Knowledge Representation and Learning Final exam

Prof. Luciano Serafini

September 14, 2023

Exercise 1 (6 points) Suppose that you have an undirected graph $G=(V, E)$ of n vertexes V and a set of edges E. Suppose that you have a grid of $m \times m$ places in which you can position the nodes. Formalize the problem of positioning the n nodes on the $m \times m$ grid so that the edges in E do not intersect. An example of a graph of 6 nodes displaced on a grid of 10×10 squares is given below:

PS: Vertices can be placed only in the center of each square. You can suppose that the coordinates of the center of the $i j$-square are (i, j). So the solution of be above examle place node 1 at (6,5), node 2 at (9,7), etc.

Solution The problem asks to place each vertex $v \in V$ is a place of the $n \times n$ grid. The decisions that we have to take to solve the problem is if the vertex v is placed in position x. Therefore, we introduce a propositional variable $p_{v x}$ for every $v \in V$ and every $x \in[n] \times[n]$ (where $[n]$ denotes the set $\{1,2, \ldots, n\}$). the fact that the vertex v is placed in position x. We then add the following formulas that formulate the constraints on the problem:

$$
\bigwedge_{v \in V} \sum_{x \in[n] \times[n]}^{n} p_{v x}=1 \quad \text { Every vertex } v \text { must be placed in one and only one position }
$$

The second constraint is that if we have two edges $\left(v_{1}, w_{1}\right)$ and $\left(v_{2}, w_{2}\right)$ in E then the vertexes v_{i} and w_{i} with $i=1,2$ cannot be places in position x_{i} and y_{y} respectively if the segment from x_{1} to y_{1} intersect the seqment from x_{2} to y_{2}. Let intersect $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ be an atom that is true if and only if the two segments $\overline{x_{1} y_{1}}$ and $\overline{x_{2} y_{2}}$ intersect. Then we add the following formula:

$$
\bigwedge_{\substack{\left.\left(v_{1}, w_{1}\right)\left(, v_{2}, w_{2}\right) \in E \\ \text { intersect }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)}} \neg\left(p_{v_{1} x_{1}} \wedge p_{w_{1} y_{1}} \wedge p_{v_{2} x_{2}} \wedge p_{w_{2} y_{2}}\right)
$$

To detect if intersect $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ is true we can use any algorithm.
Exercise 2 (4 points) Show how the connectives \wedge, \vee, \neg and \leftrightarrow can be rewritten in terms of the connectives \rightarrow and \perp (\perp is the formula that is always false).

Solution We start by rewriting \neg, then we use the rewriting of \neg to rewrite \vee, then we use the rewriting of \neg and \vee to rewrite \wedge, and finally we use the rewriting of \wedge to rewrite \leftrightarrow.

$$
\begin{aligned}
\neg A & \equiv A \rightarrow \perp \\
A \vee B & \equiv \neg A \rightarrow B \equiv(A \rightarrow \perp) \rightarrow B \\
A \wedge B & \equiv \neg(\neg A \vee \neg B) \equiv \neg(A \rightarrow \neg B) \equiv(A \rightarrow(B \rightarrow \perp)) \rightarrow \perp \\
A \leftrightarrow B & \equiv A \rightarrow B \wedge B \rightarrow A \equiv((A \rightarrow B) \rightarrow((B \rightarrow A) \rightarrow \perp)) \rightarrow \perp
\end{aligned}
$$

Exercise 3 (5 points) Solve the following mas-sat problem using either B $\mathcal{B} B$ or $F u$ \& Malik algorithm

$$
\begin{array}{rrr}
3:\{A, B\} & 4:\{A,, C\} & 2:\{\neg A, \neg B\} \\
2:\{\neg B, \neg C\} & 2:\{\neg A, \neg C\} & \\
\infty:\{\neg A, B\} & \infty:\{\neg B, C\} &
\end{array}
$$

Solution

The algorithm terminates returning $\mathcal{I}=\{\neg A, B, C\}$ with a cost of 2
Exercise 4 (4 points) Find the weights of the literals: $A, \neg A, B, \neg B, C$ and $\neg C$ that produce the following weight function

A	B	C	$w(\mathcal{I})$
1	1	1	-1
1	1	0	1
1	0	1	1
1	0	0	-1
0	1	1	1
0	1	0	-1
0	0	1	-1
0	0	0	1

Solution One can notice that when there is an even (including 0) number of propositions which are true the weight of the model is +1 and when there is an odd number of propositions which are false the weight is -1 . This behaviour can be obtained by associating the weight -1 to each positive and not associating any weight to the negative literals (or equivalently associating the weight +1).

