

UNIVERSITÀ DEGLI STUDI DI PADOVA

Network Science

A.Y. 23/24

ICT for Internet & multimedia, Data science, Physics of data

Course overview

Network science 23/24

Lecturer

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

tomaso.erseghe@unipd.it room 217, DEI/A

lectures: mon 8:30-10:00 & fri 10:30-12:00 www.dei.unipd.it

office hours: contact me by email

In this course you'll also meet

Prerequisites

Basic requirements (that you already satisfy)

Calculus and linear algebra Familiarity with a programming language (Python, R, MatLab, C, Java, etc.) Probability theory / Statistics

Other useful knowledge

Networking processes in economics, telecommunications, semantics, etc ... Otpimization, machine learning, deep learning, etc ...

Which programming language?

Python

MATLAB

python very good at scraping data (e.g., via Twitter APIs), polishing, plotting graphs, implementing algorithms

🛛 R

very good for memory storage, plotting graphs, implementing

MatLab

An alternative for algorithms and graph plotting

University license available

https://www.ict.unipd.it/servizi/servizi-utenti-istituzionali/contratti-software-e-licenze/matlab

What about you?

Why did you pick the course?

and CoLab?

Which is your background? Who knows about deep learning?

What do you expect from this course?

Do you have a laptop?

Are you interested in an interdisciplinary work?

Textbooks

No textbook! ③

Slides/videos & additional material available

@ stem.elearning.unipd.it

A few useful books but we will not cover them completely

A.L. Barabási, «Network science»

http://barabasi.com/networksciencebook

(these slides = Ch.1 "Introduction")

- J. Lescovec, «Machine learning with graphs» <u>http://web.stanford.edu/class/cs224w</u>
- M. Newman, «Networks: an introduction» Oxford University Press, 2010
- R. van der Hofstad, «Random graphs and complex networks»

http://www.win.tue.nl/~rhofstad/NotesRGCN.html

Project based exam

Written exam

multiple choice questions (30 min) 2 open questions (30+30 min)

Project

extract network analytics using your preferred programming language(s) oral presentation: slides + code 10 min presentation (slides) 5 min for questions

Final grade: 50% written exam, 50% project

Exam sessions

Written exam:

- Jan 15, 2024 (Mon) 8:30, Me
- Feb 2, 2024 (Fri) 9:00, Le
- Feb 20, 2024 (Tue) 9:00, Le
- July 3, 2024 (Wed) 9:00, Le
- Sep 11, 2024 (Wed) 9:00, Le

Oral sessions to be organised in the days that follow, plus: IP day Feb 8, 2024 (Thu) - 9:00, Aula Magna

PS: You will be asked to enrol in www.uniweb.unipd.it

This course is about networks

Network = anything that interconnects e.g., people sharing friendship in a social network platform

Network example

2019 hashtag network related to #climatechange from Twitter, after #gretathunberg

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Network examples (cont'd)

April-May 2016 political network (votes at the EU parliament)

Università degli Studi di Padova

Network examples (cont'd) Erasmus exchanges network 2019

Network examples (cont'd) the brain network – functional connectivity

What is then network science?

Network science

From Wikipedia, the free encyclopedia

Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by *nodes* (or *vertices*) and the connections between the elements or actors as *links* (or *edges*). The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."^[1]

... what about social network analysis?

Social network analysis

From Wikipedia, the free encyclopedia

Social network analysis (**SNA**) is the process of investigating social structures through the use of networks and graph theory.^[1] It characterizes networked structures in terms of *nodes* (individual actors, people, or things within the network) and the *ties*, *edges*, or *links* (relationships or interactions) that connect them. Examples of social structures commonly visualized through social network analysis include social media networks,^{[2][3]} memes spread,^[4] information circulation,^[5] friendship and acquaintance networks, business networks, knowledge networks,^{[6][7]} difficult working relationships,^[8] social networks,

Social network analysis has emerged as a key technique in modern sociology. It has also gained a significant following in anthropology, biology,^[12] demography,

communication studies ^{[3][13]} economics, geography, history, information science, organizational studies, ^{[6][8]} political science, public health, ^{[14][7]} social

psychology, development studies, sociolinguistics, and computer science^{15]} and is now commonly available as a consumer tool (see the list of SNA software).^{[16][17][18][19]}

And how do we study networks?

