Logic for Knowledge Representation,

Learning, and Inference

Luciano Serafini

serafini@fbk.eu

Version August 28, 2023






Contents






CHAPTER 1

Knowledge Respersentation, Learning and
Inference

1. Artificial Agents

Artificial intelligence has the main objective of developing artificial agents that
are capable of (supporting humans in) taking decisions about what to achive some
or more (human) goal in a given environment.

An agent can directly operate in the environment, e.g. robots, the stock marked
autonomous agents, or they can suggest actions to be performed by other agents,
usually humans. e.g., in recommended systems, or they can provide the necessary
information for another agent, usually humans, to take decisions, e.g., agents that
perform simulations about some environment.

We use the term “environment” in a very broad sense. It indicates all the
relevant aspects of the context in which an agent makes decisions and operates.
Examples of environments are: the ambient in which a physical robot is operating,
or the worldwide Covid pandemic, a social network, or a smart city.

The environment where the agent operates is dynamic in the sense that it can
change both by the effect of the actions executed by the agent or because of some
factor external and independent from the agent. The environment is unpredictable
in the sense that, at the moment in which we (as engineers) are designing and
implementing the agent doesn’t know all the possible situations in which the agent
will operate.

According to the most famous book on AI Russell and Norvig 2010

An agent is anything that can be viewed as perceiving its environ-
ment through sensors and acting upon that environment through
actuators.

To make effective decisions in a specific situation, the agent needs sufficient knowl-
edge about the the current situation and it has to accumulate sufficient experience
on the effects of its actions, and the general laws obeyed by the environments. All
this knowledge is not available when the agent is created, but it is the agent itself
that should be capable to learn knowledge by interacting with the environment, rep-
resent the learned knowledge in some internal structure (model), perform inference
(reasoning) on these models to support its decisions.

ExaMPLE 1.1. Consider the example of a robotic agent that has to operate in
a simple environment that contains four coloured blocks. With its arm, the agent
can move around the blocks, stacking them one on top of the other; it can move
around the environment to get close to some blocks. Furthermore it perceives the
environment through an RGB camera. This simple scenario is represented in the

Figure[1]
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there are four blocks;
they are blue red green and yellow;
the blue block is above the red one;
I’m holding the green block;
I’m close to the yellow block;

environment

FIGURE 1.

In the following chapters, we will consider a set of methods for knowledge
representation and the different types of inference/reasoning and learning methods
in each type of model.

2. Models for Knowledge

Different models for representing knowledge. We concentrate on three models,
Logical models, probabilistic models, and neural models, and the integration of the
three.

2.1. Logical models. A logical model of an agent’s knowledge of the environ-
ment is a set of sentences of a logical language that encodes a set of propositions
about the environment that the agent is supposed to be true. There are many
types of logical languages, e.g., propositional language, first-order language, modal
language, temporal language, logic programs,. .. The father of logical model for Al
agents is John McCarty, who, in McCarthy 1959 proposes to uses declarative logi-
cal language “/...] to make progmmﬂ that learn from their experience as effectively
as humans do”. Successively he observed that “In order for a program to be capable
of learning something it must first be capable of being told it.”

A good summary of many different logical models is provided in the Handbook
of Knowledge Representation Lifschitz, Porter, and Van Harmelen [2008. Logical
models provide information of what is true, what is false and what logically follows
from some premises. Minker Minker 2012 offers an overview of how logical models
can be built and how they can be used for inference, decision making and planning.

2.2. Probabilistic models. Probabilistic models are particularly designed
to represent uncertainty about the state of a domain. They allow associating a
measure of the likelihood of a state of the world. A probabilistic model describes
a domain in terms of random wvariables that can take values is some abstract do-
main, e.g. a finite set {1.2.3,...,n}, the infinite set of natural or real numbers.
The different configurations of the world are represented by the assignments of the
random variables with a value in their domains. Probabilistic models associate a

1One can read “program” as “agents”.
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measure of the probability to encounter such a situation (joint probability distri-
bution). A probabilistic model provides a formal language that allows specifying
the joint probability distribution. Examples of probabilistic models are explicit
probabilistic models, e.g., discrete models (Uniform, Binomial, Bernoulli, Poisson)
and continuous models (Normal (or Gaussian), Exponential, Dirichlet, ...), direct-
ed/undirected) graphical models Maathuis et al. 2018, (e.g, Markov random fields,
Bayesian networks,. .. ).

Inference in probabilistic models has the objective of calculating the probabil-
ity that a (set of) random variables takes a (set of) values possible conditioned
from some facts about the domain (observations or priors) that are known to be
true. These algorithms are strictly connected to the language used to specify the
probabilistic model

Learning in probabilistic models has the objective of inducing some (or all)
parameters of the probabilistic model starting from a set of observations of states
of the world. As for the case of inference, learning algorithms strongly depend on
the formalism used to specify the probabilistic model.

2.3. Artificial Neural Networks. [From wikipedia] Artificial neural net-
works (ANNs), usually simply called neural networks (NNs) or neural nets are
computing systems inspired by the biological neural networks that constitute ani-
mal brains.

An ANN is based on a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological brain. Each connection,
like the synapses in a biological brain, can transmit a signal to other neurons.
An artificial neuron receives signals then processes them and can signal neurons
connected to it. The ”signal” at a connection is a real number, and the output
of each neuron is computed by some non-linear function of the sum of its inputs.
The connections are called edges. Neurons and edges typically have a weight that
adjusts as learning proceeds. The weight increases or decreases the strength of the
signal at a connection. Neurons may have a threshold such that a signal is sent
only if the aggregate signal crosses that threshold.

Typically, neurons are aggregated into layers. Different layers may perform
different transformations on their inputs. Signals travel from the first layer (the
input layer) to the last layer (the output layer), possibly after traversing the layers
multiple times.

3. Integrating Logical models with other models

In this course, we are interested also in how logical models can be integrated
with probabilistic models and neural networks. There are many reasons why one
wants to combine logical models with neural networks and/or probabilities.

3.1. Integrating logic and probabilistic models. Logical models provide
a compact representation of a world of objects which have properties and are in
relation. In other words, logical languages are very good to express structured
worlds. Logical language allows the imposition of restrictions on the structure of
the world. ILe., logical language can express the fact that a certain state of the world
is possible, or impossible, with no intermediate degree. In probabilistic models,
instead, the world is described by a flat (unstructured) set of random variables.
The possible states of the world are described by an assignment to the variables,
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and therefore there is no structure in such a world. On the other hand, probabilistic
models allow expressing that a certain configuration of the world is more likely than
another.

The integration of logic and probabilistic models has the main the objective
of taking the goods from both models, namely allowing probabilistic inference on
structured domains. There is a large set of attempts to combine logic and proba-
bility in artificial intelligence. In this course we will introduce two of them: Proba-
bilistic Logic Programming Lukasiewicz[1998} Kimmig et al.[2011; Gutmann, Thon,
and De Raedt 2011] and Markov Logic Networks Richardson and Domingos [2006;
Lowd and Domingos [2007

3.2. Integrating logic and neural networks. Logical language allows them
to provide precise and crisp definitions of concepts. For instance the first-order logic
formula Va (MasterStudent(x) <> Student(x) Ay(MasterCourse(y) A Enrolled(z,y)))
provides a precise definition of the concept of master student as a student who is
enrolled in some master course. This definition is very useful when we want to
find all the master students of a school by querying the database of such a school.
However, the definition is not usable if we want to recognize if a person is a master
student from his/her social media profile, or from some pictures of him/her. For this
second task, it is much more effective to train a neural network with positive and
negative examples. Combining the two types of models would offer the possibility
to combine the two advantages described above.

There are many other strengths and weaknesses of neural models and logical
models that justify a combination of the two approaches. They are summarized in
Table[I} Let us describe them shortly.

e Neural networks are very effective to learn, from a set of positive and nega-
tive examples, how to classify an object in a certain category starting from
its features from positive and negative examples. Logical models instead
have some difficulties in learning general definitions from examples.

e Neural networks are good at processing objects which are described in
terms of high-dimensional features. For instance, images, while in logic
objects are described as atomic (abstract) entities and it is not easy to
take into account numeric features associated with the objects.

Strength and neural logical
Weakness of network models
Automatic learning from raw data * kX kK * *
Dealing with hight througput data * K Kk k * *
Robust to exception * % x * *
Size of training data * % * * K K
Explanability of inference * * * k
Adding commonsense knowledge * * K K Kk
Complexity of inference * k% K Kk * K

TABLE 1. Comparing logical and neural models
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e Neural network is robust to exceptions and outlier data. In logic instead,
if you state that a property holds for all objects, then a single exception
makes the model inconsistent. So it is not very adaptable to deal with
exceptions.

e Neural networks are data-hungry. I.e., to train a neural network you
need to provide a sufficiently large amount of training examples usually
manually annotated. The process of manual annotation is very costly.
In logic instead one can express a general property with just one simple
formula, and even if this requires the intervention of human knowledge
this does not constitute a long process.

e Inference in a neural network is a black box. It is very difficult to find
an explanation of why a neural network reaches a certain conclusion. In
logic instead, the inference is obtained by applying inference rules and
every conclusion is associated with a deduction or proof (i.e., a sequence
of application of inference rules) that provide the explanation of the con-
clusion.

e Adding commonsense knowledge, such as for instance “a cat has one tail
which is opposite to his/her head”) is very difficult, since it needs to
be provided either through examples or by changing the architecture of
the network. In logical models, instead, commonsense knowledge can be
added by using a single formula that encodes such knowledge.

e Inference in neural networks is usually very fast (especially on GPUs)
since it is just a matter of computing compositions of linear and non-linear
functions. Inference in logic instead might be exponentially complex since
it involves the search for a proof or a deduction or the desired conclusion.

In the last few years, there has been a number of proposals for combining neural
networks and logical models. In this course we will present two of them: Logic
Tensor Networks Badreddine et al. 2022 and Knowledge Enhanced Neural networks
Daniele and Serafini [2019L

3.3. Integrating logic, neural networks and probabilities. Finally, there
are methods that combine all the three types of models, neural networks, probabilis-
tic models, and logical models. One examples that will be described in this course is
DeepProbLog Manhaeve et al.|2018| that combines probabilistic logic programming
with neural networks, However, there are many other approaches De Raedt et al.
2020, provides a survey.






CHAPTER 2
Propositional Logic

1. What is a proposition

According to Stanford Encyclopedia of Philosophyﬂ , the term ”proposition”
has a broad use in contemporary philosophy. It is used to refer to some or all of
the following: the primary bearers of truth-value, the objects of belief and other
" propositional attitudes” (i.e., what is believed, doubted, known, etc.), the referents
of that-clauses, and the meanings of sentences.

Propositions can be expressed by sentences of a natural language (English,
Italia, etc. ) Examples of propositions are “John is a teacher”, “John is rich’
and “John is a rock singer”. Notice that there is a difference between “sentence”
and “proposition”. A sentence is a string that expresses a proposition. l.e., the
meaning of a sentence is a proposition. In natural langue we say that two sentences
are equivalent, when they expresses the same proposition. E.g.,

(1) the brother of my mam is blond;
(2) my uncle is blond;

One of the most important characteristic of proposition is that they can take
a truth value. IN classical propositional logic, there are only two truth values true
and false. Notice that, one can imagine a situation in which a proposition is not
completely true or completely false, or it is both true and false. To treat these
situations there are other logics (we will see fuzzy logic). So, don’t believe that the
world of logic is limited to “true and false”.

Complex propositions can be build by combining simpler (atomic) propositions.
For instance the sentence “Paolo is painting and Renzo is playing piano” expresses a
proposition which is the conjunction of the propositions expressed by the sentences
“Paola is painting” and “Pietro is playing piano”. There are other ways to compose
complex proposition from simpler ones. For instance one could “disjunct” two
propositions. E.g., the proposition “Paolo is painting or Renzo is playing piano” is
the disjunction of the two simpler propositions. Another example is negation. E.g.,
the proposition rexpressed by the sentence “Renzo is not playing the piano” is the
result of negating the proposition expressed by the sentence “Renzo is playing the
piano”.

Notice that the truth value of the simpler proposition determine the truth
value of the complex proposition. This property is sometimes referred as truth-
functionality and has been formally characterised by the Polish logician Alfred
Tarski in 1933.

lsee https://plato.stanford.edu/entries/propositions/
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2. The language of propositional logic

The language of propositional logic allows to “speak about” propositions. The
basic components of a propositional language is the set of propositional variables P.
This can be a finite or an infinite set (indeed the set of all propositions in general
might be infinite).

P = {p17p27p37"'}

When we stud When we want to use propos y the general propoerties of PL, we
don’t care about which proposition is denoted by each single p; in P; we only
assume that each p; refers to some proposition. This is the reason why p; is called
variable. Instead, when we want to use PL to represent some concrete scenario,
we have to specify the specific proposition which is denoted by each propositional
variable. For instance if we want to use PL to describe what Paola and Renzo are
doing. we can define the set of propositional variables:

P ={p,r}
where

e p is the proposition expressed by the sentence “Paola is painting”;
e 1 is the proposition expressed by the sentence “Renzo is playing the pi-

ano”.

The language of PL allows to express also complex proposition which are the result
of negating a proposition, and combining two propositions with conjunction, dis-
junction, implication, and equivalence. To allow this PL introduces the following
set of symbols called propositional connectives

e - for negation (not);

e A for cojunction (and);

e V for disjunction (or);

e — for implication (if ...then ...);
e > for equivalence (if and only if).

In the literature one can find alternative symbols for implication and equivalence,
which are D and =. We will use both the symbols. Two additional symbols “(“
and )” are also added to PL, which allows one to express the correct separation of
simple propositions that occour in a complex propositions. Parenthesis in PL play
the similar role played by punctuation symbols (e.g., “.”, “”, “”, ...) in natural
language.

In summary, the alphabet of a propositional language is composed by

e a set P of propositional variables (also called non-logical symbols);
e the set -, A,

vee, —, and <> of propositional connectives (also called logical symbols);
e parenthesis symbols ( and ).

From this alphabet the set of well formed formula are defined by induction as
follows:

DEFINITION 2.1 (Well formed formulas). Given a set P of propositional vari-
ables, the set of well formed formulas is inductively defined as follows:

(1) every p € P is a well formed formula;
(2) if ¢ is a well formed formula then —¢ is a well formed formula;
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(3) if ¢ and v are well formed formula, then ¢ o1 is a well formed formula
fo?” © 6 {/\7 \/7 *>7 H};
(4) mothing else is a well formed formula.
FEach element p € P is called also atomic formula. The set wils(P) is the set of
well formed formulas that contains only the propositions in P

An additional symbol, that is often use in propositional logic is the L symbol.
Intuitively L is a constant that represents the proposition that is always false.

The term “formula” us used as a short version of “well formed formulas” when
there is no confusion. We also shorten well formed formula with “wff”.

ExAMPLE 2.1 (Formulas and non formulas).

Formulas Non formulas
p—q pq

p—(g—r) (p— A(g—r)
(pAq)—r pPAG— T

Notice that the formulas on the left can be build by applying the rules of Defini-
tion . For instance the formula (p A\ q) — r can be buld as follows

(1) pis a wff for item 1;

(2) q is a wff for item 1;

(3) pAq is a wff for item 3;

(4) (pwedgeq) — r is a wff for item 3.
Notice that in the last step we use parenthesis, in order to specify how the formula
is build. Indeed if one does not use parenthesis, the formula would look as

pANqg—T

The above formula however can be build in two ways.

e first build p A q and then p A q — r (as we indeed do)
o first buld ¢ — r and then pANq — 7

To distinguish the two ways of constructing the formula we use parentes. obtaining

(1) (pAq)—r
(2) pA(g—r)
Notice that the two formulas above represents different propositions.

EXAMPLE 2.2. Suppose that
e p stands for “Paola is painting”;
e g stands for “outside it’s raining”;
o 1 stands for “Renzo is playing the piano”.
we have that the two formulas refers to the propositions expressed by

(3)

If Paola is painting and outside it is raining, then Renzo is playing the piano;

(4)

Paola is painting and, if outside it is raining, then Renzo is playing the piano

Notice that the proposition expressed by the two sentences above are different. So
they are the corresponding propositional formula.
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In some cases, the use of parenthesis will result in an awkward notation. In
order to minimize the usage of parenthesis only when they are necessary, PL provide
a “default” order of construction in case there are no parenthesis. This default order
of application of rule of construction is specified by associating a priority ordering
between connectives. — has the highest priority, then A, V, — and =.

Symbol | Priority
- 1
A 2
v 3
— 4
> 5

In absence of parenthesis the above priorities are applied. Therefore the formula
p A g — r is considered to be (p A q) — r. If we want to refer to the other formula
we have to explicitly add parenthesis.

A formula can be seen as a tree. The leaves of the tree are propositional vari-
ables contained in the formula and the intermediate (non-leaf) nodes are associated
to connectives that are used in order to build the complex formula.

EXAMPLE 2.3 (Tree of the formula). The tree of the formula
AN-B = (B+C)

is the following:

Notice that, in order to force that the <> connective should be applied before the
— connective we have to use parenthesis. Indeed the tree of the formula without
parenthesis, i.e.,

AN-B—- B« C

is the following:
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Informally, a subformula is a part of a wif which is itself a wif. More formally
the best approach is via the idea of the constructional history for a wff, with the
subformulae being the wifs that appear in the history. Any decent textbook will
explain this, and explain how you set out constructional histories as trees.

The set of formulas which need to be constructed in order to build a complex
formula ¢ are called the subformulas of ¢. The trees of the subformulas of a formula
¢ are the sub-trees of the tree of ¢. A formal definition of sub-formula of ¢ is the
following:

DEFINITION 2.2.

A is a subformula of itself

A and B are subformulas of ANB, A VB ADB,e A=B

A is a subformula of A

if A is a subformula of B and B is a subformula of C, then A is a sub-
formula of C.

e A is a proper subformula of B if A is a subformula of B and A is different
from B.

EXAMPLE 2.4. The subformulas of (po V —p1) — (p2 Ap1) are: (po V —p1) —
(p2 A1), Po A =p1, P2 A p1, Po, 7p1, P2 and pi.

NOTATION 2.1. Unfortunately, books on mathematical logic use widely varying
notation for the Boolean operators; furthermore, the operators appear in program-

ming languages with a different notation from that used in mathematics textbooks.
The following table shows some of these alternate notations.

Connective Alternative programming languages

~ | -

A & & & ~
% I I

— D = =>, —>

> s = <=>, <>, = Y

3. Interpretation of propositional formulas

Informally speaking an interpretation of a propositional language represents a
state of affairs that allows one to establish for every proposition if it true or false,
or equivalently if it holds or it does not hold. So for instance if we have the set
of P are {p,q,r} and they denote the propositions as described in Example
an interpretation correspond to a specific situation in which for instance Paola is
painting, outside it is not raining, and Renzo is not playing piano. Since in PL we
have that the truth value of complex propositions is fully determined by the truth
value of the simplest (aka atomic) propositions, an interpretation can be specified
by saying if p is holds or does not hold for every p € P. Let’s now define this notion
formally:

DEFINITION 2.3. An interpretation of a propositional language on the set of
propositional variables P, is a function T : P — { True, False}.

Alternative notation for True and False that we will unse in this notes and are
used in other books are 0 and 1, T and L. An alternative and equivalent definition
of interpretation is the following
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DEFINITION 2.4. An interpretation of the set of propositional variables P is
any subset T C P.

The two definitions are equivalent under the correspondence
Z(p) = True if and only if p € ZZ(p) = False if and only if p ¢ T

We will use alternatively both the definition depending on convenience. Notice
that if P contains n propositional variables, (i.e, |P| = n) then there are 2" distinct
interpretations. This corresponds to the fact that a set P that contains n elements
has 2™ distinct subsets.

EXAMPLE 2.5. Suppose that the set P of propositional variaables is equal to
{p,q,7}, then there are 23 = 8 propositional interpretations of P. The following
table reports all of them in the functional form T : P — { True, False} and in the
setwise form T C T.

Functional form Set theoretic
P q r form
I | True True True {p,q,r}
Iy | True True False {p,q}
I3 | True False True {p,7}
T4 | True False False {p}
Zs | False True True {q,7}
Zs | False True False {q}
Z; | False False True {r}
Is | False False False {}

The truth value for propositional letters assigned by an interpretation Z one
can define when a formula is true (or holds) in the interpretation Z.

DEFINITION 2.5 (Z satisfies a formula A, 7 |= A). A formula A is satisfied by
an interpretation I, in symbols
ITEA

according to the following inductive definition:

e IfpeP, TEpifZ(p) = True;

e T -AifnotT E A (also written T = A);

e TEAANBIif,TE A andT E B;

e TEAVBIfITEAorTE B;

e TEA— BifeitherT~ A orZE B;

e TEA-BiIEAWIEB.

If 7 is an interpretation and A a formula, following expressions has the same
meaning
e TEA;
e 7 satisfies A;
e A is true in Z;
e A holds in Z;
e A is satisfied by Z;
o 7(A) = True.
Notice that, if we have to check if a formula A is true in an interpretation Z,
we have to take into account only the assignments that Z does to the propositional
variables that occours in A. This fact isi reflected by the following property:
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PROPOSITION 2.1. For every pair of interpretations T and I, if Z(p) = Z'(p)
for all the propositional variables p of a formula A, then T = A iff 7' E A

In other words if Z and Z’ differs only on the propositional variables that do not
appear in A, then the truth values of A in 7 and 7’ are equal. As a consequence,
to check if Z |= A it is enough to consider the truth values that Z assigns to the
propositional variables appearing in A.

3.1. Material Implication. Some discussion is necessary about the seman-
tics of implication —. The operator — is called material implication; p is the
antecedent and q is the consequent. Material implication does not claim causality;
that is, it does not assert there the antecedent causes the consequent (or is even
related to the consequent in any way). A material implication merely states that
if the antecedent is true the consequent must be true; so it can be falsified only if
the antecedent is true and the consequent is false. This definition of the conditions
under which a — b is true is easily acceptable when a (the premise of the implica-
tion) is true, but when a is false, according to the definition, we have that a — b is
true. In other words according to the condition given above we have that

ITEa—bifandonlyif Z = —-a Vb

so in other words a — b and —a V b are equivalent propositions. This is sometimes
very unintuitive. Consider for instance the statement:

the moon is made of cheese implies that the earth is flat
which can be represented by the propositional formula
c— f

with ¢ representing the proposition ”the moon is made of cheese” and f the propo-
sition ”the earth is flat”. According to the formal sematnics we have that ¢ — f is
true in the current state of the world (as we know that the premise is false), however
the sentence in natural language suggests some cauation between the premise ¢ and
the conclusion f, which is not formalized by the implication. Other paradixical
formulas are the following. They are true in all interpretation, however they are
not intuitively acceptable:

(=pAp) — ¢: p and its negation imply ¢. This is the paradox of entailment.

p — (¢ — p): if p is true then it is implied by every q.

e —p — (p — q): if p is false then it implies every ¢. This is referred to as
‘explosion’. In these cases, the statement p — ¢ is said to be vacuously
true.

e p — (qV—q): either ¢ or its negation is true, so their disjunction is implied
by every p.

e (p = q) V(g — r): if p, g and r are three arbitrary propositions, then

either p implies ¢ or ¢ implies . This is because if ¢ is true then p

implies it, and if it is false then ¢ implies any other statement. Since

r can be p, it follows that given two arbitrary propositions, one must

imply the other, even if they are mutually contradictory. For instance,

”Nadia is in Barcelona implies Nadia is in Madrid, or Nadia is in Madrid

implies Nadia is in Barcelona.”is always true. This sounds like nonsense

in ordinary discourse.
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e ~(p—q) — (pA—q): if p does not imply ¢ then p is true and ¢ is false.
N.B. if p were false then it would imply ¢, so p is true. If ¢ were also
true then p would imply ¢, hence ¢ is false. This paradox is particularly
surprising because it tells us that if one proposition does not imply another
then the first is true and the second false.

Suggestion: As a practice in order to avoid these types of paradoxes it is better
to read a — b directly as —a V b.

3.2. The low of excluded middle. The formula p V —p is valid (or equiva-
lently it is a tautology). Indeed independently from the truth value assigned to p
by an interpretation Z, we have that Z = p V —p.

This tautology, called the law of excluded middle, is a direct consequence of
our basic assumption that a proposition is a statement that is either true or false.
Thus, the logic we will discuss here, so-called Aristotelian logic, might be described
as a “2-valued” logic, and it is the logical basis for most of the theory of modern
mathematics, at least as it has developed in western culture. There is, however,
a consistent logical system, known as constructivist, or intuitionistic, logic which
does not assume the law of excluded middle. This results in a “3-valued” logic in
which one allows for a third possibility, namely,”other”. In this system proving
that a statement is “not true” is not the same as proving that it is “false”, so that
indirect proofs, which we shall soon discuss, would not be valid. If you are tempted
to dismiss this concept you should be aware that there are those who believe that
in many ways this type of logic is much closer to the logic used in computer science
than Aristotelian logic. You are encouraged to explore this idea: there is plenty of
material to be found in your library or through the worldwide web.

3.3. Valid, Satisfiable, and unsatisfiable formulas.

DEFINITION 2.6. A formula A is

e Valid if for all interpretations Z, Z = A. The notation = A (with no
interpretation in the front) stands for “A is valid”;

e Satisfiable if there is an interpretations Z s.t., T = A

e Unsatisfiable if for no interpretations Z, 7 = A

Validity, satisfiable, and unsatisfiability are not independent concepts, they are
related one another. This relation is highlighted in the following diagram

all formulas

satisfiable

Stating that

Valid formulas C Satisfiable formulas C Well formed formulas
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This implies that if a formula is valid it is also satisfiable, and if a formula it
is unsatisfiable (not satisfiable) it is also not valid. Alternative terms for valid,
satisfiable and unsatisfiable formula are the following;:

e tautology is a synonym of valid;
e contingency is a synonym of satisfiable;
e contradiction is a synonym of unsatisfiable.

EXAMPLE 2.6.

A— A
AV -A
—A=A

(AN -A) Valid

Satisfiables ANB — A Prove that the blue formu-

Uatisfiable

A— AVB las are wvalid, that the ma-
pVq genta formulas are satisfiable
p—q but not valid, and that the red

=(pVq)—r formulas are unsatisfiable.

AN-A Non Valid
—(A— A)
A=-A
(A= A)

In the following we provide the proof for some formulas and leave the others by

exercize.

A — A is valid. By Definition T E A — Aif and only if either
T A orTE A, which holds for every T.

AV —A is valid. By Deﬁnition ITEAV-Aifand onlyif T = A or
T k= —A. Furhtermore, by Definition[2.5, T |= —A if and only if T [~ A.
SoZTE=AV-AfT = A or T~ A, which is true for every T.

——A = A is valid. Suppose by contradiction that there is an T such that
T E —A and T £ A. By Definition [2.5, If T = ——A then T = —A.
Furtherore, again by Deﬁm'tz'on T~ AthenT = —A. So by assuming
that there is an interpretation I that satisfies =—A and does not satisfy
A we reach a contraddiction that T |= —A and T = —~A. Therefore there
is no such an Z. This implies that for all interpretations T = ——A if and
obnly if T E A, and due to Deﬁnition ITkE-—A=a forall.

pV q is satisfiable. To show that a formula is satisfiable it is sufficient to
find an interpretation that makes it true. Let T be such that Z(p) = True,
then (independently on the interpretation of q) we have that according to
Definition[2.8Z = pV q.

pV q is not valied. To show that a formula is not valid we have to find an
interpretation that does not satisfy it. Consider the interpretation T with
Z(p) = False and Z(q) — False. We have that by Deﬁm’tinl’ EpVg.

AN A is unsatisfiable. We have to prove that for all interpretation s T,
T = AN-A. Suppose by contraddiction that there is an interpretation
such that T = Alwedge—~A, then by Definition[2.5Z = A and T = —A.
The last fact implies that T = A. Since by assuming that there is an T
that satisfies A A=A we reach a contraddiction that T = A and T |= —A,
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we can conclude that there is no such T, and therefore that A N —A s
unsatisfiable.

DEFINITION 2.7 (Models of a formula). For every formula A the set models(A),
the models of A, is the set {Z | Z = A}, i.e., the set of truth assignments (inter-
pretations) to the propositional variables prop(A) that satisfy A;

The sef of models of a complex formula can be computed in terms of the models
of its direct subformulas. However, in computing the models of the subformulas we
have to take into account the assignments to the proposition of the entire formulas.
For this reason we introduce a generalization of the above definition

DEFINITION 2.8. If P is a set of propositional variables that contains prop(A)
then modelsp(A) is the set of assignments to P that satisfies A.

Notice that the following facts holds

e if A is satisfiable models(A) # 0;

e if A is valide models(A) = 2P™P(4) je.. the set of all interpretations of

prop(A);

if A is unsatisfiable then models(A) = 0.

models(—A) = 2PP(4) \ models(A);

models(A A B) = models,;op(anp)(A) Nmodelsyopanp) (B);

models(A V B) = models,;opavp)(A) Umodelsyopav ) (B);

models(A — B) = modelsy,op(a— ) (mA) Umodelsyopa— ) (B)

models(A = B = models,;op(a=p) (A)Nmodels,;opa=5) (B)U E (mA)N =
Validity, satisfiability, and unsatisfiability of a formula A is also related to

validity, satisfiability and unsatisfiability of its negation, i,e. —A.

PROPOSITION 2.2.
(1) A is valid if and only if = A is unsatisfiable;
(2) A is satisfiable if and only if = A is not valid;
(3) A is not valid if —A is satisfiable;
(4) A is unsatisfiable if = A is valid.
PROOF. We prove the first two points and left the other two by exercize.
(1) A is valid then models(A) = 27. Since models(—A) = 27 \ models(A) we
have that models(—A) = (J, and therefore —A is unsatisfiable.
(2) A is satisfiable then models(A) # (). and therefore models(—=A) = 27\
models(A) # 2% which means that —A is not valid.
([

The definition of satisfiability, validity, and unsatisfiability can be extended
also to sets of formulas as follows:

DEFINITION 2.9. A set of formulas T' is
e Valid if for all interpretations Z, T = A for all formulas A € T’
e Satisfiable if there is an interpretations T, T |= A for all A €T
e Unsatisfiable if for no interpretations Z,, s.t. Tl= Aforall AeT

PROPOSITION 2.3. For any finite set of formulas T, (i.e., T = {Ay,..., An}
for some n. > 1), T is valid (resp. satisfiable and unsatisfiable) if and only if
Ay N+ N Ay, is valid (resp, satisfiable and unsatisfiable).

We leave the proof of the previous proposition by exercize.
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4. Logical consequence

Logical consequence is one of the key notion of every logic. It is the base of cor-
rect inference. Intuitively a proposition, called consequence, logically follows from
(or equivalently, is a logical consequence of) a set of propositions, called premises
or hypothesis, if from the assumption that the hypothesis are true we can conclude
with cartainty that the consequence is also true. For instance if x > y and y > 2
we can conclude that z — z > 0. Logical consequence is strictly connected with the
definition of truth of a formula in an interpretation. One of the main motivation
of using logic is to make rigorous what is a “valid argument”, i.e., when one fact
follows form some other facts. Intuitively a “valid argument” is the one that derive
true facts from true facts. To this aim, we use the notion of logical consequence
(Some books refer to logical implication and entailment.)

DEFINITION 2.10. A formula A is a logical consequnece of a set of formulas T,
in symbols T' = A, if for all interpretations Z, if T |= C for all C €T then I |= B.
If T contains is a finite set of formulas {A1, ..., An}, then we use the notation

Ap,.. AL EA
to denote that A is a logical consequence of I

In other words, I' = A means that whenever all the wifs in T" are true, then
A must also be true. Notice that this definition does not say anything about
interpretations under which one or more of the wifs in I" are false. In this case, we
don’t care whether A is true or false.

EXAMPLE 2.7. q is a logical consequence of {p — q,—p — q}. In symbols
p— q,~p — q = q. To check this, since we have to look to all the interpretations
we can build a need a truth table.

p q pP—>q|pP—4g
Ti || True | True | True True
Zs || True | False | False True
I3 || False | True | True True
14 || False | False | True False

p — ¢,-p — q | q holds since all the interpretations that satisfy p — q and
—p — —q (i.e.,I; and Z3) also satisfy q.

