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Gösta Grahne, Concordia University

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Theoretical computer science

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Introduction

One of the main goals of theoretical computer science is the
mathematical study of computation

computability : what can be computed ?

tractability : what can be efficiently computed ?

The mathematical study of computation requires

abstract models of machine : automata theory

abstract representations of data : formal language theory
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Introduction

Most well-known models of computation :

Turing machines, introduced for the study of computability

finite automata, introduced as models of neuronal calculus

formal grammars, introduced by Noam Chomsky as linguistic
models

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

1 Introduction to finite automata : pervasive model using a fixed
amount of memory

2 Formal proof techniques : hypothesis, thesis, deduction,
induction

3 Basic concepts of automata theory : alphabets, strings and
languages
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Finite automata

Finite automata, or FA for short : Finite set of states with
transitions from one state to another

Used as a model for :

software for digital circuit design

lexical analyzer within a compiler

keyword search in a file or on the web

communication protocols

We will see more later on applications
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Finite automata

The simplest representation for an FA is a graph :

nodes represent states

arcs represent transitions

labels on each arc indicate what is causing the transition
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Example

FA for on/off switch

Push

Push

Start
onoff

FA that recognizes the keyword then in a programming language

t th the
Start t nh e

then
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Structural Representation

An FA is a recognition model : it takes as input a sequence
(string) and either accepts or rejects

Alternatively, we can use a generative model : such model
generates all of the desired sequences (no input)

Recognition models are operational, generative models are declarative
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Structural Representation

Grammars : A rewriting rule

E Ñ E ` E

specifies that an arithmetic expression may consist of two
arithmetic expressions combined by the addition operator

Regular expressions : The expression

[A-Z][a-z]*[ ][A-Z][A-Z].

generates the string Ithaca NY, but does not generate the string
Palo Alto CA

Generative models unveil structure underlying data
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Deductive proof

Typical form of the statement to be proved (H, C properties) :

If H, then C

also written as H ñ C , where H = hypothesis, C = conclusion

This means

H is a sufficient condition for C

C is a necessary condition for H

See insiemistic interpretation in next slide
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Deductive proof

In an insiemistic interpretation, H and C are associated with all
the elements of the universe U that have that property

H ñ C is equivalent to H Ď C : if H is true, C can’t be false

UC H

Many students at the final exam use H ñ C and C ñ H interchangeably:

don’t do that!
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Deductive proof

Deduction : Sequence of statements that starts from one or more
hypotheses and leads to a conclusion

Each step of the deduction uses some logical rule, applying it to
the hypotheses or to one of the previously obtained statements

Modus ponens : logical rule to move from one statement to the
next. If we know that “if H then C” is true, and if we know that
H is true, then we can conclude that C is true
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Example

Theorem If x is the sum of the squares of four positive integers,
then 2x ě x2

x is a parameter and is universally quantified; the theorem is valid
for all x ’s that satisfy the hypotheses

See textbook for example of a deductive proof
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Deductive proof

Theorems having the form
C1 if and only if C2

require proofs for both directions :

“if C2 then C1”

“if C1 then C2”, which is equivalent to “C1 only if C2”
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Additional techniques

Reduction to definitions : Convert all terms in the assumptions
using the corresponding definitions

Proof by contradiction : To prove “if H then C”, prove “H and
not C implies falsehood”

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Example

Theorem Let S be a finite subset of an infinite set U. Let T be
the complement set of S with respect to U. Then T is infinite

Proof S is finite, by definition, is equivalent to :
there is an integer n such that |S | “ n

U is infinite, by definition, is equivalent to :
for no integer n we have |U| “ n

T is the complement set of S , by definition, is equivalent to :
S Y T “ U and S X T “ H

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Example

Let us consider the denial of the conclusion : “T is a finite set”
(proof by contradiction)

T is finite, by definition, is equivalent to :
there is an integer m such that |T | “ m

Using |S | “ n and using both S Y T “ U and S X T “ H, we
have that |U| “ |S | ` |T | “ n ` m, that is, U is finite. But this is
against out hypothesis l
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Additional techniques

Counterexample : to prove that a theorem is false it is enough to
show a case in which the statement is false