With a holistic character

(the whole is greater than the sum of its parts)

With mathematical rigour

The approach is empirical (driven by concrete data), precise (requires a proper formalism), interdisciplinary (can be applied to several fields), and challenging (in data size and in objectives)

And what do we study?

many network analytics, e.g., <u>centrality</u>
 degree, PageRank, HITS, betweenness, etc.

And what do we study? (cont'd)

community detection

modularity, Louvain algorithm, conductance, InfoMap, normalized mutual information, overlapping communities, BigCLAM, stochastic block models

And what do we study? (cont'd)

semantic networks

 network layout, data collection, sentiment analysis, BERTAgent, topic detection, latent Dirichlet allocation, variational autoencoders, BERTopic and the Transformer architecture

What about the project?

create your own group (1 to 3 people)

- choose your dataset (possibly create your own dataset)
- apply the ideas learned during the course
- show that you can do clever things
- try extracting <u>meaningful</u> measures/analytics that describe an interesting aspect of your network
- write good code
- each contributor to the group should focus on a different aspect (no everything together)
- present the project in a clear and convincing way, using <u>clear and convincing</u> plots

mainly related to semantic networks

in collaboration with the twin course of Social Network Analysis @ Communication Strategies

SNA students suggest research questions

in brainstorming sessions the instructor will help/give feedback ©

Your SNA colleagues

Interdisciplinary projects 23/24

Dipartimento di Psicologia dello Sviluppo e della Socializzazione

INTERDISCIPLINARY PROJECTS PRESENTATION

Network Science & Social Networks Analysis

AULA MAGNA LEPSCHY DEI – VIA GRADENIGO 6 – PADOVA Thu February, 8, 2024, 9:00

IP examples from past years

on Twitter

- **2**019 Evolution of Climate Change Perception on Twitter Focusing on Greta Thunberg Impact
- 2019 UN Women Twitter profile's reaction to the MeToo movement
- □ 2020 NBA and Premier League players around #blacklivesmatter and the racial issue on Twitter
- 2020 Republicans vs Democracts on Twitter
- □ 2020 Haters gonna (make you) hate Semantic analysis of hate during 2019 European elections
- 2021 Sports brands and eco-sustainability
- 2022 Sexism in Politics
- □ 2022 What is the perception around the world in terms of Menstruation Stigma in 2021?
- □ 2022 Cancel culture on social media Social network analysis on famous cases of cancellation

on TikTok

2022 – PoliTok: How do Italian politicians use TikTok as tool to promote their political ideas and influence the young generation during the 2022 elections?

other

- 2019 Noodles and Spaghetti How people make pasta in eastern countries
- □ 2021 Erasmus+ Programme: a social network analysis study of the 2014-2019 exchanges
- 2021 Nationality vs. movie prestige: from the Oscars to International Film Festivals

Calendar

UNIVERSITÀ DEGLI STUDI DI PADOVA

Contents

□ Misc (4 lectures)

introduction; graphs; graph layout: ForceAtlas2, Gephi, UMAP; robustness; homophily

Centrality (6 lectures) degree centrality, power law, preferential attachment, fitness, Bianconi-Barabasi model, scale-free regime, PageRank, convergence properties, Local PageRank, Approximate and signed PageRank, Row-normalized PageRank, HITS, closeness, betweenness, clustering coefficient

Community detection (5 lectures)

modularity, Louvain algorithm, consensus clustering, Modularity for directed and signed networks and overlapping communities, Minimum cut criterion, spectral clustering, InfoMap, Normalized mutual information, F1 score, Dice correlation, BigCLAM, stochastic block models, Dendrograms, Girvan-Newman, HDBSCAN

Semantic networks (3 lectures)

Reddit, cleaning steps: spaCy, LIWC, BERTAgent, semantic networks, TF-IDF, modularity, latent Dirichlet analysis, variational autoencoders, BERTopic, performance comparison