NOTATION 2.2. Given a non empty finite set of formulas T' = {A;,..., Ap}

/\F or equivalently /”\ A;

i=1
which stands for Ay NAa N--- N A,

\/F or equivalently \"/ A;

i=1
which stands for Ay V AV ---V A,
When T' is empty we extend the notation as follows
/\ I' denotes T

and
\/ I' denotes L



22 2. PROPOSITIONAL LOGIC

4.1. Properties of propositional logical consequence.

PrOPOSITION 2.4. IfT" and X are two sets of propositional formulas and A and
B two formulas, then the following properties hold:

Reflexivity:: {A} = A

Monotonicity:: IfT'= A thenTUX E A

Cut:: If Tl A and XU{A} =B thenTUX |= B

Deduction theorem:: IfT'AE= B thenT = A — B

Refutation principle”: T' = A iff T U {=A} is unsatisfiable

PROOF.

Reflexifity: For all T if T |= {A} then T | A.

Monotonicity: For all Z if Z = T UX, then Z = T, by hypothesis (I" = A)
we can infer that Z = A, and therefore that TUX = A

Cut:: For all Z, if T ETUX, then Z =T and Z | ¥. The hypothesis
I' E A implies that Z = A. Since Z = X, then Z E X U {A}. The
hypothesis ¥ U {A} | B, implies that Z = B. We can therefore conclude
that TUY = B.

Deduction theorem: Suppose that Z =T. If Z = A, then Z = A — B. If
instead Z |= A, then by the hypothesis T'; A = B, implies that Z &= B,
which implies that Z = B. We can therefore conclude that Z = A — B.

Refutation principle: (=) Suppose by contradiction that T'U{—A} is satis-
fiable. This implies that there is an interpretation Z such that Z =T and
T = A, ie., I~ A. This contradicts that fact that for all interpretations
that satisfies T', they satisfy A (<) Let Z |= T, then by the fact that
I' U {—A} is unsatisfiable, we have that T & —A, and therefore Z = A.
We can conclude that I' = A.

O

The above property has an important impact in using propositinal logic for
representing the knowledge of an artificial agent. In particular the monotonicity
property, states that by adding new knowledge you never “delete” the old knowl-
edge. For instance if an agent represent the fact that all birds flies, with the
implication bird — flies, and the fact that a penguin is a bird with the implication
penguin — bird, then this automatically implies that penguin — flies. But we know
that penguins do not fly, Humans adjust this problem by providing the additional
knowledge that penguins are exceptions and therefore they don’t fly. This is not pos-
sible in propositional logic, since if we add the fact that penguin — exceptionalBird,
and exceptionalBird — —fly, we don’t delete the fact that a penguin is a bird, and
therefore we still derive that penguins fly. In order to cope with this type of repre-
sentation problem, researchers in knowledge representation in Al introduces “non
monotonic” logics Brewka [1989|

The deduction theorem states that logical consequence that involves a finite
set of formulas can be “internalized” in an implications. Indeed an immediate
consequence of the deduction theroem is that A;,...,A —n = A implies that
A= (A — ... = (A1 — Ay)..2)) is a valid formulas.

The Refutation principle is also a very important property, that allows to trans-
form the problem of checking logical consequence in to the problem of checking
satisfiability of a set of formulas. We will explain this method in the next chapter
that is dedicated to algorithms for checking satisfiability.
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Another inportan property of the logical consequence in propositional logic is
the so called compactness theoremn

THEOREM 2.1 (Compactness). If T' = A then T'g = A for some finite subset
Iy, CT.

We report one proof of the compactness theorem at the end of this chapter.

5. Logical equivalence

DEFINITION 2.11. Two formulas A and B are logically equivalent if and only
if they are true under the same set of interpretations. Alternatively A and B are
equivalent if [[A]] = [[B]].

With an abuse of notation, we write A = B to state that A is logically equivalent
to B. Let us now analyse the different type of equivalence formulas we have in PL.

5.0.1. Absorption of T and 1. Remember that T and L are usually added
to the language of propositional logic, and they are mapped to True and False
respectively by all the interpretations. The appearance of these constants in a
formula can collapse the formula so that the binary operator is no longer needed; it
can even make a formula become a constant whose truth value no longer depends
on the non-constant sub-formula.

AVT =T Av1li=A
ANT=A ANL =1
A—-T=T A— 1 =-A
T—A=A 1L —-A=T
AT=A A 1L =-A

5.0.2. Identical Operands. Collapsing can also occur when both operands of an
operator are the same or one is the negation of another.

A=--A
ANA=A
AVA=A

AN-A=1
AV-A=T
A—-A=T
A A=T

5.0.3. Commutativity, Associativity and Distributivity. The binary Boolean op-
erators are commutative, except for implication.

AVB=BVA
ANB=BAMAA
A B=B& A

If negations are added, the direction of an implication can be reversed:
A—- B=-B—-A
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The formula =B — —A is called the contrapositive of A — B. Disjunction, con-
junction, equivalence are associative.

AV(BvC)=(AvB)vC
AN(BAC)=(AANB)ANC
A< (B« C)=(A+ B)«C

Disjunction and conjunction distribute over each other
AV (BAC)=(AVB)A(AVCO)
ANBVC)=(AANB)V(AANC)
5.0.4. De Morgan laws. Negating a conjunction results in a disjunction of the
negated conjuncts, and viceversa
-(AANB)=-AvV-B
—\(AVB) =-AAN-B

5.0.5. Distribution of implication.

A—-BvC=(A—-C)v(B—=()
A—-BANC=(A—-C)N(B—C)
A—-(B—->C)=(A—-B)—=(A— ()

5.0.6. The Relationship Between <> and logical equivalence. Equivalence, <, is
a Boolean operator in propositional logic and can appear in formulas of the logic.
Logical equivalence, instead, is a relations between formulas. There is potential for
confusion because we are using a similar vocabulary both for the object language,
in this case the language of propositional logic, and for the metalanguage that we
use reason about the object language. Equivalence and logical equivalence are,
nevertheless, closely related as shown by the following theorem:

THEOREM 2.2. A is logically equivalent to B if and only if A <> B is valid

PROOF. if A is logically equivalent to B if and only if [[A]] = [[B]] which is true
if and only if for all Z, Z = A whenever Z = B and viceversa, and i.e., Z | A + B
for all Z, which holds iff A <+ B is valid. [

6. Truth tables

Truth tables is a simple method for explicitly enumerating all the interpreta-
tions of the propositional variables of a formula A and for each interpretation it
reports the corresponding truth value of A. The truth table for a propositional
formula is a table containint as many columns as the propositional variables occur-
ring in A plus the number of subformulas of A. The truth table of A contains one
row for every interpretation of prop(A), where prop(A) is the set of propositional
variables that occours in A. Therefore it contains 2/P*P(4I rows (where | X| denote
thor e cardinality of a set X, i.e., the number of elements that belongs to X). A
raw of a truth table corresponds to an interpretation 7 i.e., an assignment of the
propositional variables of A. The first n elements of the raws are the assignments
of the propositional variables, while the last element is the value of Z(A).
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EXAMPLE 2.8. the truth table of the formula p — (qV —r) is the followz'ngﬂ
p q r p = ( q v - r )
True True True True True True True False True
True True False True True True True True False
True False True True False False False False True
True False False True True False True True False
False True True False True True True False True
False True False False True True True True False
False Fualse True Fualse True False False False True
False Fualse False False True False True True False

The truth table contains the columns corresponding to the propositinal variables of
the formula p — (qV —r), i.e., {p,q,r} and one column for every subformula of
p — (qV —r), which are p, q, v, —=r, ¢V —r, and p — (¢ V —r. The truth values of
the subformulas are computed starting from the simplest one to the most complex
until you compute the truth value of the entire formula. (marked in red)

With the truth table for A is is possible to check if A valid, satisfiable, or
unsatisfiable. If all the values in the columns of A are True, then A is valied, if
there is at least one true then A is satisfiable, and all the values are False, then A is
unsatisfiable. Truth tables are computationally very expensive since they enumerate
the interpretations of a formula, which are esponentially large w.r.t., the size of the
formula. Therefore they are only theoretical and pedagocical objects, in practice,
(in real application where the number of propositional variables are large) you will
never explicitly compute a truth table.

It is possible to build a truth table for more than one formula, by simply adding
on the right one column for each formula. Sometimes it is also convenient to add
columns corresponding to the subformulas of a complex formula. For instance if we
have to compute the truth table of the formula

(FV G)A(F AG)

we build a truth table for all its subformulas, as follows:
| F | G [[FVG[FAG|-(FAG) |[(FVG)A-(FAG)]

True | True True True False False
True | False True | False True True
False | True True | False True True
Fualse | False || False | False True Fualse

Exercise 1:
Use the truth tables method to determine whether

P—=q)Vp——q
is valid.

Solution

2To generate the truth table automatically I have used the web application availabe at https:
//mrieppel.net/prog/truthtable.html
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[ p [ ¢ lp=a] ~q [p=>q[lp=>aVp——q ]
True | True True | False | False True
True | False || False | True True True
False | True True | False True True
Fulse | False True | True True True

The formula is valid since it is satisfied by every interpretation. [

7. Propositional Theories

In the commonsense a theory is a system that allows to describe must be true in
a certain domain of interests. An example of theory, which we have studied in high
school, is euclidean geometry. A more sophisticate theory is the quantum mechan-
ics. etc. Theories have been developed by humans in order to describe precisely a
phenomena, and to allow to perform correct inference in order to deduce the truth
of “unknown” propositions starting from a handful of principles (axioms) that are
accepted to be necessarily true. In a theory there are propositions that are known
to be true, i.e., somebody manage to show that truth by providing a deduction, but
there are also propositions that are unknown to be true. For instance in numbner
theory that are many so called “open problems” E|In artificial intellighence, one
can use a logical theory to represent the knowledge of an agent about a particular
domain.by means of a logical theory, and use automatic deduction in order to in-
fer what is true and what is false in such a domain. This was one of the original
proposal of one of the founders of AT (John Mc Carthy McCarthy [1959)

A logical theory is nothing more than a set of sentences that expressews the
propositions that must be true in all the configurations of the domain of interest
that we believe to be possible.

DEFINITION 2.12 (Propositional theory). A theory is a set of propositional
formulas on a set of propositional variables P closed under the logical consequence
relation. Le. A set of formulas T is a theory T |= A implies that A € T.

An alternative and equivalent definition of theory is the following.

DEFINITION 2.13 (Propositional theory). A theory is a set of propositional
formulas on a set of propositional variables P that are true in a set of interpretations

of P.

EXAMPLE 2.9. Let P be the set of propositional variables. The setT of valid for-
mulas on the propositional variables P, i.e., T = {A € wifs(P) | A is valid}. This
is equivalent to say T is the set of fromulas that are true in all the interpretations
of P. For instance if p,q,r are propositional variables of P, The formulas pV —p,
qV —q, pANq— p, v — 1 belongs to T'. While the formulas p — q does not. Notice
that T is closed under logical consequence. Indeed suppose that A,..., A, = A,
and Ay,..., A, € T. Then we have that each A; is valid, and therefore it is true
in every models, The fact that Ay, ..., A, = A entails that A is also treue in every
interpretation, and therefore A is valied, hwnce it belongs to T .

3An example of open problem in number theory is connected to the Erdés—Moser equation:
P42k 4 pmk = (m+ 1F,

where m and k are positive integers. The only known solution is 1! 4 2! = 3!, and Paul Erd 6s
conjectured that no further solutions exist.
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EXAMPLE 2.10. is the set of formulas which are true in the the following three
interpretations of P, {I1,Z2,Z3}, where Ty = {p,q}, o = {q,r} and Iy = {p,r}.
Notice that this theory contains all the valid formulas since they are true in all the
interpretations, and therefore also in I1,Zy and Z3. However T contains formulas
which are not valid as for instance pV q, -p — q A r. Notice that T can be
defined as the set of formulas that are logical consequences of the formula A =
(pAq@)V (pAT)V(gAT). Indeed if B is a logical consequence of A, it is true in all
the models that satisfies A. Since Iy,Ty and I3 satisfies B, then B € T. We way
that A is an axiomatization of T', because from the axiom A all the formulas of T
follows logically.

EXAMPLE 2.11. Let T be the set of formulas that are true in a single interpre-
tation L. T is a theory since it is closed under logical consequence. Indeed if A; € T
we have that T |= A; we have that T = A;, and if Ay,..., A, E A, we have that
7 = A and therefore A € T. This theory is complete in the sense that for every
formula A, either AT or-AeT.

The three examples of theories provided above, range from the weakest theory
to the strongest one.

A propositional theory contains an infinite set of formulas. Indeed every theory
contains all the propositional tautoloties, which are infinite. However thee infinite
set of formulas could be defined as the logical consequences of a smaller set of
formulas (possibily but not necessarily finite) such that all the formulas of the
theory logically follows. These set of formulas are called azioms of a theory, They
are the basic principles of the theory from which everything else that is true in the
theory follows logically. So the set of axioms constitute a base for the theory and
characterizes it.

DEFINITION 2.14. A set S of formulas is a set of axioms (or equivalently an
axiomatization) of a theory T if T = {A € wifs(P) | S = A}.

An important property for a set of axioms S of a theory T is that they are
minimal, in the sense that no formulas in S is a logical consequences of other
formulas in S. This property can be formulated also as follows: there is no S’ C S
that is an axiomatization of T'.

EXAMPLE 2.12. The aziomatization of the theory of Exzample[2.9 is the empty
set. An aziomatization of the theory of Example is the set {p | T = p}U{-p|

T ¥ p}

8. The Compactness Theorem

In this section we prove a fundamental result about propositional logic called
the Compactness Theorem. This will play an important role in the second half of the
course when we study predicate logic. This is due to our use of Herbrand’s Theorem
to reduce reasoning about formulas of predicate logic to reasoning about infinite
sets of formulas of propositional logic. Before stating and proving the Compactness
Theorem we need to introduce one new piece of terminology.

Recall that a set of formulas I' is satisfiable if there is an assignment that
satisfies every formula in I'. For example, the set of formulas

['={p1Vp2,—p2V —p3,p3V s, psVps,...}
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on the infinite set of propositional variables P = {p1,pa, ps, ...} is satisfied by the
assignment Z defined as

(pr) = True if 7 1is odd
Pi) = False if 7 is even

DEFINITION 2.15. A set of formula is finitely satisfiable if all its finite subsets
are satisfiable.

THEOREM 2.3 (Compactness Theorem). A set of formulas T' is satisfiable if
and only if it is finitely satisfiable.

Notice that the formulation above of the compactness theorem is is different
fron the one introduced by Theorem [2.I] Nevertheless, if we proove Theorem [2.3]
we can easily prove the original compactness theorem by combining the refutation
principle, monotonicity and the the new formulaiton of the compactness theorem.

o I' = Aif and only if TU{—A} is not satisfiable (by the refutation principle)

o I' U {—A} is not satisfiable if and only if there is a finite subset I'g of
I' U {—A} which is not satisfiable (new formulation of the compactness
theorem).

e This implies that T'oU{—A} is not satisfiable, by monotonicity, and there-
fore by refutation principle that Ty = A.

To get an idea of what says the Compactness theorem consider the following
intuitive example

ExXAMPLE 2.13. Suppose that you have a logical language in which you can

express by means of formula K, P; and S the following proposition:

K there is a cake of finite size

P,  The i-th person has a piece of cake fori=1,2,3,...s

S The pieces of cake have all the same non zero dimension
The formula K NS — P; formalizes the fact that if there is a cake and it is equally
divided then the ith person gets it’s piece of cake. Notice consider any finite subset
of the set ' ={K NS — P,KANS — P,,KANS — P3,...}. ie., for every finite
set of natural numbers I C N let

Ir={KANS—P|icl}

Notice that the whole T' is not satisfiable, since you cannot cut a finite cake in an
infinite set of slices of finite and constant size. However each I'y for every finite
I C N is satisfiable. Since the compactness theorems holds in propositional logic,
we can conclude that such a scenario cannot be formalized in propositional logic.

To prove the compactness theorems we first need to prove the following lemma:

LEMMA 2.1. IfT is finitely satisfiable then either TU{¢} or TU{=¢} is finitely
satisfiable, for every formula ¢.

Proor. e Suppose the conclusion of the lemma does not hold: Both
T'U{¢} and T'U {—¢} are not finitely satisfiable.
e Hence, there are two finite subsets I'; and I's of T such that both T'y U{¢}
and I's U {—¢} are not satisfiable.
e Let us show that I';y UT'5 does not have models, i.e., it is unsatisfiable.
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e If 7 is a model of I'y, than it cannot be a model of ¢, therefore it is a
model of —~¢. Otherwise I'1 U{¢} would be satisfiable. Therefore, Z = —¢.

e Since I'y U {—¢} is not satisfiable, then Z cannot be a model of T's.

e This implies that every model of I'; is not a model of I'y and therefore,
I’y UT5 is not satisfiable.

e Since I'1 U Ty is finite and it is a subset of I', then I' cannot be finitely
satisfiable. This contraddicts the hypothesis of the lemma, and therefore
the lemma is proved.

O

Let us now prove the compactness theorem:

OF THEOREM [2.3] If I' is satisfiable, then every subset of I is satisfiable, and
therefore I' is finitely satisfiable. The prove of the opposite direction is more com-
plex. We have to show that if I" is finitely satisfiable then the whole I' is satisfiable,
i.e., there is an interpretation Z such that Z =T

e let enumerate all the formulas ¢, @2, ¢3, ... of the language of I.
e let us define the sequence ¥, X1, Xs, ... as follows

s _r s _ SU{dn}  if Xp_1U{¢,} is fin. sat.
0 " 2U{¢n} if Bpoi U{-¢y} is fin. sat.

e By induction, using previous lemma, ¥3; is finitely satisfiable;

o Let
s= %
n>0

The construction of ¥ is shown in the following picture:
by

e By construction ¥ is finitely satisfiable. Furthermore
1) For every formula ¢ either ¢ € 3 or —¢ € X but not both.

2) For every p € P, p € ¥ or =p € ¥ but not both.

True ifpeX
False if -pe X

4) Let us show that Z = ¢ for all ¢ € X.

(1)
(2)
(3) We define the interpretation Z(p) =
(4)
(5)

Consider the finite set 3; that contains ¢ and either p or —p for all
propositional variable p that occours in ¢. Since ¢ contains only a
finite set of propositional variables, such an finite 3; exists.
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(6) Since X; is finite, and X is finitely satisfiable, there is an interpretation
7’ that satisfies ;, and therefore Z' |= ¢

(7) Furthermore Z’ Epofpe ¥; or T/ = —p if —p in X,.

(8) However by construction of Z, we have that Z' and Z agree on all the
interpretations of all the propositional variables of ¢ and therefore
Tk ¢.

(9) Hence, T = X.

(10) SinceI' C X, then Z =T.
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9. Exercises
9.1. Formulas, subformulas, and other syntactic objects.

Exercise 2:
Decide which of the following phrases expresses a proposition

(1) The dog of my syster (6) No more food please!

(2) Is mario Happy? (7) Have a nice week end!

(3) A lion in the forest (8) The hause in which I was born
(4) A tiger is walking in the forest (9) Closed door

(5) the sooner the better (10) The door is closed

Exercise 3:
Knowing that the precedence relations batween the propositional connectives
is
13 _|77 _< 43 /\7’ _< 13 \/77 _< [13 %77 _< 43 HW
add the parenthesis to specify the correct parsing of the following formulas:
(1) (=pVa)Alg— (-rA=p))A(pVr)
(2) ((kpVag) = qA(@—=r)AN—r) = p
(3) A (=g Vr)A(=p—gA-r)
Solution
(mpVa)A(g— (-r A=p)) A(pVr)
() V) Alg— ((=r) A (=p)) AP V)

(kpVag) = qgA(g=r)A-r)=p
() V) = (gN(@—=71)N (7)) = p

“pA(~gVT)A(=p—gA-T)
(=p) A ((mg) V1) A((=p) = (g A (=)

Exercise 4:

When we have two connectives which are the same, then we give precedence
to the right one. I.e., a oboc reads as a o (bo ¢) for every binary connective
o€ {—=,A,V,+}. Put the right parentesist on the following formulas

(1) a—=bA—-c—d
2)a—=b—=c—d
B) asxbrcAhdere

Exercise 5:
Draw the formula tree of the following formula:
(pAg) = —gNATVg—(pAq)

Rimember that the expression a — b — ¢ is parsed as ¢ = (b — ¢), and a <+ b <> ¢
is parsed as a — (b — ¢). Count all the sub-formulas of ¢.

Solution The formula ¢ is parsed as pAg — (((mg A7)V q) = qAp) where
parentesis are made explicit. The tree of ¢ is
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In general a formula has as many subformulas as many distinct subtrees of its
formula tree, including the entire tree and the leavers. Therefore ¢ has 9 subformula
corresponding to the following subtrees:
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q q r

0 Exercise 6:

Draw the formula tree for the following formulas and count the number of
subformulas:
(1) a=b—=c+aANbV-aA-bV-a
(2) ~(a+ b+ o)
(3) =(aA—(bA ).
(4)

aANbDVDOAa

Exercise T:
For each of the following formula draw the formula tree and the form with
minimal number of parenthesis:

(1) (pAg) = (=(g =7 A-T))
(2) (pe (7)) VrAg
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Exercise 8:

Produce a formula that contains only 2 propositional variables and n = 1,2, 3,4
binary connective A, which has the maximum number of subformulas. Can you
generalize this process to any n?

Solution If n = 1 then the formula p A ¢ has 3 subformulas, and this is the only
formula that satisfies the requirements of containing two propositinal variables and
one binary connective.

With n = 2, then the formula must be of the form x A (x A %) or (% A *) A *
where * can be replaced either with p or g. This implies that the atomic subformulas
must be at most 2. Since the fromula contains 2 coonectives and every coonective
corresponds to a subformula, then we have that the formulas has 4 subformulas.

if n = 3 the possible shapes is x A (x A (* A x)), where x can be replaced by p
or q. Furthermore notice that all the subformulas that has A as main connective
are different. From this we can conclude that the we can produce a formula with
3 connectives that has 3 subformulas + 2 atomic formulas which in total is equal
to 5. Notice that we can construct formulas that contains 3 occurrences of A that
has less subformulas. For instance (p A ¢) A (p A ¢), contains only 4 subformulas,
since the subformula p A ¢ occurs twice and therefore it contributes only for 1 to
the total number of subformulas.

In the general case we have that the formula (x A %) A x A %

7

contains n + 2 subformulas. O

Exercise 9:
Suppose that a formula ¢ contains n occurrences of A, m occurrences of V and
p occurrences of —.

(1) What is the maximum number s of subformulas of ¢?

(2) Explain how you get this result.

(3) Provide an example of a formula with s subformulas;

(4) Provide an example of a formula with less then s subformulas. maximum
number.

Solution

(1) For every occurrence of V and A the formula has two subformulas (they
can be different provided that we have anought propositional variables),
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for every occurrence of — there is one subformula. In total therefore we
have s = 2"T™ 4 p+ 1

(2) If you imagine the formula tree, and every node labelled with n there two
subtrees, and for every nodel labelled with — there is only one subtree. In
both case we have to consider also the tree as a formula is a subformula
of itself. If we make sure that all the subtrees are different, by using
diffferent set of propositinal variables for each subtree, we can guarantee
that all the subtrees are different.

(3) For instance p A (¢ V negr) is a formula that contains 1 A, 1 occurrence of
V and 1 occurrence of — and has 27! 4+ 1 4+ 1 = 6 subformulas, which are

pA(qV-r) P qV -
q -r r

The formula tree is the following:

which has exactly 6 nodes.
(4) To obtain less subformulas than s we have to make sure that two subfor-
mulas are the same. This is the case for instance in the simple formula

PAp
that contains 1 conjunction connective. Therefore s = 2! +1 = 3, but the
number of subformulas are 2, i.e., p Ap and p. This is due to the fact that
p is a subformula of both branches of A.

Exercise 10:
If a formula ¢ contains n connectives, what is the minimum and the maximum
number of subformulas?

Solution First of all notice that the connective — applies only to one subformula,
while all the other connectives are binary, i.e., they apply to two subformulas.
To minimize the number of subformulas therefore we can suppose that all the n
connectives are -, i.e., the formula is of the form:

Xn

—_—N—

SCEC-Cp) )
In this case the formula has n + 1 subformulas. Instead to maximize the number of
subformulas one should use binary connectives since for each binary connective we
can potentially have 2 subformulas. The maximum number of subformulas using
n connectives can be obtained by using only binary connectives and making sure
that the two subformulas of all the binary connectives are distinct. This can be
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obtained by introducing enough propositional variables to make all subformulas for
every connective different from the other. This implies that the occurrence of every
connective corresponds to two subformulas. Therefore the maximum number of
subformulas are 2n + 1

Suppose for instance that k = 2, then the following are two examples of formulas

with binary connectives (A in this case):
A
/ \
A b1 A

7N\ /N

A A P2 N
ANA /\

p1 b2 p3 P4

p3 P4

The number of subformuals are 2-3+1 = 7. More in general the maximum number
of subformulas are 2n — 1. [J

Exercise 11:

Prove by structural induction that a propositional formula that contains n
occurrences of = and m occurrences of binary connectives has at most n + 2m + 1
subformulas. Solution Let ¢ be a formula that contains n occurrences of —

and m occurrences of binary propositional connectives. We prove the theorem by
induction on n +m

Base case: Suppose that n + m = 0, then ¢ does not contain any propos-
itoinal connective, and therefore it is an atomic formula p, which has
exactly 1 subformula, i.e., ¢ itself. Therefore the number of subformulas
of pare 1l =n+2m+ 1.

Step case: Suppose that the property holds for all the formulas that con-
tains m’ occurrences of = and n’ occurrences of binary connectives with
m' <mand n’ <nand m' +n' < m+n, and let us prove that it holds
also for m + n. We consider two cases.

(1) ¢ is of the form —¢;. Then ¢ contains n — 1 occurrences of - and m
occurrences of binary connectives. By induction hypothesis we can
infer that ¢; has at most n—142m+1 = n+ 2m subformulas. Since
the subformulas of —¢; are the subformulas of ¢; plus the formula
—¢y itself, then the maximum number of subformulas of —¢; are
n+2m+ 1.

(2) ¢ is of the form ¢; 01y for some binary connective o € {A,V, —, < }.
Then we have that each ¢; with ¢ = 1,2 contains n; occurrences of
= and m; occurrences of binary connectives. with m; < m — 1, and
n; < n. We therefore have that n; + m; < n + m. By induction
on ¢; we have that the maximum number of subformulas of ¢; are
n; + 2m; + 1. Since the subformulas of ¢; o ¢o are the subformulas
of ¢; for i = 1,2 plus ¢ o ¢ itself, we have that ¢, o ¢ has at most
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ny+2my+14+ne+2me+1+1=(n1+n2)+2(my+ma+1)+1
subformulas. Notice that ny + no = n since every occurrence of = in
¢ is either an occurrence in ¢; or in ¢5 but not in both. Furthermore
mi1 + mo = m — 1 because an occurrence of a binary connective is
either in ¢ or in ¢ or it is o, the main connective of ¢; o ¢5. This
allows us to infer that ¢ o ¢ has at most n + 2m + 1 subformulas.

Exercise 12:
Define when a formula is valid, satisfiable, unsatisfiable, and not valid, and the
relations between these concepts.

Exercise 13:
List the pair of items from each one of the two lists (i.e, a list of (num-
ber),(letter) pairs) that corresponds to equivalent statements.

—A is satisfiable

—A is valid

—A is unsatisfiable
—A is not valid

A A B is satisfiable

A A B is valid

A A B is unsatisfiable
A A B is not valid
AV B is satisfiable
AV B is valid

AV B is unsatisfiable
AV B is not valid

1) A is satisfiable

2) A is valid

3) A is unsatisfiable

4) A is not valid

5) A is satisfiable and B is satisfiable
6) A is valid and B is valid

7) A is unsatisfiable and B is unsatisfiable
8)

9)

0)

1)

2)

TN~ NN T

A is not valid and B is not valid
A is satisfiable or B is satisfiable
A is valid or B is valid

A is unsatisfiable or B is unsatisfiable (k
A is not valid or B is not valid

PR - Ao T

—~
—

(
(
(

—
.

(
(
(
(
(
(
(
(
(
1
1
1

— e e N N e N

—~
—

Solution Let us recall the definiton of satisfiable, valid, Unsatisfiabe, and not valid
formula.

A is satisfiable if there is an interpretation Z that Z = A

A is valid if for every interpretation Z, 7 = A

A is unsatisfiabe | if for every interpretation Z, 7 |~ A

A is not valid if there is an interpretation Z such that Z (= A

Where 7 = A means that A is true in Z and Z }= A means that A is false in 7.
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Using the above definition we can find the following connections between the
items of the two lists.

(@) | () | () [ (@) |(e)| (f) | (9)| ()| @)]|G)]|K&)]|Q
(1) & =
(2) & | = = | =
3B) || =< = | = =
4 || & |« = =
(5) = |« |« =
(6) > | == < = | =
7 || == = | = & | <
®) || = = = | &
(9) = |« |« | « &S|«
(10) <= = | =
(11) = = | =
(12) || < = = | & = | &«

From the above tabel we can extract the pairs of equivalent statements (shown in
red).

Ld) 20 () (ha) (65 (LE G0 (99 (12,h)
|

Exercise 14:

Explain the difference between the following statements
(1) EAV B (AV B is valid)
(2) = Aor = B (Ais valid or B is valid)

which one is the strongest?

Solution Let us expland 1. and 2. according to the definition of valid formula:

(1) E AV B means that for every interpretation Z, Z = AV B, which means
that either Z|= A or Z = B
(2) E A or = B instead means that either for every interpretation Z, Z = A
or for every interpretation Z, Z = B.
To highlight the difference between 1. and 2. you can write their definition by
using a more formal notation,

(5) EAVB < VI,ZEAorIfEDB)
(6) FEAorEB < (I, IZIEA)or (VI,I[E B)
An example that shows the difference can be constructed by taking A equal to the

atomic formula p and B the negated atomic formula —p. You have that = p Vv —p,
but neither = p nor = —p Clearly 2. is a stronger statement than 1. O

Exercise 15:

Find three formula A, B, and C such that A A B A C' is unsatisfiable and such
that the conjunction of any pair of them is satisfiable. I.e., AAB, AAC and BAC
are satisfiable.

Exercise 16:
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Suppose that A and B contains two disjoint set of propositional variables. Show
that A A B is satisfiable if and only if A is satisfiable and B is satisfiable.

Exercise 17:
Show that if A is satisfiable then A A p or A A —p is satisfiable.

Exercise 18:
Prove that if A and B contain a disjoint set of propositional variable then AV B
is valid if and only if A is valid or B is valid.

Exercise 19:

Let ¢ be a propositional formula built only with the operators V, A and =. An
occurrence of a propositional variable p in ¢ is positive if it is in the scope of an even
number of — operators, and it is negative if it is not positive. Provide an explanation
(or better a proof) of the fact that if ¢ does not contains two occurrences of the
same propositional variable, which are one positive and one negative, then ¢ is
satisfiable.

Solution If you transform ¢ in NNF (negated normal form) then for every proposi-
tional variable p, either all its occurrences in NNF(¢) will not be negated (if all the
occurrences of p in ¢ are positive, then an even number negations cancel out) or all
of them will have a — in front of them (i.e, when they are negative occurrences, an
odd number of negations reduce to a single negation). The assignment that maps
all positive p into true and the negative p into false, satisfies NNF(¢) and therefore
it satisfies also ¢. O

Exercise 20:
For each of the following formulas, construct a truth table and state whether
it is valid, satisfiable, or unsatisfiable.

(1) pA-p

(2) pvV-p

(3) (pV—q) —q

(4) (pvag) = (PN

(5) (p—=q) < (=g — —p)
6) (p—q) < (¢—p)

Exercise 21:

Give a truth-table definition of the ternary boolean operation “if p then ¢ else
r”, and write a propositional formula using only the connectives — and — that is
equivalent to such an operator.

