Calculus 1
 Information Engeneering

30.06.2023

Exercise 1 (punti 8) Consider the function

$$
f(x)=x e^{\frac{1}{x}}
$$

(a) find its (maximal) domain, determine its sign and study the possibility that f is odd or even: Solution:
Domain: the domain is clearly equal to $D:=\mathbb{R} \backslash\{0\}$
The function is neither even nor odd.
Sign: since $e^{\frac{1}{x}}>0$ for every $x \neq 0$ one has

$$
f(x) \geq 0 \Longleftrightarrow x \geq 0
$$

(b) compute limits and possible asymptotes ;

Limits at 0:

$$
\begin{gathered}
\lim _{x \rightarrow 0-} f(x)=0 \cdot 0=0 \\
\lim _{x \rightarrow 0+} f(x)=0 \cdot \infty
\end{gathered}
$$

indeterminate form ... Let us try the change of variable $y=\frac{1}{x}$

$$
\lim _{x \rightarrow 0+} f(x)=\lim _{y \rightarrow+\infty} \frac{e^{y}}{y}=+\infty
$$

So $x=0$ is a (right) vertical asymptote at $x=0$.
Limits at $\pm \infty$

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} x e^{\frac{1}{x}}=+\infty \times 1=+\infty \\
& \lim _{x \rightarrow-\infty} x e^{\frac{1}{x}}=-\infty \times 1=-\infty
\end{aligned}
$$

Asymptotes:

$$
\lim _{x \rightarrow+\infty} \frac{x e^{\frac{1}{x}}}{x}=\lim _{x \rightarrow+\infty} e^{\frac{1}{x}}=1
$$

$$
\lim _{x \rightarrow+\infty} x e^{\frac{1}{x}}-x \stackrel{y=\frac{1}{x}}{=} \lim _{y \rightarrow 0+} \frac{1}{y}\left(e^{y}-1\right)=\lim _{y \rightarrow 0+} \frac{1}{y}(y+o(y))=1 \Longrightarrow \text { there is an asymptote at }+\infty: y=x+1
$$

$$
\lim _{x \rightarrow-\infty} \frac{x e^{\frac{1}{x}}}{x}=\lim _{x \rightarrow-\infty} e^{\frac{1}{x}}=1
$$

$\lim _{x \rightarrow-\infty} x e^{\frac{1}{x}}-x \stackrel{y=\frac{1}{x}}{=} \lim _{y \rightarrow 0-} \frac{1}{y}\left(e^{y}-1\right)=\lim _{y \rightarrow 0-} \frac{1}{y}(y+o(y))=1 \Longrightarrow$ there is an asymptote at $-\infty: y=x+1$
(c) study the differentiability of f and find the derivative where possible (if necessary study the limits of the derivative); discuss the monotonicity of f and determine its supremum and infimum; if existing determine relative ($=$ local) and absolutely ($)=$ global) minima and maxima of f;

$$
\forall x \neq 0, \quad f^{\prime}(x)>0 \Longleftrightarrow e^{\frac{1}{x}}-x e^{\frac{1}{x}} \frac{1}{x^{2}}=e^{\frac{1}{x}}-e^{\frac{1}{x}} \frac{1}{x}>0 \Longleftrightarrow 1-\frac{1}{x}>0 \Longleftrightarrow x>1 \text { or } x<0
$$

and

$$
f^{\prime}(x)=0 \Longleftrightarrow x=1
$$

f is increasing on $] 1,+\infty[$ and on $]-\infty, 0[$, and it is deacreasing on $] 0,1[$. Hence it has a local minimum at $x=1$. The function is both upper unbounded and lower unbounded.

