazy PageRank

\square Lazy PageRank $\boldsymbol{r}=\boldsymbol{a} \boldsymbol{M}_{2} \boldsymbol{r}+(1-a) \boldsymbol{q}$

$$
\boldsymbol{M}_{2}=b \boldsymbol{I}+(1-b) \boldsymbol{M}
$$

\square Lazy because a fraction b of the times the surfer stays where she/he is
\square Equivalent to $\boldsymbol{r}=\boldsymbol{c} \boldsymbol{M} \boldsymbol{r}+(1-c) \boldsymbol{q}$

$$
c=a(1-b) /(1-a b)<a
$$

slower algorithm, as its convergence speed depends on $\mathrm{a}>\mathrm{c}$, better use c directly!

Recommendation in social networks

Given a graph at time T, can we output a ranked list of links that are predicted to appear in the graph at time $\mathrm{T}+\mathrm{x}$?

Local PageRank vector

Likelihood of activating the link (i,j)

$$
\mathrm{L}_{\mathrm{RWR}}(i, j)=\mathrm{r}_{i j}+\mathrm{r}_{j i}
$$

Select the highest values of $L_{R W R}$ for recommendation pourposes

$$
L_{\mathrm{RA}}(i, j)=\sum_{k \in N_{i} \cap} 1 / d_{k}
$$

related to a two-hop RWR

$$
\mathbf{r}_{i} \simeq(1-\mathrm{c}) \sum_{\mathrm{n}=0}^{2}(\mathrm{c} \mathbf{M})^{\mathrm{n}} \overline{\boldsymbol{\delta}}_{i}
$$

to have

$$
\begin{aligned}
& r_{\mathrm{ij}} \simeq(1-c) c^{2} / d_{\mathrm{i}} L_{R A}(i, j) \\
& L_{R W R}(i, j) \simeq(1-c) c^{2}\left(1 / d_{i}+1 / d_{j}\right) L_{R A}(i, j)
\end{aligned}
$$

fraction of links correctly guessed (out of 100 recomendations)

Precísion	CN	RA	LP	ACT
USAir	0.59	0.64	0.61	0.49
NetScience	0.26	0.54	030	0.19
Power	0.11	0.08	$\mathbf{0 . 1 3}$	0.08
Yeast	0.67	0.49	0.08	0.57
C.elegans	0.12	0.13	$\mathbf{0 . 1 4}$	0.07
	RWR	HSM	LRW	SRW
		0.65	0.28	$0.64(3)$
	$\mathbf{0 . 5 5}$	0.25	$0.54(2)$	$\mathbf{0 . 6 7 (3)}$
	0.09	0.00	$0.08(2)$	$0.54(2)$
	0.52	0.84	$\mathbf{0 . 8 6}(3)$	$0.11(3)$
	0.13	0.08	$\mathbf{0 . 1 4 (3)}$	$\mathbf{0 . 7 3 (9)}$

Among the best performance in social networks
But not strikingly good compared to simpler methods (e.g., RA = resource allocation)
\square Bias the random walk towards a topic specific teleport set S of nodes, i.e., make sure that q is active in S only
$\square S$ should contain only pages that are relevant to the topic
Result

- The random walk deterministically ends in a small set E, containing S, and being in some sense close to it

Università
DEGLI STudi
di Padova

Application \#2

assigning documents to topics in semantic networks

Tweet 1 is assigned

$$
\text { to Topic } 1 \text { !!! }
$$

Signed PageRank

modifications for signed networks

PageRank in signed networks

\square Identify + (favourable) and - (adversarial) paths, i.e., ranking values r_{+}and r_{-}for positive and negative surfers
\square Extract positive A_{+}and negative $A_{\text {. }}$
 contributions to $A=A_{+}-A_{-}$
\square Normalize the absolute value, to get M_{+}and M_{-}(with normalized $M_{+}+M_{-}$)
\square Run a signed random walk

$$
\begin{aligned}
& r_{+}=c M_{+} r_{+}+c M_{-} r_{-}+(1-c) \boldsymbol{q} \\
& r_{-}=c M_{-} r_{+}+c M_{+} r_{-}
\end{aligned}
$$

