

Università degli Studi di Padova

Network Science
A.Y. 23/24

ICT for Internet \& multimedia, Data science, Physics of data

Course overview

Network science 23/24

Lecturer

tomaso.erseghe@unipd.it room 217, DEI/A

lectures: mon 8:30-10:00 \& fri 10:30-12:00 www.dei.unipd.it
office hours: contact me by email

In this course you'll also meet

Prerequisites

Basic requirements (that you already satisfy)

Calculus and linear algebra

 Familiarity with a programming language (Python, R, MatLab, C, Java, etc.)Probability theory / Statistics

Other useful knowledge

Networking processes in economics, telecommunications, semantics, etc ...
 Otpimization, machine learning, deep learning, etc ...

Which programming language?

- Python
very good at scraping data (e.g., via Twitter APIs), polishing, plotting graphs, implementing algorithms
- R
very good for memory storage, plotting graphs, implementing algorithms
- MatLab

An alternative for algorithms and graph plotting
University license available
https://www.ict.unipd.it/servizi/servizi-utenti-istituzionali/contratti-software-e-licenze/matlab

What about you?

Why did you pick the course?

Which is your background? Who knows about deep learning?
Do you know Python?
 and CoLab?

What do you expect from this course?

Do you have a laptop?

Are you interested in an interdisciplinary work?

Textbooks

No textbook! :

Slides/videos \& additional material available
@ stem.elearning.unipd.it

A few useful books

- A.L. Barabási, «Network science»
http://barabasi.com/networksciencebook
(these slides = Ch. 1 "Introduction")
- J. Lescovec, «Machine learning with graphs» http://web.stanford.edu/class/cs224w
\square M. Newman, «Networks: an introduction» Oxford University Press, 2010
- R. van der Hofstad, «Random graphs and complex networks»
http://www.win.tue.nl/~rhofstad/NotesRGCN.html

Project based exam

- Written exam
multiple choice questions (30 min)
2 open questions ($30+30 \mathrm{~min}$)

- Project
extract network analytics using your preferred programming language(s) oral presentation: slides + code 10 min presentation (slides)
5 min for questions

Final grade: 50\% written exam, 50\% project

Exam sessions

Written exam:

- Jan 15, 2024 (Mon) - 8:30, Me
- Feb 2, 2024 (Fri) - 9:00, Le
- Feb 20, 2024 (Tue)-9:00, Le
- July 3, 2024 (Wed) - 9:00, Le
- Sep 11, 2024 (Wed) - 9:00, Le

Oral sessions to be organised in the days that follow, plus:

- IP day Feb 8, 2024 (Thu) - 9:00, Aula Magna

PS: You will be asked to enrol in
www.uniweb.unipd.it

Contents

a brief overview

Università DEGLI STUDI

This course is about networks

Network = anything that interconnects e.g., people sharing friendship in a social network platform

Università
degli Studi
di Padova

Network example

2019 hashtag network related to \#climatechange from Twitter, after \#gretathunberg

Network examples (cont'd)

 di Padova
April-May 2016 political network (votes at the EU parliament)

SimRank force directed layout

Network examples (cont'd)

 di Padova

Università degli Studi di Padova

Network examples (cont'd) the brain network - functional connectivity

What is then network science?

Network science

From Wikipedia, the free encyclopedia

For other uses, see Network (disambiguation).

Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes (or vertices) and the connections between the elements or actors as links (or edges). The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to models of these phenomena."[1]

Social network analysis

From Wikipedia, the free encyclopedia
Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory. ${ }^{11}$ It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties, edges, or links (relationships or interactions) that connect them. Examples of social structures commonly visualized through social network analysis includ social media networks, ${ }^{[4}{ }^{[3]}$ memes spread, ${ }^{[4]}$ information circulation, ${ }^{[5]}$ friendship and acquaintance networks, business networks, knowledge networks, ${ }^{[6][7]}$ difficult working relationships, ${ }^{[8]}$ social networks, Social network analysis has emerged as a key technique in modern sociology. It has also gained a significant following in anthropology, biology, ${ }^{[12]}$ demography, communication studies ${ }^{[3][13]}$ economics, geography, history, information science, organizational studies, ${ }^{[6][8]}$ political science, public health, ${ }^{[14][7}$ social psychology, development studies, sociolinguistics, and computer science ${ }^{15]}$ and is now commonly available as a consumer tool (see the list of SNA software). ${ }^{[16][17][18][19]}$

And how do we study networks?