Solution One possible intuitive reading of “if p then ¢ else r” is that when p is true
then ¢ should be also true and we don’t know anything about r, and when p is false
then ¢ should be true, and we don’t know anything about p. This is represented
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by the following table:

| if p then g else r |

e T B R B Bl | S
Bl Has s e Beo B B 1 (5
MmN TN TN
MmN TENSN

Such a ternary connective can be formalized by the propositional formula

P> N(Ep—r)

Exercise 22:
Given the truth table for an arbitrary n-ary boolean function

f:{0,1}" — {0,1}

describe how one can build a formula ¢ using only n propositional variables py, ..., p,
such that the following holds:

flxy,...,z,) =1if and only if Z = ¢
where 7 is an assignment such that Z(p;) = x;

Solution For every © = (z1,...,2z,) € {0,1}"™ let us define the formula ¢, as
follows:

n n
¢ =\ 2in )\ “pi
i=1 i=1

;=1 ;=0

Notice that the formula ¢, is satisfied only by a single assignment, i.e., the assign-
ment in which Z(p;) = z; for all the propositional variables p;. Let us define ¢ as
the disjunction of all the ¢ such that f(x) = 1.

¢ = \/ [

ze{0,1}7
f(z)=1

For every interpretation Z, if 7 |= ¢ then for some @ for which f(x) =1, Z & ¢q.
By the construciton of ¢, Z is the assignment that assigns x; to each p;. O

Exercise 23:

Are the following formulae satisfiable, valid, unsatisfiable, or not valid?
(1) (pva)Alg— (-rA=p))A(pVr)
(2) ((kpVa) = gA(g—=r)A-r) = p
(B) =pA (=g Vr)A(=p—=gA-r)
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Solution Let us build the truth tables of the three formulas:

(=

Q

~—
~
—~
—~
~
—~
~—
N
N
~
—~

~—
~—

SESECEC SRS ES
MENNT TR Rkl
HNTNT S TN
NNTT YT

S EE NSNS
mENNNNNR<
SENNTTNS

NNT TS Y >
N NNE TSNSk
NNSTNSTYL
NENTNTNY

mNTNTN TN
NN TS >
NNSNST YT
SESECEC SRS RS
o >
SESECEC SR RS
NN NNNI<
HNTNTS TN

—~
—
—~
—~
~—
~—
—~
—
—~
LS
~—
~
—~
<
~—
~
~
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R Rl S R W | (S
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I T P
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MmN NN
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~—
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NSNS SS] 999y YYTS>

HEERAEEEE> gy N
NSNS NN< T89S STN

e Il T sl B | S
R Rl B Bt o B | 5
R Teo s o Bosleo la |
NSNS Y Y
R I EEs T Bl B | i
NSNS ET Y >
e B TS T s B B M|
R sl B el B |
R e E H B B B | S
S lae ol Be- B e W |
e e s s B> Bt e S e |
TN NR
R e B e las B | B
s> Bas e R Hco las e |
R Teo e o s les Ha | R
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The first formula is not valid since there are truth assignments that evalu-
ates it to false. It is satisfiable since for the truth assignment Z(p) = False,
Z(q) = False and Z(r) = True (one but last line of the first truth table)
the formula is evaluated to True. Consequenclty the formula is not un-
satisfiable.

(2) The second formula is valid since it is true for all the assignments. It is

also satisfiable since there are assignments that makes it true.
(3) The third formula, like the first one is not valid but it is satisfiable.

Exercise 24:

Suppose that ¢ contains only the <> operator. Prove that if every propositional
variable p occours an evenq number of times, then ¢ is valid. Solution The proof

is based on the fact that <> operator is associative and commutative. let us prove
these two properties

Associativity of <»: We build the truth tables of A <+ (B +» C) and (A <
B) <+ C and see that the two formulas takes identical truth values.
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ABC| A« (B« C)| (A& B)« C
T T T TT T T T T T T T T
T TF T F T FF TTT F F
TFFT| TF FFT TFF F T
T F F T T F T F T F F T F
FTT FF T TT FF T FT
FTF F T TVF F F FT TF
FFT FT FFT FTVF TT
F F F F ¥ FTF FTVF FF

Commutativity of <»: We use the same procedure to prove that A <+ B
is equivalent to B < A.

AB| A& B B & A
T T T T T T T T
T F T F F F F T
F T F F T T F F
F F F T F F T F

Associativity and commutativity imply that every formula ¢ in which all the propo-
sitional variables appears an even number of ties can be rearranged in the following
form

(p1 <> p1) < (P2 <> p2) <> (p3 < p3), - -

Which is equivalent to T <> T <> T ... which is always true. OJ

Exercise 25:
Find a formula ¢ that has the following truth table, and explain the method
you have followed to find it.

T Mo e T B B |
s Bae s e Hea B |
B Mo B B B e | B
B Beo s B> Beo Beo s | RS

Solution A possible way to proceed is based on three main steps (1) building is
by associating a conjunction of literals that fully describes each interpretation that
satisfies ¢; (2) put them in a disjunction and (3) simplify the resulting disjunction
as much as possible.

(1) For every interpretation Z on the set of proposition P we can define the
conjunction of the literals that are satisfied by Z

b N1

leLit
=l

where Lit is the set of literals on the propositional variables in P. Notice
that 17 is satisfied by Z and Z is the only model that satisfies 17.
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(2) Let us put in disjunction all the 17 such that Z |= ¢.
(7) (PAgAT)V (P AGAT)V (P ADgAT)
Notice taht the above formula has exactly the same models than ¢ since
is it the disjunction of the formulas that are true in each model of ¢.

(3) We can then simplify it. First notice that r is true in all the disjunction,
so r must be true, We therefore obtain:

(8) (A V(=pAg)V (=pA—=q) AT

Furthermore notice that (p A q) V (=p A q) V (=p A —q) is equialent to
—(p A —¢) which is equivalent to p — ¢

(p—=q)Ar

9.2. Logical consequence. Exercise 26:
Prove the following logical consequences:
() pEPVe

(2) gvpEDPVYe

3) pVg,p—=r,g—=rET

4 p—aprkEq

(5) p,wEq

Solution

(1) Suppose that Z = p, then by definition Z = p V q.

(2) Suppose that Z |= ¢ V p, then either Z |= q or Z | p. In both cases we
have that Z = p V q.

(3) Suppose that Z=pVgand Z Ep — r and Z = ¢ — r. Then either
Z Epor Tk q In the first case, since Z = p — r, then Z = r, In the
second case, since Z |= ¢ — 7, then Z |=r.

(4) Suppose that Z |= —p, then not Z = p, which implies that there is no Z
such that Z = p and Z = —p. This implies that all the interpretations
that satisfy p and —p (actually none) satisfy also q.

(5) ...

6) ...

Exercise 27:
Show that if I' = A and T’ = = A, then T is not satisfiable.

Exercise 28:
Prove that ¢ — p is not a logical consequence of p — gq.

Exercise 29:
Prove that —pimp—q is not a logical consequence of p — q.

Exercise 30:
Prove that —q — —p is a logical consequence of p — q.
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Exercise 31:
Prove the following logical consequences

(1) pEpPVg

2) qVpEDPVye

3) pVgp—=rg—=rET
4) p—q,pFEq

5) p,pEq

(
(
(
(

Solution

(1) Suppose that Z = p, then by definition Z = p V q.

(2) Suppose that Z |= ¢ V p, then either Z |= ¢ or Z | p. In both cases we
have that Z = p V q.

(3) Suppose that Z=pVgand Z = p — r and T = ¢ — r. Then either
Z Epor Tk q In the first case, since Z = p — r, then Z = r, In the
second case, since Z |= ¢ — r, then Z |=r.

(4) Suppose that Z = —p, then not Z = p, which implies that there is no Z
such that Z = p and Z = —p. This implies that all the interpretations
that satisfy p and —p (actually none) satisfy also q.

9.3. Logical equivalence. Exercise 32:
Show that A is associative, i.e., a A (b A ¢) is equivalent to a A (b A ¢), and
therefore one can write a AbAcAdA ... without parentesis.

Solution Let us generate the truth table for both ]

abc| aA(bAc)| (aAnDb)Ac
T T T TT T TT TTT T T
TTF| TF TFF TTT F F
TF T TF FFT TFF F T
TFF TF F FF TFF FF
FTT FFEF TTT FFTFT
FTF FF TFF FFT FF
FFT FF FFT FFF FT
FFF FF FFF FFF FF

The truth values of the fomrulas are shown in the two columns blue and red. Notice
that the two columns are identical. Therefore the two formulas are equivalent. [J

Exercise 33:
Show that that — is a non associative operator, i.e., thjat a — (b — ¢) is not
equivalent to (a — b) — c.

Solution Let us build the truth table for the two formulas.
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abec| a—=>(b—=>c)| (a—=>D>b)=c
T T T T T T T T T TT T T
TTF TF T FF TTT F F
TFT| TT FTT TFF T T
TF F TT F T F TF F T F
FTT F T T T T FTT TT
FTF F T T F F FTT F F
FFT FT FTT FTF TT
FFF FT FTFEF FTZF F F

Notice that there are two assignments (highlighted in red), to a, b, ¢ for which the
truth value of the two formulas are not the same. The two formulas therefore are
not equivalent. This implies that the expression a — b — ¢ is ambigous, and one
should add the parenthesis in order to specify the correct parsing. In absence of
parentesis the parsing a — (b — ¢) is usually taken as correct. [J

Exercise 34:
Repeat the previous exercise for the connective V.

Exercise 35:
Show that the < is commutative and associative.

Exercise 36:
Rewrite the following formulas by using only A and —.

Exercise 37:
Rewrite the following formulas by using only V and —.

Exercise 38:

Among the following 5 formulas find one formula that is valid and one that
is not valid. For the first one prove its validity with your preferred method, for
the second one provide a counter-model. (remember that a — b — ¢ stand for
a— (b—c))

(1) (PAQ)— P> @Q

(2) (P=Q)V(PA=Q)

3 (P-Q—R)—-P—R
4) (P—-QVR)—P—R
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5) (PVQ)—>R—-R—Q

Solution For each formula, we can construct a truth table that lists all possible
truth assignments to the propositional variables. For n variables a truth table has
2™ rows. We can evaluate the formula for variable assignment and check whether it
is true or false. If the result is true for every assignment, then the formula is valid.
Otherwise, there is an assignment where the formula evaluates to false. This is the
counterexample. We obtain the following results: 1, valid; 2. valid; 3. not valid,
counterexample: R =1, P =T, Q = L; 4. Not valid, counterexample: R = |,
P=T,Q=1;5. valid. O

Exercise 39:
Consider the following binary connective o and the corresponding truth table:

x y|xoy

_ -0 O
_— O = O
— =

o

Express the formulas —a, a A b, and a V b using only the o connective.

Solution

(9) “a=aoa

(10) aNb=(aob)o(aod)
(11) aVb=(aoa)o(bobd)

O



CHAPTER 3

Modelling in Propositional Logic

1. Logic Based Problem-solving

One of the most important applications of logic in artificial intelligence is in
providing a general method for solving problems by modeling the problem in terms
of logical formulas and finding the solution by applying some form of logical infer-
ence. This role of logic has been clearly identified by Adnan Darwiche in Darwiche
20201

At an abstract level, a problem is specified by providing a set of hypothesis (e.g.,
input data, set of hypothesis, context, background knowledge, set of rules, “...)
and a query, whose answer should be inferred from the hypothesis. The main task
in logic-based problem-solving is in modeling hypothesis in terms of a set of logical
formulas so that the answer of the query can be obtained by some logical inference
from such a set of formulas. The main schema is shown in Figure[I] A real world
problem can be seen seen as a question to be answered given a set of data. For
instance one would like to know who is the murder between a group of suspected
persons and a set of clues. The data are the fact that the murdered is one among
the suspected people and all the cues, the query is “who is the the murderer?”,
the (correct) answer will identify the person who actually committed the murder.
Perhaps an example closer to real application, is the problem of finding the shortest
path from one point to the other of a town. The hypothesis (data, background
knowledge) are the street connections, the query is “find the shortest path from

modelling formulas for hypothesis

’hypothesis and query %’H and query (@5, and @)

T
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F1GURE 1. Schema of logic based problem solving method.
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point a to point b” the answer is a sequence of connected streets that connets a
and b with minimal length.

A general method for solving these classes of problems is by modelling the
bypothesis and the query in a set of logic formulas ®; and ®, respectively and
then apply some generic inference algorithm on ®;, and ®,. Such an algorithm will
provide an answer which is described in logical terms. Such an anwer need to be
iterpreted to provide an answer to the real prolem.

The simplext logical inference task is satisfiability. I1.e., check if a set of formula
d is satisfiable by sone assignment to its propositional variables. In other words
seach for an assignment Z to the propositional variables of ¢ such that Z = ¢.
Algorithm for satisfiability provides two types of ansewrs when they are called with
input ®. The first answer is that ® is or is not unsatisfiable; the second type of
answer is an interpretation Z that satisfies ® (in case it is satisfiable). Therefore
satisfiability algorithms can be used to answer two types of queries: boolean queries
and search queries. Boolean queryies are queries of the form

“is it the case that a certain proposition is true/false?”

Example of these queries are “is John the murderer?”, “is the murdered male or
female”. The answer to a boolean query is yes/no (true/false, 0/1, this is why they
are called boolean). Search queries are queries of the form

“find an opbject that satisfies a certain proposition.

Examples of this type of queries are: “who is the mardered?”. “find a path that
connects location a to b”, “find a path from a to b that passes through ¢”. The
answer to this type of queries is (the description of) a specific object.

2. Formalizing natural language (english) sentences

Natural E| langauge is one of the most common way in which a problem can be
specified; in the section, we discuss how to translate a variety of English statements
into the language of propositional logic. From the viewpoint of sentential logic,
there are five standard connectives — ‘and’, ‘or’, ‘if...then’, ‘if and only if’, and
‘not’. corresponding to the connectives A, V, —, = and —. In addition to these
standard connectives, there are in English numerous of other connectives, including
‘unless’, ‘only if’; ‘neither...nor’, among others.

To translate the description of a problem given in natural langauge text into a
set of (propositional) logical formula we have to perform three basic steps.

(1) provide a set propositional variables corresponding to the simplest sen-
tences of the text;

(2) compose the propositional variables in formula using the logical connec-
tives in accordance to the natural language connectives that combine the
atomic sentences

It is therefore of crucial importance to provide a correct way to tranlate the con-
nectives in natural langauge, such as “not”, “and”, “although”, ...into a suitable
combination of the logical connectives A, V,. ...

1The content of this section is a summary of a class by Gary Michael Hardegree, professor of
Philosopy
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2.1. Conjunction. Conjunction in enclish can be expressed by the connec-
tive “and”; there are however a set of alternative conjunctions that can be used.
“but”, “yet”, “although”, “though”, “even though”, “moreover”, “furthermore”,
, “however”, and “whereas” are all connectives that express some conjunctive in-
formation. Although these expressions have different connotations, they are all
truthfunctionally equivalent to one another. For instance the sentences

(S1) it is raining, but I am happy
(S2) although it is raining, I am happy
(S3) it is raining, yet I am happy
(S4) it is raining and I am happy
are all true in the situations in which it is raining and i’m happy. Therefore they are
truth-value equivalent (they capture the same proposition). They are all translated
in RA H, where H is the propositional variable that represent the proposition “its
raining” and H the propositional variable corresponding to the proposition “I'm
happy”. This does not mean that they convey the same information. Indeed, for
instance (S1) and (S2) convey some contrastive relation between being happy and
raining, which is not present in (S4). However, this additional information is not
directly related to the truth value of the formula itself. Since propositional logic
captures only the truth-functions of connective, such additional information cannot
be captured by propositional logic formulas.

Conjunctive information can be provided also in additional form: The template

A and B are C

where A and B are individuals and C is a common name describing a quality,
corresponds to the conjunction

Ais C and Bis C

So for instance “Cesare and Caligola are emperors” can be paraphrased in “Cesare
is an emperor and Caligola is an emperor”. Similarly sentences that respect the
pattern

AisBand C

where A is an individual and B and C describe some quality, can be paraphrased
in
AisBand Ais C

For instance “JS Bach is a composer and a musician” can be paraphrased in “JS
Bac is a composer and JS Bach is a musician”. There are many other ways to
express conjunctive information about the same individual, for instance by using
relative pronouns like “who”. Often in this form the “and” is omitted and we have
the pattern AisaBC, as for instance in

Charles Dickens is an English writer

meaning that Charles Dickens is English and Charles Dickens is a writer.

The pattern “A and B are C” can be used also in case in which C expresses
some relation between the individuals A and B. In this case we cannot paraphrased
the sentence as a conjunction of “A is C” and “B is C”. Consider for instance the
sentence “Pierre and Marie are married”, as the intended meaning, if nothing else
is added, is that “Pierre and Marie are married each-other”.

2.2. Disjunction. See slides
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2.3. Implication. See slides

2.4. Negation. See slides

3. Formalizing constraints on possible worlds

In many situation we are in front of the problem of finding a set of formulas
that “must” be true in all the possible configuration of a “world”, so that you
restrict to consider the interpretations that corresponds to the “possible worlds”,
and exclude the “impossible” worlds.

EXAMPLE 3.1. Suppose that a robot can move around a flat that is composed of
25 cells, some of them are occupied by other objects and the robot cannot move into
them. This situation is graphically represented in Figure[3 and it is called semantic
grid occupancy map.

4
3 (R) chain
2
1 carpet
al -
0 1 2

3 4
FIGURE 2. An example of occupancy 2D map

To model situation like the one shown in Flgure [2| you have to proceed follow
two main steps (as in the case of translation from english)
(1) define the set of “atomic propositions” that are necessary to describe all
the configurations (both the possible and the impossible worlds);
(2) write the formula that are true only in the “possible worlds” and are false
in the impossible worlds”.

EXAMPLE 3.2 (Cont’d). The key aspect of scenario shown in Figure @ is the
fact that a certain object/robot occupies a cell.

3.1. Graph coloring. Graph coloring problem is one of the basic problem
in graph thery and it has a lot of aplications. In the following we will define the
problem, describe it’s formulation in propositional logic, and motivate it by means
of an application.

DEFINITION 3.1. A graph G is an ordered pair (V, E), where V is a finite set
and E CV xV, such that (v,w) € E implies that v # w. The set fV is called the
set of vertices and E is called the set of edges of G. G is undirected if (v,w) € V
then (w,v) € V. If (v,w) € E we way that v and w are adjacent vertices.

DEFINITION 3.2. A graph G is said to be k-colourable if each vertexr can be
assigned one of k colours so that adjacent vertices get different colours.
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An important problme is the following: given an undirected graph G = (V, E)
find the smallest k£ such that G is k-colourable. One possible method to solve this
problem is to cast the problem of checking if a certain graph is k-colorable in a set
of propositional formulas so that if they are satisfiable then the graph is k-colorable.
In other words we have to define a propositional language and a set of axioms that
formalize the graph k-coloring problem of a graph n nodes.

Let us first define the set of propositions that we need to axiomatize the graph
k-coloring problem for a graph with n vertices.

e For each node 1 < i < n and color 1 < ¢ < k, color,. is a propositional
variable that represents the fact that the i-th node is colored with c-th
color;

e For each pair of distinct nodes 4,7 such that 1 < i < j < n, edge;; is a
propositional variable that represents the fact that there is an edge from
node i to node j. Notice that we use only edge;; for i < j and we don’t
introduce edge;; with j < ¢ since we have that the edges are symmetric
and if htere is an edge from i to j there must be also an edge from j to
i. This implies that the proposition edge;; would be equivalent to edge;;.
Therefore, we need only one of the two.

Let us now introduce a set of axioms that imposes that the graph is crrectly colored.

e we first have to codigy the structure of the graph. for every (i,j) € V
with ¢ < j we add edge;;; furthermore for every (i,j) ¢ E with i < j we
add —edge,;

779
e for each 1 <17 <n we add the formula

k
\/ color;,
c=1
that formalizes the fact that each node has at least one color;
e foreach 1 <i<mnand1l<c<cd <k, we add the formula
color;. — —color;.
, which formalizes that every node has at most 1 color;
e foreach 1 <i< j<nand1l<c<kwe add the formula
edge,; — —(color;. A color;.)
that formalizes that adjacent nodes do not have the same color.

To conclude let’s introducing a family of applications that involve avoiding
some sort of clash, i.e. where some configuations shouldn’t be allowed to happen
in a world. A prototypical example is the following

EXAMPLE 3.3. Suppose that a group of ministers serve on committees as de-
scribed below:

Committee Members

Culture, Media € Sport Alexander, Burt, Clegg
Defence Clegg, Djanogly, Evers
Education Alexander, Gove

Food & Rural Affairs Djanogly, Featherstone
Foreign Affairs FEvers, Hague

Justice Burt, Evers, Gove

Technology Clegg, Featherstone, Hague
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FIGURE 3. The graph at left has vertices labelled with abbrevi-
ated committee names and edges given by shared members. The
graph at right is isomorphic, but has been redrawn for clarity and
given a three-colouring, which turns out to be optimal.

What is the minimum number of time slots needed so that one can schedule meetings
of these committees in such a way that the ministers involved have no clashes?

One can turn this into a graph-colouring problem by constructing a graph
whose vertices are committees and whose edges connect those that have members
in common: such committees can’t meet simultaneously, or their shared members
will have clashes. A suitable graph appears at left in Figure [3| where, for example,
the vertex for the Justice committee (labelled JUS) is connected to the one for
the Education committee (EDU) because Gove serves on both. The version of
the graph at right in Figure [3| shows a three-colouring and, as the vertices CMS,
EDU and JUS form a clique (i.e., totally connected graph). THerefore 3 is this is
the smallest number of colours one can possibly use and so the chromatic number
of the committee-and-clash graph is 3. This means that we need at least three
time slots to schedule the meetings. To see why, think of a vertex’s colour as a
time slot: none of the vertices that receive the same colour are adjacent, so none
of the corresponding committees share any members and thus that whole group
of committees can be scheduled to meet at the same time. There are variants of
this problem that involve, for example, scheduling exams so that no student will
be obliged to be in two places at the same time or constructing sufficiently many
storage cabinets in a lab so that chemicals that would react explosively if stored
together can be housed separately.

4. Modelling Cardinality constraints

A very common class of constraints that we can encounter in modelling prob-
lems are the so called cardinality constraints, which impose limit on the number of
proositional variables that are true. Let us consider the following simple example

EXAMPLE 3.4 (Crowded room). Suppose that in a classroom there are k chairs,
but there are n > k students that attends the lecture. Suppose that you want to
represent the fact that each single student stands or has found a seat. In this
situation you have to impose that the mazimum numner of students that seat are k.
If seat;; stands for the j-th students seats in place j, we have to impose that at most
k propositional variables seat;; are true, or equivalently at least n — k propositional
variables seat;; are false. If, we want to impose that all the chairs are occupied then
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we need to require that exactly k variables seat;; are true, or equivalently, ezactly
n — k variables seat;; are false.

let us see how cardinality constraints can be encoded in propositional formuls.

4.1. At least k. Given a set of boolean variables X = {z1,22,...,2,}, the
constraint ¢ at least k propositional variables in X are true is formalized by

(12) \/ /\ Z; where [n] ={1,2,3,...n}

i v
In words, we consider all the possible subsets of {z1,...,2,} that contains k el-
ements and require that for at least one of such subset (formalized by the outer
disjunction) all the variables are true (formalized by the inner conjunction).

EXAMPLE 3.5. At least 2 among X = {a,b,c,d}. The subsets of X that contains
two elements are {a,b},{a,c},{a,d},{b,c},{b,d}, and {c,d}. We have therefore
that formula becomes

(anNb)V(aAc)V(aAd)V (bAc)V (DAD)V (cAd)

An alternative formulation of at least k among X = {x1,...,z,} variables, can
be obtained using the following arguments. If I select n — k + 1 variables in the
set X then at least one of them must be true. We can put this in a propositional
formula obtaining

(13) /\ \/ Z;

IC[n] el
[I|=n—k+1

For reasons that will be clarified later, the form (L3|) with ouyter conjunction and
inner disjunction is preferrable then the form (12]). The two forms anyway are
equivalent. (prove it by exercize)

EXAMPLE 3.6. The at least 2 among X costaint in the form is the following
(avVbVe)A(aVbVd)A(DVeVd)

4.2. At most k. The constraint at most k propositional variables in X are
true can be rephrased as it is not the case that at least k + 1 variables in X are
true. Therefore the at most k constraint can be formalized as the negation of at
least k + 1.

(14) - \/ /\ Z; which is equivalent to /\ \/ -z

IC[n] Gl IC[n] d€l
|I|=k+1 |I|=k+1

EXAMPLE 3.7. At most 2 among X = {a,b,c,d} are true, can be formalized
using the right formula of (4.2)) as:

(maV =bV =e)A(maV-bV-d) A(maV eV -ad)A(=bV —eV—d)
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4.3. Exactly k. The constraint exactly k propositional variables in X are true
can be rephrased as the conjunction of at least k and at most k variables in X are
true. Therefore it can be formalized by the conjunction the of the formulas

and (4.2)) obtaining

IC[n]

- i€l IC[n] el
[I|=n—k+1 [I|=k+1

ExaMPLE 3.8 (Exactly k among X = {a,b,c,d}).

(avVbVve)A(avVbVd)A(bVeVd)A(—aV=bV—c) A
(maV =bV =d)A(—aV-cV-d)A(=bV -eV-d)

A special case of exactly k cardinality constraint is whenpp k = 1. The cardi-
nality constraint exactly 1 among the variables in X are true is formalized using
(??) by the following formula

(16) \/ xr; N\ /\ (mzx; V ﬁxj)

1<i<j<n

This formula can be read as: at least one variable among X must be true (first
part of the conjunction) and for every pair ij with i < j ar least one must be false.
Notice that it is enough to consider i < j because the case of ¢ > j will result in
the same formula. (since V is commutative).

4.4. Efficient representation of exactly k. Notice that the length of the
formula that codifies the ezactly k cardinality constaint is (n — k +1)(,",) + (k +
1)(,,44), where () = ﬁlk,) is called the binomial coefficient (read “n choose k)
is the number of distinct subsets of k elements choosen from a set of n elements.
This can be done by encoding a procedure to produce the sets I. We can think
that the selection of I is done by the following algorithm

Algorithm 1 Select k£ elements from X
Y «— @
: foro<i<kdo
y < select an element from X
Y « TUu{y}
X I\ {y}
end for
return Y

NPT

The efficient encoding is obtained by simulating the behavious of the algo-
rithm (1| withing a set of propositional formulas, exploiting only the exactly 1 car-
dinality constraint. For every 1 < i < k and for every 1 < j < n add the variable
yi; with the following intuitive meaning:

(1) =, is true if it is selected in some iteration;
(2) At every iteration you select exactly 1 x;
(3) If z; is selected at one iteration it cannot be selected in the other iterations

The above statements can be formalized by the following formulas
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X1 X9 T3 T4 Is Te Ty

Y11 Y12 Y13 Y14 Y15 Y16 Y17
O O O e O O O
Y21 Y22 Y23 Y24 Y25 Y26 Yo7
O O O O O e O
Y31 Y32 Y33 Y34 Yss Y36 Ys7
O O @€ O O O O
7

Ya1 Ya2 Ya3 Yaa Yas Y46 Y4
O @€ O O O O O

FIGURE 4. Every row represent an iteration, for every raw the
selected variables is highighted in red.

(1) z; is true if it is selected at least in one iteration
k
Ty = \/ Yij
i=1
(2) exactly 1 x; is selected at every iteration i:

k n

n
/\ /\ ~(wij Ayigr) A \/ Yij
j=1

i=1 \j<j'=1
(3) at most 1 z; is selected in all the iterations:
no ok
/\ /\ ~(ij N yirs)
j=li<i'=1
A graphical representation of what is happening is shown in Figure [4]
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5. exercises

Exercise 40:
Formalize the following english statements

(1) f Davide comes to the party then Bruno and Carlo come too

(2) Carlo comes to the party only if Angelo and Bruno do not come

(3) If Davide comes to the party, then, if Carlo doesn’t come then Angelo
comes

Solution We define the following propositional variables corresponding to the sim-
ple propositions.

A : Angela goes to the party

B : Bruno goes to the party

C : Carlo goes to the party

D : Davide goes to the party

(1) If Davide comes to the party then Bruno and Carlo come too
D—BAC
(2) Carlo comes to the party only if Angelo and Bruno do not come
C—-AN-B

(3) If Davide comes to the party, then, if Carlo doesn’t come then Angelo
comes

D — (-C— A)

Exercise 41:
Formalize the following english statements
(1) Carlo comes to the party provided that Davide doesn’t come, but, if Da-
vide comes, then Bruno doesn’t come
(2) A necessary condition for Angelo coming to the party, is that, if Bruno
and Carlo aren’t coming, Davide comes
(3) Angelo, Bruno and Carlo come to the party if and only if Davide doesn’t
come, but, if neither Angelo nor Bruno come, then Davide comes only if
Carlo comes

Solution We define the following propositional variables corresponding to the sim-
ple propositions.

A : Angela goes to the party

B : Bruno goes to the party

C : Carlo goes to the party

D : Davide goes to the party

(1) Carlo comes to the party provided that Davide doesn’t come, but, if Da-
vide comes, then Bruno doesn’t come

(C'— ~D) A (D — —B)
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(2) A necessary condition for Angelo coming to the party, is that, if Bruno
and Carlo aren’t coming, Davide comes

A — (-BA-C — D)

(3) Angelo, Bruno and Carlo come to the party if and only if Davide doesn’t
come, but, if neither Angelo nor Bruno come, then Davide comes only if
Carlo comes

(AANABAC <> =D)A(mAAN=B — (D — ()

Exercise 42:
Formalize the following constraing on the binary strings of n bits (z1,...,z,)

(1) every sequence of k 1’s is followed by a sequence of k 0’s, with k > 1;

(2) the k-th digit is the product of the previous two digits (for k > 2;

(3) the k-th digit is the product of all the previous digits (the product of 0
digits is 1);

(4) the sequence is a palindrom;

(5) With n even: the second half of the string is a permutation of the first
half;

(6) the string contains an even number of 0’s.

Exercise 43:

Five friends (Abby, Heather, Kevin, Randy and Vijay) have access to an on-line
chat room. We know the following are true:

(1) Either K or H or both are chatting.
(2) Either R or V but not both are chatting.
(3) If A is chatting, then R is chatting.
(4) V is chatting if and only if K is chatting.
(5) If H is chatting, then both A and K are chatting.
Represent the above facts in CNF (set of clauses) Notice that there are sentences
that correspond to more than one clause.

Solution
(1) KVvH,
(2) RVV,-RV -V,
(3) —AV B,
(4) -"VVK,VV-K,
(5) ~-HVA,~HVK,

Exercise 44:

Translate each of the following statements into the language of sentential logic.
Use the suggested abbreviations (capitalized words), if provided; otherwise, devise
an abbreviation scheme of your own. In each case, write down what atomic state-
ment each letter stands for, making sure it is a complete sentence. Letters should
stand for positively stated sentences, not negatively stated ones; for example, the
negative sentence ‘I am not hungry’ should be symbolized as ‘—H’ using ‘H’ to stand
for ‘T am hungry’.
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) Although it is RAINING, I plan to go JOGGING this afternoon.

) It is not RAINING, but it is still too WET to play.

) JAY and KAY are Sophomores.

) It is DINNER time, but I am not HUNGRY.

) Although T am TIRED, I am not QUITTING.

) Jay and Kay are roommates, but they hate one another.

) Jay and Kay are Republicans, but they both hate Nixon.

) KEEP trying, and the answer will APPEAR.

) GIVE him an inch, and he will TAKE a mile.

) Either I am CRAZY or I just SAW a flying saucer.

) Either Jones is a FOOL or he is DISHONEST.

) JAY and KAY won’t both be present at graduation.

) JAY will win, or KAY will win, but not both.

) Either it is RAINING, or it is SUNNY and COLD.

) It is RAINING or OVERCAST, but in any case it is not SUNNY.

) If JONES is honest, then so is SMITH.

) If JONES isn’t a crook, then neither is SMITH.

) Provided that I CONCENTRATE, I will not FAIL.

) I will GRADUATE, provided I pass both LOGIC and HISTORY.

) I will not GRADUATE if I don’t pass both LOGIC and HISTORY.

) Neither JAY nor KAY is able to attend the meeting.

) Although I have been here a LONG time, I am neither TIRED nor

BORED.

(23) I will GRADUATE this semester only if I PASS intro logic.

(24) KAY will attend the party only if JAY does not.

(25) I will SUCCEED only if I WORK hard and take RISKS.

(26) T will go to the BEACH this weekend, unless I am SICK.