Finally

$$
\lim _{x \rightarrow 0-} f^{\prime}(x)=0
$$

so $y=0$ is a left tangent at $x=0$
(d) determine the second derivative and study the convexity of the function ;

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(e^{\frac{1}{x}}\left(1-\frac{1}{x}\right)\right)=-e^{\frac{1}{x}} \frac{1}{x^{2}}\left(1-\frac{1}{x}\right)+e^{\frac{1}{x}} \frac{1}{x^{2}}=e^{\frac{1}{x}} \frac{1}{x^{3}}
$$

so that

$$
f^{\prime \prime}(x)>0 \Longleftrightarrow x>0, \quad f^{\prime \prime}(x)<0 \Longleftrightarrow x<0
$$

Hence the function is convex on the interval $] 0,+\infty[$ and concave on the interval $]-\infty, 0[$
(e) draw a qualitative graph of f.

Exercise 2 (punti 8) Consider the equation on complex numbers

$$
z^{6}+2 i z^{3}-1=0
$$

Find the solutions with their multiplicity, and draw the on the complex plane
Solution Consider the substitution $w=z^{3}$, so that the equation becomes the second order equation

$$
w^{2}+2 i w-1=0 .
$$

whose left-hand side is easily seen to be the square of the first order polynomial $(w+1)$, namely we obtain

$$
(w+i)^{2}=0
$$

Therefore we have the only solution $w=-i$ with multiplicity equal to 2. If we write $z^{3}=w=-i=e^{3 \pi i / 2}$ we obtain the three solutions $z_{1}=e^{\pi i / 2}, z_{2}=e^{7 \pi i / 6} z_{3}=e^{11 \pi i / 6}$, each one with multiplicity 2 .

equilateral triangle

Exercise 3 (punti 8) Study the behaviour of the following series for the values of the parameter $\alpha>0$

$$
\sum_{n=1}^{+\infty} n^{\alpha}\left(1-\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1}
$$

Let us investigate the order of the sequence (this is not the only method):

$$
\begin{gathered}
n^{\alpha}\left(1-\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1}=n^{\alpha}\left(1-\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1} \frac{\left(1+\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1}}{\left(1+\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1}}= \\
n^{\alpha} \frac{\left(1-\frac{n^{2}}{n^{2}+1}\right)^{\alpha-1}}{\left(1+\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1}}=n^{\alpha} \frac{\left(\frac{1}{n^{2}+1}\right)^{\alpha-1}}{\left(1+\sqrt{\frac{n^{2}}{n^{2}+1}}\right)^{\alpha-1}} \sim n^{\alpha-2 \alpha+2}=n^{-\alpha+2}
\end{gathered}
$$

Therefore, the series (which has positive terms) converges if and only if $-\alpha+2<-1$, i.e. if and only if $\alpha>3$.

Exercise 4 (punti 8)

(a) Use De L'Hôpital Theorem to show that

$$
\lim _{x \rightarrow \infty} \frac{\arctan (x+1)-\arctan (x)}{\frac{1}{x^{2}}}=1
$$

Solution The limit is a form $0 / 0$ so that we can apply De L'Hôpital Theorem provided the limit of the ratio of the derivatives does exist. Denoting with f and g the numerator and the denominator we have

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{\left(1+(x+1)^{2}\right)^{-1}}{\left(1+(x)^{2}\right)^{-1}}=1
$$

(b) Use the result stated in the previous point to discuss the behaviour of the generalized integral

$$
\int_{1}^{\infty} \frac{1}{x^{\alpha}[\arctan (x+1)-\arctan (x)]} d x
$$

for all values of the parameter $\alpha \in \mathbb{R}$.
From

$$
\lim _{x \rightarrow \infty} \frac{\arctan (x+1)-\arctan (x)}{\frac{1}{x^{2}}}=1
$$

we get that the integrand

$$
\frac{1}{x^{\alpha}[\arctan (x+1)-\arctan (x)]}
$$

is of the same order as

$$
\frac{1}{x^{\alpha-2}}
$$

so that the integral converges if and only if $\alpha-2>1$, i.e. if and only if $\alpha>3$.

