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Exercise 1 (6 points) Consider the following formulaiton of the “Wolf, goat and cabbage prob-
lem”: A farmer with a wolf, a goat, and a cabbage must cross a river by boat. The boat can carry
only the farmer and a single item. If left unattended together, the wolf would eat the goat, or the
goat would eat the cabbage. How can they cross the river without anything being eaten?

1. Suggest a minimal set of propositinal variables with the relative intutive meaning that can be
used to specify the puzzle;

2. use the propositional variables defined before to describe the initial situation, some interme-
diate situation, and the final situation of the puzzle;

3. with the defined propositional variables write a set of formulas Γ that are satisfied by the safe
situations and not satisfied by the unsafe ones.

Solution

1. We consider the following set of propositional variable with the associated intuitive meaning:

W : The wolf is on the west side of the river

G : The goat is on the west side of the river

C : The cabbage is on the west side of the river

F : The farmer is on the west side of the river

With this interpretation and with the assumption that the river has two sides, namely, a west
side and an east side, we have that ¬W means that the walf is on the east side of the river,
and similar interpretations can be given to ¬G, ¬C and ¬F .

2. In the initial situation all the participants are one the same side of the river. Without loss of
generality we can assume that they are on the west side. Therefore the initial state can be
formalized by the formula

W ∧G ∧ C ∧ F

An intermediate situation could be any situation where there are some items on one part and
some on the other, E.g.,

W ∧ ¬G ∧ ¬C ∧ F

denotes the situation in which the walf and the farmer are on the west side, and the goat and
the cabbage are on the east side of the river. The final situation is when everybody is on the
east side. Therefore the final situation is represented by the formula

¬W ∧ ¬G ∧ ¬C ∧ ¬F
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3. a dangerous situation happens when there is the wolf and the goat on the same side and
the farmer is not attending because it is on the other side. Similarly a dangerous situation
is when the cabbage and the goat are on the same side and the farmer is on the other side
Therefore we can use the following formulas to denote the two types of dangerous situations

(W ↔ G) ∧ (G↔ ¬F ) (1)

(C ↔ G) ∧ (G↔ ¬F ) (2)

The first formulas states that a dangerous situation happens if the walf and the goat are on
the same side (W ↔ G) and the farmer is on the other side (G ↔ ¬F ). A similar intuitive
meaning can be associated to the other formula. Since a situation is dangerous if either one
or both the above formulas are true, the total set of dangerous situation is formalized by the
disjunction of the tow formulas. To check if we have done the correct encoding consider the
truth table of the disjunciton of the two formulas:

C F G W (( W ↔ G ) ∧ ( G ↔ ¬ F )) ∨ (( C ↔ G ) ∧ ( G ↔ ¬ F ))
T T T T T T T F T F F T F T T T F T F F T
T T T F F F T F T F F T F T T T F T F F T
T T F T T F F F F T F T F T F F F F T F T
T T F F F T F T F T F T T T F F F F T F T
T F T T T T T T T T T F T T T T T T T T F
T F T F F F T F T T T F T T T T T T T T F
T F F T T F F F F F T F F T F F F F F T F
T F F F F T F F F F T F F T F F F F F T F
F T T T T T T F T F F T F F F T F T F F T
F T T F F F T F T F F T F F F T F T F F T
F T F T T F F F F T F T T F T F T F T F T
F T F F F T F T F T F T T F T F T F T F T
F F T T T T T T T T T F T F F T F T T T F
F F T F F F T F T T T F F F F T F T T T F
F F F T T F F F F F T F F F T F F F F T F
F F F F F T F F F F T F F F T F F F F T F

From the truth table one can see that the dangerous situation are those in which the walf
and the goat are not on the same side of the farmer, and those in which that cabbage and
the goat are not on the same side of the farmer.

The safe situations are those which are not dangerous. THerefore they are formalized by the
negation of the dangerous formula i.e.,

¬((W ↔ G) ∧ (G↔ ¬F )) ∧ ¬((C ↔ G) ∧ (G↔ ¬F ))

�

Exercise 2 (3 points) Provide the Tseitin’s Transformation of the following formula:

(A→ B) ∨ (C ∨ ¬D)→ ((A→ B)→ (C ∧ ¬D))
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Solution In the tseitin’s tranformation we introduce one propositinal variable for every subfor-
mula that is not a literal. The formula of the exercise has the following subformulas

(A→ B) ∨ (C ∨ ¬D)→ ((A→ B)→ (C ∧ ¬D))

(A→ B) ∨ (C ∨ ¬D)

(A→ B)

(C ∨ ¬D)

((A→ B)→ (C ∧ ¬D))