Exercise 5 (4 points) Consider the following first order interpretation on the domain $\{1, \ldots, 6\}$ with two unary predicates Y and G (yellow and green), a unary function symbol f (shown in blue) and a binary relation R (shown in red).

Check if the following formulas are true or false. If they are false explain why

1. $\forall x \exists y(R(x, y) \vee Y(f(x)))$
2. $\exists x(G(x) \wedge R(f(x), x) \wedge R(x, f(f(f(x)))))$
3. $\forall x \forall y(G(x) \wedge R(x, y) \rightarrow Y(y) \vee Y(f(y)))$
4. $\exists x(\forall y(Y(y) \rightarrow R(x, y)))$

Solution

1. $\forall x \exists y(R(x, y) \vee Y(f(x)))$ is false, indeed if $x \leftarrow 3$ there is no y such that $R(3, y)$ is true, and $Y(f(3))=Y(4)$ is false.
2. $\exists x(G(x) \wedge R(f(x), x) \wedge R(x, f(f(f(x)))))$ is false since for all the three green items $R(f(x), x)$ is always false;
3. $\forall x \forall y(G(x) \wedge R(x, y) \rightarrow Y(y) \vee Y(f(y)))$ is true since for all the pair x, y where x is green and $R(x, y)$ is true (i.e., for $((4,1),(4,2),(5,6))$, where have that either y is yellow $(Y(1)$ and $Y(6))$ or $f(y)$ is yellow $(Y(f(2))=Y(3))$.
4. $\exists x(\forall y(Y(y) \rightarrow R(x, y)))$ is false. The states that there is a x that is connected via R with all the yellow items. One can see from the picture that the model does not contains such an item.

Exercise 6 (4 points) Use resolution to prove that

$$
\begin{equation*}
\forall x \forall y \forall z(P(x, y) \wedge P(z, y) \rightarrow P(x, z)) \tag{1}
\end{equation*}
$$

is a logical consequence of

$$
\begin{aligned}
\forall x \forall y \forall z(P(x, y) \wedge P(y, z) & \rightarrow P(x, z)) \\
\forall x \forall y(P(x, y) & \rightarrow P(y, x))
\end{aligned}
$$

Solution We first have to negate the consequence obtaining

$$
\exists x \exists y \exists z(P(x, y) \wedge P(z, y) \wedge \neg P(x, z))
$$

By Skolemization we obtain:

$$
P(a, b) \wedge P(c, b) \wedge \neg P(c, a)
$$

Therefore we have the following set of clauses

$$
\begin{array}{r}
\{P(a, b)\} \\
\{P(c, b)\} \\
\{\neg P(a, c)\} \\
\{\neg P(x, y), \neg P(y, z), P(x, z)\} \\
\{\neg P(x, y), P(y, x)\}
\end{array}
$$

We can now apply resolution and unification

Exercise 7 (4 points) Provide a direct mathematical expression for counting the models of

$$
\forall x A(x) \vee \exists y B(y)
$$

on a domain of n elements.

Solution We consider the two separate cases.

1. If $\forall x A(x)$ is true, we have that A must be interpreted in the entire domain, therefore there is only one possibility, and B can be interpreted in any subset of the domain, which amounts to 2^{n} possibilities.
2. If $\forall x A(x)$ is false, then A can be interpreted in any strict subset of $[n]$ and therefore there are $2^{n}-1$ possibilities, while B must be interpreted in a non empty subset of $[n]$ and therefore there are $2^{n}-1$ possibilities. The total possibilities are therefore $\left(2^{n}-1\right)^{2}$.

Notice that the two cases are disjoint and cover all the possibilities. Therefore we can add the two results obtaining

$$
\left(2^{n}-1\right)^{2}+2^{n}=2^{2 n}-2^{n}+1
$$