(27) Unless I GOOF off, T will not FAIL intro logic.

(28) I won’t GRADUATE unless I pass LOGIC and HISTORY.

(29) In order to ACE intro logic, it is sufficient to get a HUNDRED on every
exam.

(30) In order to PASS, it is necessary to average at least FIFTY.

(31) In order to become a PHYSICIAN, it is necessary to RECEIVE an M.D.
and do an INTERNSHIP.

(32) In order to PASS, it is both necessary and sufficient to average at least
FIFTY.

(33) Getting a HUNDRED on every exam is sufficient, but not necessary, for
ACING intro logic.

(34) TAKING all the exams is necessary, but not sufficient, for ACING intro
logic.

(35) In order to get into MEDICAL school, it is necessary but not sufficient to
have GOOD grades and take the ADMISSIONS exam.

(36) In order to be a BACHELOR it is both necessary and sufficient to be
ELIGIBLE but not MARRIED.

(37) In order to be ARRESTED, it is sufficient but not necessary to COMMIT
a crime and GET caught.

(38) If it is RAINING, I will play BASKETBALL; otherwise, I will go JOG-
GING.



5. EXERCISES 59

(39) If both JAY and KAY are home this weekend, we will go to the BEACH;
otherwise, we will STAY home.

(40) JONES will win the championship unless he gets INJURED, in which case
SMITH will win.

(41) We will have DINNER and attend the CONCERT, provided that JAY
and KAY are home this weekend.

(42) If neither JAY nor KAY can make it, we should either POSTPONE or
CANCEL the trip.

(43) Both Jay and Kay will go to the beach this weekend, provided that neither
of them is sick.

(44) Tm damned if T do, and I'm damned if T don’t.

(45) If T STUDY too hard I will not ENJOY college, but at the same time I
will not ENJOY college if I FLUNK out.

(46) If you NEED a thing, you will have THROWN it away, and if you THROW
a thing away, you will NEED it.

(47) If you WORK hard only if you are THREATENED, then you will not
SUCCEED.

(48) If I do not STUDY, then I will not PASS unless the prof ACCEPTS bribes.

(49) Provided that the prof doesn’t HATE me, I will PASS if I STUDY.

(50) Unless logic is very DIFFICULT, I will PASS provided I CONCENTRATE.

(51) Unless logic is EASY, I will PASS only if I STUDY.

(52) Provided that you are INTELLIGENT, you will FAIL only if you GOOF
off.

(53) If you do not PAY, Jones will KILL you unless you ESCAPE.

(54) If he CATCHES you, Jones will KILL you unless you PAY.

(55) Provided that he has made a BET, Jones is HAPPY if and only if his
horse WINS.

(56) If neither JAY nor KAY comes home this weekend, we shall not stay
HOME unless we are SICK.

(57) If you MAKE an appointment and do not KEEP it, then I shall be AN-
GRY unless you have a good EXCUSE.

(58) If T am not FEELING well this weekend, I will not GO out unless it is
WARM and SUNNY.

(59) If JAY will go only if KAY goes, then we will CANCEL the trip unless
KAY goes.

(60) If KAY will come to the party only if JAY does not come, then provided
we WANT Kay to come we should DISSUADE Jay from coming.

(61) If KAY will go only if JAY does not go, then either we will CANCEL the
trip or we will not INVITE Jay.

(62) If JAY will go only if KAY goes, then we will CANCEL the trip unless
KAY goes.

(63) If you CONCENTRATE only if you are INSPIRED, then you will not
SUCCEED unless you are INSPIRED.

(64) If you are HAPPY ounly if you are DRUNK, then unless you are DRUNK
you are not HAPPY.

(65) In order to be ADMITTED to law school, it is necessary to have GOOD
grades, unless your family makes a large CONTRIBUTION to the law
school.
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(66) T am HAPPY only if my assistant is COMPETENT, but if my assistant
is COMPETENT, then he/she is TRANSFERRED to a better job and I
am not HAPPY.

(67) If you do not CONCENTRATE well unless you are ALERT, then you
will FLY an airplane only if you are SOBER; provided that you are not a
MANTIAC.

(68) If you do not CONCENTRATE well unless you are ALERT, then provided
that you are not a MANITAC you will FLY an airplane only if you are
SOBER.

(69) If you CONCENTRATE well only if you are ALERT, then provided that
you are WISE you will not FLY an airplane unless you are SOBER.

(70) If you CONCENTRATE only if you are THREATENED, then you will not
PASS unless you are THREATENED — provided that CONCENTRAT-
ING is a necessary condition for PASSING.

(71) If neither JAY nor KAY is home this weekend, we will go to the BEACH;
otherwise, we will STAY home.

Solution

2) "RAW
3) JANK
4) DAN-H

5) T A-Q

6) RA(JAK)

R: Jay and Kay are roommates
J:  Jay hates Kay

K: Kay hates Jay
() (JAK)AN(HAN)

J: Jay is a Republican; K: Kay is a Republican
H: Jay hates Nixon; N: Kay hates Nixon
K— A
G—-T
cvS
FvD
-(JAK)

(JVE)AN-(JAK)
RV (SACQC)

(RVO)A-S

J—=S
-J — S
C — -F

(LANH) = G

~(LANH) = -G
—J A =Klor:=(JV K)]
LA (=T A=B)lor: LA—(TV B)]
-P— -G
——J = =K[J = —K]

(W AR)— =S
-S— B

AAA/—\/—\AAAAA/—\AAAA/—\A
[N N O O O O O i i
S A WD = OO0~ Ul W - OO
e 2E2EZEEEEEn=EEE
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-G — —F
~(LANH) = -G
H— A

-F — =P
“(RAI)— —P
(-F - =P)A(F — P)
(H— A)AN—(—-H — —A)

(T = -A)AN-(T = A)
("(GANA) = -M)AN-[(GANA) - M)
(ﬁ(E/\ﬁM)—)ﬁB)/\[(E/\ﬁM)%B]

((CAG)—= A)A=[-(CAG) — —4]
(R—=B)AN(-R—J)

(JAK)—= B)AN[~(JANK)— S|

L= IH)ANI—=S9)

(JAK)—= (DAC)

(=JA-K)—= (PVO)

(=SA-T) = (JAK)

S:  Jay is sick; T: Kay is sick;

J: Jay will go to the beach; K: Kay will go to the beach.
(44) (A— D)AN(-A — D)

A: T do (what ever action is being discussed);

D: I am damned.

) (S— -E)A(F — —E)
) (N—=>T)A(T — N)
) (0T = -W) —= =S
) -S = (ﬁA — ﬁP)

) -H — (S — P)

) =D — (C — P)

) =E — (=S — —=P)

) I = (-G — —F)

) =P — (-E = K)

) C = (=P = K)

) B—[(W — H)AN(-W — —H)]

) (JA-K)— (=S — —-H)

) (M A-K) — (-E — A)

) 2F = [=(WAS) = -G

) (—|K—>—\J) — (—|K—>C)

) (-~J - -K)— (W — D)

) (=J = —K) = (CV-I)

) (K —~J) = (=K = C)

) (- = -C) = (= = —S5)

) (ﬁD — ﬁH) — (ﬁD — ﬁH)

) =C = (-G — —A)

) (-C = -H)A(C — [T N—H))

) =M = [(mA — -C) = (=S — —F))]

) (A= -C) = [-M — (=S = —F)]

) (A= -C) = [W = (=S = —F)]

) (—\C — =P) — [(—\T —=0) = (=T — —\P)]

61
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(71) ((=J A=K) — B) A [~(=J A =K) — S
O

Exercise 45:

Translate each of the following statements into propositional logic. You have to
specify the propositional variables you are using and their corresponding proposition
in english (e.g., the translation of “I’'m happy if Bob is at the party” is B — H,
where H stand for “I am happy”, B stands for “Bob is at the party”)

(1) If Ann will go to the party only if she has not to work, then, if John helps
Ann in finishing the work Ann will come to the party;

(2) If neither Ann nor Bob is home this weekend, then we will go to the beach
otherwise, we will stay home.

(3) T will be happy if at the end of the semester I will pass at least 2 exams
among Deep Learning, Databases, and Probability.

Solution
1)
A = Ann will go to the party
W = Ann has to work
H = John Helps Ann in finishing the work

(A—-W)— (H— A)

A very common error is to translate “Ann will go to the party only if she
has not to work” with the formula =W — A. However this encodes the
proposition “If Ann has not to work then she will go to the parti”, Notice
that the fact that Ann has not to work and She will go to the cinema, is
consistent with the proposition “Ann will go to the party only if she has
not to work”.

A = Ann stays at homw this weekend
B = Bob stays at homw this weekend
G = we will go to the beach

H = we will stay home
(FAAN-B— G)AN(-(~AAN-B)— H)
which is equivalent to
(FAAN-B—->G)N(AVB— H)
®3)
H =1 will be happy
D =1 will pass Deep Learning

B =1 will pass Data Bases
P =1 will pass Probability

(DANB)V(DANF)V(BAP)— H
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Some student proposed the more complex but equivalent translation.
(DANBAN-P)V(DANPAN-B)V(BAPA-D)V(DABAP)— H

This is ok, but in general it is a good practice to use the simplest formalization. [J

5.1. Problem Solving with Propositional Logic. Exercise 46:

Determine the validity or invalidity of the following argument:

If Alice is elected class-president, then either Betty is elected vice-president, or
Carol is elected treasurer but not both. Betty is elected vice-president. Therefore
if Alice is elected class-president, then Carol is not elected treasurer. Solution

We use the following propositional variables for each atomic sentence.

A - Alice is elected class-president
B - Betty is elected vice - president
C - Carol is elected treasurer

The translation of each complex sentence of the argument is the following:

A= ((BA-C)V (=BVv(C)) If Alice is elected class-president, then ei-
ther Betty is elected vice- president, or
Carol is elected treasurer but not both.
B Betty is elected vice-president
A— -C if Alice is elected class-president, then
Carol is not elected treasurer.
The logical consequence corresponding to the argument is

(17) A= (BA-C)V(-BV()),BEA—-C
In order to see if holds, we can try to find an intepretation Z for A,B and C

that satisfies the premises and falsifies the conclusion Looking at the truth table of
we have:

ABC| AS(BA-~C)V(~BAC) |B|] Ao ~C
TTT| TF TFFTF FTFT |T| TFFT
O
TFT TT FFFTTTFTT |F| TFFT
TFF| TF FFTF F TFFF |F| TTTF
FTT FT TFFTTF FTF1T |T| FTFT
FTF|  FT TTTF T FTFEF |T| FTTF
FFT FT FFFTTTFTTI F| FTFT
FFF|  FT FFTF F TFFF F| FTTF

From the above truth table one can see that every time the two premises are true
(highlighted in red background) the consequence is also true. This means that the
logical argument is valid. [J

Exercise 47:

Test the validity of the following arguments.
James is either a policeman or a footballer (but not both). If he
is a policeman, then he has big feet. James has not got big feet
so he is a footballer.

Solution We use the following propositional variables for each atomic sentence.
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p - James is a policeman
f - James is a footballer
b - James has big feet.
Then the argument is formalized by the following logical consequence:
eVHANEPVf)APp—=b)A-bEf
Let us check the validity of the first argument by building a truth table for
b f p p Vv f - p VvV - f p — b - b | f
TTT| TTT FTFFT T TT |FT|T
TTF| FTT TFTFT FTT |FT|T
TFT| TTF FTTTF T TT |F T|F
TFF| FFF TFTTF FTT |FT|F
FTT| TTT FTFFT TF F |TF|T
FTF| FTT TFTFT FTF |TF|T
FFT| TTF FTTTF TFF |TF|F
FFF| FFF TFTTF F TF |TF|F
From the above truth table one can see that every time the two premises are true

(highlighted in red background) the consequence is also true. This means that the
logical argument is valid. [J

Exercise 48:
Let p stand for the proposition “I bought a lottery ticket” and ¢ for “I won the

jackpot”.

Express the following as natural English sentences:

Exercise 49:
Formalise the following in terms of the propositional variables r, b, and w, first
expressing in english that proposition they are intended to represent.

(1)

Berries are ripe along the path, but rabbits have not been seen in the
area.

Rabbits have not been seen in the area, and walking on the path is safe,
but berries are ripe along the path.

If berries are ripe along the path, then walking is safe if and only if rabbits
have not been seen in the area.

It is not safe to walk along the path, but rabbits have not been seen in
the area and the berries along the path are ripe.

For walking on the path to be safe, it is necessary but not sufficient that
berries not be ripe along the path and for rabbits not to have been seen
in the area.

Walking is not safe on the path whenever rabbits have been seen in the
area and berries are ripe along the path.
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Exercise 50:

Formalise these statements and determine (with truth tables or otherwise)
whether they are consistent (i.e. if there are some truth assignment to the propo-
sitional variables that make all them true):

The system is in a multiuser state if and only if it is operating
normally. If the system is operating normally, the kernel is func-
tioning. FEither the kernel is not functioning or the system is in
interrupt mode. If the system is not in multiuser state, then it
1s in interrupt mode. The system is not in interrupt mode.

Solution Let us find the propositions in the text and declare the propositional
variables to represent them

The system is in a multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is functioning.

Either the kernel is not functioning or the system is in interrupt mode.
If the system is not in multiuser state, then it is in interrupt mode.

The system is not in interrupt mode.

M = The system is in a multiuser state
N = The system is operating normally
K = Kernel is functioning

I = The system is in interrupt mode

Let us now translate the above sentences in propositional logic:

e The system is in a multiuser state if and only if it is operating normally.

M <« N

If the system is operating normally, the kernel is functioning.

N —- K

Either the kernel is not functioning or the system is in interrupt mode.

-KVvI

If the system is not in multiuser state, then it is in interrupt mode.

-M — 1

The system is not in interrupt mode.

-1
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Notice that there is no assignment that satisfy all the five formulas. Thererfore the
set of formulas is inconsistent.

A shorter way to prove incinsistency would have been by propositional resolu-
tion. We first have to transform the four formulas in clauses, obtaining:

{=M,N},{=N,M},{-N,K},{-K,I1},{M,I},{-I}
By repeated applications of unit-propagation we can obtaine the empty clause
{=M, N}, {=N, M}, {=N, K}, {=K,I},{M, I},{~I}
{-M,N},{-N,M},{-N,K},{-K},{M} By unit propagation on {—I}
{N},{-N,K},{-K} By unit propagation on {M}
{K},{-K} By unit propagation on {N}
{} By unit propagation on {K}

Since we derive the empty clauses the initial set of clauses must be inconsistent. [J

Exercise 51:
Five friends (Abby, Heather, Kevin, Randy and Vijay) have access to an on-line
chat room. We know the following are true:

(1) Either K or H or both are chatting.

(2) Either R or V but not both are chatting.

(3) If A is chatting, then R is chatting.

(4) V is chatting if and only if K is chatting.

(5) If H is chatting, then both A and K are chatting.

Represent the above facts in CNF (set of clauses) Notice that there are sentences
that correspond to more than one clause.

Solution
(1) KV H,
(2) RVV, =RV -V,
(3) ~AV B,



5. EXERCISES 67

(4) “VVK,VV-K,
(5) ~HVA,-HVK,

Exercise 52:

Imagine that a logician puts four cards on the table in front of you. Each card
has a number on one side and a letter on the other. On the uppermost faces, you
can see F,K 4,and 7. He claims that if a card has a vowel on one side, then it has
an even number on the other. Which cards do you have to turn over to check this?
Explain why.

Solution To check that the logician states the truth we can check it for every single
card The statemen is an implication

wowel — even

which is true if either theq premise is false or the conclusion is true. In the first card
we see a vawel, therefore the premise is true (it is not false) and therefore we have
to turn the card to check if the back is even. The second card shows a consonanto,
which is not a vawel, which guarantees that wowel — even. independently from
what there is on the back. The third card shows a even number, this implies tha
the conseugence of wowel — even is true,. This guarantee that wowel — even holds
without any further information. Finally, the forth card shows an odd number,
therefore the conclusion of wowel — even is false, to chek that the implication is
true we have to see if the premise is also falsw, which means that we have to turn
the card. O

Solution(alternative) To check if the formula vowel — even is true you have to
check that in all the possible models, given what you know, the formula is true. If
there are models in which the formula is false, you have to turn some card in order
to acquire some knowledge that will exclude such a model.

Let V; and E; for i € {1,2,3,4} be the propositional variables that express the
fact that the i-th card has a vowel in one side and an even number on the other
side.

The statement of the logician can be formalized by the formula:

4
A Vi— Ei

=1

What you know on the basis on what you see on the table is

(18) Vi A-Va A E3 A—Ey
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The models that satisfies your knowledge i,e, are:

Vi By Vo Ey V3 k3 Vy Ey|Vi—E Vo—FEy Vza—E3 Vy— Ey
1 0 0 0 0 1 0 0 0 1 1 1
1 0 0 0 0 1 1 0 0 1 1 0
1 0 0 0 1 1 0 0 0 1 1 1
1 0 0 0 1 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0 0 1 1 1
1 0 0 1 0 1 1 0 0 1 1 0
1 0 0 1 1 1 0 0 0 1 1 1
1 0 0 1 1 1 1 0 0 1 1 0
1 1 0 0 0 1 0 0 1 1 1 1
1 1 0 0 0 1 1 0 1 1 1 0
1 1 0 0 1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 0 1 1 1 0
1 1 0 1 0 1 0 0 1 1 1 1
1 1 0 1 0 1 1 0 1 1 1 0
1 1 0 1 1 1 0 0 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 0

From the truth table above, one can see that there are models that satisfies (18]
(the knowledge we have) in which Vi — F; and V; — Ej are both true and false.
This means that we are uncertain about the truth value of these formulas. since
neither E Vi — Ej nor E —(V4 = E;) (and the same for Vy — Ej).

If we would know the truth value of F; and Vj, we would be certain about the
truth value of V; — E; and V; — E,. Indeed notice that

e V] — Ej is true if and only if E; is true;

e V, — E, is true if and only if V} is false.
Therefore to know if the logician said the truth we have to turn the first and the
forth card.

An intuitive reasoning is the following. A statement V; — E; is true whenever
the premise is true then the conclusion is also true, or equivalently that whenever
the conclusion is false, also the premise is false. Therefore, to check that the logician
says the truth, you have to turn the E (vowel is true) and the 7 (even is false) OJ

Exercise 53:
Formalize the following puzzle in a set I' of propositional formulas and show
that the answer is a formula ¢ that logically follows from I'.

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet
two inhabitants: Marge and Zoey.

(1) Marge says, “Zoey and I are both knights or both knaves.”
(2) Zoey claims, “Marge and I are the same.”

Can you determine who is a knight and who is a knave?

Solution We first define the propositional variables to represent the proposition
we need to formalize the puzzle

M Marge is a knight
Z  Zoey is a knight
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Clearly since in the island if one person is not a knight it must be a knave, we have
that =M means that Marge is a knave and —=Z means that Zoey is a knave. Now
we can formalize the knowledge encoded in the two sentences. We don’t know if the
two statements said by Marge and Zoey are true or false, but we know that if the
speaker is a knight the sentence is true, and if the speaker is a knave the sentence
must be false. So from the two sentences we can get the following facts:

M- (MANZ)V (-MAN-Z)
M= ~(MAZ)V (M AN-Z))
Z— (M <+ 2)
-Z = -(M+ Z)
We can simplify the above four formulas by reducing them in CNF

(19) {-M,Z}
(20) {M, Z}
(21) {-Z,M}
(22) {Z, M}

By applying the resolution rule to and we derive the clause {Z}, and then
by unit propagation on we obtain the clause {M}. WHich implies that both
Marge and Zoey are knights. [

Exercise 54:
Consider the set S = {0,1,2,3}® of all the strings of length equal to 8 composed
of 0,1, 2,3, and the following subset T' C S:

T_ 00000000, 00000011, 00001111, 00001122,
1 00111111,00111122,00112222,00112233

(1) Define a set of propositional variable P such that every truth assigment
7 (interpretation) of P is one-to-one mapped into a string s(Z) € S;

(2) What is the cardinality of Z and the cardinality of S?

(3) Using the set of propositional variables in P, write a formula ¢ such that
T = ¢ if and only if m(Z) € T.

Solution

(1) We have various possibilities here. A first alternative is to add the set of
propositional variables:

DPij for 1<i<8and0<;<3

and interpret p;; as “the digit j is in position ”. and add the axioms

8 3
(23) /\ \/ Dij At every place ¢ there is at least one digit
i=1j=0

8 3 3
(24) /\ /\ /\ =(pij Api) At every place ¢ there is at most one digit
i=1j=0k=j+1

In this case the set I of interpretations must be restricted to the ones that

satisfies and .
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Alternatively, we can introduce less propositions
Dis i for 1 <i <8
and interpred p; as ”in position ¢ that is a digit j such that j -2 =1 ¢;
as 7in position ¢ that is a digit j such that :%2 = 1. Notice that with this

interpretation we have that we can represent the fact that in position 4
there is a digit j as follows:

—p; N\ g, In position ¢ there is a 0
—pi N\ @i In position 7 there is a 1
p; N\ —q; In position ¢ there is a 2

pi N q; In position ¢ there is a 3

Since the above 4 formulas are exclusive (i.e. one and only one can be
true in any interpretation) we don’t need to add any additional axiom. In
this case all the interpretations can be considered.

(2) Since we have to define a one to one mapping between I and S their
cardinality must be the same, i.e, 48.

(3) If we use the first language we can represent the set T with the formula

8
V A\ pa
teT i=1

where t; is the i-th digit of ¢. If we use the second langauge we can
represent the set T" with the formula

\/ /\ Ot;+2Pi /\ Ot %2i

teT i=1

where oq is equal to the emtpy string oy is equal to —.

Exercise 55:
Provide the Tseitin’s Transformation of the following formula:

(pVvg) —r)Vv(r—(pVa)

Solution The Tseitin’s tranformation introduces one new propositional variable
for all the non atomic subformula of the original formula. The set of non atomic
subformulas of ((pV ¢) — r)V (r = (pV q)) (including itself) with the associated
new propositional variables are:
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T

. N .
VAN
I\ I\,

T (pVag) =r)Vv(r—(pVa)
T2 (pVa)—r)
3 (r—(pVa)
T4 (rVaq)

We then define the follwong clauses

r1 =2x2 V3
Lo =Ty =T
T3 =T — X4

Ty =pVyg
and tranform them in clausal form

(_‘xla T2, '7"3)7 (_‘x2) xl)) (_"T?)a .131)
(_':EQa_‘x47 ) (I4,ZC2), (_'T7 IQ)

(_h'ﬂg, -r, 1'4) (7", 1['3)7 (_‘1'4; xQ)
(

T4,P,q )a (ﬁp7 1'4), (“Q7 C64)

Exercise 56:

Alice (F), Bob (M), Craig (M), and Donna (F) are four friends that want to take
a tour with their motorbikes. Everybody can decide either to go with somebody
else or to ride a bike alone. Use propositional logic to formulate the problem of
finding all the possible configurations for the tour.

Solution We introduce the following propositional variables

e ridex for X drives a bike for X € {A, B,C, D}
e passxy for X giveapassto Y, for X, Y € {A,B,C;D} nd X #Y.
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We add the following axioms:

/\ ridex V \/ passy x Each friend, either rides or get a lift

b's Y£X
/\ (passxy — ridex) IfY get a lift from X then X rides the bike
X#Y
/\ (ridesx — —passyx) If X rides he/she does not get a lift
X#Y

/\ (passxy — —passxry) Y can get a lift from at most one person
X#£X'£Y

/\ (passxy — —passxys) X can give a lift to at most one person
XAY#Y!

A python program that computes all the solutions is the following

LisTING 3.1. Pysat code that compute all the configurations

from sympy import =

Friends — [77A’7 7771377 7’7(’)77 777D’7]

Rides = {X:Symbol(f” Rides_{X}”) for X in Friends}
Pass = {(X,Y):Symbol(f”Pass_{X}{Y}”) for X in Friends for Y in Friends if X != Y}

phil And (=
phi2 And (*
phi3 = And (=
phi4 = And(x

Rides [X] | Or(x[Pass[Y,X] for Y in Friends if Y != X]) for X in Friends])
Pass[X,Y] >> Rides[X] for X in Friends for Y in Friends if X != Y])

Pass [X,Y] >> "Rides[Y] for X in Friends for Y in Friends if X != Y])
Pass[X,Y] >> "Pass[X1,Y] for X in Friends for X1 in Friends for Y in Friends
if X1 I= X and Y != X1 and Y != X])

phi5 = And(*[Pass[X,Y] >> "Pass[X,Y1l] for X in Friends for Y in Friends for Y1 in Friends
if X !=Y and X I= Y1 and Y != Y1])

for m in satisfiable (phil & phi2 & phi3 & phi4 & phi5, all_models=True):
print (m)

Exercise 57:

A nonogram is a grid with a series of numbers on the left of each row and
above each column of the grid. Each of these numbers represents a consecutive
run of shaded spaces in the corresponding row or column. Each consecutive run
is separated from other runs by at least one empty space. The puzzle is complete
when all of the numbers have been satisfied. See for instance the example belwo
and the corresponding solution
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2 2 2 2
325 2 3 325 2 3
3111113 3111113

3 3
5 5
2 1 2 2 1 2
7 7
1 3 1 1 3 1
1 1 11
3 3

Describe a possible encoding of a generic configuration of a nanogram in proposi-
tional logic so that the solution can be obtained by running a sat solver. Show how
you encode the clue contained in the second column of the above example.

Solution Let m,n be the size of the grid of a nanogram. We consider n x m
propositional variables p,. for 1 < r < n and 1 < ¢ < m. p,. represents the
proposition that the cell at row r and column c is black. A clue nq,...,n; associated
to the r-th row can be modelled by adding k - m propositional variables rclue(r, j).
for j=1,...,kand ¢ = 1,...,m. rclue(r,j). is true when the run associated to
the j-th element of the clue of r starts at column c¢. Using this set of proposition,
we can model the constraitns that must be satisfied by a solution of a nanogram.

For every row r if nq,...,ng is the associated clue, we add the following axioms:
m—n; The j-th run of the clue of the r-
Z relue(r,j)e =1 th row starts at exaclty one col-
e=1 umn between 1 and n;

The j 4+ 1-run at least one step

rcluel. — —rcluel; /
/\ e (i+1)e after the end of the i-th run

cH+n;>c’
ct+nj—1
relue(r, j)e — /\ ) the next n; cells after the start of
e / Pre the j-th run must be black
c'=c
-1 The cells between the end of the
relue(r, j)e A relue(r,j + 1) — /\ —prev j-th run and the beginning of the
¢ =c+n; j + 1-th run are not black
c—1
The cells before the initial run are
relueic = /\ TPref not black
c’=1

m

rcluey, — /\ Dres

c'=c+ng

The cells after the last run are not
black

The clues for the columns can be formalized in an analogours using the propositional
variables cclue(e, j),. O

Exercise 58:

Consider an undirected graph G = (V, E) composed of a set of nodes V =
{1,...,n} and a set of undirected edges between them. Formulate the problem of
finding a path that visits all the nodes starting from a node s and ending in a node
e without passing twice the same edge.
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Solution Since the graph is undirected we have that (i,j) € E iff (j,i) € E. Let
m = |2£| the number or arcs in G. For every node i € V and for every ¢t < m we
add the proposition p! that means that ¢ has been visited at time ¢ Notice that
1 < m, since if we traverse more than m arcs it means that we have traversed one
arc twice. We also add the “defined” proposition pfj for every (i,j) € E that states
that at time ¢ we move from node ¢ to node j. We use the propositional variable
introduced above to formulate the requirements of the problem:

p° We start from s
P We end at e

m
\/ p; 1<1i<n Every node is eventually visited
/\ —(p! /\pé-) 1<t<m At every time we can be in at most one node

p§ — p§ \Y, \/ le 1 <t<m At every time stamp we can either stay in
(i,j)€E the node or move to a connected node
pﬁj < (ph /\p§-+1 \/p?rl /\pg-) (i,7) € E  we define pfj as the proposition stating
that at time ¢ we traversed the edge i, j
in either direction

/\ =(pi; A pi;) (i,7) € E We cannot traverse the same arc twice
1<t<t’<m

Exercise 59:

In the domino reconstruction problem you are given with board that shows only
the numbers configuration of the domino tiles (0, 0), (0,1),...,(6,5), (6,6) arranged
in a 7 x 6 board (see figure on the left) and you have to reconstruct the position of
each tile as shown in the the right picture below.

6 06 6 4 4 1 1 mgnmu
35212 230 EE mﬂﬂ
3 41 2 3 0 4 4 mm
020 2 20 3 1 Eangmgg
5 4 1 5 13 5 5 m
55 6 5 2 0 0 6 mm m
input reconstruction

In this exercise you have to propose an encoding of the domino reconstruction
puzzle. In particular:

(1) define a set of propositional variables and say which property they encode.

(2) define a (set of) formula(s) that encodes the input (e.g., the picture on
the left)

(3) define a (set of) formula(s) that imposes the constraints that every solution
must satisfy

(4) explain how you can reconstruct the solution (picture on the right) from
the interpretation returned by the sat solver.

Solution One can see the configuration shown on the right picture as a labelled
graph, where the nodes are labelled with digits and the arc connects two digits
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if they belong to the same tail. for instance the cofiguration shown on the right
picture can be represented by the following graph:

To represent this configuration we can use n = 6 X 7 we can use the proposition
n;;x1 to denote that the node in position 4, j is connected with the node in position
k,l, with 1 <i,k <6 and 1 < j,1 <7. We can impose the following constraints:

Nijkl — Nklij symmetric connection

“Njkl for all 4,4, k,l such that |t — k| + |7 — | #1

Nijkl = ~Mjiov for all 4,4, k, 1, k', I’ with k #£ k" and [ #£ I’

\/ Nijkl for all 4, j there is at least one connection
li—k[+]i -1

A second group of axioms will represent the labelling, We can use the proposition
lijn to state that the node ij is labelled with the digit n. We have to impose that
there are exactly 7 nodels labelled with the same digit

D lign =1 for0<n <6
4,J

and that a node labelled with n should be connected with exactly one labelled with
m for every n and m

(25) Z(nijkl Alijn Algim) =1
ijkl
O






CHAPTER 4

Decision Procedures in Propositional Logic

In the previous chapter we have presented four problems that involves proposi-
tional formulas and interpretations. In this chapter we analize them in details. We
will see that the problems of checking the validity of a formula, and the problem of
cheking that a formula is a logical consequence of a set of formulas can be rewritten
in a problem of checking satisfiability of a set of formulas. Therefore, after a first
part in which we will consider the problem of model checking, we will dedicate most
of the chapter to the problem of satisfiability.

1. Model checking

The first and simplest problem that one has to solve in propositional logic is
to compute the truth value of a formula with respecrt to a given interpretation Z.

DEFINITION 4.1 (Model checking Problem). Given a formula ¢ on a set of
primitive propositions P, and an interpretation (truth assignment) T of P, the
model checking problem is the problem of checking if

Tk

An alternative formulation of the model cheking problem, is the problem of
computing the truth value of a formula ¢ w.r.t., an interpretation Z of the propo-
sitional variables of ¢.

1.1. Decision procedure. A model checking decision procedure, MCDP is
an algorithm that checks if a formula ¢ is satisfied by an interpretation Z. Namely

MCDP(¢,Z) = true ifandonlyif Z | ¢
MCDP(¢,Z) = false if and only if T [~ ¢
The procedure of model checking returns for all inputs either true or false since

for all models Z and for all formulas ¢, we have that either Z |= ¢ or Z £ ¢.
A simple way to check if Z = ¢ is the following;:
(1) Replace each occurrence of a propositional variables in ¢ with the truth
value assigned by Z. Le. replace each p with T is Z(p) = True and with
1 is Z(p) = False;
(2) Recursively apply the following rewriting rules:

-7 = 1L TAT=T TVT=T T—=T=T T=T=T
-l =T TAL= L TVLI=T T—o1=1 T=1l=1
IAT= 1 1LvT=T 1L —=T=T 1l=T=1
IANL= 1 lvili=_1 1Ll —=1=T 1l=1=T

7



78 4. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

The complexity of this procedure is linear in the number of the connectives
that appear in the formula ¢. More specifically, the algorithm terminates in n
steps where n is the number of connectives that appear in ¢.