(C ∧ ¬D))

We therefore introduce 6 propositional variables x1, . . . , x6, which are associated to the following
subformulas

x1 : (A→ B) ∨ (C ∨ ¬D)→ ((A→ B)→ (C ∧ ¬D))

x2 : (A→ B) ∨ (C ∨ ¬D)

x3 : (A→ B)

x4 : (C ∨ ¬D)

x5 : ((A→ B)→ (C ∧ ¬D))

x6 : (C ∧ ¬D))

We then add the following interdependencies that formalizes the structure of the formula

x1 ↔ (x2 → x3)

x2 ↔ (x4 ∨ x5)
x4 ↔ (A→ B)

x5 ↔ (C ∨ ¬D)

x3 ↔ (x4 → x6)

x6 ↔ (C ∧ ¬D)

Their transformation in CNF is the following:

x1 ↔ (x2 → x3) : {¬x1 ∨ ¬x2 ∨ x3, x2 ∨ x1,¬x3 ∨ x1}
x2 ↔ (x4 ∨ x5) : {¬x2 ∨ x4 ∨ x5,¬x4 ∨ x2,¬x4 ∨ x2}
x4 ↔ (A→ B) : {¬x4 ∨ ¬A ∨B,A ∨ x4,¬B ∨ x4}
x5 ↔ (C ∨ ¬D) : {¬x5 ∨ C ∨ ¬D,¬C ∨ x5, D ∨ x5}
x3 ↔ (x4 → x6) : {¬x3 ∨ ¬x4 ∨ x6, x4 ∨ x3,¬x6 ∨ x3}
x6 ↔ (C ∧ ¬D) : {¬x6 ∨ C,¬x6 ∨ ¬D,¬V ∨D ∨ x6}

�

Exercise 3 (5 points) Let P be a set of n propositinal variables and let w : 2P → R be a generic
weight function. Find a method that extracts a (possibly small) set of weighted clauses F such that
wF is equivalent to w.

Solution Let I1 . . . , In with n = 2|P| be the ordering of the interpretations of P such that
w(Ii) ≤ w(Ii+1) for every 1 ≤ i < n. For every i = 1 . . . , n we construct a set of clauses Ci that are
satisfied only by the first i-th interpretations. We do this by induction starting from i = 1

C1 = {{l} | I1(l) = 1, l ∈ Lit(P)}
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Notice that the only interpretation that satisfies all the clauses in C1 is I1. Therefore we have that
I |= C1 if and only if I = I1. Now suppose that Ci is a set of clauses such that I |= Ci if and only
if I = I1 or I = I2 or . . .I = Ii, we can build Ci+ by computing the set of clauses of the formula

Ci ∨
∧

l∈Lit(P)
Ii+1|=l

l

which is equal to the set of clauses:

Ci+1 = {C ∪ {l} | C ∈ Ci, Ii+1 |= l, l ∈ Lit(P)}

Let us associate to every C ∈ Ci a weight equal to −1 In this way we have that

w(In) = −|Cn|
w(In−1) = −|Cn| − |Cn \ Cn−1| = |Cn ∪ Cn−1|

. . .

w(Ii) = −|Cn ∪ Cn−1 ∪ · · · ∪ Ci|
. . .

w(I1) = −|Cn ∪ · · · ∪ C1|

Notice that every Ci cannot be equal to Cj for i 6= j otherwise they will be satisfied by the same
set of models. This means that |Cn ∪ · · · ∪ Ci| < |Cn ∪ · · · ∪ Ci ∪ Ci+1| from which we have that

w(I1) < w(I2) < · · · < w(In)

Let us see how this work for a simple case Suppose we have the following sequence of models, on
the three propositions p, q, r

I1 = {p, q,¬r}
I2 = {¬p,¬q, r}
I3 = {p,¬q,¬r}
I4 = {¬p, q,¬r}
I5 = {p, q, r}
I6 = {p,¬q, r}
I7 = {¬p,¬q,¬r}
I8 = {¬p, q, r}

C1 = {{p}, {q}, {¬r}}

C2 =


{p,¬p}, {¬p, q}, {¬p,¬r},
{p,¬q}, {q,¬q}, {¬q,¬r},
{p, r}, {q, r}, {¬r, r}}


Notice that the clauses that contains a literal and the its opposite are satisfied by all interpretation
therefore they don’t affect the ordering, therefore they can be removed. This implies that

C2 =


{¬p, q}, {¬p,¬r},
{p,¬q}, {¬q,¬r},
{p, r}, {q, r}
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Then we proceed with the others by immediately simplifying the set of clauses by removing the
valid clauses.