Python labs (4 lectures)

IP projects (2 lectures)

To do list

- Enrol @ stem.elearning.unipd.it ③
- Have a laptop available
- Ensure you know Python's basics

- ❑ Activate a Google account (with the @unipd.it email)
 → Google Drive
 → Google CoLab
- □ Activate a Reddit account (using Google's account) → Reddit apps <u>https://www.reddit.com/prefs/apps</u>
- Install Gephi on your laptop https://gephi.org/
- Review everything you know about deep learning and/or optimization
- Organize yourselves into working groups (max 3 people)

Euler and the 7 bridges of Könisberg (Prussia, 1736) today Kaliningrad

How to walk through the city by crossing each bridge only once?

Networks as graphs

Università degli Studi di Padova

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$: network Use Vertices (set \mathcal{V}) : nodes, people, concepts Edges (set \mathcal{E}): links, relations, associations mathematics

Directed versus undirected

- A connection relationship can have a privileged direction or can be mutual
 - Either a directed or an undirected link

- If the network has only (un)directed links, it is also called itself (un)directed network
 - Certain networks can have both types

Some examples

N 4

0			
	network	nodes and links	type
	Facebook	Profiles and friendship	undirected
2-7	Instagram	Accounts and followers	directed
	the www	Webpages and links	directed
	citation network	Papers and references	directed
	social network	People and friends/acquaintances	undirected
- À.ó	movie network	Actors and co-starring	undirected
A.	genealogy	People and parenthood	directed
			38

Directed versus undirected

At first glance undirected → directed by duplicating links, but not necessarily quite the same though

Generality of representation

Weighted graps

and adjacency matrix

Multi-graphs

Multi-graphs (or pseudo-graphs) Some network representations require multiple links (e.g., number of citations from one author to another)

Weighted graphs

Weighted graph

Usually a weight w_{ij} is associated to a link $(i,j) \in \mathcal{E}$, e.g., to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = # of links)

Self interactions

□ In many networks nodes do not interact with themselves if $i \in \mathcal{V}$ then $(i,i) \notin \mathcal{E}$

To account for self-interactions, we add loops to represent them

Adjacency matrix

An adjacency matrix $A = [a_{ij}]$ associated to graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ has

entries $a_{ij} = 0$ for $(i,j) \notin \mathcal{E}$ (not a connection)

if nodes *i* and *j* are **connected** then $a_{ij} \neq 0$

in plain graphs $a_{ij} = 1$ for $(i,j) \in \mathcal{E}$

Symmetries

Undirected graph = symmetric matrix

Directed graph = asymmetric matrix

46

(0)

Symmetries

Convention

The weight a_{ij} is associated to

- *i* th row
- j th column
- directed edge $j \rightarrow i$ starting from node j and leading to node i

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Question which of these representations do you like best?

Node degree

in directed and undirected networks

Node degree undirected networks

The degree k_i of node i in an undirected networks is the # of links i has to other nodes, or the # of nodes i is linked to

- $\Box \quad \text{The } \# \text{ of nodes is } N = |\mathcal{V}|$
- The # of edges is $L = |\mathcal{E}| = \frac{1}{2} \sum_{i} k_i$

The average degree is $\langle k \rangle = \sum_{i} k_i / N = 2L / N$

Node degree directed networks

 $k_2^{out} = 3$

■ For directed networks we distinguish between in-degree $k_i^{in} = \#$ of entering links out-degree $k_i^{out} = \#$ of exiting links (undirected: $k_i^{in} = k_i^{out}$ due to the symmetry) $k_2^{in} = 2$

The # of links is $L_{i} = \sum_{i} k_{i}^{in} = \sum_{i} k_{i}^{out}$

The average # of links is $\langle k^{2} \rangle = L / N$

Adjacency matrix and degree

The in (out) degree can be obtained by summing the adjacency matrix over no self-loops in this case!!!