EXAMPLE 4.1. Let us consider the formula ¢
¢=pV(g—r)
and the interpretation T with
Z(p) = False Z(q) = False Z(r) = True
To check if T |= ¢ replace, p, q, and 1 in ¢ with Z(p), Z(q) and Z(r), obtaining
LV(L—=T)
and then recursively apply the reduction rules

1Lv(L—=>T)
LvT
T

Since we obtain T we can conclude that T = ¢.

This method is not the most efficient one. One can notice that in many rewrit-
ing rules if one for the binary connectives A,V, and —, if one knows the value of
one of the arguments it is not necessary to evaluate the other. For instance in
evaluating ¢ V ¢ if we already know that ¢ is true, we don’t need to evaluate 1,
since we already know that the disjunction is true. Similarly in ¢ A 9, if we have
evaluated ¢ to be false, then we do not need to evaluate i since we already know,
that independently from the evaluation of i the conjunction will be false. Notice
that, this simplification is not possible for the = connective, since to evaluate the
truth value of ¢ = ¥ knowing the truth value of ¢ is not sufficient to predict the
truth value of the entire formula; we indeed have to evaluate ¥ and check that the
two truth values coincides.

The rewriting rules for A, V and — therefore can be rewritten as follows:

TAT=T TVx=T * = 1T =T
* AN L= 1 *V T =T T—>1=1
L Ax= 1 lvlil=_1 L —=%x=T

Wy

where “x” denotes either T or | and therefore the corresponding expression does
not need to be evaluated.

1.2. Formulas as boolean functions. A propositional formula ¢ on the set
of propositional variables P specifies a boolean function

fs: {0,117 = {0,1}

fo is a function that takes a vector of n 0-1 values (corresponding to a truth
assignment) where n = |P| and returns either 1 or 0 depending of the fact that the
corresponding truth assignment satisfies or does not satisfies the formula. More
formually, if P = {p1,...,pn}, for every vector ¢ = (x1,...,z,) € {0,1}" we define
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T, as the interpretation of P that assigns Z.(p;) = x;. With this convention the

function f4 can be defined
1 if 7 10)
folwy =4 T
0 ifZ, o
Notice that, if ¢ is equivalent to ¢ then f4 and fy, are the same functions.

PROPOSITION 4.1. If |P| = n then there are at most 22" boolean functions that
can be defined in terms of a formulas with propositinal variables in P.

PrOOF. The number of functions from a finite set M to another finite set N
are n™, where m and n are the number of elements (the cardinality) of the sets M
and N respectively. Indeed for every element x € M whe have n different options to
define f(z) since f(z) € N. So we have n options for the first element of M, other
n options for the second elements, and so on. In total we have n™ alternatives.
Therefore the number of distinct functions form {0,1}" to {0,1} are equal t0E|

o, e = 22"
Notice that {0,1} contains 2 elements, and {0, 1}" contains 2" elements. O

The second question one should answer is the following: given an arbitrary
function f : {0,1}™ — {0,1} is there a formula on the set P of n propositional
fariables such that fg is equal to f?. The answer is yes, and it is stated in the
following proposition.

PROPOSITION 4.2. For every function f : {0,1}"™ — {0,1}, there is a formula
@ with at most n propositional variables, such that fy is equal to f.

PROOF. Let pi,...,p, be n distinct propositional variables. We define the
formula ¢ as follows: For every & € {0,1}" let us define the formula ¢, as the
conjunction of p; if x; = 1 and —p; if x; = 0. We can then define the formula

¢:v¢z

fl@)=1

Notice that the formula ¢ is satisfied by the assignments Z, such that f(x) =1
and it is not satisfied by the assignments in which f(x) = 0. Given the definition
of fs we can easily see that f, and f coincides. (Il

2. Satisfiability checking

The propositional satisfiability problem (often called SAT) is the problem of
determining whether a set of sentences in Propositional Logic is satisfiable. The
problem is significant both because the question of satisfiability is important in its
own right and because many other questions in Propositional Logic can be reduced
to that of propositional satisfiability. In practice, many automated reasoning prob-
lems in Propositional Logic are first reduced to satisfiability problems and then by
using a satisfiability solver. Today, SAT solvers are commonly used in hardware
design, software analysis, planning, mathematics, security analysis, and many other
areas.

IFor every set S, | S| indicates the number of elements of S, aka, the cardinality of S
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2.1. Truth tables.
EXAMPLE 4.2. Let
F'={pVg¢pV-q-pVg-pV-qV-r,-pVr}

We want to determine whether I' is satisfiable. So, we build a truth table for this
case.

pla|r|pVg pVoqg —pVgqg —pV—oqV-or —pVr | T
0(0]0 0 1 1 1 0 0
0]0]1 0 1 1 1 1 0
0|10 1 0 1 1 1 0
011 1 0 1 1 1 0
11010 1 1 0 1 0 0
1101 1 1 0 1 1 0
11110 1 1 1 1 0 0
1111 1 1 1 0 1 0

In a truth table there is one row for each possible truth assignment. For each truth
assignment, each of the sentences in I' is evaluated. If any sentence evaluates to
0, then T' as a whole is not satisfied by the truth assignment. If a satisfying truth
assignment is found, then I' is determined to be satisfiable. If no satisfying truth
assignment is found, then I is unsatisfiable. In this example, every row ends with
I not satisfied. So the truth table method concludes that T' is unsatisfiable (not
satisfiable).

The truth table method is complete because every truth assignment is checked.
However, the method is impractical for all but very small problem instances. In
our example with 3 propositional variables, there are 23 = 8 rows. For a problem
instance with 10 propositional variables, there are 2!° = 1024 rows - still quite
small for a modern computer. But as the number of propositions grow, the number
of rows quickly overwhelms even the fastest computers. A more efficient method is
needed.

3. Normal forms

The methods to check satisfiability that are more efficient that truth tables
require that the input (set of) formula(s) have a specific structure. The description
of such a structure is also called Normal Form. A normal form is a pattern for
the structure of a formulas. A formula is in a specific normal form if its structure
matches the pattern of the normal form. An important property of normal forms is
that every formula can be transformed in an equivalent formula which is in normal
form. This property is important since the semantics of the formula should be
preserved by the transformation in normal form. There are many possible normal
forms, e.g., negated normal form, conjunctive normal form, disjunctive normal form,
deterministic disjunctive normal form ..., each of which is suitable for solving a
specific problem. In this chapter, we introduce two normal forms, namely: Negated
Normal Form and Conjunctive Normal Form, which are normal forms suitable
for checking satisfiability. Further normal forms will be introduced in successive
chapter where we will consider other problems such as for instance model counting
and weighted model counting.
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Let us first introduce some terminology. A literal is either an atomic formula or
the negation of an atomic formula. Examples of literals are p, ¢, —p, —q. A literal
is positive if it is an antom; a literal is negative if it is the negation of an atom.

3.1. Negation Normal Form (NNF).

DEFINITION 4.2 (Negation Normal Form). A formula is in negation normal
form (NNF) if negation connective (—) occurs only in literals; or equivalently if the
negation connective occurs only in front of atomic formulas.

EXAMPLE 4.3. p A —q is in NNF, =(p A q) is not in NNF.

Any formula can be transformed into an equivalent formula in NNF. by push-
ing the negation operator inwards, applying the following transformations that
preserves the semantics.

9= ¢
2(eNY) = 2oV Y
(26) (PVY) = oAy
(¢ =)= N
(¢ )= (BVY) A (=g V )

PROPOSITION 4.3. If ¢' is obtained by applying any sequence of transofmration
rules in (26) to ¢, then ¢ is equivalent to ¢'.

PROOF. Recall that ¢ is equivalent to ¢’ if and only if for every ionterpretation
T of the propositional variables in ¢ and ¢’, Z |= ¢ if and only if 7 = ¢'. Let us
start with the first rule:

TE-¢iffTH-¢iffTE=e

TE(oNY)ITT oA iff either T} ¢ or T (= o
iff eitherZ=-¢porZE-WiftZTE-¢V-9

T —(pV)if T AT ¢and T K
7= ¢ and T = ) iff T = ¢ A )

T —(¢—=Y)if T ¢ Yiff T ¢and T ¢
T =¢and T ) iff T = ¢ A b

Th—(6op) i TEo=y
iffeither ZTEgpand Z Y orZEgand T =4
iffeither TEgpandZ = orZ E ¢ and Z =
iff either ZE AW or T E - Ay
T = (A )V (26 A D)
T = (VY)A(md V)
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Notice that the presence of the <+ connective in the formula makes its negated
normal form to to exponentially increase in the size. For instance the NNF of

—(p e (ge))
is equal to
(pA(<r)VA(gA-T)V(mgAT)))

One final observation about Negated Normal Form concerns the fact that the “neg-
ative information” present in a NNF formula is not encoded exclusively by negative
literals. For instance, an implication of the form p — ¢ encodes some negative
information despite the absence of negative literals. Indeed, when ¢ is evaluated
to false, p should also be false. This can be also seen by the fact that p — ¢ is
equivalent to —p V q. For this reason NNF is usally combined with other normal
forms which remove the — and <+ connective by restriting ¢ — ¥ as —¢ V ¢ and

¢ <> 1pas (2o V) A (PV ).

3.2. Conjunctive Normal Form (CNF). Conjunctive Normal Form (CNF)
is one of the most common form taken in input by algorithm for satisfiability
checking. CNF is more specific than NNF (therefore every formula in CNF is also
in NNF) and uses only the connectives V, A and —. We introduce the notion of
clause.

A clause is a formula of the form I; V iy V --- V [, where [; are literals. An
example of clause is

aV-bVe

An interpretation Z satisfies a clause I1 V- - -V, if there is a literal [; that is satisfied
by Z. We also admit clauses that are composed of zero literals, which is called empty
clause. By applying the same criteria for satisfiability of a clause, we have that an
interpretation never satisfies the empty clause. For this reason the empty clasue
can be consistently denoted by the | symbol, representing the proposition that is
always false. The clauses that contains only one literal nare called unit clauses. An
interpretation satisfies a unit clause if and only if it assign to true (resp. false) the
positive (resp. negative) literal it contains. Empty clauses and unit clauses play an
important role in the satisfiability checking procedure, this is why they received a
special name.

DEFINITION 4.3 (Conjunctive normal form). A formula is in conjunctive nor-
mal form if if is the conjunction clauses.

EXAMPLE 4.4. The formula
(pV=gVr)A(gV—r)A(=pV —g) AT
is in CNF; it is composed by the following four clauses:

Ci=pV—qVr

Cgiq\/—"r‘
Cs=-pV—q
04:7“

that contains 3, 3, 2, and 1 literal respectively.
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The following is a procedure for reducing a formula in CNF can be
obtained by applying
the following steps
(1) transform the implications — and the equivalence <> with
equivalent formulas using -, A and V

A—-B=-AVBEB
A+ B= (mAVB)A(-BV A)
(2) push the negation operator = in front of the atomic propo-
sitions (NNF)
-(AVB)= -AA-B
-(AANB) = -AV-B
(3) Distribute disjunction V over conjunction A
AV(BAC)= (AVB)AN(AV ()
(AANB)VC) = (AVC)AN(BVC)

FIGURE 1. CNF reduction rules.

Due to the fact that ¢ V ¢ and ¢ A ¢ are equivalent to ¢ (identical operand)
and the fact that ¢ V ¢ and ¢ A ¢ are equivalent to ¥ V ¢ ¥ A ¢ (commutativity)
we can consider a clause as a set of literals, and a CNF formula as a set of sets of
literals. For instance the previous example can be seen as the set that contains four

sets (clauses)
{{pa g, ’I“}, {CL _"I”}, {_‘p7 _‘Q}’ {T}}

PROPOSITION 4.4. Every formula can be rewritten in an equivalent formula in
CNF.

As for the case of NNF we provide a set of rewriting rules, shown in Figure
that preserves the semantics (i.e., a formula is rewritten in an equivalent formula).
To reduce a formula in CNF we therefore define a recursive algorithm CNF that
computes the CNF of a formula ¢ by, first recursively compute the CNF of the
sub-formulas of ¢ and then combine the results

EXAMPLE 4.5. Let us transform the following formula in CNF

=9 AN-q—-p= ((p—=>q9AN>q) = p explicit the scope of connectives
= ~((-pVq)A=q)V -p rewrite — in terms of = and V
= ((pA—q)V¢q)V-p move — in front of atomic formulas
= ((pV—=g) AN(~qVq)V-p distribute V over A
= ((pV =gV -p)A(=qVqV-p) distribute V over A

PROPOSITION 4.5. CNF terminates for every input ¢.

PRrOOF. Notice that each rules (1), (2) and (3) can be applied only a finite

number of times. |

After proving termination we also have to show that the transformation in CNF
do not change the semantics of the formula, i.e., CNF(¢) and ¢ are equivalent.
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PROPOSITION 4.6. ¢ is equivalent to CNF(¢).

PRrROOF. This is a consequence of the fact that every transformation applied by
the procedure for reduction to CNF tranform a formula into an equivalent formula.
O

An interpretation Z satisfies a formula in CNF, or equivalently, a set of clauses
{C1,...,Cy}, if T satisfies at least on literal l;; € C; for every clause C;. This
means that to check satisfiability of a set of clauses we have to find a truth assign-
ment such that for every clauses it select one literal negative and assign 0 or 1 to
the corresponding propositional variables depending on the fact that the literal is
negative or positive.

EXAMPLE 4.6. Consider the previous set of clauses

(27) Up, ~g,r} {a, —~r}, {=p, —~q}, {r}}

An interpretation that satisfies should satisfy at least one literal per clause.
Since the last clause contains only one literal (i.e. r) there is no other choice than
satisfying it by setting Z(r) = True. This choice would also be a good one for the
first clause, since it contains also r which is satisfied by I, therefore we have to
take care only of the two remaining clauses:

{a,—r}, {-p,~q}

Considering the first of the above two clauses, one can see that the literal —r is
already falsified by our previous (obliged) choice of I(r) = True. Therefore, to
satisfy the first clause, the only choice is to set Z(q) = True. We ore now left with
one last clause:

{-p,—q}

Since Z(q) = True, the second literal cannot be satisfied; therefore we should satisfy
—p by setting Z(p) = False. In conclusion, we have the interpretation

I(p) = Fualse I(q) = True I(T‘) = True

A graphical representation of the interpretation that we have found is the following:
Cl 02 CS 04

r q¢ - P —q
g T

literals satisfied by T

p —q P

3.3. Tseytin Transformation. Checking satisfiability /validity of a formula
in CNF is easier. But there is a price in terms of the size of formulas. Indeed due the
restriction imposed by CNF, representing some complex proposition in a CNF form
can require an exponentially larger formula than by representing it with the full
propositional language. As an intuitive example consider the formula p <> ¢ which
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in CNF double its size becoming (—p V ¢) A (—g V p). Another example, happens
when the formul ais a disjunction of conjunct (instead of a conjuction of disjunct)
e.g., the formula (a Ab) V (¢ Ad) expands into (aVe)A(aVd)A(bVe)A(bVd) which
is twice the size of the original formula. When these patterns are nested, you can
easily immagine that the explosion is of the order of 2" where n iis the maximum
nesting. Let us consider an example.

EXAMPLE 4.7 (Exponential explosion). The CNF of the formula p < (¢ <
(r <> 8)) is composed by the following clauses

(=, =8, g, p) (r,s,7q,p) (ms,7,4,p) (=, s,q,p)
(_‘Tv =S, 4, _‘P) (Tv 5,4, _‘p) (_‘S, r,7q, _'p) (_'Ta S, 74, _'p)
If we add an extra equivalence and compute the CNF of
pe (g (rer (s i)

we obtain twice the number of clauses

(=s,mt,—r,=g,p) (8.t -7, g, p) (=t,s,7,7q,p) (=s,t,7,7¢, p)

(=s, =t 7, q,p) (s:t,7,4,p) (=t,s,=7,q,p) (—s,t,=7,q,p)
(ms,mt,—r,q,—p) (8.t 77,q,p) (—t, 87,4, ) (—s,t, 7,4, )
(=s, =t r, =g, =p) - (sit,r, =g, —w) (=t s, o, =g, —p) (78, t, o g, )

The exponential explosion of the CNF transformation can be contrasted by
avoiding to do multiple time the same CNF expansion. To this aim, G. Tseytin in
Tseytin [1966| proposed the following procedure:

(1) for a subformula v of ¢ which is not a literal, introducing new proposi-
tional variables p;

(2) (ii) replace all the occurrences of ¢ with the p, and

(3) add a new conjunction stating that p and ¢ are equivlent i.e ¢ < p.

In short we apply this transformation:

(28) ¢ = Qlb/plAp i

where p is a “fresh” propositional variable, i.e., a propositional variable that do
not appear in ¢, and the notation ¢[¢)/p] indicates the formula ¢ obtained by
replacing each occurrences of the subformula v with the propositional variable p.
This transformation has the advantage that the exponential blow up of the “CNF-
ization” of v happens only onece instead the number of occurrences of ¥ in ¢.

The transformation however does not preserve the semantics of the for-
mula, i.e., the resulting formula is not equivalent to the original formula. For
instance the formula (¢ — b) — (¢ = (a — b)) is not equivalent to the formula
(p = (c = p)) A(p < (a — b)), obtained by replacing the subformula a — b with
p. Indeed there are interpretations of the first formulas which do not satisfy the
second. For instance the interpretation with Z(p) = true and Z(a) = True and
Z(b) = False satisfies the first formula but not the second. This does not constitute
a serious problem, since we are interesting in checking satisfiability. For this task
it is sufficient that the original formula is satisfiable if and only if the resulting
formula is also satisfiable.

We therefore inroduce a weaker notion than equvalence, which is enough for
checking satisfiability.
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DEFINITION 4.4 (Equi-satisfiable formulas). Two formulas ¢ and ¢’ are equi-
satisfiable if, ¢ is satisfiable if and only if ¢’ is satisfiable

Equi-satisfiability is weaker than equivalence; indeed it is easy to find pairs of
equi-satisfiable formulas that are not equivalent. For instance any pair of atomic
formulas p and ¢ are equisatisfiable (indeed they are both satisfiable) but they are
not equivalent, Since they are satisfied by different interpretations. Let us now
prove that the transformation [28| preserves satisfiability. One can see the difference
between equivalent and equi-satisfiability by looking at their formal definition:

¢ and 1) are equivalent VI.IEoSIEY
¢ and 1) are equi-satisfiable T IE=IT. TEY

PROPOSITION 4.7. For every formula ¢ and avery propositional variable p not
occurring in ¢, ¢ and ¢[p/p] Ap < ¢ are equisatisfiable.

PROOF. Suppose that ¢ is satisfiable by an interpretation Z let Z’ be the in-
terpretation obtained from Z by setting

() = True ifZ
False Otherwise

By construction Z' |= p < ¢, To show that Z' |= ¢[¢)/p] we have to proceed by
induction.
e Base case: ¢ is equal to ¢). Then 7 | ¢ implies that Z’ = p and since
@[ /p] is equal to p, we have that 7' = ¢[¢/p]. If instead ¢ is not a
subformula of ¢ then ¢[¢/p] = ¢ and since ¢ does not contain p, it has
the same truth value w.r.t., Z' and Z, and therefore 7' = ¢[¢)/p].
e Step case: Suppose that ¢ is @1 V ¢o, We have that T = ¢; for some
i = 1,2. By the induction hypothesis we have that Z' = ¢;[¢/p] Since

@[ /p] is equal to ¢1[1/p] V ¢=2[th/p], we can conclude that Z' = @[ /p).
e ... Do the other cases by exercize.

O

The Tseytin transformation introduced in Tseytin 1966 applies the rule in
a sistematic way, This correspond to the following procedure that can be applied
to any formula ¢ (not necessariliy in CNF).

(1) let 4q,...,%, all the subformulas of ¢, including ¢ itself and excluding
those that are literalﬂ make sure that if 9; is a subformula of 1); then
J =i

(2) let z1,...,x, a set of propositional variables not occurring in ¢.

(3) for i =1,...,n apply the following transformation:

¢ = P/ A (i < i)
(4) apply CNF to the resulting formula.
EXAMPLE 4.8. Let us consider the formula

(PAq@)V=(=pA(qgV-r))

With the following parse tree and subformulas

2In the original formulation also negative literal were included.
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The Tseytin’s transformation introduces 5 additional variable x1,. .., x5 since the
formula has 5 subformuls which are not literals. In the following table, we provide
the definition of each x; in terms of it’s direct subformulas, and the corresponding
transformation in CNF.

T1 4> To V X3 o {-xy, o, 23}, {20, 21}, { a3, 21}
T9 <+ pAg & {~w2,p}, {—a2, 4}, {-p, g, 22}
T3 & Ty < {~xs, s}, {23, 24}
a5 AP o {nxy, x5}, { s, 24}
T5 <> q Vo o {ws, ¢, r} {~q 25} {r @5}

To check if the initial formula is satisfiable it is sufficent to check if x1 (which is the
auziliary variable that encodes the formula itself) and all the CNF provided above
are satisfiable.

Tseytin’s tranformation transform a formula ¢ into a set of clauses that contains
at most three literals as all the formula that are given in input to CNF are of the
form z; <+ (I 0lz) or z; <> —x;, where o is some binary connective in {A,V, =, <>}.
The connective that generates the largest number of clauses is <+, and they are
4. Indeed, CNF(a <+ (b <> ¢)) contains four clauses, namely: {a,b, c}, {a, b, —c},
{=a,b,~c} and {—a, b, c}. This means that if a formula ¢ contains n connectives
its Tseytin tranformed contains at most 4 X n clauses each of which contains at most
3 literals. Therefore the size of the CNF obtained with the Tseytin tranformation
is linear w.r.t., the number of connectives of the original formula. This is clearly
a good news for the deciding satisfiability but this reduction comes with the price
of introducing n new propositional variable, for which the satisfiability d decision
procedure has to produce a truth assignment.

4. Davis-Putnam-Logemann-Loveland Procedure (DPLL)

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm M. Davis and Put-
nam [1960; M. Davis, Logemann, and Loveland 1962 is a procedure that combines
search and deduction to decide satisfiability of CNF formulas. This algorithm un-
derlies most modern SAT solvers. While the basic procedure itself has been devel-
oped in the 60’s, practical DPLL-based SAT solvers only started to appear from the
mid 1990s as a result of enhancements such as clause learning, non-chronological
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backtracking, branching heuristics, restart strategies, and lazy data structures. The
DPLL algorithm is based around backtrack search for a satisfying valuation.

Before introducing the DPLL algorithm, we need to provide some notation
and a key subruting exploited by DPLL, called Unit Propagation that deals with
the unit clauses. A partial interpretation is a truth assignment for a subset of
the propositional variables of a formula. As we have seen in the section of model
checking, partial assignments in some cases can fully determine the truth value of
some formulas. For instance if p is assigned to True by a partial interpretation then
any formula of the form p V ¢ will be evaluated to true, independently from the
truth value of ¢. A partial evaluation can be seen as a set of literals. We will use
the same notation for interpretations and partial interpretations. p € Z means that
Z(p) = True —p € T means that Z(p) = False. We also use the notation [ to denote
the opposite of the literal I. l.e., p is =p and =p is p. Similar definition can be
defined also in sets of literals C. C = {l |l € C}.

Given a partial assignment Z, we can attempt to evaluate a clause C.

e A clause C is true under Z if one of its literals is true, i.e if ZNC #0
e A clause C is false under Z if all its literal are set to false by Z, i.e. C C 7.
e therwise C is undefined (or ”unresolved”) in Z.

When a clause is unresolved in an assignment Z we can simplify it by evaluating
the literals that are assigned by Z, For a clause C' and a literal [ the semplification
of C w.r.t., [, denoted by C|; denotes the clause obtained by evaluating C' w.r.t.,
the partial evaluation that assigns the literal [ to true (i.e. I € Z). C|; is obtained
from C' by the following two operations:

e removing all the clauses that contains [;
e remove [ (if present) from C,

For any CNF formula ¢, ¢|; = {C|; | C € ¢}. For a set of literals {ly,...,l,},
Ciy,...1, is equal to (... (C|;,) i, ---) |1, Notice that the order and the repetitions
does not affect the result , and therefore we can use the notation ¢|z where Z is a
set of literal for denotign ¢|;, .. 1,, where Z = {l1,...,1,}.

The subruting that is used by DPLL is called unit propagation and is applied
when a CNF formula contains some unit clause. If ¢ contains unit clause {l} then,
to satisfy ¢ we have to satisfy {I} and therefore the literal [ must be evaluated to
True. As a consequence ¢ can be simplified using the procedure called UNITPROP-
AGATION. The procedure is shown in algorithm ?77.

Algorithm 2 UNITPROPAGATION(¢ : CNF, 7 : Partial assignment)

1: while ¢ contains a unit clause {i} do
2 L6« TU{lhel

3: if {} € ¢ then

4: return 7, ¢

5 end if

6: end while

7: return Z, ¢

The basic DPLL algorithm is shown in Figure 1. DPLL algorithm incrementally
build a a partial interpretation that satisfies the input CNF-formula by depth-first
search. At any time the state of the algorithm is a pair (Z, ¢), where Z is a partial
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truth assignment and ¢ is the set of clauses that are undecided by Z. This means
that Z must be extended in order to satisfy all the remaining clauses which are in

o.

Algorithm 3 DPLL(¢ : CNF,Z : Partial assignment)

1: Z,¢ < UNITPROPAGATION(Z, ¢)
2: if {} € ¢ then

3: return UNSATISFIABLE

4: end if

5: if ¢ = {} then

6: return 7

7: else

8: select a [ from some clause C' € ¢
9: T =DPLL(¢|;,ZU{l})

10: if 7 # UNSATISFIABLE then
11: return 7

12: else

13: 7 + DPLL(¢|;,ZU {l_})
14: return 7

15: end if

16: end if

EXAMPLE 4.9. Let us consider a concrete example and look at how DPLL be-
haves on the following CNF ¢.

(29) {A, B}

(30) {B,C}

(31) {-4,-X,Y}
(32) {-A, X, 2}
(33) {-A,-Y, Z}
(34) {~4,X,-7}
(35) {=A,~Y,~Z}

Figure (9 shows the execution trace of DPLL algorithm on the set of clauses 7
(35). The input set of clauses do not contain a unit clauses therefore unit propa-
gation is not applied, furthermore I is not Unsatisfiable and and the set of clauses
¢ are not empty. Therefore DPLL goes to line[3 and select the literal A. Then it
recursively apply DPLL to ¢|4 and T = {A}. The recursive calls proceeds similarly
by selecting first the literal B and then X ; At this point DPLL is called with input
élapx and T ={A,B,z}. Since ¢pa p x contains a unit clause {Y} then Y then
the unit propagation is called. This procedure executes two steps by first propagat-
ing Y and then propagating Y, returning the set of clauses that containt the empty
clause. At this point DPLL returns UNSATISFIABLE and backtrack (shown in dashed
lines) at the most recent choice, which is on the literal X. Therefore, it analize the
case of the negative literal =X, calling DPLL on ¢a,p-x and T = {A,B,-~X}.
But also in this case DPLL after calling unit propagation returns UNSATISFIABLE,
Therfore, DPLL backtrack to the upper literal that has been choosen which is B
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{=A, X, 2}, {-A,~Y, 2}
{4, X, =2}, {~A,~Y, -2}

A y/ \\\\R{ﬁA}
C} =X, v} B

{{A, B}, {B,C},{-A4,-X,Y} }
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_ _ N {B}
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FIGURE 2. The execution trace of DPLL algorithm on the set of

clauses 7.

and explores the case with —B. As one can see from the trace also in this case all
the branches leads to a set of unsatisfiable clauses (empty clause). Therfore DPLL
backtrack to the initial choiche, which was on the literal A, and attemst with the
assignment T = {—A}. This leads after a unit propoatation to the emtpy set of
clauses, and tDPLL returns the partial assignment {—A, B}, and therefore the ini-

tial set of clauses are satisfiable, by all the assignments that agree with the partial
assignment returned by DPLL.
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5. Sat Solvers

Most of of the satate-of-the-art implementation of sat solvers are available
through Python interface. In this section we summarize the main features offered
by PySAT. Before introducing the library, we introduce a format for representation
of CNF, called DIMACS.

5.1. DIMACS CNF. The DIMACS CNF format is a textual representation of a
formula in conjunctive normal form. A formula in conjunctive normal form is a
conjunction (logical and) of a set of clauses. Each clause is a disjunction (logical
or) of a set of literals. A literal is a variable or a negation of a variable. DIMACS
CNF uses positive integers to represent variables and their negation to represent
the corresponding negated variable. This convention is also used for all textual
input and output in Varisat.

There are several variations and extensions of the DIMACS CNF format. Varisat
tries to accept any variation commonly found. Currently no extensions are sup-
ported.

DIMACS CNF is a textual format. Any line that begins with the character c is
considered a comment. Some other parsers require comments to start with ¢ and/or
support comments only at the beginning of a file. Varisat supports them anywhere
in the file.

A DIMACS file begins with a header line of the form p cnf jvariables; jclauses;,.
Where jvariables; and jclauses; are replaced with decimal numbers indicating the
number of variables and clauses in the formula.

Varisat does not require a header line. If it is missing, it will infer the number
of clauses and variables. If a header line is present, though, the formula must have
the exact number of clauses and may not use variables represented by a number
larger than indicated.

Following the header line are the clauses of the formula. The clauses are en-
coded as a sequence of decimal numbers separated by spaces and newlines. For
each clause the contained literals are listed followed by a 0. Usually each clause is
listed on a separate line, using spaces between each of the literals and the final zero.
Sometimes long clauses use multiple lines. Varisat will accept any combination of
spaces and newlines as separators, including multiple clauses on the same line.

EXAMPLE 4.10. As an example the formula (x VyV —z) A (-y V z) could be
encoded as this:
p cnf 3 2
12-30
230
The first line “p enf 3 27 states that this file specifies a problem in cnf with 3
propositional variables and 2 clauses. The other two lines specify the clauses (every
clause ends with a 0).

5.2. Problem solving with Sat Solvers. In this section we describe how
to compute a solution of a problem that you have specified in terms of a set of
propositional formula I" that uses the set of propositional variables P. Usually P
contains propositional variable with some “human readable” name. For instance we
can use the the propositional variable happy(John) to remind us that it represents
the proposition that John is happy.
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5.2.1. Encoding and Decoding propositinal variables. The first operation that
you have to perfomr is to define an function (encoding) that maps each p € P into
a natural number. i.e, the function

Encode : P — [n]

where [n] = {1,2,...,n} and n is the number of peropositional variables which
are present in P. The function Encode cannot associate the same integer to two
different propositional variables, i.e., Encode is injective. This property allows us
to define the Decode function from [n] to P as the inverse of Encode.

Decode : [n] — P

is such that Decode(i) = Encode ™! (i).
5.2.2. Generating the DIMACS code. To generate the DIMACS code we have first
to generate the first line, which is

p CNF [P| T

that means that this is a cnf problem on |P| proposition and I' clauses. Then for
every clause v = {l1,...,lx} € I" we cenerate the line Encode(p) if I; is a positive
literal p and —Encode(p) if I; is a negative literal —p.