Example :
Is it true that if x is a prime number, then x is odd ?
No, in fact 2 is a prime number but it is not odd
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Quantifiers

For each x (@x) : applies to all values of the variable

Exists x (Dx) : applies to at least one value of the variable

The ordering of the quantifiers affects the meaning of the
statement

Very important for pumping lemma in chapters 4 and 7

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Example

Theorem If S is an infinite set, then for every integer n there
exists at least one subset T of S with n elements

@ precedes D; for the proof we must therefore (in that order)

consider an arbitrary n

prove the existence of a subset T of S with n elements
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Set Equality

If E and F are sets, to prove E “ F we have to prove E Ď F and
F Ď E

This amounts to show two statements of the form “if H then C” :

if x is in E then x is in F

if x is in F then x is in E
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Contrapositive

The statement “if H then C” is equivalent to the statement
“if C is false then H is false”

called contrapositive

Proof of equivalence uses truth table

In some cases, it may be easier to demonstrate the contrapositive

Also known as modus tollens

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Inductive proof

Main technique when working on recursivelly defined objects
(expressions, trees, etc.)

Induction on integers : we need to prove statement Spnq, for
non-negative integer numbers n

in the base case we show Spiq for some specific integer i
(usually i “ 0 or i “ 1)

in the inductive step, for n ě i prove statement “if Spnq then
Spn ` 1q”

We can then conclude that Spnq is true for every n ě i , where i is
the base case

Think: why is induction so powerful?
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Example

Theorem If x ě 4, then 2x ě x2

Proof

Base x “ 4 ñ 2x “ 16 and x2 “ 16

Induction Let us assume 2x ě x2 for x ě 4

We need to show that 2x`1 ě px ` 1q2 :

2x`1 “ 2 ¨ 2x ě 2 ¨ x2, from the inductive hypothesis

we now show 2x2 ě px ` 1q2 “ x2 ` 2x ` 1

dividing by x ‰ 0 : x ě 2 ` 1{x

if x ě 4, 1{x ď 1{4 ñ 2 ` 1{x ď 2.25 l

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Inductive proof

We can extend the base part to a finite number of cases

We can extend the inductive step and demonstrate for a certain
k ą 0 : “if Spn ´ kq, Spn ´ k ` 1q, ..., Spn ´ 1q, Spnq then
Spn ` 1q”
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Structural induction

Many structures can be defined recursively

Definition of arithmetic expression

Base Any variable or number is an arithmetic expression

Induction If E and F are arithmetic expressions, then also E ` F ,
E ˆ F , and pE q are arithmetic expressions

Example : 3 ` px ˆ 2q and p2 ˆ p5 ` 7qq ˆ y are arithmetic
expressions

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Structural induction

Definition of tree (with root)

Base A single node N is a tree with root N

Induction If T1,T2, . . . ,Tk , k ě 1, are trees, the following
structure is a tree with root N

‚
N

‚T1 ‚T2 ¨ ¨ ¨ ‚ Tk
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Structural induction

To prove theorems for structure X which is recursively defined :

show the statement for the base cases of the definition of X

show the statement for X on the basis of the same statement
holding for the subparts of X , according to X ’s definition
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Example

Theorem Each arithmetic expression has an equal number of
open and closed parentheses

Proof We proceed by induction on the number of parentheses

Base Both variables and numbers have zero open parentheses and
zero closed parentheses

Induction Let us assume that E has n open and closed
parentheses and F has m of them

There are three ways to recursively construct an arithmetic
expression :

E ` F has n ` m open brackets and n ` m closed brackets

E ˆ F has n ` m open brackets and n ` m closed brackets

pE q has n ` 1 open brackets and n ` 1 closed brackets l
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Example

Theorem Let T be a tree with n nodes and e arcs. Then
n “ e ` 1

Before proving the theorem, try to get a visual intuition of why this is true

Proof By induction on T ’s structure

Base T has n “ 1 and e “ 0

Induction Assume Ti has ni nodes and ei arcs. By inductive
hypothesis, ni “ ei ` 1

We have :

n “ 1 `

k
ÿ

i“1

ni , e “ k `

k
ÿ

i“1

ei
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Example

We can write :

n “ 1 `
řk

i“1 ni
“ 1 `

řk
i“1 p1 ` ei q inductive hypothesis

“ 1 ` k `
řk

i“1 ei
“ 1 ` e

l
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Mutual Induction

Sometimes it is not possible to prove a statement S1pnq by
induction, because the statement depends on statements
S2pnq, ..., Skpnq of different types

We then need to prove jointly a family of statements
S1pnq, S2pnq, ..., Skpnq by mutual induction on n
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Example

Push

Push

Start
onoff

.