Signed PageRank

power iteration

$$
\begin{aligned}
& \text { damping factor } \boldsymbol{M}=\left[\begin{array}{ll}
\boldsymbol{M}_{+} & \boldsymbol{M}_{-} \\
\boldsymbol{M}_{-} & \boldsymbol{M}_{+}
\end{array}\right] \begin{array}{l}
\text { (column) normalized } \\
\text { adjacency matrix }
\end{array} \\
& \text { PageRank vector (centrality) } \boldsymbol{r}=\left[\begin{array}{l}
\boldsymbol{r}_{+} \\
\boldsymbol{r}_{-}
\end{array}\right] \quad \text { teleportation vector } \\
& \boldsymbol{r}=\boldsymbol{\boldsymbol { q } _ { 0 }}=\left[\begin{array}{l}
\boldsymbol{q} \\
\mathbf{0}
\end{array}\right]
\end{aligned}
$$

signed centrality outcome $\boldsymbol{r}_{+-}=\boldsymbol{r}_{+} \boldsymbol{-} \boldsymbol{r}_{-}$

$$
\begin{array}{r}
\boldsymbol{r}_{+-}=c \boldsymbol{M}_{+-} \boldsymbol{r}_{+-}+(1-c) \boldsymbol{q} \\
\boldsymbol{M}_{+-}=A \operatorname{diag}^{-1}\left(|A|^{\top} 1\right)
\end{array}
$$

Example

who's Giulia's best friend?

Preventing spamming

 on the role of the teleport vector
how to boost PageRank for a web page

1. Get as many links as possible from accessible pages (e.g., blog comments pages)

Owned

2. Construct link farm to get a PageRank multiplier effect

Web

Biography of President George W. Bush

Biography of the president from the official White House web site.
www.whitehouse.gov/president/gwbbio.html - 29k - Cached - Similar pages
Past Presidents - Kids Only - Current News - President
More results from www.whitehouse.govn

Welcome to MichaelMoore.com!

Official site of the gadfly of corporations, creator of the film Roger and Me and the television show The Awful Truth. Includes mailing list, message board, ... www.michaelmoore.com/-35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas |'Miserable failure' links to Bush

Web users manipulate a popular search engine so an unflattering description leads to the president's page.
news.bbc.co.uk/2/hi/americas/3298443.stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure

A search for miserable failure on Google brings up the official George W.
Bush biography from the US White House web site. Dismissed by Google as not a ... searchenginewatch.com/sereport/article.php/3296101-45k - Sep 1, 2005-Cached - Similar pages

PageRank outcome

SOlution teleport only to trusted pages (i.e., set $\mathrm{q}_{\mathrm{o}}=0$) can also be used as a method to identify spam farms

Row-normalized PageRank

For spreading information over the network

Row-normalized PageRank

PageRank equation

$$
\begin{aligned}
r= & c M r+(1-c) \boldsymbol{q} \quad \text { row-normalized } \\
& M=\operatorname{diag}^{-1}(\mathbf{d}) \boldsymbol{A}, d=A 1 \quad M 1=1
\end{aligned}
$$

Markov chain

$$
\begin{aligned}
\boldsymbol{p}_{t+1}= & c \boldsymbol{M} \boldsymbol{p}_{t}+(1-c) \boldsymbol{q} \\
\boldsymbol{p}_{0}= & \boldsymbol{q} \\
& \boldsymbol{M}_{1}=c \boldsymbol{M}+(1-c) \boldsymbol{q} \boldsymbol{v}^{\top} \\
& \boldsymbol{v}^{\top} \boldsymbol{M}=\boldsymbol{v}^{\top} \\
& \boldsymbol{v}^{\top} \boldsymbol{q}=1
\end{aligned}
$$

same properties of column-normalized PageRank:
] \boldsymbol{M}_{1} has one eigenvalue equal to 1
\square The remaining eigenvalues satisfy $|\lambda| \leq c$

Row-normalized PageRank

 interpreting its actionA node gathers the average value of the neighbour nodes pointing to it

$$
p_{t+1,3}=c 1 / 3\left(p_{t, i}+p_{t, j}+p_{t, k}\right)+(1-c) q_{3}
$$

It is a way of spreading the original information \mathbf{q} over the network

Semantic network example

 di Padova agency = action and goal orientation, sense of which is necessary for people to attempt social change
q values of agency (in colour)

r values after spreading

 director stand must say sand must join need wind and speank wolld. - geñder speak acorind share gap $^{\text {R }}$ voice 1 - $\underbrace{\text { 4 }}$

activist
\square This is the metric to be used it for resizing nodes according to their importance
\square Provides elaborate information on the relevance of nodes in the network
\square For directed networks, it can be used in both its authority and hub forms
\square Can also be put in the form of a PageRank distribution
\square Can be used in different useful ways, e.g., to evaluate similarity or closeness, to spread information
\square Exploit its potential at your best

HITS centrality

a (less interesting) alternative to PageRank

HITS - hubs and authorities

Kleinberg, J.M.
1999
«Authoritative sources in a hyperlinked environment» Journal of the ACM
https://www.cs.cornell.edu/home/kleinber/auth.pdf

Conceptually similar to PageRank

Provides scores for authorities and hubs, separately, as PageRank can do
We deprecate its use