5.2.3. Decoding solution. We then call the sat solver on the encoding that we
have generated. The sat solver can return either UNSATISFIABLE or SATISFIABLE.
In the latter case we can ask the solver to return a mnodel. The sat solver return
a model codified in a sequence of positive and negative integers.

r=[£1,£2,...,£n]

where n is the total number of propositional variables. The list encodes the following
interpretation: for every p € P

7.(p) = True if Encode(p) € r
" Fatse i —Encode(p) € r

5.2.4. Additional solutions. If we want to obtain additional models we have to
add to the initial set of clauses that fact that we want a model different from Z,.
A model of T is different from Z, if at least one proposition takes a truth value
different from the one assigned by Z,.. We can therefore add the clause

e A

Z.(p)=True Z.(p)=False
which can be codified in the sequence —r = [—i | i € 7].
6. PySAT

see website https://pysathq.github.io/

7. Examples of problems solved in SAT

7.1. Numbermind in PySAT. The game Number Mind is a variant of the
well known game Master Mind. Instead of colored pegs, you have to guess a secret
sequence of digits. After each guess you’re only told in how many places you've
guessed the correct digit. So, if the sequence was 1234 and you guessed 2036, you’d
be told that you have one correct digit; however, you would NOT be told that
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you also have another digit in the wrong place. E.g. the feedbacks with the secret
sequence 39542 are:

Guess ; feedback

903 ; 2 correct
70794 ; O correct
39458 ; 2 correct
34109 ; 1 correct
51545 ; 2 correct

12631 ; 1 correct
How can we use PySAT to generate the guesses that takes into account the feedbacks?
The first step is to define the set of propositinal variables and extablish what
they encode. The only relevant proposition in the NumberMind world is the fact
that a certain number is in a certain position in a sequence. Therefore, for every
position p € {1,..., pmax and every number n € {0,...,9} we have the propositional
variable

In(n, p) there is an n in position p
The second step is to provide encoding and decoding function for the DIMACS format.
One simple encoding/decoding function can be the following.
Encode(In(n,p)) =p-10+n+1
Decode(k) = In(n, p) where n=(k—1) mod 10
p=(k—-1)+10
In the next step we have to formalize the constraints of the game. In NumberMind
constrains comes from two sources. The first is the fact that in the sequence only
one digic prosition is admitted. The second soruce of constraints is the feedback

provided when the player proposes a guess. These constraints are added every time
the player proposes a guess. These constraints are both cardinality constraints:

e at every position there is exaclty one digit

9
(36) \/ In(n,p)A N\ =(In(n,p) Aln(n’,p))
n=0

0<n<n’<9
e there are k correct digits in given a guess G = {In(n1, 1), In(n2,2),...,In(np,.., Pmax) }
(37) A V oinpa A\ ~n(np)
IcG In(n,p)el I1€G In(n,p)el

|T|=pmax—k+1 [I]=k+1

We are now ready to define the main cycle of the NumberMind game, which is
reported in Algorithm [4]

7.2. MineSweeper. ...
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Algorithm 4 Numbermind main cycle

s « random secret sequence
S < {In(n,p) | the p-th element of s is n}
I+ for every position p with 1 < p < ppax
while k < n do
G« SAT(T)
kg < |{In(n,p) € S| G = In(n,p)}|
addtoFfork;:kG
end while
return {In(n,p) € S| G = In(n,p)}
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8. Exercises

Exercise 60:
Explain why ¢ |= v holds if and only if {¢, =} is not satisfiable.

Exercise 61:

How many conjunctive normal forms formulas can you build with n proposi-
tional variables? Remember that a conjunctive normal form can be seen as a set
of set of literals.

Solution A CNF formula is a set of clauses. A clause is a set of literals. With
n propositional variables we can build 2n literals, i.e., the positive literals, which
coincide with the propositional variables, and the negative literals, which are the
negation of propositional variables. A clause is any set of literals, Therefore we can

build 22" clauses. A CNF formula is a set of clauses, therefore we can build 22°"
CNF formulas. [J

Exercise 62:
Transform the following formula in CNF

(~((p—=a)AN(pVg—=1)—(p—71)))

Exercise 63:
Explain the difference between the following two facts: “¢ and ¢ are equiva-
lent”and “¢ and v are equisatisfiable”

Solution ¢ is equivalent to ¢ if and only if for all the interpretations Z, Z | ¢ if
and onlyif Z = 9.
¢ and v are equisatisfiable if ¢ is satisfiable if and only if ¢ is satisfiable. [J

Exercise 64:

Consider the following two formulas:
¢=P—((Q—R)AN(QVR))
Y=(~P Q)R

Does ¢ logically follow from 7 or viceversa? Prove it via truth tables.

Solution Let us compute the truth tables for both formulas:

PQR| P—-(Q =R)A(QVR)|(-P—Q)—R
If[TTT| TT TTTTTTT FTTT TT
2|T T F TF TFVF¥F F TTF FTTT F F
3/ TFT| TT FTTTT FTT FTTF TT
4| TFF| TF FTF F FFF FTTF F F
5/ F TT| FT T TTTTTTT TFTT TT
6/F TF| FT TFTF F TTF TFTT F F
7TIFFT FT FTTTU FTT TF FF TT
8|FFF| FT FTF F FFF TFFF TF
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Notice that in all the cases in which ¢ is true ¢ is also true, this implies that ¢
logically follows from 1. On the other hand, since there is an assignment for which

¢ is true but ¢ is false (assignment number 6) 1 is not a logical consequence of ¢.
O

Exercise 65:
Convert the following formula

pNVNqg—>pAN-r

into an equisatisfiable CNF formula using the Tseitin’s Transformation.

Exercise 66:

Check the following facts via DPLL (in the exam there could be one of this).
1) EP—=9N-qg—-p

p—q) = (p——q)

pVg—r)VpVyg

pPV@A@P—=1rANg A(g— T AD)

(q=r)—=((p—=q¢ —=@p@—r))

pVq) A (=g A -p)
—p—=q)V((pA-r)=9q)

pP=q)V(p=-q)

— (qV )V (r—-p)

~(p=q)V-(p=—9)

(p=q) V(=9

SolutionThe solution of some cases are the following:

(1) The expression = (p — q) A =¢ — —p means that (p — ¢) A ~q — —p is
valid. To check the validity of a formula ¢ with DPLL we have to check
(un)satisfiability of the negated of ¢ i.e. —¢. Since DPLL requires CNF
we first have to transform in CNF —¢.

CNF(=((p = @) A =g = —p)) = CNF((p = ¢) A ~q) A CNF(=—p))
= CNF((p — q)) A CNF(=q) A CNF(p))
= {-p.q},{~a}. {p}

Now we apply DPLL to {-p,q}, {—q},{p}.
(a) since {—p, q},{—q}, {p} contains unit clauses, we apply UNITPROPA-
GATION.
{{=p.a}, {=g};{p}} Z={}  Unit propagation on {p}

H=p gt {~at}p,  Z={p}

HaH—a}} Z={p} Unit propagation on {q}
{{~a}}q Z={pq}
{{}} Z ={p,q} We have obtained the empty clause, and we return UNSAT

Since we have obtained the empty clauses we return UNSAT. Since
=((p = q) AN =g — —p) is not satisfiable, it must be that (p —
q) N —q — —p is valid.
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(2) We first compute the CNF of the negation of the formula.

CNF(=((p = q) = (p = —q))) = CNF(p — ¢) ACNF(=(p — —q))
= CNF(p — ¢) A CNF(p) A CNF(——q)
={-p,q},{r} {¢}

We can now apply DPLL

H{-»,q}, {p}. {a}} Z={} Unit propagation on {g}
{{=p, a}}Ho {p}Hola} Z={q}

{r}} T={q} Unit propagation on {p}
{{p}}p Z={q.p}

{} Z={q,p}

Since we obtaine the empty set of clauses (all the clauses are eliminated),
then we have that the set of input clauses are satisfiable, Le., that =((p —
q) — (p — —q)) is satisfiable, and therefore (p — q) — (p — —q) is not
valid. A counter-model, i.e. a model that falsifies it, is returned by the
DPLL and it is equal to Z(p) = True and Z(q) = True.

6. Let’s compute the CNF of =((p V ¢) A (—g A —p))

CNF(=((pV @) A (=g A =p))) = CNF(=(p V q)) ® CNF(=(—g A —p))
= (CNF(—p) A CNF(—~q)) ® CNF(q V p)
= (=pA—q)®(qVp)
=(=pVqVp)A(~gVaqVp)
= {-p.¢.p}.{~q,q,p}

We can now apply DPLL: Since there is no unit clauses, we skip that
block and select a literal

{-p,q,p},{—q,q,p}} T ={} select the literal p

{-p.a.p} -0, 0.0}, T={p}
{} Z = {p} We have eliminated all the clauses therefore we return SAT

Since the negated of the formula is satisfiable, then the initial formula
cannot be valid.
10. We compute the CNF of the negated formula

CNF(~(~(p=¢q)V-(p=—q)) =CNF((p=q) A (p=—q))
= CNF((p = q)) A CNF(p = ~q)

= (CNF(p) ® CNF(=q)) A (CNF(—p) ® CNF(q))A
(CNF(p) ® CNF(——¢)) A (CNF(-p) ® CNF(—q))

= {p,~q}, {-p, 4}, {p, q}, {-p, ~q}
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Then we apply the DPLL algorithm

{p,~a}, {-p, ¢}, {p. ¢}, {-p,~q}} =} No unit clause. Choose literal p (*)
Hp, gt {-p. ¢} {p. ¢}, {~p, ~a}}, Z={p}
{{aq}, {—q}} Z ={p} Apply unit propagation for clause {q}
Hah imdhile  ZT=A{p.q}
{}} ZT={pq} We have derived the empty

clause. So we have backtrack to
the last choosen literal (*) and
choose the opposite one

{p, —a}, {-p. a}. {p, 4}, {-p, ~a}} I={} Choose literal —p
Up, —a} {=p. ¢} {p, a}. {=p. —a}}-p Z={p}
et e}t T={-»}

{{q}, {—q}} T = {-p} Apply unit propagation for clause {q}

HabA-atile T={-pq}

{{}} ZT={»pq} We have derived the empty
clause. Since no backtrack are
possible, we stop and return UN-
SAT

Since the negation of the formula is unsatisfiable, then the formula must
be valid.

Exercise 67:
Check the following facts via DPLL

E(FAVB)=C)vV((-B—= A) = C)

Solution To check that a formula ¢ is valid (i.e., E ¢) with DPLL we have to
tranform —¢ in CNF and then try to derive the emplty clause. So let’s start with
transforming

-(((nFAVB) - C)V ((-B— A) = ()

in CNF obtaining the following clauses
{_‘A’ B}7 {A’ B}7 {_|O}

By unit propagation we have that Z(C') = False, and we have to compute {4, B}|-¢, {4, ~"B}|-¢
which remain unchanged. We can therefore choose an assignment Z(B) = True

and we obtaine the empty set of clauses. WHich implies that any assignment with

7 with Z(C) = False and Z(B) = True falsifies the intitial formula, and therefore

the intitial formula is not valid. O

Exercise 68:
Use DPLL to find an assignment that satisfies the clauses of exercise 1.

Solution Let ¢ be the set of clauses of exercise 1.

(1) no unit propagation (there are not unit clauses in ¢)
(2) select the literal K of the first clasue and assign Z(K) = True
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(3) compute ¢|x
RVV
RV -V
-AVR
v
-HVA

(4) apply unit propagation for the clause V setting Z(V') = True:

R
-AVR
-HVA

(5) apply unit propagation for the clause —R setting Z(R) = False:

—-A
-HV A

(6) apply unit propagation for the clause —A setting Z(A) = False:
-H

(7) apply unit propagation for the clause ~H setting Z(H) = False:
(8) we obtain the empty set of clauses, this implies DPLL exits with SAT
and returns the assignment: Z(K) = True, Z(V) = True, Z(R) = False,
Z(A) = False, Z(H) = False
that corresponds to the situation where K and V are the only one who are chatting.
Notice that DPLL tells us that this is a situation compatible with the constraints,
but does not guarantee that this is the only one. There could be others. To check

if there are other assighment try to start by assigning false to K and continue with
the DPLL algorithm. [J

Exercise 69:

There are N towns each one having a local radio station. We have to assing a
radio frequency out of  available ones to each radio station. To avoid interferences,
towns closer than 20Km can not use the same frequency. We have a function
Distance(i, j) indicating the distance between town ¢ and j. Is it possible to assign
the frequencies? Express the problem in CNF.

Solution We need the set of propositions {freq(q,t) | t € T, ¢ € Q}, where
freq(q,t) means that the frequency ¢ is assigned to the town ¢.
e Every town need one frequency
AV frea(a,t)
teT qeQ
e the same frequency cannot be assigned to closed towns

A A ~freq(q,t) V —freq(q,t')

q,4'€Q t,t'eT
q#q’ 0<Distance(t,t’)<20Km

e only one frequency is assigned for every town

N N ~reala, ) v ~frea(d, )

teT a,d'€Q
a#q’
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Exercise 70:
Suppose that ¢ has k subformulas ¢1,...,¢r. How many new propositional
variables are introduced by the Tseitin’s transformation? Solution The Tseitin’s

transformation introduces one propositional variable for each non atomic sub-
formula. Therefore, if ¢ contains m propositional variables, the Tseitin’s trasfor-
mation introduces n — m new propositional variables. [

Exercise 71:
Check if the following formula is valid using DPLL. If it is not valid provide a
counter-model, i.e., an assignment that falsify it.

(pAg)Vr=(p——-q) —r

Solution To show the validity we have to show that the negated of the formula is
not satisfiable. Therefore let us consider the negated of the formula, which is

~((pAgvr)=(p——q) =)
and transform it in CNF. We use the trnasfromation =(A = B) is equivalent ot
(AV B) A (A V —B), therefore we obtain the following two formulas that can be
transofrmed in CNF independently.
(pAg)Vvr)V(lp = —q) —7))
(=(pAg) V)V =(p—=—g) =)
If we tranfrom the first formula we obtain the following clauses
{p.,7}
{g,7}
If we transform the second formula we obtain the following clauses
{-r}
{=p,~q}
Therefore the total set of clauses are:
{p.r}
{g,r}
{-=r}
{=p,~q}
We can apply unit propagation obtaining
{p}
{q}
{=p,~q}
and by other two applications of unit propagation we derive the empty clause {}.

Since we have done no branching, then there is no backtrack possible, and DPLL
terminates returning UNSAT. Therefore the initial formula was Valid, O
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Exercise 72:
Check the following formulas are valid with DPLL.

1) (p—a F-p—q

(2) p—=a)AN-qFE-p
B)p—=gArEM@—q —r
(4) pV(mgAT)EQV T =D
(5) =(pAg)=-pV—q

6) (pAgVr=(p——q) —>r
(7) (V@ AN(=p——q)=p
®) (p—q9) —q) »qg=p—q

Exercise 73:
Define a method to transform a propositional formula in a set of formulas of
the form

(38) /\ ai — \7 bj
i=1 j=1

where /\?:1 a; =T and \/3:1 B;=1.

Solution Notice that, since A — B is equivalent to —A V B, the formula is

equivalent to
n m
- /\ a; V \/ bj
i=1 j=1
by pushing the — operator inside the A, we obtain the following equivalent formula

(39) \/ —a; V \/ bj

i=1 j=1
But this form is a clause that contains n negative literals and m positive literals.
Therefore to transform a formula ¢ in the form (38]) one can first transform ¢ in
CNF, and then transform all the clause of the form in the form by applying
the inverse transformation that has been shown above. If a cluase does not contain
negative literals then it is of the form

which is equivalent to
m
i=1

with the convention that /\?:1 a; correspond to T then a clause with no negative

literals is transformed in:
0 m
/\ a; — \/ bz
i=1 i=1

which is of the form . Analogous argument can be done for the clauses that do
not contain positive literals. [

Exercise 74:
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Provide the Tseitin’s Transformation of the following formula:

(pVag) =r)V(r—=(pVa)
Solution The Tseitin’s tranformation introduces one new propositional variable
for all the non atomic subformula of the original formula. The set of non atomic

subformulas of ((pV ¢) — )V (r = (pV q)) (including itself) with the associated
new propositional variables are:

z (pva)—=r)Vv(r—(pVa)
T3 (pvag) —r)
T3 (r—(Va)
T4 (pVa)

We then define the follwong clauses

r1 =x2 VI3

T Ty —T

T3=T — Ty
Ty =pVq
and tranform them in clausal form
(21, 22, 73), (mT2, 1), (—T3, 71)
(mx9, "y, 1), (T4, x2), (-7, T2)
(mx3, -1, 24), (r,23), ("T4, T3)
(

—T4,P5q ) (_'pvx4) (_'q,fE4)

Exercise 75:
Let us consider the formula

(40) p=(pVa)Ar)— s

Solution The subformulas of ¢ involved in the tranformation and the correspond-

ing fresh propositional variables are the following:

(pAg)VT)— —s 1
(pANq) VT T2
PAgQ T3

we then apply the sequence of rule (40).
1A (1 (pAg)Vr)— s)
1A (21 ¢ (22 = —8)) A (2 (pAg)VT))
1 A (x1 & (k2 = —8)) A (22 & (23 V1)) A (23 (PAQ))

We successifely have to tranform the obtained formula in CNF Obtaining the fol-
lowing set of clauses



8. EXERCISES 103

CNF (1)
CNF(z1 ¢ (2 — —s)) = {—x1, ~xa, s}, {2z, 21}, {s, 21}
CNF(zg < (z3 V1)) = {—x2, 23,7}, {23, 22}, {7, 22}
CNF(z3 < (p A q)) = {z3,p}, {23, ¢}, {-p, ¢, v3}
Notice that we have not introduced a new propositional variable for hte subformula
—s. This is not strictly necessary since this would mean to add x4 = —p, which are

transformed in the two clauses (z4,p), (-4, 7p and not reducing any of the other
clauses. [

{1}






CHAPTER 5

Maximum Satisfiability

So far we have considered the interpretations of a propositinal language as
a plain set. However, in many situations it is important to represent relations
between propositional interpretations, i.e, to impose some structure on the set of
interpretations of a propositional language. A tipical, and very important example
of structure definable on the set of propositional interpretation is the one that states
the fact that some interpretations are “better” then others.

EXAMPLE 5.1. Suppose that you want to build a team of four people to develop
a project that requires competences in machine learning (M ), knowledge representa-
tion (K ) vision (V' ), and human computer interaction (H ). You can select the team
between 6 people who have following degree of experteese for each of the competence.

Person gender M K V H

Alice f 1 1 1 1
Bea f 3 0 2 0
Celine f 1 38 0 0
Dania f 1 0 0 3
Enrico m 1 0 3 0
Felix m 2 1 0 0

The hard constraints on the formation of the team is that you have to select four peo-
ple, and each competence should be in the team. These constraints can be expressed
in terms of propositional logic formulas. For instance, the fact that you want all
the four competences in the team (independently from the competence level) can be
formalized by requiring that M NK ANV A\ H is true and by stating which person can
provide the various competences (independently from the expertese level) using the
following implications:

M — AvBVCVDVEVF

K - AVCVF

V. +AVBVE

H — AvD

The constraint about the team size can be expressed by the cardinality constraints,
ezxactly four among A,..., F. Le.,

(42) A+B+C+D+E+F=4

There are many choices that satisfy this constraints, they correspond to the as-
signments to A, ..., F that satisfy the above formulas. All the interpretations that
satisfy formulas and are shown in Figure || For every interpretation Z;
that satisfy the hard constraint you can extract the corresponding team. However,
you would also like to be able to express some preference on the teams as, for in-
stance, you prefer teams with gender and competence balance, but also the higher

(41)

105
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T, ={A,B.C,D,M,K,V,H}
T, ={A,B,C,E,M,K,V,H}
Iy ={A,B,C,F,M,K,V,H}
I, ={A,B.D,E,M,K,V,H}
Ts = {A,B.D,F,M,K,V,H}
Is = {A,B.E.F,M,K,V,H}
I, ={A,C,D,E,M,K,V,H}

Is ={A,C.D,F,M,K,V,H}
To={A,C.E,F,M,K,V,H}
T ={A.D,E.F,M,K,V,H}
Tu ={B,C,D,E,M,K,V,H}
Tio = {B.C,D,F,M,K,V,H}
Tis={B.D,E,F,M,K,V,H}
Ty ={C,D,E,F,M,K,V,H}

FI1GURE 1. The models of the formulas and , In red the
people of the team.

|

tence level ‘
VvV H

Co
Team gb M
Team; = {A,B,C,D} | 0.0 6
Teams = {A,B,C,E} | 0.5 6
Teamz = {A,B,C,F} |05 7
Teamy = {A,B,D,E} | 0.5 6
Teams = {A,B,D,F} |05 7
7

4

5

5

5

6

7

7

)

w

Teamg = {A,B,E,F} | 1.0
Team; = {A,C,D,E} | 0.5
Teamyg = {A,C,D,F} | 0.5
Teamg = {A,C,E,F} | 1.0
Teamyo = {A,D,E,F} | 1.0
Teamyy = {B,C,D,E} | 0.5
Teamys = {B,C,D,F} | 0.5
Teamis = {B,D,E F} | 1.0
Teamyy = {C,D,E,F} | 1.0

mpe
K
4
4
5
1
2
2
4
5
5
2
3
4
1
4

WU TR R = R OWwo wWwo
QO Lo QO O I = R B R B e

FI1GURE 2. Ranking of the teams w.r.t, the different criteria.

the total amount of each competence the better. In summary you can rank all the

different teams that satisfy the hard criteria according to some preference criteria.
|#male—#female|
1

We can for instance consider the gender balance criteria gb =1 —
and the crieria of the sum of the competence level for each competence. The eval-
uation of the four teams (interpretations) according to tese 5 criteria are shown in
Figure 77.

There is no team that maximizes all the criteria, hoever one could decide to give
priority to the gender balance, preferring teams and teamy and then to the uniform
distribution among competence. which implies that teamsy is seleccted.

EXAMPLE 5.2. Consider the situation in which you have to build a team of n
people with a good gender balance. You will prefer teams with gender balance degree,
defined as b=1— w s close to 1. The best option would be a team
with an even number of male and female, with b = 1. Formalizing it in propositional
logic, if p; represents the proposition that the i-th member of the team is a female,
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you prefer the interpretations in which the fraction of p; set to true and those set to
false are closer. This amount in introducing an order in the set of interpretations
as shown in Figurdd following picture that shows how interpretations of p1,...,ps
(denoted by a sequence of four 0/1) can be orderred according to their preference.

FIGURE 3.

Maximum satisfiability problem focus on this type of relation, which formally
correspond to partial orders. In particular maximum satisfiabiliy focus on the
problem of finding the “best” interpretation that satisfy a certain set of formulas.
However, Before proceeding with the definition of the problem of maximum satisfi-
ability and the relative solution methods let us discuss how it is possible to impose
an ordering structure on the set of interpretations of a propositional language.

1. Ordering interpretations

To state that an interpretation is “better” than another, of that we “prefer” an
interpretation w.r.t., another we should be able to order the set of interpretations
from the less preferred to the most preferred. The mathematical notion that can
be used for this aim is the notion of preorder

1.1. Partial and total orders. A preorder is a structure (S, 3) where S is

a set and 3 is a binary relation on S i.e., SC § x S that satisfies the following
properties: v

Reflexivity:: s X s, forall s € S

Transitivity:: s 3t and ¢ 3 u implies that s = u.
The preorder is said to be total if

Totality:: s Ssort 3 sforall s,t €S
We say that s and t are equi-preferrable, in symbol s ~ t if a ¢ and t <X s. Finally
we say that t is strictly preferable to s, in symbol s < ¢t if s X ¢ but not s ~ ¢t. One
of the simplest way to specify a total preorder on the set S is by defining a function
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w : S — R, often called weight function, that associates to each element s € S a
real number w(s). The order on S is defined as s X t if and only if w(s) < w(t). In
the following we will use only total preorders specified by some weight function.

Let P be a set of propositional variables, and I be the set of interpretations
of P, a weight function for P is a function w : I — R, that associates to each
interpretation Z of P a real number w(Z). Such a function defines the following
total preorder on the models of ¢

7 2 J if and only if w(Z) < w(T)

It is easy to show that this definition satisfies the property that defines a total
pre-order (by exercise).

EXAMPLE 5.3. Consider the example of forming a gender balanced team intro-
duced above. Let P = {p1,...,pn}. If we define the weight function as:

(43) w(Z) = [ Z(pi) = 3

we have that w(Z) reaches it’s maximum equal to 0, when there is an even number
of variables set to true and false (if n is even), or —%, which is reached when the
number of variables assigned to true and false differs of one unit, in case n is odd.

Notice that, the nominal value of the weight of an interpretation is not really
important, what matters is the order between the weights that determines the order
of the interpretations. In the above exaple, for instance, if we define the weight
function as w(Z) = — (3, Z(pi) — %)? we obtain exactly the same order betwen the
interpretations.

1.2. Specifying weight function with weighted formulas. In the most
general case, the specification of w : I — R could involce the specification of 2" — 1
parameters. The “—1” is due to the fact that, without loss of generality we can
suppose that the “worse” interpretation is weightd —oco. However there are more
compact and easy to interpret ways to specify a weight functionf on interpretations,
one of this is by associating weights to formulas.

Let F = {w; : ¢;}_; be a multisetﬂ of of n propositional formulas the set of
propositional variables P each of which is assigned a real number, called weight.
We can use F' to define a weight function on the set of truth assignments of P as
follows:

(44) wp(I)= Y w-I(¢)
w:peF
which implies that the ordering < is defined as
I<pde Y wI@)< Y w-T9)
w:pEF w:peF
One important intuition to bear in mind is the following: For every weighted
formula w: ¢ € F

e if w; > 0 we prefer interpretations that satisfy ¢;
e if w; < 0 we prefer interpretations that do not satisfy ¢;
e if w; = 0 we are indifferent about the truth value of ~.

LA multiset is a set that can contain multiple copies of the same elements. For instance
{1,2,3,5,2,1} is a multiset, which is equal to {1,1,2,2,3,5}.
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1.3. Properties of weight function. In the MaxSAT problem the nominal
weight of a model in not important, what matters is the ordering that a certain
weight function induces on a set of iunterpretations. As a consequence the same
ordering can be obtained by different weight functions. In the following we define
the notion of equivalence between weight functions, that intuitively means that
they define the same partial order on a set of interpretations. We also introduce
the notion of a weight formula being the opposite of another weight formula with
the intuitive meaning that the order defined by the two weight funciton are one the
inverse of the other.

DEFINITION 5.1. Two sets of weighted formulas on the propositional variables
P, F1 and Fy are equivalent if they define the same order. ILe., if for all interpre-
tations I, J of P
w1 (Z) < wi(T) if and only if wa(T) < wa(T)
Two sets of weighted formulas Fy and Fy are opposite if
w1 (Z) < wi(J) if and only if wa(T) < wa(T)

PROPOSITION 5.1. (1) F is equivalent toa-F ={a-w:¢|w: ¢ € F}
fora>0;
(2) F is opposite of a - F ={a-w:¢|w:¢ e F} fora<0;
(8) FU{w: ¢} is equivalent to FU {—w : ¢}
(4) If = ¢ > 9, then FU{w : ¢} is equivalent to FU {w : ¢};
(5) FU{w; : ¢, wa: ¢} is equivalent to F U {wy + ws : ¢}

PROOF. Let use wr to denote the weight function defined by the set of weighted
formulas F. Notice that w,.p(Z) = a - wr(Z). Indeed

wor(@)= Y a-w--I(¢)

w:pEF
—qa- Z w---Z(p) = a-wp(T)

w:peEF

Property and directly derives from this fact. For property we have that
wFU{—w:ﬁqb} = ’lUF(I) —w- (1 - I(QS))

=wp(Z) —w+w-I(¢)

= Wru{w:¢} (I) —w
This implies that

WrU{w:¢} (I) < WEU{w:¢} (\.7) ~ WEU{w:¢} (I) —w< WEU{w:¢} (j) —w
E WrU{—wi-¢} (L) < WPL{—wi-g} (T)
The proof of properties (1)) and (2) are left by exercize. O

Property of Proposition states that, if we re-scale the weights of a pos-
itive factor, the order on the interpretations does not change. Instead property
(2) says that if we rescale with a negative factor then we obtaing the opposite
ordering. Property refitem:F-phi-equiv-F-—not-phi states that the weight function
obtained by inverting the weight associated to the formula and negating the formu-
las differs from a constant from the original weight. This implies that optimizing
the two weight function will lead to the same result. This property guarantees that,
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without loss of generality we can assume that all the weights are positive. Indeed
every negatively weighted formula w : ¢ can be replaced by the positively weighted
formula —w : —¢, without changing the order between the interpretations. Prop-
erty implies that, if two formulas are logically equivalent, then adding one with
a weight or the other with the same weight has the same effect. In other words the
specification of the weight function using weighted formulas is independent from
the syntactic spefication of the formula but depends only from the semantics of the
formula.

2. The MaxSAT problem

There are various versions of MaxSAT problems

e Basic MazSAT: There are no hard clauses and all the soft clauses have
the same weight (equal to 1). The solution of this problem is the assign-
ment that satisfies the maximize number of soft clauses, or equivalently
minimize the number of unsatisfied soft clauses.

o Partial MaxSAT: the set of hard clauses could be not empty and the soft
clauses have the same weight (equal to 1). The solution need to satisfy
them and to minimize the number of unsatisfied soft clauses

o Weighted MaxSAT: No hard clauses and different weights associated with
soft clauses The solution has to minimize the sum of weights of unsatisfied
soft clauses.

o Weighted Partial MaxSAT: The set of hard clauses could be non empty
and they need to be satisfied by the solution. The soft clauses can be
associated with different weight, and the solution has to minimize the
sum of the weeight of the soft clauses that are not satisfieed.

The last version os the most general version and it. If no specification is given
with the terms MaxSAT, we refer to this general formulation. In the following we
provide formal definitions of the different versions.

A general definition of the maximum satiisfiability problem is the following:

DEFINITION 5.2 (General maximum satisfiability problem). Given a partial
order (I, <) defined on the interpretations of a set of propositional variables P, and
a formula ¢, the maximum satisfiability problem is the problem of finding a model
I* of ¢ such that:

(45) T esup({l € 1| T o))

When < is a total order, then it can be specified by a weight function w : T — R,
then the problem of maximum satisfiability can be rewritten as the problem of
finding the maximum of the weighted formula, i.e.

(46) I* = argmaxw(Z)

Ik¢
The literature contains multiple definition and variants of the MaxSat problem,
that are specific cases, or can be reformulated in terms of . All the approaches
to MaxSAT assumes that weighted and hard formulas are specified in CNF. In the
following we report the various definitons. of the different MaxSAT problems

DEFINITION 5.3 (Unweighted MaxSat). Given a set of clauses C1,...,Cy, the
unweighted maximum satisfiability problem is the problem of finding an assignment
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that maximizes the total number of satisfied clauses:, i.e.,

47 I* = Z(Cy
(47) arg;naxz; (Cy)

Much studied in Theoretical Computer Science are dedicated to the MaxSat
formulation . This formulation can is a special case of the general definition
where ¢ is T and the weight function speficied by the weighted formulas 1 : Cf,

..1: C,. Tt has been proved that unweighted MaxSat is NP-complete. Even
Max2Sat, the restriction to instances in which each clause has at most two literals
in it, is NP-complete.

DEFINITION 5.4 (Weighted MaxSat). Given a set of weighted clauses wy :
Ci,...,wy, : C,, the weighted maximum satisfiability problem is the problem of
finding an assignment that mazximizes the sum of the weights of the clauses satisfied
by the assignment.

48 T* = argmax w; - L(C;
(48) &n Z (C)

DEFINITION 5.5 (Partial MaxSat). Given a set of clauses Cy,...,C,, called
soft clauses, and a second set of clauses D1, ..., D,, called hard clauses, the par-

tial maximum satisfiability problem is the problem of finding an assignment that
satisfies the hard clauses and that mazimizes the number of satisfied soft clauses:

(49) 7" = argmax ZI(Ci)

I=D;....Dy <

DEFINITION 5.6 (Partial weighte MaxSat). Given a set of weighted clauses
C1,...,Cy, called soft clauses, and a second set of clauses D1, ..., D,, called hard
clauses, the partial maximum satisfiability problem is the problem of finding an
assignment that satisfies the hard clauses and that maximizes the sum of the weight
of the satisfied soft clauses:

(50) I* = argmax sz -Z(Cy)

Inspite of the different definition each of the formulation can be rewritten in
terms of the others and in particular a general MaxSat problem can be rewritten
(in polinomial time) in an equivalent unweighted MaxSat problem.

This can be donw in the following way:

PROPOSITION 5.2. Let {D;} and {w; : C;} be a set of hard and soft clauses
respectively.

(1) Let & be the the smallest value |w; — w;| different from 0, otherwise let
0= wy;

(2) Letv; = [%]

(3) letv' =5, v;+1

(4) let C be the multiset of clauses that contains v* copies of each hard clause
and v; copies of each clause v;.

1 is the solution of the partial weighted mazimum satisfiability problem if and
only if T is the solution of the unweighted maximum satisfiability problem on
C and I = D where D = \, D;.
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PROOF. By exercize. Hint. First show that if Z £ D and j E D then
w(Z) < w(J). Then show that Then show that if Z = D and J = D, then
w(Z) < w(J) if and only if the number of clauses in C satisfied by Z are less then
the number of clauses satisfied by J. O

3. MaxSAT exact algorithms

There are different approaches to solve the MaxSAT problem. They can be
classified in exact algorithms, which provide an exact solution to the problem, and
approximated algorithms, which guarantees only sub-optimal solutions. All the
algorithms assumes that weighted formulas are clauses. In this section we will
present some of the basic algorithms of the first categori. Inside this category we
can distinguish three main apporaches:

Branch and bound algorithns;
Transformation into Integer Programming;
Algorithms that use SAT as oracle;
Algorithms based on implicit hitting sets.