With a holistic character
(the whole is greater than the sum of its parts)

With mathematical rigour
The approach is
empirical (driven by concrete data), precise (requires a proper formalism), interdisciplinary (can be applied to several fields), and challenging (in data size and in objectives)

many network analytics, e.g., centrality - degree, PageRank, HITS, betweenness, etc.

And what do we study? (cont'd)

community detection

modularity, Louvain algorithm, conductance, InfoMap, normalized mutual information, overlapping communities, BigCLAM, stochastic block models

And what do we study? (cont'd)

network layout, data collection, sentiment analysis, BERTAgent, topic detection, latent Dirichlet allocation, variational autoencoders, BERTopic and the Transformer architecture

What about the project?

create your own group (1 to 3 people) choose your dataset (possibly create your own dataset) apply the ideas learned during the course show that you can do clever things
try extracting meaningful measures/analytics that describe an interesting aspect of your network
write good code
each contributor to the group should focus on a different aspect (no everything together)
present the project in a clear and convincing way, using clear and convincing plots

What about interdisciplinary projects?

mainly related to semantic networks
in collaboration with the twin course of Social Network Analysis @ Communication Strategies

SNA students suggest research questions
NS students conceive appropriate algorithmic solutions
in brainstorming sessions
 the instructor will help/give feedback ©

Your SNA colleagues

INTERDISCIPLINARY PROJECTS

 PRESENTATIONNelwork Science \&
Social Nelworks Analysis
AULA MAGNA LEPSCHY
DEI - VIA GRADENGO 6 - PADOVA

Thu February, 8, 2024, 9:00

IP examples from past years

on Twitter

- 2019 - Evolution of Climate Change Perception on Twitter - Focusing on Greta Thunberg Impact
- 2019 - UN Women Twitter profile's reaction to the MeToo movement
- 2020 - NBA and Premier League players around \#blacklivesmatter and the racial issue on Twitter
- 2020 - Republicans vs Democracts on Twitter
- 2020 - Haters gonna (make you) hate - Semantic analysis of hate during 2019 European elections
- 2021 - Sports brands and eco-sustainability
- 2022 - Sexism in Politics
- 2022 - What is the perception around the world in terms of Menstruation Stigma in 2021?
- 2022 - Cancel culture on social media - Social network analysis on famous cases of cancellation

on TikTok

- 2022 - PoliTok: How do Italian politicians use TikTok as tool to promote their political ideas and influence the young generation during the 2022 elections?

other

- 2019 - Noodles and Spaghetti - How people make pasta in eastern countries
- 2021 - Erasmus+ Programme: a social network analysis study of the 2014-2019 exchanges
- 2021 - Nationality vs. movie prestige: from the Oscars to International Film Festivals

Calendar
 tentative

Università DEGLI STUDI di Padova

Calendar

Contents

\square Misc (4 lectures)
introduction; graphs; graph layout: ForceAtlas2, Gephi, UMAP; robustness; homophily
\square Centrality (6 lectures)
degree centrality, power law, preferential attachment, fitness, Bianconi-Barabasi model, scale-free regime, PageRank, convergence properties, Local PageRank, Approximate and signed PageRank, Row-normalized PageRank, HITS, closeness, betweenness, clustering coefficient
\square Community detection (5 lectures)
modularity, Louvain algorithm, consensus clustering, Modularity for directed and signed networks and overlapping communities, Minimum cut criterion, spectral clustering, InfoMap, Normalized mutual information, F1 score, Dice correlation, BigCLAM, stochastic block models, Dendrograms, Girvan-Newman, HDBSCAN

\square Semantic networks (3 lectures)

Reddit, cleaning steps: spaCy, LIWC, BERTAgent, semantic networks, TF-IDF, modularity, latent Dirichlet analysis, variational autoencoders, BERTopic, performance comparison

- Python labs (4 lectures)
- IP projects (2 lectures)

To do list

\square Enrol @ stem.elearning.unipd.it :)
\square Have a laptop available
\square Ensure you know Python's basics
\square Activate a Google account (with the @unipd.it email) \rightarrow Google Drive \rightarrow Google CoLab
\square Activate a Reddit account (using Google’s account) \rightarrow Reddit apps hitps://www.reddit.com/prefs/apps
\square Install Gephi on your laptop https://geephi.orod
\square Review everything you know about deep learning and/or optimization
\square Organize yourselves into working groups (max 3 people)

Graphs

an introduction

Università DEGLI STUDI di Padova

Euler and the 7 bridges of Könisberg

 (Prussia, 1736) today Kaliningrad

How to walk through the city by crossing each bridge only once?