C3 =


{p,¬q}, {p,¬q,¬r},

{p, r}, {p, q, r}, {¬p,¬q,¬r},
{¬q,¬r}, {p,¬q, r},
{¬p, q,¬r}, {¬p,¬r},


C4 =


{¬p,¬q,¬r}, {p, q, r},

{p,¬q,¬r},
{¬q,¬r}, {¬p,¬r}


C5 =

{
{p, q, r}, {p,¬q,¬r},

{¬p, q¬r}

}
C6 =

{
{p, q, r}, {p,¬q,¬r},

}
C7 =

{
{p,¬q,¬r}

}
C8 = {}

�

Exercise 4 (4 points) Find the computational circuit for the weight model counting of the formula

(A ∨B) ∧ (¬C → A)

for the generic weight function wA, w¬A, wB, w¬B, wC, and w¬C.

Solution To find the computational tree of a formula, we first have to transform it in sd-DNNF
(smooth deterministic decomposable negated normal form). We first rewrite → with ¬ and ∨

(A ∨B) ∧ (¬¬C ∨ A)

Then we transform it in NNF.

(A ∨B) ∧ (C ∨ A)

Since the two conjuncts contain a common variable, namely A, the formula is not decomposable (D).
Therefore we have to apply Shannon’s expansion on the common variable A. After the expansion
we obtain the formula:

(A ∧ (> ∨B) ∧ (C ∨ >)) ∨ (¬A ∧ (⊥ ∨B) ∧ (C ∨ ⊥))

which is equivalent to:

A ∨ (¬A ∧B ∧ C)

We have obtained a formula in d-DNNF, which is not smooth (s), since the two disjunct do not
contains the same set of propositional variables. To smoothen it, we have to add (p∨¬p) for every
missing propositional variable in a dijunct. We thaerefore obtain the formula

(A ∧ (B ∨ ¬B) ∧ (C ∨ ¬C)) ∨ (¬A ∧B ∧ C)

The formula is now in sd-DNNF and can be transformed in the computational circuit by replacing
each literal with the corresponding weight ∧ with the product and ∨ with sum. We obtain:

(wA · (wB + w¬B) · (wC + w¬C)) + (w¬A · wB · wC)

�
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Exercise 5 (4 point) For each of the following formula say if it is valid, or non valid. If it is not
valid provide a counter-model (i.e., a model in which they are false)

1. (∀xA(x)→ ∀yB(y))→ ∀x(A(x)→ B(x))

2. ∀x∃y(A(x) ∧B(y))→ ∃y∀x(A(x) ∧B(y)) p

Solution

1. The formula (∀xA(x) → ∀yB(y)) → ∀x(A(x) → B(x)) is not valid. Ineed we can build
a counter model where the premise of the implication ∀xA(x) → ∀yB(y) is true and the
consquence ∀x(A(x)→ B(x)) is false. To make ∀x(A(x)→ B(x)) false, it is enough to have
an element of the domain that is in I(A) but not in I(B), Suppose that the interpretation
domain is {1, 2} then we can impose 1 ∈ I(A) and 1 6∈ I(B) In this way we have that
I |= A(x)[x← 1] and I 6|= B(x)[x← 1], and therefore I 6|= A(x)→ B(x)[x← 1], and finally
I 6|= ∀x(A(x)→ B(x)). To make ∀xA(x)→ ∀yB(y) true we have two possibilities, either to
make ∀yB(y) true or to make ∀xA(x) false. The first obtion is not viable, since we have that
B(1) is false. So let’s take the second option and have ∀xA(x) false. This can be done by
making A(2) false. In summary, we have the following interpretation I defined as follows:

∆I = {1, 2}
I(A) = {1}
I(B) = ∅

We have that I |= ∀xA(x) → ∀yB(y) since I 6|= ∀xA(x), and that I 6|= ∀x(A(x) →;B(x))
since I 6|= A(x)→ B(x)[x← 1], and therefore I 6|= ∀x(A(x)→ B(x)).

2. ∀x∃y(A(x) ∧B(y))→ ∃y∀x(A(x) ∧B(y)) instead is valid. This can be proved directly or by
using the following equivalences

∀x(A ∧B(x))↔ A ∧ ∀xB(x) (3)

∃x(A ∧B(x))↔ A ∧ ∃xB(x) (4)

(5)

when x does not occour free in A. Let us prove by using the above equivalence.