In the following section we introduce the basis of each of the above categories.

3.1. Branch and Bound. Branch and Bound (B&B) algorithms explore the
search tree of all partial assignments for the soft and hard clauses, in a depth-first
manner, in order to find the interpretation thas satisfy all the herd clauses and
maximizes the weight of the satisfied soft clauses. For every interpretation, Z let
loss(Z) is the sum of the weights of the clauses that are not satisfied by Z. Solving
the MaxSAT problems coincides to find the interpretation Z that minimizes loss(Z).

Let us start by introducing a base algorithm that performs an exhaustive search
of all the assignments that satisfies the hard clauses and select the one with min-
imal loss (or equivalently maximal weigh). The search lgorithm for MasSAT can
be obtained by modifying the DPLL decision procedure, which searches for any
assignment that satisfies a formula ¢, so that it does not stop when one model of

¢ is found, but it continues to search other models of ¢. The pseudocode is shown
in Algorithm

EXAMPLE 5.4. Let us see with a simple example how the algorithm works.
Consider the following sets of hard and soft clauses:

2:{A,-B}
[ ABo) {-
¢>—{ {-A,-B,-C} } v 2}31,4;5%

Aa possible expansion of the search tree of the max-DPLL procedure is showin in
Figure [J} Notice that the best assignment, is the one with minimal loss which is
equal to 2. In the tree we choose the literals = A, =B, and —C' in this order.
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Algorithm 5 MAX-DPLL(¢ : CNF, ¢ : weighted CNF, Z : Partial assignment,)

1: Z,$,1 < UNITPROPAGATION(Z, ¢, ¢))

2: if {} € ¢ then

3 return 7, 0o ¢

4: end if

5: if ¢ = {} and 1 contains only empty weighted clauses then

6: return 7,3, oyey W

7: else

8: select a [ from a clause in ¢ or in ¥

9: 7, loss < MAX-DPLL(®|;, ¥|;, Z U {l})
10: T’ loss' + MAX-DPLL(o|;, ¥, Z U {I})
11: if loss < loss' then
12: return Z, loss
13: else
14: return 7', loss’
15: end if
16: end if

{A,B,C}
¢:{{“A7 jB’jC}}
{2;{A, ﬁB}}
= 3:{-4,C}
/ 4:{B,-C} \
¢>LA:{{QB{, CB}’]]: (Z"A:{{;{BC:;C}}
Vl-a= 42{3,@}} 1/"*‘:{4;{3,@}}
B x -B x
éla-~p={}
¢l-a-5={{C}} ¢l-a.5={} ’ . ¢la.s={{-C}}
Ul -ap={d: (-C}} =20} |vla-a={i% } Wlas={3: (C}}
c - c -C
Bl-a,-B.0={} Bla~-c={} Bla-pc={} bl a,B,~c={}
Yl-a,-pc={4: {}} Yla-B-c={3:{}}| [¥la-pc={4:{}} la,-c={3: {}}
loss = —2
loss = —4 loss = —3 loss = —4 loss = —3

FIGURE 4. The search tree of the max-DPLL procedure

The MAX-DPLL algorithm recursively performs a depth-first visit of the tree
of the partial assignments to the propositional variables of the input, searching
for the assignment that minimizes the loss. MAX-DPLL takes in input a partial
assignment, which is empty in the first call, a set of hard clauses ¢ and a set
of soft clauses with the associated weights. MAX-DPLL starts by applying unit
propagation (line [I) only on hard clauses, This means that, for all {I} € ¢ the
current partial assignment Z is extended with {l} and ¢ is set to ¢|; and 3 to
¥|;. UNITPROPAGATION repeatedly applies this reduction until ¢ does not contain
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any unit clause. Then, if the set of hard clauses contains an empty clause (i.e., the
current assignment does not satisfy the hard clauses), then MAX-DPLL returns the
current partial assignment Z with infinite loss (line , In this situation the infinite
loss has the effect that this solution will be the worse possible from the minimisation
point of vies, and any other solution with finite cost would be preferred to it. If
instead (line [5) the set of hard clauses are empty (i.e., all of them are satisfied by
the current partial interpretation Z) and the soft clauses contains only empty (i.e.,,
unsatisfiable) clauses, then the MAXSAT-DPLL returns the current interpretation
with its cost, which is the sum of the weight of the soft clauses, which are all empty,
and therefore they are not satisfied by Z. Otherwise, i.e., if there are hard clauses
that need to be satisfied, and soft clauses that could be satisfied, (i,e, if C € ¢ for
some non empty C and w : D € 9 for some non empty D), the algorithm computes
the solutions that contains the current assignment extended with [, (line [9)) and
with [ (line [10)) for some literal I, and choose the one of minimal cost (lines

The MAX-DPLL algoritm is not very useful in practice as it potentially visits
the entire tree of all the partial interpretations, which is exponentially large, w.r.t.,
the size of the input clauses. One should find some criteria for early stopping the
search when there is some evidence that this will not lead to any better solution.
Suppose that MAX-DPLL has already found a solution Z with loss equal to . Then
every assignment with loss greater than x are not solutions of the maxSat problem.
This means that x acts as an upper bound on the cost of the solutions, let denote x
with UB. If MAX-DPLL is expanding anothe partial interpretation Z’. Let LB be
the minimal loss of all the assignments which are expansions of Z'. A naive wey to
find a value for LB is by summing the weights of the soft-clauses not satisfied by Z.
If LB > x, then the loss of any extension of Z’ will have cost larger or equal to z,
and they will not be better than the solution Z already found which means that we
can stop expanding Z’ and look to other alternative partial interpretations. This
idea is implemented in the Branch and Bound algorithm shown in Algorithm [f]
Algorithm B&B takes in input two additional parameters than MAX-DPLL which

Algorithm 6 B&B(¢: CNF, : Weighted CNF, Z: Partial assignment,
Zyp: Best previously found solution, UB: Cost of Zyp)

1: Z,¢$,% + UNITPROPAGATION(Z, ¢, 1))

2: LB < LOWERBOUND(¢, 9)

3: if {} € ¢ or UB < LB then

4: return Zyp, UB

5. end if

6: if ¢ = {} and ¥ contains only empty weighted clauses then
7: return 7,3, pycy W

8: else

9: select a [ from some clause in ¢ or in
10: Z,UB < B&B(o), ¢, ZU{l}, Zyp, UB)
11:  I',UB' + B&B(¢|, ¥|, ZU{l}, Iy, UB)
12: return 7', UB’

13: end if

are the best solution found sofar Zyp and its loss UB. B&B proceeds as MAX-
DPLL with the only exception that it first computes a lower bound of the current
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partial assignment (line ??) and checks it it is larger than than the loss of the best
solution found until now (line ?7?). In this case the previous solution is returned.
The first call of B&B is done with the empty interpretation Z, and Zyp and the
infinite cost UB = oc.

The simplest way to compute the lower bound of a partial interpretation is by
summing the weights of the empty clauses in ¥. i.e.,

(51) LOWWERBOUND(¢, ¥) = Z w

wi{}ey
Later we will see more sophisticated algorithm that compute higher lower bounds
and therefore that prevents B&B to explore larger parts of the search space. For

the time being, let us see an example of B&B with this simple method of estimating
lower bound.

EXAMPLE 5.5. Consider the following set of hard and soft clauses with relative
weight (hard clauses are labelled with infinite weight).

(maVbVe: o) (a:1) (c:3)
(mbVvd: o) (b:2) (d:2)
(=d V —a : o)

3.1.1. Lower bound computation. One step forward w.r.t., can be done
by incorporating an underestimation of the sum of the weights of clauses that
will become unsatisfied if the current partial assignment is extended to a complete
assignment.

EXAMPLE 5.6. Suppose that ¢ contains the two weighted unary clauses w : {x}
and v : {—x}. This implies that every assignment for ¢, will falsify one of the
two clauses. Therefore, the loss for ¢, will not be less then min(w,v). A little
more complicated example is when v contains multiple pairs of contradicting unary
weighted clauses.

wq {1’1},’01 : {_|£C1}
wa {:L‘g},?)g : {—|x2} g 1}[}

Wy, {xn},on : {xn}
then every assignment for ¢, will falsify one of the two unary clause for every
pair. Therefore a lowerbound for the loss is therefore equal to:

n
Z min(wi, Ui)
i=1

Finally suppose that ¢ contains the hard clause {a,b} and 1 contains the two
weighted unary clauses w : {—a} and v : {=b} Then every assignment that sat-
isfy ¢ will not satisfy one of the two weighted unary clauses, which implies that the
loss will be at least min(w,v).

The following method to find a lowerbound for the loss of a maxSAT problem
¢, is a generalization of the previous example and uses a SAT solver as an oracle.
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I=ZIyp=1{}, UB=o0

—aVbVc: oo
-bVd: oo
—dV -a: oo
(1) a:1
b:2
c:3
d:2
I ={a} Z={-a}
bVe:oo
—bVd: oo ﬂbv{‘}jj‘l’o
=d : oo ’
(2) b2 (4) b:2
6:3 c:3
d:2 d:2
7 ={—a,b
T = {a,=b,c,~d} et}
d: oo
12 01
(3) H:2 (5) {};:3 LB > UB
d:2
[T ={~a,b,d}
Zyp = {a, b, c,~d} {}:1
UB=2 (6) c:3
Z {mab.c,d}
LB > UB

Zyp = {—a,b,c,d}
UB=1

FIGURE 5. Exploration tree of the B&B algorithm for the hard
and soft clauses of Example Nodes are labelled in order of
expansion. B&B find the first solution at node (3), the cost of
this solution is 4. Therefore Z;; g is set to be this solution and the
UB (upper bound cost) is set to be 4. Then the algorithm find a
second solution at node (7) whose cost is equal to 1 smaller than
UB. Therefore Zyp is set to this new solution and UB is set to
1. Successively the B&B reaches the node (8), which does not
correspond to a solution. but the solutions that are derivable from
the partial assignment at this node will have a cost higher or equal
to 3 (the sum of the costs of the two empty soft clauses) which is
higher than the current UB and therefore B&B stops and returns
IUB and UB.

Suppose that 1 contains n disjoint subsets ¥1, ..., %, and each {C | w : C € ¢¥;}U¢
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is not satisfiable, then

n
(52) LOWERBOUND(¢, ) = min w

P w:CEY;
Indeed notice that every assignment that satisfy ¢ will not satisfy at least one clause
in each ¢;. Since we don’t know which of the clauses of ¢; will be falsified, we can
only infer that the loss will be increased with the minimum weights among those

of the clauses in ¢;. Notice that is a special case of .

EXAMPLE 5.7. Consider the set of hard and soft clauses:
1:{a,—-c} 2:{—a,c}
a,b
o={ % Y= 330~} 4{-bc}
’ 5:{c} 6:{—c}

1 contains the following two disjoint sets of weighted clauses

1:{a,~c} 2:{—a,c}
¢1 = 32{[), _|C} dJQ = 41{“[), C}
5:{c}exercize 6:{—c}

such that, if we extend their unweighted version with ¢, we obtain the following two
sets of clauses

{a,b} {a, b}
{_'aa _'b} {_‘av _‘b}
{a,—c} {—a,c}
{b, ¢} {=b, c}
{c} {—c}
which are both unsatisfiable. This means that every assignment does not satisfy at
least one clause in Y1 and one in Yy. This implies that the minimum value of the
loss of any assignments for ¢, is 1 + 2 = 3 which is the sum of the minimum
weights of the clauses in 11 and 5.

3.1.2. Literal selection. One of the key aspect of the B&B algorithm is the
literal selection performed on line [9] Selecting the “right” literal will avoid the
expansion of many parts of the search tree and go straight to the maxSAT solution.
For instance in figure p|if the algorithm would have selected —a instead of a in the
first branching it would have reached the solution straightaway without expanding
the subtree on the left (the one under the selection of a). Most of the exact MaxSAT
solvers incorporate variable selection heuristics that take into account the number of
literal occurrences in such a way that each occurrence has an associated weight that
depends on the length of the clause that contains the literal. MaxSAT heuristics
give priority to literals occurring in binary clauses instead of literals occurring in
unit clauses as SAT heuristics do. Things are getting to technical and detailed here.
So I decided to stop here with this topic. For those interested in the argument you
can check works like Mohamedou and Planes 2009,

3.2. Core based algorithm. Core based algorithms for maximum satisfiabil-
ity uses a SAT solver as subrutine. The main idea behind the core based approaches
is the following:

If ¢, 1 is satisfiable then any interpretation Z that satisfies ¢» and ) is a solution
of the MaxSAT problem with cost equal to 0. If ¢, the ideas is to weakening the
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soft clauses ¢ (by adding literals to some of the clauses in ¥) but at the same time
impose some additional constraints by extending the hard clauses, requiring that
the added literals will be minimally true. Then check the satisfiability of the new
MaxSAT problem. Let us see a concrete example on how this works:

ExXAMPLE 5.8. Consider the MaxSAT instance:

{p,q} 1:{p}
¢=q{-p -} ¥ =4 1{q}
{=q,—r} 1:{r}
Notice that the union of ¢ with (the unweighted version of) v is not satisfiable.
Which implies that a solution of this simple MaxSAT should not satisfy at least
one of the soft clauses. The idea is to weaken the soft clauses so that they become
satisfiable and add a constraint that states that only one of them can be falsified.
To weaken a soft clause C we can add a fresh atom b obtaining CU{b}. In our
example we have

1:{p, bl}
1 =< 1:{q, b2}
1:{r, b3}
and then add the constraint that at most one among by, by and by can be true. Le.,
Z?:l b;. The new MaxSAT problem becomes:

{p.q¢}

- = 1:{p,b1}

o) = LZ’Q ph) = 1:?1,1)2}%
’ 1:{r. b

Z?:1 bi<1 e

Notice that every interpretation I that satisfies 1) and the unweighted version
of ¥ must satisfy at least one b;. Otherwise the initial ¢ U 1) would have been
satisfiable. In other words b; being true indicates that the initial i-th clause can be
falsified. Furthermore it T is a solution of the MazSAT problem ¢ M) it will
also be a solution of the initial MaxSAT problem with a cost augmented of one unit.
In this simple case we have that ¢V U () is satisfiable, by the assignment:

p:1 q:() r=20 61:0 b2:0 63:1
which contains a solution of the initial MarSAT problem, with cost/loss equal to 1.
One can minimize the number of soft clauses to weaken by adding new variable,

by considering only the minimal set of weak clause 1)’ such that ¢Uv)’ is inconsistent.
In the example we have two alternatives such a minimal sets.

‘i) =)

We can consider one of the two subsets and proceed as before by adding two new
variables by and be (instead of 3) obtaining the set of hard and soft clasuses:

{p,q}

_ {=p,—r} _ [1{p,b1}
¢(1) - {—|q7—vr'} w(l) {1:{7“, bQ}}

2
Zi:l bi <1
The pair ¢ U 1) s satisfiable with the same assignment as before, with the
exception of the assignment to bs.
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Now let us generalize the above example. We first define the notion of core.
Given a set ¢ of unsatisfiable clauses a core is a subset ¢’ of ¢ such ¢’ \ {C} for

Core of a set of

every C € ¢' is consistent. In other words, a core is a minimally inconsistent set of clauses (Exercize @

formulas. such that if we remore one formula from it we are left with a consistent
set of formulas.

EXAMPLE 5.9. The core sets of the set of clauses

{{av b}v {ﬁaﬂ ﬁb}» {a}v {b}, {_‘a}7 {_'b}}

are the following:

Hah {ma}y {01 {70} {{a, 0} {ma}, {03} {{~a, b} {a}, {b}}

Notice that all the above subsets of the given clauses are not satisfiable, but removing
one clause from each of them results in a satisfiable set of clauses.

SAT solvers are such that, when they are called with a a set of clauses ¢ which
are inconsistent, they return UNSAT, and in addition they return a core set, i.e. a
minimally inconsistent subset of ¢. The Fu and Malik MaxSAT algorithm exploit
this feature of SAT solver in order to solve the MaxSAT problem.

The Fu and Malik algorithm for MaxSAT, originally proposed by Fu and Malik
2006, uses the SAT subrutine; when it is called with a set of clauses ¢, it returns a
pair x,y where x = SAT and y = 7 if ¢ is satisfiable and Z is an interpretation of
¢. or the pair x = UNSAT and ¢’ is a core set. In the following, we consider the
special case in which the weights of the soft clauses are equal to 1. Extensions of the
algorithm for more general formulations of MaxSAT can be found in Manquinho,
Marques-Silva, and Planes 2009,

Algorithm 7 Fu and Malik MaxSAT algorithm

Require: ¢ set of hard clauses; v set of soft clauses with weight = 1
: xz,y  SAT(¢);
if x = UNSAT then
return oo, None
end if
cost + 0
while True do
z,y  SAT(p U )
if x = SAT then
9: return cort,y
10: else > x = UNSAT, y is a core for ¢ U
11: B=90
12: for C € yNy do > C' is a soft clause that appears in the core y
13: b < new propositional variable
14: C + CuU{b}
15: B+ BU{b}
16: end for
17: end if
18: ¢ pU{>,cpb <1}
19: cost < cost + 1
20: end while
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ExaMPLE 5.10. Consider the set of hard and soft clauses ¢ and 1.

¢ = {_‘xla _‘$2}, {_‘1'1, _‘.1:3}, {_‘.1317 _‘x4}a {_‘1'2, _‘.133}, {_‘.1327 _‘Z‘4}, {_‘1‘3, _‘.’134}

v=1:{x1}, 1:{z2}, 1:{xs}, 1:{xs}

e Since ¢ U1 is not satisfiable, then the call to SAT(¢ U ) returns © =
UNSAT andy a core set of p U;
e Suppose that the returned core set is the following:

y = {—x1, ~w2}, {21}, {72}

there are other core sets, but the result of the algorithm is independend
from which core is returned by the sat solver.

e The two waighted clauses {x1}, {x2} are extended with two new proposi-
tions by and by respectively and the clause by +ba < 1 (which is equivalent
to {—by,—ba} is added.

o the cost is set to 1.

e Therefore we ontain the following new set of hard and soft clauses

¢ :{ﬁ$17_'x2}’{_'xlvﬁxS}a{ﬁxla_‘x4}’{_'x27_‘z3}7{_‘x%_‘x4}7{_'x37_'x4}7
{=b1, b2}
Y =1:{x1,b1}, 1:{xa,ba}, 1:{zs}, 1:{xs}

o The new set of clauses ¢ U is also inconsistent, and a possible core is

{m@2, ~wa}, {xs}, {2}

e the cost is set to 2.
o We proceed as before obtaining the set of hard and soft clauses

¢ :{ﬁ.'lfl, ".’L’2}7 {"xla ﬁ:L‘?)}7 {ﬁxla "J]4}, {"1'27 ":E?)}a {"CEQa ".’11‘4}, {".’1,'37 “1‘4},
{_‘b17 _‘b2}7 {_‘b?)a _‘b4}

Y =1:{wy, b1}, 1:{w2,bo}, 1:{ws,bs}, 1:{xy,ba}

e the new set of clauses are not satisfiable and the only core is the set itself.

e the cost is set to 3;

o FEvery soft clause is therefore extended with a new variable. Since there are
four soft clauses in the core, we introduce four new variables bs, ..., bg.
And we also add the hard clause bs + - - - + bg < 1 obtaining the following
set of clauses:

gb:{ﬂxl,—'xg},{—wl,ﬂxg},{ﬂxl,—|x4},{—|x27—|x3},{—|x2,—|m4},{—|m37—|x4},
{=b1, —ba}, {—b3, ~bs}
Y =1:{w1,b1,b5}, 1:{x2,b2,b6}, 1:{x3,b3,b7}, 1:{x4,b4,bs}

which is satisfiable.
e Therefore the algorithm terminates.

We have to prove that the algorithm terminates.
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PRrROPOSITION 5.3. The algorithm Fu and Malik terminates for every input of

b, 0
PRrROOF. to do 0
3.3. Pseudo Boolean Optimizatiom. A Pseudo-Boolean function is a func-
tion f0,1™ — R. This type of function have beenn tudied since the ’60s in oper-
ations research in integer linear programming Boros and Hammer [2002. One can
consider also restricted versions, where f is represented in a polynomial of a given
degree; f is represented as linear form, polinomial of degree 1;

A pseudo-boolean constraint is a constraint defined on a pseudo-boolean func-
tion f.

EXAMPLE 5.11. Let f(x1,...,xy) be the linear pseudo-boolean function .| ;.
An example of constraint on f is

n
i=1
for some integer k, which corresponds to the cardinality constraint “at most k”

introduced in the previous chapters.

DEFINITION 5.7 (Pseudo-Boolean optimization). A pseudo-Boolean optimiza-
tion is the problem of finding a boolean assignment to the variables x1, ..., x,, that
satisfy the following:

n
Minimize Z CiT;i
i=1
n
Subject to Z a;; Ty < b Vi=1,...,m
j=1
where a;,b;,c; € 7.

[Section to be completed]

4. Solving problems with MaxSAT

4.1. Minimal path. Find shortest path in a grid with horizontal/vertical
moves. Travel from S to T without enter in the black squares
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(53) Po,5,5 + O
22
(54) \/ Di2,5 - OO
i=1
5 5
(55) /\ Pirc = \/ Di+1r’ et | + OO
(T,ZS;:(;,S) \(7',0)7;/23':'ii’)|:1
22
(56) /\(ﬁpi,m A =pian A TPiaa) 1 00
i=1
(57) Pire 1
4.2. Optimal correlation clustering. The problem of optimal correlation
clustering can be formulatecd as follows: Given a set of n points V' = {vq,...,v,}

and a symmetric similarity function s : V- x V' — {0,1} (such that s(v;,v;) =1
(resp. 0) means that v; is similar (resp. dissimilar) to v;), the problem of optimal
correlation clustering is the problem of partitioning V in a set of cluster C =
Cy,...,Cy for some (unknown) k > 1 such that the global correlation G(C) is
minimized:

GO = Y  (A=stwio)+ Y s
vi;é'u]-EV vi#'UjEV
cl(vy)=cl(v;) cl(vy)#el(vy)

where cl(v) = i means that v € C;.

A MaxSAT formulation of the optimal correlation clustering problem is based
on a set of indicator variables x;; , where 7 < j, with the interpretation that x;;
is true if points v; and v; are put in the same cluster. Using this variables we can
formulate the following hard and soft clauses

Hard clauses:: for every i < j < k
X5 V Tk V Tk Ty V T V Tk
Soft clauses:: for every ¢ < j
Tij - 1 If s(vi,vj) =1
iy - 1 If S(’Ui,’Uj) =0
The first hard clause states that, if v; and v; are put in the same cluster and v; and
vy are also put in the same cluster then v; and vy must be put in the same cluster.
This clause is the CNF form of transidivity: x;; A ;i — ;. The second hard
clause has similar meaning; it corresponds to the euclidean property of a relation
xij N\ T — xji. Notice that clustering is a special type of equivalence relation
and therefore it is both transitive and euclidean. We don’t need symmetry and
reflexivity because for ¢ < j x;; and x;; are not propositional variables. Soft clauses
mimic what happens in the cost function G(V). Notice that if v; and v; are symilar
(i.e., s(vi,v;) = 1) and they are assigned with different clusters, i.e., z;; is false,
then the cost of the interpretation is increased by 1. This corresponds to the term
s(v;,vj) of the second summation of G(V). Vice-versa, if two points v; and v; which
are dissimilar (i.e., v(v;,v;) = 0) are put in the same cluster, i.e., z;; is true then
the cost of the interpretation will increase by 1, These corresponds to the term
1 — s(v;,v;) (which is equal to 1) of the first summations of G(V)
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FIGURE 6. Two examples of binary trees with 7 nodes. Notice
that the maximum depth of a binary tree with 7 nodes, is 75—1 =3.
Therefore we define B all the 0/1 strings of length less then or equal

to 3. B indicates all the potential nodes of a binary tree.

Notice that the solution Z of the MaxSAT problem does not provide directly the
mapping of the v; to the clusters. One has to derive such a clustering from the truth
assignments of x;;. This can be easily extracted by the following procedure; Let C =
{{v1},{v2},...,{vn}} be the initial clustering, and x12,...,Z1,n,%23, .-, Tn—1n
be an enumeration of the propositional variables, Then iterate on the elements
of such a list, and at any step revise C as follows: If you are analyzing x;; and
Z(x;;) = 1, and v; € Cy and v; € C, in the current clustering and r # ¢, then
rmove C; and C,. from V and add C, U C,..

5. MaxSAT for machine learning

5.1. Learning optimal decision tree. Let {w(i),y(i)}jzl be a dataset that
we use to train a classifier for a class C. Suppose that (V) is a vector (z1,...,z)
of boolean features and that y(*) is equal to 0 if the i-th individual doesn’t belong
to C' and 1 otherwise. Our goal is to construct a binary decision tree for the class
C with at most n nodes. To cast this task in a MaxSat problem, we proceed in
two steps, First, we formalize binary trees with at most n nodes in propositional
logic. Successively, we associate to the internal node of the tree the corresponding
features.

Let us start by formalizing binary trees in propositional logic. Before doing this
let us see how a binary tree with n nodes looks like. Figure 77 shows two examples
of binary trees with 7 nodes. To identify all possible nodes of a binary tree we use
0/1 strings, as follows. Suppose we want to consider a binary tree with at most n
nodes. The maximum height of a binary tree with with n nodes. is H = % Let
B be the set B = UhHZO{O, 1}". Intuitively B is all the potential nodes of a binary
tree with n nodes. However we have to select only n elements of B. A binary tree
can be seen as a non enpty subset of T' C B closed under substring. More formally
T C B is a tree iff

(1) € € T where € is the empty string
(2) Forallbie B,bie T=beT

The above conditions can be easily formalized in propositional logic. Let wvp; for
b € B and i € {0,1} be a propositional variable indicating that the node b belongs
to a binary tree T. For unifromity of formalization we add an extra depth step
H + 1 but we require that nodes with labels of length H + 1 never belong to T.
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The above conditions can be formalized as follows:

(58) Ve
(59) Ubi — Up forbe Band i€ {0,1}
(60) U for b€ B and i € {0,1} with [b| = H

Since we want a tree to be perfectly binary we have to guarantee that every
node has either no children or two children. This can be formalized as:

(61) Vpo < Upl

We can now pass to the second step in which we associate to each node b € T’
one of the k features. To represent which feature is associated to which node we
introduce the set of propositional variables v{: that codifies the fact that at node

b we take the decision looking at feature f. We also want that only one feature is
associated to internal nodes. This is formalizable by the axiom:

(62) Vp A Up; — Zv{) =1
f

Every propositional assignment that satisfies the above axioms identifies a unique
binary decision tree with n nodes. We are only remained with the problem of
formalizing in propositional logic how an item x’ is classified by such a binary tree.
To this aim we introduce the propositional variabels ng) that indicates that the
i-th item is classified in a subtree of the node b. We can formalize the decision
taken at each node of the tree, by the following set of formulas:

in) Every element is classified under the root node
()

bz f

(xgi) If an is classified in b and the value of the fea-
ture associated to is 4, then such item is classified
under bi

At this point you have to maximize the following measure

/\vg)<—>x

(2" A —ps) A (Cp > y®)

5.2. Training Binary Neural Networks. [to be done]
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6. Exercises

Exercise 76:

Given a list of numbers a4, . .., a,, formalize in propositional logic all the possi-
ble ways to split them into two sets. Then define a weight function that is maximal
when the sums of the numbers in each set are as close as possible.

Exercise 77:

Define the weight functions that realizes the following total order on the inter-
pretations of the propositinal variables P = {A, B}

(1) {3 <{A} <{B} < {4, B}

(2) {} <{B} <{A} < {4, B}
(3) {} <{A,B} < {A} < {B}
(4) {A, B} <{A} <{} <{B}
(5) {A} <{B} < {4, B} < {}

Exercise 78:

Prove the following facts:
(1) If = ¢ <> ¢, then FU{w : ¢} is equivalent to F U {w : 1};
(2) FU{w; : ¢, wy: ¢} is equivalent to F U {wy + ws : ¢}

Exercise 79:
Prove that FU{w : ¢V} is equivalent to FU{w : A, w : "dpAY,w : gAY}

Exercise 80:
Suppose that w < v, Prove that FU{w : ¢,v : ¢} is equivalent to FU{v—w :
-}

Exercise 81:

Let P be a set of n propositinal variables, and let w : 27 — R be a generic
weight function. Define an algorithm that extract a set of weighted clauses F' such
that wg is equivalent to w

Exercise 82:

Consider the set of strings that you can build with the letter A, B, C, and
D. Define a propositional language such that everty interpretation correspond to
a string and define a weight function that orders the strings (or equivalently the
corresponding interpretations) lexicographically.

Solution Let us first define a set of propositional variables that we can use toi
describe the finite strings composed of the letters A, B, C, and D. For every
natural number n € N, we introduce the propositional variables A,,, B,, C, and
D,,, where z,, for x € {A, B,C,D} means that the letter the n-th letter of the
string is an .

Then we have to add axioms that restricts the set of interpretations to those
corresponding to strings.
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(1) There must be at most one character at position n. This can be encoded
either by a cardinality constraint AtMost(1,{A4,,, By, Cy, D,}) or by ex-
plicit representation:

(63) (A, ABp) —(A.NC,) —(A,AD,) —(ByaAC,) —(BnADy)

(2) The second constraint states that, if in position n there is a character
then there should be a character also in position n — 1 i.e., we doin’t have
strings with “blanks” in the middle. This cen be formulated wiith:

(64) (Ans1V Bpi1VCri1V Dpy1) = (A VB,V C,V Dy)

Notiche that every string zyxs,. .., x,, with z; € {4, B,C, D} can be mapped to
an interpretation that makes z; true and y; false for eveyr y # =z, and y; false
for every y € {4, B,C, D} and j > n. Therefore for instance, the string ABAAC
corresponds to the interpretation Zapaac = {A1, Bs, A3, A4, C5}. Notice that
the interpretation Z,,,,. ., corresponding to the string xixs...x, satisfies the
axioms and . Furtermore, every interpretation that satisfies these axioms
corresponds to a (possibly infinite) string.

Let us now define a weight function that allow to order the interpretations that
satisfies and lexicographically. Le., w(Zyy 2. 2,..) < W(Zy1ys..ynm...) if and
only if there is a k such that x; < yx and xj, = y;, for all h < k.

We define our weight function by associating a weight to each propositional
variables and defining w(Z) = 3_ 7 w(p)

w(Ay)=1-10"" w(B,)=2-10"" w(C,)=3-10"" w(D,)=4-10"

For instance we have the following weights:

w(Za) = 0.1
w(Zag) = 0.1+ 0.02 = 0.12
w(Zp) =0.2
w(Zpa) = 0.2+ 0.01 = 0.21
w(Zc) =0.3
w(Zp) =04
w(Zppppppp...) =0.4+0.044+0.004 + ... =04

O

Exercise 83:
Find all the cores of the following set of clauses.
(1) {av b, C}a {a7 b, d}7 {_'a}a {_‘b}v {_'C}7 {_‘d};
2) {_'av b}v {_'b’ 0}7 {_'C’ d}ﬂ {_‘dv e}ﬂ {aa —b, _'d};
) {a},{—a},{b},{=b}, {—a,b},{a, —b};
) {—a,b,c}, {=b,~d}, {—c,d}, {a,d};
) {zi |ie I}, {z;|je J}, forsome I,J C{1,...,n}, with INJ =0 and
the set of clauses {—z;, ~x;} for every i < j € {1,...,n}.

(

(3
(4
(5

Exercise 84:
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Use B&B algorithm to solve the following maxSat problem

Solution

Z={-a,~b

w©
—~
—
=W

Zyg = {—a,

UB=1

Exercise 85:

—-b}

(maVdVe: o)
(=bV —e:00)
(=d V —a : 00)

(aVe:3)
(b:1)

I=Iyp={}, UB=0o0

—aVdVe: oo

=bV —c: oo
=dV —a : oo

aVc:

— N - e

Z={-a

—bV —e

Qo oo

>—-w»~;»:a8

I ={-a,b

4

{=c}:00:

Lo o

[V}

UP —¢, I = {~a,b,~c}

LB=3+2>UB

&
b
fer
d

— N =W

(c:2)

(d:1)
{a}

dVe: oo
=bV —c: oo
—d : 00
b:1
@32
d:1

UP on ~d,Z = {a,~d}

c: o0
—bV —c: o
b:1

c:2
{}:1
LB=1>UB

In the Fu and Malik algorithm for MaxSat, explain what is a minimally in-

consistent set of clauses.

minimally inconsistent set of three clauses.