Università DEGLI STudi di Padova

Networks as graphs

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$: network
\square Vertices (set \mathcal{V}) : nodes, people, concepts
\square Edges (set \mathcal{E}): links, relations, associations

Directed versus undirected

\square A connection relationship can have a privileged direction or can be mutual
\square Either a directed or an undirected link

If the network has only (un)directed links, it is also called itself (un)directed network
\square Certain networks can have both types

Università
degli Studi

Some examples

di Padova

Directed versus undirected

\square At first glance undirected \rightarrow directed by duplicating links, but not necessarily quite the same though

di Padova

Weighted graps
 and adjacency matrix

Multi-graphs

\square Multi-graphs (or pseudo-graphs) Some network representations require multiple links (e.g., number of citations from one author to another)

Weighted graphs

\square Weighted graph

Usually a weight $w_{i j}$ is associated to a link $(i, j) \in \mathcal{E}$, e.g., to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = \# of links)

\square In many networks nodes do not interact with themselves
if $i \in \mathcal{V}$ then $(i, i) \notin \mathcal{E}$
\square To account for self-interactions, we add loops to represent them

\square An adjacency matrix $A=\left[a_{i j}\right]$ associated to graph $\boldsymbol{\mathcal { G }}(\mathcal{V}, \mathcal{E})$ has
entries $a_{i j}=0$ for $(i, j) \notin \mathcal{E}($ not a connection $)$
if nodes i and j are connected then $a_{i j} \neq 0$ in plain graphs $a_{i j}=1$ for $(i, j) \in \mathcal{E}$

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & 0 & 1.5 & 0.2 \\
0 & 1.5 & 0 & 2.3 \\
0 & 0.2 & 2.3 & 0
\end{array}\right]
$$

Symmetries

\square Undirected graph = symmetric matrix

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & \ddots & 0 & 1.5 \\
0.2 \\
0 & 1.5 & 0 & 2.3 \\
0 & 0.2 & 2.3 & \ddots
\end{array}\right]
$$

\square Directed graph = asymmetric matrix

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & -0 & 1.5 & 0 \\
0 & 1.5 & 0 & 0 \\
0 & 0.2 & 2.3 & 0
\end{array}\right]
$$

Università DEGLI STUDI

Symmetries

Convention

\square The weight $a_{i j}$ is associated to
i th row
j th column
directed edge $j \rightarrow i$ starting from node j and leading to node i

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & \ddots & 0 & 1.5 \\
a_{2} \\
0 & 1.5 & 0 & 0 \\
0 & 0.2 & 0.3 & 0 \\
0 & \ddots & a_{34}
\end{array}\right]
$$

Node degree

in directed and undirected networks

Node degree

\square The degree k_{i} of node i in an undirected networks is
the \# of links i has to other nodes, or the \# of nodes i is linked to

- The \# of nodes is $N=|\mathcal{V}|$

The \# of edges is $L=|\mathcal{E}|=1 / 2 \sum_{i} k_{i}$
(The average degree is $\langle k\rangle=\sum_{i} k_{i} / N=2 L / N$

Node degree

directed networks

\square For directed networks we distinguish between in-degree $k_{l}^{\text {in }}=\#$ of entering links out-degree $k_{i}^{\text {out }}=$ \# of exiting links (undirected: $k_{i}^{\text {in }}=k_{i}^{\text {out }}$ due to the symmetry)

$\square \underset{\text { (no need for factor } 1 / 2 \text {) }}{\text { The }}=\sum_{i} k_{i}^{\text {in }}=\sum_{i} k_{i}^{\text {out }}$
The average \# of links is $<k\rangle=L / N$
\square The in (out) degree can be obtained by summing the adjacency matrix over rows (columns)

- A few useful linear algebra expressions

$$
k^{\text {in }}=A \cdot 1 \quad \boldsymbol{k}^{\text {out }}=A^{T \cdot 1}=\left(1^{T} \cdot A\right)^{T}
$$

Real networks are sparse

\square The adjacency matrix is typically sparse
good for tractability !
protein
interaction
network