∀x∃y(A(x) ∧B(y))

∀x(A(x) ∧ ∃yB(y)) by (4) since y is not free in A(x)

∀xA(x) ∧ ∃yB(y) by (3) since x is not free in ∃yB(y)

∃y(∀x(A(x) ∧B(y)) by (4) since y is not free in ∀xA(x)

∃y∀x(A(x) ∧B(y)) by (3) since x is not free in B(y)

�

Exercise 6 (4 points) Transform the following formula in prenex Skolemized conjunctive normal
form:

∀x∀y(R(x, y)↔ ∃z(R(x, z) ∧R(z, y))
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Solution Let us first translate in prenex normal form, by rewriting ↔ in terms of ∨ and ¬

∀x∀y(¬R(x, y) ∨ ∃z(R(x, z) ∧R(z, y)) ∧
∀x∀y(¬∃z(R(x, z) ∧R(z, y)) ∨R(x, y))

Then we push the ¬ close to the atoms, obtaining

∀x∀y(¬R(x, y) ∨ ∃z(R(x, z) ∧R(z, y)) ∧
∀x∀y∀z(¬R(x, z) ∨ ¬R(z, y) ∨R(x, y))

We remove the ∃z quantifier by scolemization with f(x, y) obtaining

∀x∀y(¬R(x, y) ∨ (R(x, f(x, y)) ∧R(f(x, y), y)) ∧
∀x∀y∀z(¬R(x, z) ∨ ¬R(z, y) ∨R(x, y))

Not that the formula is in prenex normal form we can transform it in clausal form by removing the
quantifiers, and expanding in clauses. We obtain the following three clauses:

{¬R(x, y), R(x, f(x, y))}
{¬R(x, y), R(f(x, y), y))}

{¬R(x, z),¬R(z, y), R(x, y)}

�

Exercise 7 (4 points) Use the formula for first order model counting of universally quantified
formulas to count the models of

∀xy((A(x)↔ A(y))→ R(x, y))

Solution The set of 1-types are

1(x) = A(x) ∧R(x, x)

2(x) = A(x) ∧ ¬R(x, x)

3(x) = ¬A(x) ∧R(x, x)

4(x) = ¬A(x) ∧ ¬R(x, x)

The 2-tables are:

1(x, y) = R(x, y) ∧R(y, x)

2(x, y) = R(x, y) ∧ ¬R(y, x)

3(x, y) = ¬R(x, y) ∧R(y, x)

4(x, y) = ¬R(x, y) ∧ ¬R(y, x)

Let us compute φ(x, x) ∧ φ(y, y) ∧ φ(x, y) ∧ φ(y, x)

(A(x)↔ A(x))→ R(x, x) ∧
(A(y)↔ A(y))→ R(y, y) ∧
(A(x)↔ A(y))→ R(x, y) ∧
(A(y)↔ A(x))→ R(y, x)
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which is equivalent to

φ(x, y) = R(x, x) ∧R(y, y) ∧ ((A(x)↔ A(y))→ R(x, y) ∧R(y, x))

Let us now compute the values of nij for the pairs of 1-types i and j with i ≤ j

i j l φ(x, y) nij

1(x) 1(y)

1(x, y) 1

n11 = 1
2(x, y) 0
3(x, y) 0
4(x, y) 0

1(x) 2(y)

1(x, y) 0

n12 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

1(x) 3(y)

1(x, y) 1

n13 = 4
2(x, y) 1
3(x, y) 1
4(x, y) 1

1(x) 4(y)

1(x, y) 0

n14 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

2(x) 2(y)

1(x, y) 0

n22 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

i j l φ(x, y) nij

2(x) 3(y)

1(x, y) 0

n23 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

2(x) 4(y)

1(x, y) 0

n24 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

3(x) 3(y)

1(x, y) 1

n33 = 1
2(x, y) 0
3(x, y) 0
4(x, y) 0

3(x) 4(y)

1(x, y) 0

n34 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

4(x) 4(y)

1(x, y) 0

n44 = 0
2(x, y) 0
3(x, y) 0
4(x, y) 0

The general formula for the model counting of universally quantified formula with four 1-types is
the following: ∑

k1+k2+k3+k4=n

(
n

k1, k2, k3, k4

) ∏
1≤i≤j≤4

n
k(i,j)
ij (6)

where k(i, j) = kikj if i 6= j and
ki(kj−1)

2
is i = j. � Since nij = 0 when i and j are 2 or 4, we have

that nij with i = 2, 4 or j = 2, 4 must be equal to 0. Therefore the general formula becomes:∑
k1+k3=n

(
n

k1

)
n

k1(k1−1)
2

11 nk1k3
13 n

k3(k3−1)
2

33 (7)

By replacing the values of nij we obtain

n∑
k1=0

(
n

k1

)
4k1(n−k1) (8)
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