Corso di Laurea (triennale) in Chimica Industriale - 2° anno - A. A. 2020-21 Altro Esempio di prova scritta di CHIMICA FISICA 2

Nome e Cognome Matr. n	
------------------------	--

- 0) a Determinare l'operatore equivalente al seguente commutatore, $\left[\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right), (\hat{x} + \hat{y}^2)\right]$, supponendo di operare sulla funzione f(x,y).
- 0) b-La funzione d'onda Ψ_{1s} dell'elettrone di un atomo di Idrogeno nel suo stato di minima energia è proporzionale a $e^{-r/a_{\theta}}$, con a_{θ} una costante ed r la distanza dal nucleo. Normalizzare la funzione Ψ_{1s} .

Relazioni utili:
$$\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}} \qquad d\tau = r^{2} \sin \theta dr d\theta d\phi$$

- 1) a) A quale termine spettroscopico dà luogo il boro, B, nella configurazione elettronica eccitata $1s^2 \ 2s^2 \ 4f^1$?
 - b) Quanti microstati comprende questa configurazione?
 - c) Assegnare il valore ai numeri quantici S e L e trovare i valori possibili del numero quantico J.
 - d) Determinare il numero di stati contenuti nel termine complessivo del punto a) e in quelli con valore di J specificato, del tipo xN_J ${}^xN_{J''}$ ${}^xN_{J'''}$ ${}^xN_{J'''}$ ecc.
 - e) Calcolare, il modulo e la componente z del vettore momento angolare di spin totale \vec{S} , in unità di \hbar in tutti i termini.
 - f) Per ciascun termine calcolare il modulo e la componente z del vettore momento angolare totale, in unità di \hbar .

2) - Usando il metodo di Hückel, GIA' VISTO IN AULA almeno in parte

(a-1) calcolare i livelli energetici degli orbitali molecolari π e l'energia totale degli elettroni π della seguente molecola (un anione molecolare ottenuto aggiungendo un elettrone π al radicale allile); (a-2) mostrare in un diagramma l'energia degli orbitali molec. π e disporvi gli elettroni.

$$\begin{bmatrix} \operatorname{CH}_2 \\ \operatorname{HC} \\ \operatorname{CH}_2 \end{bmatrix}^{-}$$

(b) Determinare completamente l'orbitale molecolare π a minor energia esprimendolo come LCAO di orbitali atomici opportuni (specificare quali sono e a quale atomo appartengono).

3) Gli orbitali molecolari π di tipo Hückel del dimetil-ciclobutadiene sono :

$$\psi_4 = 1/2 \,\varphi_1 - 1/2 \,\varphi_2 + 1/2 \,\varphi_3 - 1/2 \,\varphi_4$$

$$\psi_3 = 1/2 \,\varphi_1 - 1/2 \,\varphi_2 - 1/2 \,\varphi_3 + 1/2 \,\varphi_4$$

$$\psi_2 = 1/2 \,\varphi_1 + 1/2 \,\varphi_2 - 1/2 \,\varphi_3 - 1/2 \,\varphi_4$$

$$\psi_1 = 1/2 \,\varphi_1 + 1/2 \,\varphi_2 + 1/2 \,\varphi_3 + 1/2 \,\varphi_4$$

in cui i φ_1 , φ_2 , ... ecc. sono gli opportuni orbitali atomici dei carboni coinvolti. Nell'ambito dell'approssimazione di Hückel rispondere ai seguenti quesiti:

- a. Quali orbitali atomici usano i C per formare i legami σ e quali per gli OM π (anche dei metili)? (s, p, d, o altri...) . Specificare per ogni legame. Ad esempio: C^a per legame a-c : usa orbitale
- b. Associare φ_1 φ_2 φ_3 φ_4 ai carboni a, b, c, ecc. Determinare le energie dei quattro MOs π calcolando il valor di attesa dell'hamiltoniano nei 4 casi.
- c. In che stato di spin è il dimetil-ciclobutadiene nello stato fondamentale elettronico? E il suo mono-anione? (rispondere con **singoletto**, oppure **doppietto**, oppure **tripletto**,ecc.)
- 4) a) Stabilire a quale regione dello spettro elettromagnetico appartiene una radiazione con numero d'onda $\tilde{v} = 80000$ cm⁻¹. L'ordine di grandezza dell'energia di tale radiazione potrebbe portare un atomo dallo stato elettronico fondamentale ad uno stato eccitato?
 - b) Elencare le regole di selezione per le transizioni tra stati diversi negli atomi a molti elettroni. Il punto a) è stato già svolto in Aula.
- 5) La funzione lavoro del cesio metallico è 2.14 eV. Calcolare l'energia cinetica e la velocità degli elettroni espulsi da una luce di lunghezza d'onda di : a) 700 nm; b) 300 nm.

Nome e Cognome	Matr. n.	

6) Per ciascuna molecola riportare nella tabella il numero di gradi di libertà richiesto.

0)	rer clascuna molecola riportare nena tabena il numero di gradi di niberta richiesto.					
		numero di Gradi di libertà VIBRAZIONALI	numero di Gradi di libertà ROTAZIONALI	numero di Gradi di libertà TOTALI		
1	CO ₃ ²⁻					
2	N=C-H					
3	Cl					
4	$CI-C\equiv C-C\equiv C-C\equiv C-F$					
5	Br Br					
6	$N=C-C=C-CH_3$					
7	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$					
8	F H H Br					
9	N_2O					
10	$\begin{array}{c} \operatorname{CH}_2 \\ \operatorname{H-C} & \operatorname{C} - \operatorname{H} \\ \operatorname{H} & \operatorname{H} \end{array}$					
11	NO ₃					
12	NC—CN					