HITS equations

 di Padovac
$\left[\begin{array}{c}A_{2,4}=\text { weight of connection } 4 \rightarrow 2 \\ a_{1} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9} \\ a_{10}\end{array}\right]=\left[\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right] .\left[\begin{array}{c}h_{1} \\ h_{2} \\ h_{3} \\ h_{4} \\ h_{5} \\ h_{6} \\ h_{7} \\ h_{8} \\ h_{9} \\ h_{10}\end{array}\right]$

HITS equations

hubs score

$$
\mathrm{A}_{3,2}=\text { weight of connection } 2 \rightarrow 3
$$

$$
\left[\begin{array}{l}
h_{1} \\
\hdashline h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9} \\
h_{10}
\end{array}\right]=\left[\begin{array} { l l l l l l l l l }
{ 0 } & { 1 } & { 1 } & { 1 } & { 1 } & { 0 } & { 0 } & { 0 } & { 0 }
\end{array} 0 _ { 0 } \left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0
\end{array} 0\right.\right.
$$

$$
\boldsymbol{h}=\boldsymbol{A}^{T} \boldsymbol{a}
$$

HITS equations

Power iteration method

0. Start from an initial guess \mathbf{a}_{0}

$$
\begin{aligned}
& \text { 1. Let the time go by } \\
& \qquad \mathbf{a}_{t+1}=\boldsymbol{M} \boldsymbol{a}_{t} \\
& \substack{\text { product by a sparse } \\
\text { matrix (twice) } M=\boldsymbol{A} \boldsymbol{A}^{T}}
\end{aligned}
$$

2. Keep normalizing (divide a_{t+1} by the sum of elements)
3. Stop when a converges (few iterations?)

Convergence properties

$\square\left\|a_{t}-\mathbf{a}_{\infty}\right\|_{2} \leq \sqrt{ } N \cdot\left(\lambda_{2} / \lambda_{1}\right)^{t}$
$\square \lambda_{1}$ largest eigenvalue of \boldsymbol{M}
$\square \lambda_{2}$ second largest eigenvalue of \boldsymbol{M}
\square Triang. inequality $\left\|a_{t}-a_{t+1}\right\|_{2} \leq 2 \sqrt{ } N \cdot\left(\lambda_{2} / \lambda_{1}\right)^{t}$

Worst case result:

$$
\mathrm{N}=10^{9} \rightarrow 10.3
$$

\square Precision ε implies: $\left\|a_{t}-a_{t+1}\right\|_{2}<\varepsilon$
\square Iterations required:

Eigenvector and Kats centralities

other (less interesting) alternatives to PageRank

Università DEGLI STUDI di Padova

Eigenvector and Kats centralities

They are deprecated

Università DEGLI STUdI di Padova

Eigenvector and Kats centralities

their graphical interpretation

Closeness and Harmonic centralities
 importance of nodes as spreaders of information

Closeness centrality

Closeness centrality

From Wikipedia, the free encyclopedia

In a connected graph, closeness centrality (or closeness) of a node is a measure of centrality in a network, calculated as the reciprocal of the sum of the length of the shortest paths between the node and all other nodes in the graph. Thus, the more central a node is, the closer it is to all other nodes.

Closeness was defined by Bavelas (1950) as the reciprocal of the farness, ${ }^{[1][2]}$ that is:

$$
C(x)=\frac{1}{\sum_{y} d(y, x)}
$$

where $d(y, x)$ is the distance between vertices x and y. When

An example

on how to calculate closeness centrality
count the lengths of the shortest paths
leading to Giulia
$1+2+1+2+1=7$

Closeness
0.1429 Giulia
0.1250 Marc
0.1250 Oliver
0.1429 Thomas
0.1667 Sarah
0.1250 Anna

Sarah is the preferred node for spreading information

$$
\begin{aligned}
C(\text { Giulia }) & =1 / 7 \\
& =0.1429
\end{aligned}
$$

Closeness

Degree

In disconnected graphs [edit]

When a graph is not strongly connected, a widespread idea is that of using the sum of reciprocal of distances, instead of the reciprocal of the sum of distances, with the convention $1 / \infty=0$:

$$
H(x)=\sum_{y \neq x} \frac{1}{d(y, x)}
$$

The most natural modification of Bavelas's definition of closeness is following the general principle proposed by Marchiori and Latora (2000) ${ }^{[3]}$ that in graphs with infinite distances the harmonic mean behaves better than the arithmetic mean. Indeed, Bavelas's closeness can be described as the denormalized reciprocal of the arithmetic mean of distances, whereas harmonic centrality is the denormalized reciprocal of the harmonic mean of distances.