A few useful linear algebra expressions

$$\boldsymbol{k}^{in} = \boldsymbol{A} \cdot \boldsymbol{1} \qquad \boldsymbol{k}^{out} = \boldsymbol{A}^T \cdot \boldsymbol{1} = (\boldsymbol{1}^T \cdot \boldsymbol{A})^T$$

valid also for weighted graphs

Real networks are sparse

The adjacency matrix is typically sparse

good for tractability !

protein interaction network

Real networks are sparse

- The maximum degree is $\langle k \rangle_{max} = N 1$
- $\Box \quad \text{In real networks } < k > < N 1$

network	type	Ν	L	<k></k>
www	directed	3.2 x 10 ⁵	1.5 x 10 ⁶	4.60
Protein	directed	1870	4470	2.39
Co-authorships	undirected	23133	93439	8.08
Movie actors	undirected	7 x 10 ⁵	29 x 10 ⁶	83.7

Degree distribution

Degree distribution p_k , a probability distr. p_k is the fraction of nodes that have degree exactly equal to k (i.e., # of nodes with that

Degree distribution

In real world (large) networks, degree distribution is typically heavy-tailed

nodes with high degree = hubs

Other graph types of interest to us

Bipartite graphs

Bipartite graph example

Meaning

Bipartite graphs represent memberships/relationships,
 e.g., groups (A) to which people (B) belong

examples: movies/actors, classes/students, conferences/authors

We can build separate networks (projections) for A and B (sometimes this is useful)

in the movies/actors example being linked can be interpreted in two ways: "actors in the same movie" (projection on \mathcal{B}), or "movies sharing the same actor" (projection on \mathcal{A})

Projection on a semantic network #hashtags that appear in the same tweet are linked

#climateaction tweets after Greta Thunberg

UNIVERSITÀ

DEGLI STUDI

di Padova

Projection on a semantic network words that appear in the same tweet are linked

survivor olence wor conflict harassment sav powei continue ^{play}part space dav action romote fact III refuge emn ensure society voma peop men mination income work nequality empowe support start decision difference participation make health education Wan ome see inspire medium. ousiness time give stand stereotype tamily community activist

#metoo tweets

Abstract example

Projections

□ The two projections on A and B can be obtained by inspecting the squared adjacency matrix A²

Tri-partite graphs

Signed graphs

0.3

D

В

Edges can have signed values

positive if there is an agreement between nodes negative if there's a disagreement (F)

Е

□ This is typical of correlation networks

Signed graph example

Signed graph example

An fMRI adjacency matrix (fMRI = functional magnetic resonance imaging)

Multi-layer networks

Università degli Studi di Padova

described by a set of adjacency matrices A_{ℓ} average connection $A = \sum_{\ell} A_{\ell}$

Paths and connectivity in graphs

Path

a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

Path length

of links involved in the path (if the path involves n nodes then the path link is n-1)

Cycle

path where starting and ending nodes coincide

Small world

Average path length

average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)

- In real networks distance between two randomly chosen nodes is generally short
- □ Milgram [1967]: 6 degrees of separation

What does this mean?We are more connected than we think

Small world we and the US presidents

Università degli Studi di Padova

Università

DECLI STUDI

DI PADOVA

Connected graph (undirected)

for all couples (*i*,*j*) there exists a path connecting them

if **disconnected**, we count the # of connected components (e.g., use BFS and iterate)

- Giant component (the biggest one)
- □ Isolates (the other ones)

A bridge is a link between two connected components

its removal would make the network disconnected

Connectivity in directed networks

For directed networks we distinguish between

Strongly connected components

where $i \rightarrow j$ and $j \rightarrow i$ for all choices of (i, j) in the component

Weakly connected components

connected in the undirected sense (i.e., disregard link directions)

Condensation graph

- Strong connectivity induces a partition in disjoint strongly connected sets $\mathcal{V}_1, \mathcal{V}_2, ..., \mathcal{V}_K$
- □ By reinterpreting the sets as nodes we obtain a condensation graph g^* where $i \rightarrow j$ is an edge if a connection exists between sets $\mathcal{V}_i \rightarrow \mathcal{V}_j$