Real networks are sparse

\square The maximum degree is $\langle k\rangle_{\text {max }}=N-1$

- In real networks <k> << N-1

network	type	N	L	<k>
www	directed	3.2×10^{5}	1.5×10^{6}	4.60
Protein	directed	1870	4470	2.39
Co-authorships	undirected	23133	93439	8.08
Movie actors	undirected	7×10^{5}	29×10^{6}	83.7

Degree distribution

\square Degree distribution p_{k}, a probability distr. p_{k} is the fraction of nodes that have degree exactly equal to k (i.e., \# of nodes with that degree / N)

Degree distribution

I In real world (large) networks, degree distribution is typically heavy-tailed
nodes with high degree $=$ hubs

Other graph types
 of interest to us

Bipartite graphs

\square Connections are available only between the groups \mathcal{A} and \mathcal{B}

Bipartite graph example

$\#$
 Hashtags

those who think they are crazy enough to change the world eventually do. \#climatechange \#ClimateCrisis
\#ClimateAction \#GretaThunberg \#Greta

Hopefully these kids will succeed where past generations have failed. \#TheResistance \#FBR \#ClimateChange \#Environment \#GlobalWarming \#GretaThunberg

Meaning

\square Bipartite graphs represent memberships/relationships, e.g., groups (\mathcal{A}) to which people (\mathcal{B}) belong
examples: movies/actors, classes/students, conferences/authors
\square We can build separate networks (projections) for \mathcal{A} and \mathcal{B} (sometimes this is useful)
in the movies/actors example being linked can be interpreted in two ways: "actors in the same movie" (projection on \mathcal{B}), or "movies sharing the same actor" (projection on \mathcal{A})

Università
DEGLI STudi di Padova

Projection on a semantic network

 \#hashtags that appear in the same tweet are linked

Università
DEGLI STudi di Padova

Projection on a semantic network

words that appear in the same tweet are linked

Abstract example

Projections

$\square \quad$ The two projections on \mathcal{A} and \mathcal{B} can be obtained by inspecting the squared adjacency matrix A^{2}

$$
\begin{aligned}
& A_{1}
\end{aligned}
$$

Università degli Studi dI PADOVA

Tri-partite graphs

Signed graphs

\square Edges can have signed values
positive if there is an agreement between nodes
negative if there's a disagreement

\square This is typical of correlation networks

Università
degli Studi

Signed graph example

 di PadovaA personality network

Università
DEGLI STUDI di Padova

Signed graph example

An fMRI adjacency matrix (fMRI = functional magnetic resonance imaging)

described by a set of adjacency matrices \boldsymbol{A}_{ℓ} average connection $\boldsymbol{A}=\sum_{\ell} \boldsymbol{A}_{\ell}$

An example

Paths and connectivity

 in graphs
- Path

a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

- Path length

\# of links involved in the path (if the path involves n nodes then the path link is $n-1$)
\square Cycle
path where starting and ending nodes coincide

Distances

\square Shortest path (between any two nodes)
the path with the minimum length, which is called the distance
it is not unique!
$\square \quad$ Diameter (of the network) the highest distance in the network

\square Algorithms
available to compute distances: Dijkstra, Bellman-Ford, BFS

Small world

- Average path length
average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)
\square In real networks distance between two randomly chosen nodes is generally short
- Milgram [1967]: 6 degrees of separation
$\square \quad$ What does this mean?

We are more connected than we think

Small world

 di Padova we and the US presidents

Granovetter's weak tie ;-)

Connectivity in undirected networks

- Connected graph (undirected)
for all couples (i,j) there exists a path connecting them
if disconnected, we count the \# of connected components (e.g., use BFS and iterate)
\square Giant component (the biggest one)
\square Isolates (the other ones)

$$
\boldsymbol{A}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

block-diagonal matrix

Bridges

\square A bridge is a link between two connected components

its removal would make the network disconnected

Connectivity in directed networks

For directed networks we distinguish between

- Strongly connected components
where $i \rightarrow j$ and $j \rightarrow i$ for all choices of (i, j) in the component
\square Weakly connected components
connected in the undirected sense (i.e., disregard link directions)
\square Strong connectivity induces a partition in disjoint strongly connected sets $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{\mathrm{K}}$
\square By reinterpreting the sets às nodes we obtain a condensation graph \mathcal{G}^{*} where $i \rightarrow j$ is an edge if a connection exists between sets $\mathcal{V}_{i} \rightarrow \mathcal{V}_{j}$