Theorem Given the automaton in the picture

S1pnq : After n push transitions, the automaton is in the off
state if and only if n is even

S2pnq : After n push transitions, the automaton is in the on
state if and only if n is odd
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Proof We proceed by induction on n

Base

[S1p0q, if] After 0 push, the automaton is in the off state

[S1p0q, only if] 0 even (conclusion) is always true

[S2p0q, if] 0 odd (hypothesis) is false, so the implication is true

[S2p0q, only if] The hypothesis is false (= the automaton is in the
on state after 0 push), therefore the implication is always true
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Example

Induction We assume S1pnq and S2pnq hold true, and we prove
S1pn ` 1q and S2pn ` 1q

[S1pn ` 1q, if] From n ` 1 even we have n odd. By applying the
inductive hypothesis S2pnq, if part, we get that, after n push the
automaton is in the on state. From the on state we have a push
transition to the off state. Therefore after n ` 1 push transitions,
the automaton is in the off state

[S1pn ` 1q, only if] The automaton is in the off state after n ` 1
push transitions. Since there’s only one push transition entering
the off state, the automaton was in the on state after n push
transitions. We apply the inductive hypothesis S2pnq, only if part,
and we get that n is odd. So n ` 1 even
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Example

[S2pn ` 1q, if] From n ` 1 odd we have n even. We apply the
inductive hypothesis S1pnq, if part, and obtain that after n push
transitions, the automaton is in the off state. From the off state
we have a push transition to the on state. Therefore after n ` 1
push transitions, the automaton is in the on state

[S2pn ` 1q, only if] The automaton is in the on state after n ` 1
push transitions. Since there’s only one push transition going into
the on state, the automaton was in the off state after n push
transitions. We apply the inductive hypothesis S1pnq, only if part,
and obtain that n is even. So n ` 1 is odd l
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Alphabet & strings

Alphabet : finite and nonempty set of atomic symbols

Example :

Σ “ t0, 1u, the binary alphabet

Σ “ ta, b, c , . . . , zu, the set of all lowercase letters

the set of all printable ASCII characters

String : finite sequence of symbols from some alphabet

0011001 string over Σ “ t0, 1u

Automata, Languages and Computation Chapter 1



Finite automata
Formal proofs
Basic concepts

Alphabet & strings

Empty string : The string with zero symbols (taken from any
alphabet) is denoted ϵ

Length of a string : Number of occurrences (standpoints) for the
symbols in the string

|w | denotes the length of the string w

|0110| “ 4, |ϵ| “ 0
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Alphabet & strings

Powers of an alphabet : Σk is the set of all k-length strings with
symbols from Σ

Σ “ t0, 1u

Σ1 “ t0, 1u; ambiguity between Σ and Σ1

Elements of Σ are alphabet symbols, elements of Σ1 are strings

Σ2 “ t00, 01, 10, 11u

Σ0 “ tϵu

Question : How many strings are there in Σ3 ?
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Alphabet & strings

The set of all strings from Σ is denoted Σ˚

We have

Σ˚ “ Σ0 Y Σ1 Y Σ2 Y ¨ ¨ ¨

Σ` “ Σ1 Y Σ2 Y Σ3 Y ¨ ¨ ¨

Σ˚ “ Σ` Y tϵu

It is a mistake to write Σ`
Y ϵ : why?
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Alphabet & strings

Concatenation : If x and y are strings, then xy is the string
obtained by putting a copy of y immediately after a copy of x

Example :

x “ 01101

y “ 110

xy “ 01101110

Sometimes we also use the the ‘¨’ operator to represent
concatenation and write x ¨ y