Università DEGLI STUDI di Padova

Closeness versus harmonic centrality
a graphical interpretation

Closeness

Harmonic

Betweenness centrality

 importance of nodes as bridges or brokers
Betweenness centrality

From Wikipedia, the free encyclopedia

In graph theory, betweenness centrality is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for each vertex is the number of these shortest paths that pass through the vertex.

Betweenness centrality was devised as a general measure of centrality: ${ }^{[1]}$ it applies to a wide range of problems in network
 theory, including problems related to social networks, biology, transport and scientific cooperation. Although earlier authors have intuitively described centrality as based on betweenness, Freeman (1977) gave the first formal definition of betweenness centrality.

An example

count the \# of shortest paths
passing through Sarah (count a fraction if more than one path)

$$
1+1+0.5+0.5+0.5=3.5
$$

Betweenness
$\begin{array}{cl}1.3333 & \text { Giulia } \\ 0.3333 & \text { Marc } \\ 0 & \text { Oliver }\end{array}$
1.5000 Thomas
3.5000 Sarah
0.3333 Anna

Thomas

Closeness is a measure of center of gravity (best node to spread info)

Betweenness is a measure of brokerage (i.e., being a bridge)

Università DEGLI STUDI di Padova

Betweenness vs PageRank centrality wiki vote network

Betweenness

PageRank

Università DEGLI STUDI di Padova

Betweenness vs PageRank centrality

a correlation view

Clustering coefficient

how tightly linked is the network locally

Clustering coefficient

Local clustering coefficient [edit]

The local clustering coefficient of a vertex (node) in a graph

quantifies how close its neighbours are to being a clique (complete graph). Duncan J. Watts and Steven Strogatz introduced the measure in 1998 to determine whether a graph is a small-world network.

Triadic closure

Forbidden triad

Triadic closure
(A and C are likely to be friends)

Triadic closure
\square A and C are likely to have the opportunity to meet because they have a common friend B
\square The fact that A and C is friends with B gives them the basis of trusting each other

- B may have the incentive to bring A and C together, as it may be hard for B to maintain disjoint relationships

Local clustering coefficient

Local Clustering coefficient C_{i} counts the fraction of pairs of neighbours N_{i} which form a triadic closure with node i

$$
C_{i}=\frac{1}{\left|\mathcal{N}_{i}\right|\left(\left|\mathcal{N}_{i}\right|-1\right)} \sum_{\substack{\left(i, k \in \in \mathcal{N}_{i}^{2} \\ i \neq k\right.}} \operatorname{tc}_{i, j, k}
$$

$w_{\text {were }} t c_{i j k}=1$ if the triplet (i,j,k) forms a triadic closure, and zero otherwise

Local clustering coefficient

examples

not connected neighbourhood
$<C>=0$

$$
\begin{array}{ll}
C_{1}=0 & C_{1}=1 / 2=3 /(4 \times 3 / 2) \\
& C_{2}=C_{3}=2 / 3 \\
& C_{4}=C_{5}=1
\end{array}
$$

Clustering coeff. vs degree centrality

citation network from arXiv's High Energy Physics / Phenomenology section

when person has many friends, these friends have less edges among them, which is to be expected since a person with many friends is likely to have friends from more diverse communities, and a paper getting cited many times is likely to be cited by papers from more diverse areas

Warning

But clustering coefficient is generally hard to see and visual interpretation is considered unreliable

Università DEGLI STudi

Visual example

 dI Padova

Closeness, betweenness and clustering coefficient are alternative centrality measures that have a different view wrt PageRank

- They provide useful insights especially in social networks, as they are linked to sociology concepts
- Closeness and betweenness are based on distances, that require algorithms that are less scalable than PageRank
\square Exploit their potential at your best

Wrap-up
 on centrality measures

Centrality measure	Technical property	Meaning
Degree (in/out)	Measures number (and quality) of direct connections	Cohesion Entrepreneurship
Attractiveness	Measures the speed of growing of a node's degree	Dinamicity Enterprising
PageRank		
(authorities/hubs)	Measures number (and quality) of direct and indirect connections	Cohesion Entrepreneurship Similarity/Friendship with a direction \rightarrow Dependence
Closeness	Measures length of shortest paths	Visual centrality Significant spreading points Outliers/Ostracism
Betweenness	Measures number of shortest paths	Brokerage Structural holes
Clustering coeff.	Measures number of triadic	Centrality in a community Closures

More on the meaning

 di Padova
https://reticular.hypotheses.org/1745

Visual analysis
Overall organisation
Clusters (highly connected)
Sparse areas (less connected)
Cliques and strongly connected components Disconnected components Center/Periphery
$\bullet \mathrm{O} \rightarrow$
Betweenness centrality Number of times being on the shortest path between two other nodes

0
Number of Triangles Number of times connecting two nodes that are also connected together