Some textbooks use the notation x .y
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Alphabet & strings

For each string x :

xϵ “ ϵx “ x

ϵ is the neutral element of the concatenation

You can always think of ϵ occurring any number of times within a
string :

x ¨ y “ x ¨ ϵ ¨ y

“ x ¨ ϵ ¨ ϵ ¨ y

“ x ¨ ϵ ¨ ϵ ¨ ϵ ¨ y

“ ¨ ¨ ¨

Compare with 2 ` 3 “ 2 ` 0 ` 3 “ 2 ` 0 ` 0 ` 3 “ ¨ ¨ ¨
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Alphabet & strings

Notational conventions :

a, b, c , ..., a1, a2, ..., ai , ... alphabet symbols

u, w , x , y , z strings

for n ě 0, an “ aa ¨ ¨ ¨ a (a repeated n times)

a0 “ ϵ, a1 “ a
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Languages

A language is a set of strings arbitrarily chosen from Σ˚, where Σ
is an alphabet. L Ď Σ˚ is a language

Example :

set of all the words in some English dictionary

set of all Java programs without syntactic errors

set of strings consisting of n zeros followed by n ones, with
n ě 0

tϵ, 01, 0011, 000111, . . .u

set of strings with an equal number of 0’s and 1’s

tϵ, 01, 10, 0011, 0101, 1001, . . .u

What is Σ in the first two cases above?
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Languages

Example :

set of binary numbers whose value is a prime

Lp “ t10, 11, 101, 111, 1011, . . .u

empty language H, contains no string

language tϵu, contains only the empty string

Do not confuse these two languages :

H ‰ tϵu
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Languages

Extensive representation of a language :

L “ tϵ, 01, 0011, 000111, 00001111, . . .u

Intensive representation of a language, using a set-former :

L “ tw | statement specifying wu

Example :

tw | w consists of an equal number of 0’s and 1’su

tw | w is an integer binary number whose value is primeu

tw | w is a syntactically correct Java programu
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Languages

Set-formers are often expressed in mathematical form :

L “ tw | w “ 0n1n, n ě 0u

or, in simplified form, also as :

L “ t0n1n | n ě 0u

which is equivalent to :

L “ tϵ, 01, 0011, 000111, . . .u

Note the implicit universal quantifier for n in the set-former above

When needed, existential quantifiers are written explicitly
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Languages

Example :

t0i1j | i , j ě 1, i ě ju

t0i1j | i , j ě 1, i ą j or i ă ju

The comma punctuation symbol is an implicit ‘and’ operator above

Note : do not confuse the two notations

t0n1n | n ě 0u

t0n1nu, n ě 0

There is no precise syntax for the use of set-formers

This requires some experience, many students get confused about this
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Decision problems

Let Ppxq be a predicate expressing some mathematical property
of element x

Decision problem associated with P : on input x , decide whether
Ppxq holds true

Associated formal language (x viewed as a string) :

LP “ tx | Ppxq holds trueu

The decision problem can be reformulated as : Given as input
string x , decide whether x P LP
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Example

For natural number x , Ppxq is true if x is a prime number. We
represent x as a binary string

We define the language of prime numbers

Lp “ t10, 11, 101, 111, 1011, . . .u

Assigned as input the binary string x , decide whether x P Lp
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Decision problems

Many mathematical problems are not decision problems, but
require instead a computation that constructs an output result

Think about search problems, optimization problems, etc.

We can reformulate these problems as decision problems

Example :

given matrices A, B, construct the matrix C “ A ˆ B

associated decision problem : given a triple xA,B,Cy, decide
whether C “ A ˆ B
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Decision problems

The general (non-decision) problem is no easier than the
associated decision problem

You can solve the decision problem if you have a subroutine for the general

problem

Example : Algorithm for decision problem using the algorithm for
the general problem as a subroutine (reduction technique)

input xA,B,Cy

use subroutines on A,B to produce C 1 “ A ˆ B

if C 1 “ C answer yes, otherwise answer no

If you have enough computational resources to solve the general problem, then

you can also solve the decision problem
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