And provide an example of four clauses, which has a
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Solution Given a set of clauses S = {C,C5,...,C,} a minimally inconsistent
subset of clauses of S is any subset S’ of S such that S’ is inconsistent, and for all
C eS8\ {C} is consistent.
For instance consider the set of clauses
S= {{Av B}7 {_'A7 _'B}a {A7 C}a {Bv C}v {_'Av _‘C}a {_‘Bv _‘C}a {C}}
Then the subset
S = {{Aa B}v {_‘Av _'C}v {_'Bv _‘C}v {C}}

is a minimally inconsistent subset of S. Indeed if we remove from S’ any clause we
can find always an interpretation. Indeed notice that

S\ {{4,B}} = {{-A,-C},{-B,-C},{C}} Is satisfied by A= F,B=F,C =T
S"\ {{-A,-C}} = {{A, B},{-B,-C},{C}} Is satisfied by A=T,B=F,C =T
S\ {{-B,~C}} = {{4, B}, {—A,-C},{C}} Is satisfied by A=F,B=T,C =T

S'\{{C}} ={{4,B},{-A,-C},{-B,—-C}} issatisfiedby A=T,B=T,C=F

]

Exercise 86:
Consider the following set of formulas

weight : formula
x:p =A< (XAYANZ)
©:pa=B (YANTAW)
0:p3=C+ (TAV)
00 ¢pg=-"AN-BAN-C

NS E N

Find an assignment that minimizes the cost. Remember that the cost of an assign-
ment is the sum of the weights of the clauses that are not satisfied by the assignment
Solution

var A B Cc XY Z wW Vv T (Z)l (152 ¢3 ¢4

Zwar)|O 0 0O 0 1 1 1 1 0 1 1 1 1

cost o 0o 0 1 0 0 O O 6 0O 0 0 O
cost(Z) =1+ 6 =7 A different model with the same cost is:

var A B C XY Z W VT ¢1 ¢2 ¢35 ¢a
Z’waer){O 0 0 1 0 1 1 0 1 1 1 1 1
cost o 0 06 0 20 0 5 0 0 0 0 O

cost(Z'y=2+3=70 Exercise 87:

Suppose that you have to place m queens in an n x n chess board, with m < n?.
Every queen i can be placed in p(i) = (z;,y;) with 1 < z;,y; < n, so that it cannot
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be “eaten” by any other queen. Encode the problem of finding the configuration
that maximizes the total distance between the items, i.e.,

> (@wi—w) 4 (i —y;)”

1<i,j<m

Exercise 88:
Thransform the following MaxSat problem in and Integer Programming prob-

lem
00 :a <> —b
2:aN—-b—r
3:bA—-a—r

Solution Since we have two weighted formulas we introduce two new propositional
variables b; and by and transform the clauses in the following integer constraints:
1<a<1
1<bh<1
1<r<1
a+b=1
0<b <1
0<b <1
by +(l—a)+b+r>1
R2+1-b+a+r>1

with the cost function: 2by + 3by. [

Exercise 89:

Suppose that you hae R rectangles ri,...,rr, where each rectangle r; has
dimensions (wj;, h;), with w; and h; natural numbers. Suppose that you have to
arrange them inside an n X n square so that they don’t overlap. Provide a MaxSat
formulation of the problem of funding the smallest n for which theis is possible.

Solution To explain the general solution, let us consider an example with the
following four rectangles:

o = (3, 2) r3 = (2, 2)

r=(4,1) rq= (1,

Without loss of generality we can assume that w; < h;. Let N = max(}_, h;, max; wj).
Notice that it is always possible to arrange the rectangles in an N x N square by
stacking them, as shown in the following picture.
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rqy=(1,[)

<
w
I
—~
N
[\
~

T9 :(3,2)

7‘1:(4,1)

——— max; w; ———|

However this is not the optimal placement. An optimal placement would be, for
instance, the following:

T4
T3

Il T1

T2

——n=4—

Let us formulate the problem to find such an optimal placement as a MaxSat
problem. n We first provide the set of hard constraints that must be satisfied by
every solution of the problem (not only the optimal ones). We use the propositions
H(i,j, k) and V (i, j, k) to state that the i-th rectangle has been positioned horizon-
tally or vertically respectivelly, in the position j, k where the position refers to the
bottom left corner of the rectangle.

For instance the positioning of the first picture is the following:

H(1,0,0), H(2,0,1), H(3,0,3), H(4,0,5)
while that of the second picture is the following:
V(17 07 O)’ H(27 1? 0)7 H(S’ 1’ 2)? H(47 37 3)

Let us formulate the hard constraints:
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(1) Every rectangle should be positioned either vertically or horizontally in-
side the N x N square. For every i € {1,..., R} we add
N—w; N—h;

\ \/sz, VY V(i k,j)
j=0 k=

where V is the dlsjunctlve or.
(2) Rectangles cannot overlap. If a rectangle is positioned in j, k then the
other rectangles cannot be positioned in the slots occupied by the rectan-

gle.
w;—1h;—1

Hi g k)= N\ N N-HG G+ 5 k+E) A=V G+ 5k + k)
7'=0 k'=01i'#1
h;i—1w;—1

V(g k)= NN N HE G+ k+E) A=V G+ 5k + k)
7'=0 k'=0 i'#3

We then have to add some minimization criteria. The main idea is that if the
top right corner of a rectangle covers the position j, k you will pay a cost of (R +
1)max(7:) " This can be obtained by adding the following weighted formula, one for
every rectangle

H(i,j, ]{7) . (R+ 1)max(j+wi,k+hi)

V(i j.k) o (R 1)mexUthokee)

Why we choose such a cost function. Because the cost of placing one single rectangle
outside the n x n square will be larger than the cost of putting all the rectangles
inside the n x n square. Indeed, if all the rectangles are inside the n x n square,
the maximal cost that you will pay is

R(R+1)"

If instead you put one single rectangle which goes out the n x n square you will
pay a cost larger than
(R 4 1)n+1

which it is larger than R(R+1)". This will force the system to search the minimal
n. U

Exercise 90:
Prove that the solutions to the max sat problem

MaxSAT((A:1),(B:1),(C:1),(D: ))
when {A, B, D} is not satisfiable, are equal to the solutions of the following reduced
max sat problem
MaxSAT(AVa:1),(BVb:1),(C:1),(D:o0),(a+b=1:00))
Notice that A, B, C, D are clauses that might contain common propositional vari-

ables.

Solution If the set {A, B, D} is not satisfiable then the solution of the first MaxSat
problem should falsify at least one of the soft clauses. A, B. In the second prob-
lem, the solution will make one of the proposition ¢ and b. In the first case
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the MaxSat problems become (B, 1), (C,1),(D;o0) in the second case it becomes
(A,1),(C,1),(D;00). Solving the two problems is the same as solving the problem

where A or B are falsified. O



CHAPTER 6

Model counting

1. Introduction

A propositional formula ¢ partition the set of interpretations into two disjoint
subsets. those that satisfy ¢ and those that do not.

2" interpretations

F1GURE 1. Visualisation of Model counting problem. The circle
contains all the interpretations of the propositional variables of ¢,
which are 2. Model counting has to count the size of the red area.

Propositional model counting or #SAT Gomes, Sabharwal, and Selman 2009 is
the problem of computing the number of models of a given propositional formula,
i.e., the number of distinct truth assignments to propositional variables of a formula
¢ which satisfy the formula. Let us define the problem more precisely.

DEFINITION 6.1 (Model counting problem). For a propositional formula ¢ let
P(@) be the set of propositional variables occurring in ¢. the model counting of ¢
#SAT(¢) is the problem of finding the number of truth assignments to the proposi-
tional variables of ¢ that satisfies ¢.

#8AT(¢) = {Z: P(¢) = {0,1} | T |= ¢}

EXAMPLE 6.1. A naive method to solve the model counting problem is via truth
tables. For instance let us compute the model counting of the following formulas:

PAGPVg p—q p=q —pandpA-p

133
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P q PN g pVq P — g P g |"p| PAND pV D
1 1 111 111 11 1 111 |01 1001 1101
1 0 100 110 100 100 |01 1001 1101
0 1 00 1 01 1 0 1 1 001 |10 0010 0110
0 0 000 000 010 010 |10 0010 0110
#SAT 1 3 3 2 2 0 4

Notice that in the above truth table the first four formulas contains all the proposi-
tional variables of the truth table, p and q in this case. while the last three formulas
contains only one variables of the two. If we had computed model counting of the
last three formulas separately, we would have obtained a different result:

pl>p| PN D pNV op
110 1 1 0 0 1 11 01
0|1 0 00 10 01 10
1 0 2

The difference is due to the fact that, in the first truth table, we compute model
counting in the context of the language of the propositional variables p and q, even
if the formulas contain only one propositional variable (p in this case). This implies
that we consider four possible truth assignments. In the second truth table, instead,
we computee model counting in the context of the langauge that contains only one
single variable, i.e., the one that appears in the formulas; in this case the number
of interpretations are only two.

The previous example highlights the fact that, to be precise, #SAT should also
take also an extra parameter that is the language (set of propositional variables) of
the interpretations. For this reason, when necessary we make explicit the langaue
in which we compute the model counting, by writing #SAT(¢, P), where P is a set
of propositional variables such that P(¢) C P. When we write the simpler notation
#SAT(¢) we actually mean #SAT(¢, P(¢)).

An alternative and equivalent formulation of the model counting problem,
which will be useful when we want to extend the problem to weighted model cou-
unting is the following:

(65) #sar(p,P) = Y I(¢)
7:P—{0,1}
where Z(¢) =1 if Z = ¢ and 0 otherwise.

The'| model counting problem presents fascinating challenges for practitioners
and poses several new research questions. Effcient algorithms for this problem will
have a significant impact on many application areas that are inherently beyond SAT
(‘beyond’ under standard complexity theoretic assumptions), such as probabilistic
reasoning Chavira and Darwiche 2008a; Holtzen, Van den Broeck, and Millstein
2020, For example, various probabilistic inference problems, such as Bayesian net
reasoning, can be effectively translated into model counting problems.Another ap-
plication is in the study of hard combinatorial problems, such as combinatorial
designs, where the number of solutions provides further insights into the problem.
Even finding a single solution can be a challenge for such problems; counting the
number of solutions is much harder. Not surprisingly, the largest formulas we

IThis paragraph is an excerpt of the introductory section of Gomes, Sabharwal, and Selman
2009
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can solve for the model counting problem with state-of-the-art model counters are
orders of magnitude smaller than the formulas we can solve with the best SAT
solvers. Generally speaking, current exact counting methods can tackle problems
with a couple of hundred variables, while approximate counting methods push this
to around 1,000 variables.

A rough intuition on the relation among model counting and probabilistic rea-
soning is as follows. If we consider an assignment to a set of variables as the
outcome of an experiment and the formula ¢ a measure on this outcome, which is
1 if the outocme satisfy ¢ and 0 otherwise, then the higher #SAT(¢) the higher the
probability of observing a 1 in the measure.

As mentioned before the solution of the model counting problem is a very com-
plex task and therefore one could also consider more efficient algirhtms that that
does not guarante an exact solution, but provides an approximated one. There-
fore, we will divide practical model counting techniques into two main categories:
exact counting and approximate counting. Within exact counting, we will distin-
guish between methods based on DPLL-style exhaustive search, and those based on
knowledge compilation or conversion of the formula into certain normal forms for
which model counting is efficient (polinomial) Within approximate counting, we will
distinguish between methods that provide fast estimates without any guarantees
and methods that provide lower or upper bounds with a correctness guarantee.

2. Basic properties of model counting

As shown by the introductory example, the model counting of the same formula
depends from the set of propositional variables that we consider (which should
include those of the formula itself), Such a dependency is clarified in the following

property:

PrOPOSITION 6.1. If ¢ is a propositinal formula that contains propositional
variables in P, i.e., P(¢) C P, then #SAT(¢, P) = #SAT(¢p) - 2IP\P(@)],

PRrROOF. Every interpretation Z in P(¢) that satisfies ¢ can be extended to
an interpretation Z’ in the language of P by assigning any value in {0,1} to the
variables in P \ P(¢). This implies that there are 2/7\P()| estensions. Since the
truth value of ¢ is independent from the assignment to the variables not in P(¢),
we have that Z |= ¢ if and only if 7’ |= ¢. Therefore for every models of ¢ in P(¢)
we have 2IP\P(@) distinct models of ¢ in P. Furthermore, every interpretation Z’ in
P that satisfies ¢, can be restricted to an interpretation Z in P(¢) by dropping the
assignments to P \ P(¢4). This guarantees that #SAT(¢) - 2IP\P@O| < Hgat(g, P).
To show that #SAT(¢) - 21P\P(@) > LsaT(4, P), notice that any pair of distinct
interpretations Z and J in P(¢) which are extended into Z’ and J' interpretations
of P, will be such that 7’ is different from 7’. O

The previous proposition states that the model counting of a fomrula ¢ can be
obtained multiplying the model counting of the formula w.r.t., the set of variables
it contains times the number of assignments to the variables not containing in ¢.

Other important properties of #SAT are the following;:

PROPOSITION 6.2. (1) If ¢ is valid, #SAT(¢) is equal to 2/P(@)l
(2) If ¢ is unsatisfiable #SAT(9) is equal to O
(3) #saT(~6) = 2P — sar(9)
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(4) If & = o then #SAT(¢, P) < #sAT(¢, P), where P is the set of proposi-
tional variables of ¢ and 1.

(5) if ¢ is equivalent to v, then #SAT(¢p, P) = #SAT(¢, P) and (by Property
#SAT((;S) L9P\P(¥) — #SAT(¢) . 9P\P(¢)

Proor. (1) If ¢ is valied then every truth assignment of the propositional
variables in ¢ will satisty ¢. Since there are 2P(®) interpretation then
H#sAT(9) = 2P(9),

(2) If ¢ is unsatisfiable then ¢ is not satisfied by any interpretation and there-
fore #SAT(¢) = 0;

(3) Notice that Z = —¢ is and only if Z £~ ¢. Since the total number of
interpretations of the language of ¢ is 27(?), we have that #SAT(—¢) =
2P(9) — HSAT(¢h).

(4) If ¢ = ¢ then every interpretation in the language of ¢ and v that satisfies
¢ also satisfies .

([l

A second set of properties concerns the relationship between the model counting
of a formula and the model counting of its direct sub-formulas. We concentrate on
the propositional connectives =, A and V since, all the other connectives can be
rewritten in ters of these three connectives.

2.1. #sat of negation. Since we have the low of excluded middle, i.e. every
assignment Z is such that either Z |= ¢ or Z = —¢, to count the models of —¢, we
can subtract the number of models of ¢ from the total set of assignments to the
variables of ¢ which is 2P (@)1,

PROPOSITION 6.3. #SAT(—¢) = 2" —#SAT(¢p) where n is the number of propositi-
nal variables that appears in ¢.

2.2. #sat of conjunction. In this section we consider how we can count the
models of ¢ A ¢ by separately counting the models of ¢ and 1) or some derived (and
simpler) formulas. If ¢ and ¥ do not share propositional variables, then then the
assignment to the propositional variables of ¢ does not interfere with the assignment
to the propositional variables of ¢. Therefore an assignment that satisfies ¢ A ¥
can be obtained by selecting any pair composed of a models of ¢ and a model of
1. And therefore the number of models n of ¢ A ¢ is the product of the models of
¢ and the models .

PROPOSITION 6.4. If ¢ and 1) do not share propositional variables, then #SAT(PA

P) = #SAT(¢) - #SAT(¥).

PROOF. Let n = #SAT(¢) and m = #SAT(1)). For every pair Z and J of models
of ¢ and 1 respectively we can define the assignment Z ® J on the propositinal
variables of ¢ A v defined as

I(p) ifpeP(¢)
J(p) ifpeP()
Since there is no overlap between the variables of ¢ and v the definition of 7 ® J

is well founded, Furthermore we have that Z® J = ¢ A« if and only if Z = ¢ and
J E 9. Viceversa any model Z of ¢ A 1) can be decomposed of a model of ¢ and

I@J(p)={
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a model of ¢ by restricting it to the propositional variables that appear in the two
formulas. Therefore the number of models of ¢ A ¢ is equal to n x m. ([

EXAMPLE 6.2. Let us consider the formula (AV B) A (C'V D) In the following
picture we show how the assignments that satisfy this formula can be obtained by
the composition of the of any models of (AV B) and a model of (C' V D).

A B| AV B CD| CV D
TT| TTT TT| TTT
TF| TTF TF| TTF
FT| FTT FT| FTT

ABCD| (AV B)AN(CV D)

T TTT TTT T TTT

T TTF TTT T TTF

T TFT TTT T FTT

T FTT TTF T T TT

T FTF T TF T TTF

T FFT TTF T FTT

FTTT| FTT T TTT

FTTF| FTT T TTF

FTFT| FTT T FTT

What happens if ¢ and ¢ contains common variables? We can combine a model
of ¢ with a model of 1 only if the two models agree on the assignment of the shared
propositional variables. Therefore for every assignment of the propositional vari-
ables we can combine the models that of ¢ and ¢ that agree with this assignment.
This is stated in the following proposition.

PROPOSITION 6.5. If Q@ = P(¢p) NP () is the set of propositional variables that
appears in both ¢ and 1), then #SAT(d A1) = ZI:Q%{O,l} H#SAT(¢|7) - #SAT(Y|1)
where ¢|z is the formula obtained by replacing p with T in ¢ if Z(p) = 1 and with
L if Z(p) = 0.

Clearly Proposition [6.4] is a special case of Proposition [6.5
EXAMPLE 6.3. Let us compute the number of models of (pV q) A (—g V r).
#SAT((pV @) A (mg V1)) = #SAT((T V q) A (2T V1)) + #SAT((L V g) A (mL V)
= #SAT(T V q) - #SAT(=T V1) + #SAT(L V q) - #SAT(=L V r)
Notice that if ¢ and 1 share k propositional variables, the summations over all

the possible interpretations of the k shared variable will contains 2¥ addends.

2.3. #sat of disjunction. Let us now see how we can count the models of
¢V Y. We know that a Z is a model of ¢ V ¢ if it is a model of ¢ or it is a model
of 9, So a first attempt would be to sum the models of ¢ and the models of .
However, in this way we counting twice the interpretations that satisfy both ¢ and
1) Therefore to fix this we have to subtract the models of ¢ A 1.

PROPOSITION 6.6. Let P be the set of propositional variables that occour in
oV . The following properties holds:
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(1) #5KT(6V ) = #SAT(, P) + #AT(1), P) — #SAT() A 1)

(2) If & N is unsatisfiable then #SAT(P V 1)) = #SAT(P, P) + #SAT(¢, P).

(3) If ¢ and v contain the same set of propositional variables then #SAT(¢p V
) = #SAT() + #SAT() — #SAT() A 1),

(4) If ¢ and ) contain the same set of propositional variables and ¢ A1 is
unsatisfiable then #SAT(¢ V ) = #SAT(¢) + #SAT(Y).

PROOF. We prove only property (1) since all the other properties are corol-
laries. The set models(¢ V ¢) of the models of ¢ V 9 can be partitioned in three
disjoint subsets models(¢ A =), models(—¢ A1), and models(p A1) Which implies
that

(66)  #sAT(¢ V 1) = |models(p A —1p)| + |models(—¢ A ¥)| + |models(d A )|

The set of assignments to P that satisfy ¢ can be partitioned in the two subsets
models(¢ A —p) and models(¢p A 9). From which we have that

#SAT(¢, P) = |models(¢ A —¢p)| + |models(¢ A )]
Similarly, we have that
(67) #SAT (¢, P) = |models(—¢ A ¢)| 4+ [models(¢p A )]
And therefore,

#SAT(¢, P) + #SAT (1), P)
= |models(¢ A —p)| + |models(—¢ A )| + 2 - |[models(¢ A 1)

From which we have that

(68)  #SAT(¢, P) + #SAT(¢), P) — models(¢ A )|
= |models(¢ A —t))| + |models(—¢ A )| + |models(¢ A )]

By combining and (68)), we obtain property (1). O

PROPOSITION 6.7. If p is a propositional variable of ¢,, then #SAT(¢) =

#SAT(0]p) + #SAT(4]-p)

PROOF. The proposition is a direct consequence of property of Proposi-
tion Indeed ¢|, and ¢|-, contain the same set of propositional variables;
furthermore, since ¢|, and ¢|-, are equivalent to ¢ A p and ¢ A —p respectively,
there is no interpretation that satisfies both formulas. This implies that property
of Proposition+ is applicable. Notice that the fact that p occurs in ¢ is an
essential assumption, otherwise ¢|, and ¢, would be the same formula (Il

We have seen that a naive method for counting the models of a propositional
formula is by computing the whole truth table. Since the truth table for a formula
¢ with n propositional variables contains 2™ lines, this method is very costly as
it takes exponential time on the number of propositional variables. There are two
possible direction in construct more efficient model counting algorithms.

The first one, consists in exploiting the properties seen in the previous section
in order to take shortcuts, parallelise, and decompose the #SAT problem. Following
this direction, for instance the fact that #SAT(¢ A ¢)) = #SAT(¢) - #SAT(1)) when
¢ and ¥ do not share propositinal variables, can be used to reduce the complexity,
form 27 to 2max(n1.m2) where ny and ny is the number of propositional variables
occurring in ¢ and v respectively. This direction falls under the name of “exact
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model counting” as the algorithms are guaranteed to return the correct value for
#SAT(¢). Since, as we will see in the following, exact algorithms are anyway very
complex, the second direction aims to develop efficient algorithm that return an
approximation of #sAT(¢). In this section we describe exact algorithms while an
example of approximate algorithms is described in the next section.

3. DPLL-Based Model Counting

In counting models of a propositional formula ¢, one can see that E| the models
of ¢ can be split in two disjoint subsets by selecting a propositional variable p and
counting the models of p Ap and ¢ A—p. Counting the models of ¢ Ap, is the same as
counting the model of ¢|, which is the formula obtained by replacing p with T in ¢.
Similarly for ¢|-,, which is obtained from ¢ by replacing p with L. With this simple
rule we reduce #SAT(¢) to #SAT(¢|,) +#SAT(¢|-p). Furthermore it is possible that
¢p and ¢, are equivalent to formulas in which many other propositional letters
have been removed. For instance if ¢ = (pV ¢) A (r V s) then ¢|, is equivalent to
r A s. Therefore, by property [5| of Proposition we can compute #SAT(¢) by
summing #SAT(simplify(¢[;,)) - 2" and #sAT(simplify(4|-,)) - 2™ where n and m
are the number of propositional variables that has been eliminated by simplifying
¢|p and ¢|-, respectively.

The property just described constitute the base for algorithm CDP (Counting
Decision Procedure), shown in Algorithm In particular the CPD algorithms
exploits the property that for every ¢ in CNF

#SAT(9, P) = #SAT(dlp, P\ {p}) + #8AT(6]-p, P\ {p})

Notice that #SAT(¢, P) = #SAT(¢) - 2™ where m = [P\ P(¢)|. We could therefore
replace P with n where n is the cardinality of P, Since, P(¢) C P whe have that
m =n\ |P(¢)|. The above property therefore can be rephrased in

#SAT (P, n) = #SAT(¢|p,n — 1}) + #SAT(P|-p,n — 1)

CPD(¢,n) computes #sAT(¢, P) for a formula ¢ in conjunctive normal form
w.r.t. a set P of n propositional variables.

EXAMPLE 6.4. Let ¢ = {{p, q},{—r,—p}}. To compute #SAT(¢) we call CDP(¢,3)
since ¢ contains 3 propositional variables. The execution of CP(¢,3) is shown in
Figure 3

3.1. Literal selection. As for the case of DPLL the choice of the proposi-
tional variable to expand (line of algorithm |8]) has great influence on the efficiency
of the algorithm. According to the above analisys the choice of p will generates two
subproblems of expected complexity of T'(my,n — 1) and T (mz,n — 1) where my is
the set of clauses in ¢|, and mo the number of clauses in
phi|-p. TO maximize this reduction we should choose the split that minimize
max(mq,ms) where

3.2. Caching. If a set of clauses ¢ is encountered more than one time in
the CPD algorithm, it would clearly be beneficial to cash the result of the first
computation of #SAT(¢) and to be able to efficiently recognize it in the next steps
and reuse previous results.

2See Birnbaum and Lozinskii [1999]
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Algorithm 8 CPD(¢,n)

Require: ¢ a propositional formula in CNF
Require: n an integer larger han |P(¢)|
if ¢ = {} then
return 2"
end if
if {} € ¢ then
return 0
end if
if {I} € ¢ then
return CDP(¢|;,n — 1)
else
p < select a propositinal variable of ¢

_ =
= O

: end if

—_
[\

return CDP(¢|,,n — 1) + CDP(¢|-p,n

> ¢ is the empty set of clauses

> ¢ contains an empty clause

> Unit propagation

—1)

4
A
I
I
I

Il

{p.q}

Lm8= {{ﬂrﬁp}}’n:

3w

I D

21 unit prop. —r

-p \

unit prop. q 19

Plpa=hn=1F-"

FIGURE 2. The execution tree of the function CPD(¢,3). The
total number of models returned by this procedure is 4, which is

the sum of the two recursive calls.

3.2.1. Complezity of CPD. In the worse case the CDP decision procedure will
generate all the possible assignments and therefore runs for 2" steps. We way that
CPD is worse case exponential. However we can provide a probabilistic estimation
of the complexity of the CDP procedure. Birnbaum and Lozinskii [1999| provide

such a result, and we report it in the following.

Assume that ¢ contains m clauses on n propositional variable. Assume also
that the literals have the same probability p to appear in each clause ¢. Let T'(m,n)
denote the average running time of CDP(¢,n) We have the following theorem:

THEOREM 6.1. T(m,n) = O(m®-n) where d = flog;l]

2(1-p)
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The assumption of p = % is commonly adopted in probabilistic analysis of
algorithms handling CNF or DNF formulas Franco and Paull [1983] which means
that for each variable, its occurrence in a clause with or without negation or non-
occurrence, all have the same probability. Under this assumption we have that
T(m,n) = O(m? - n).

4. Model counting via Knowledge Compilation

The second method for exact model counting of a propositional formula is
based on the transformation of ¢ is an equivalent formula for which model counting
is decomposable using the properties introduced at the beginning of this chapter.
Consider the following example:

EXAMPLE 6.5. In computing #SAT((AV B) A ((C A D)V (=D A E))) we can
recursively apply the properties of model counting. This allow to decompose the
problem of counting the models of a complex formula in the problem of counting the
models of its subformulas and aggregating the results properly. The following tree
shows how the #SAT ofr such a formula can be decomposed.

#SAT((AV B) A (C A D)V (=D A E)))

TN

HSAT(AV B) #SAT((C' A D)V (<D V E))
/ \
3 #SAT(C A D) -2 #SAT(-D V E) - 2
TN
#5AT(C) #5A1(D) 3
1 1

The above tree show that to compute #SAT((AV B) A ((C A D)V (=D A E))) we
compute #SAT(AV B) = 3, #sAT(C) = 1, #saT(D) = 1, and #sAat(-DV E = 3.
We then aggregates these results by seeing the decomposition tree as a algebraic
expression:
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3-(((1-1)-2)+(3-2)

3 ((1-1)-2) +(3-2)
/ \

3 (1-1)-2 3.2

1/ \1 3

1 1

Knowledge compilation is the transformation of a formula ¢ in a form such that
the decompositions shown in the previous example are possible. To this purpose
we define a new normal form of propositional formulas and the rewriting rules that
are necessary to transform every formula in such a form.

Before doing this let us recall what is Negated Normal Form (NNF).

DEFINITION 6.2 (NNF). A formula is in NNF (Negated Normal Form) if it
contains only A, V and — connectives, and the — connective occours only in front
of propositional variables

EXAMPLE 6.6. In the following we show the parse tree of a formula in NNF.
Notice that every branch contains an alternation of A and V and ends with either
an atom or the negation of the atom. aAA

A formula is in NNF can be written as

n Mip Migig Miq..ip
(69) AV AV b

i1=1iz=1 i3=1 in=1
where [;, _;, are literals and k is the depth (= maximum branch length) of the
tree. CNF is a special kind of NNF with k = 2.
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DEFINITION 6.3 (DNNF). A propositional formula ¢ is in Decomposable nega-
tion normal form (DNNF) it is in Negated Normal Form (NNF) and for each con-
Junction g1 A pa A -+ A ¢ Pdi) NP(p;) = 0.

Notice that in a DNNF formula in order to compute the model counting of a
sub-formula that is a disjunction ¢ A we can apply Proposition by computing
the model counting of ¢ and v separately and then multiply the results.

Let us define a form that guarantee a similar property for disjunction.

DEFINITION 6.4 (d-DNNF). A formula is in d-DNNF' (deterministic DNNF) if
it is in DNNF and for each disjunction ¢1V ¢aV -V ¢y, occurring in the formula,
there is at most one I such that T = ¢; for every ¢;.

As in the case of CNF we can define a set of rules that allows to tranform
a formula ¢ in an equivalent formula in d-DNNF. The key tranformation to is
called Shannon’s expansion. The Shannon’s expansion is a transformation that at
the same time remove shared variables in a conjunction ¢ A ¥ and introduces a
deterministic disjunction. The Shannon’s expansion of ¢ is equal to

(70) @A Q) V(=P Adlp)

e Notice that, if ¢ is a conjunction ¢1 A ¢o, then p A |, = p A d1lp A d2|p,
which is a conjunction of three formulas that do not share the variable
p since p has been removed in ¢|, and ¢—,. Similar observation holds
for =p A ¢|-p. Furthermore, the disjunction introduced by the Shannon
expansion is deterministic, since it is not possible that pA¢|, and =pAd|-,
are both true in an interpretation.

e If instead ¢ is the disjunction ¢; V ¢o and p occours either in ¢ or in ¢
or in both, then p A ¢|, V —p A ¢|-, is equal to

(A (D1lp V @2[p) V (=D A (@1]-p V P2]-p))

is a deterministic disjunction, and the internal disjunctions ¢1], V ¢z,
and ¢1|-p V ¢2|-p are less non-deterministic since they are interpreted on
a smaller set of propositional variables.

DEFINITION 6.5 (Circuit for a d-DNNF formula). Given a d-DNNF formula
¢, the circuit for ¢ is the aritmetic expression circuit(¢) that computes #SAT(p)
recursively defined as follows:

e if ¢ is a literal p or —p then circuit(l) is 1

o if ¢ is d1 A ¢, then circuit(¢) = circuit(pr) - circuit(ps)

o if & is P11V ¢a, then circuit(d) = circuit(py) - 2™ + circuit(ps) - 2™, where
ny (resp. ng) is the number of propositional variables that occour in ¢,
(resp. ¢2) but not in ¢ (resp. phiy ),

EXAMPLE 6.7. Let us transform ¢ = (AV B)A(CVD)A(-DV E) in d-DNNF.
First notice that ¢ is the conjunction of two formulas ¢1 and ¢o that do not share
common variables. So the main conjunciton does not require any transformation,
and we need to transform in d-DNNF the two sub-formula ¢1 and ¢s.

¢ =AVB
o1 =(CVD)AN(-DVE)

o2 is not deterministic, since there is an interpretation that satisfies both disjunct
A and B (i.e., the interpretation that makes both A and B true) so we have to apply
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FIGURE 3. The formula tree of the d-DNNF formula (A V (-A A
B))A((DAE)V (—~DAC)). The numbers on the arcs represent
the model counting of the corresponding subformula. To compute
the model counting of the entire formula is is sufficient to start
from the bottom, assigning a 1 to every proposition, and propagate
up A nodes by multiplying the model counting of the subformulas
(using property ) and propagating up V nodes by summing the
mc of the subformulas multiplied by 2™ where m is the number
of variable occouring in the other subformula composing the or

(property of Proposition

Shannon’s expansion on some proposition of ¢1. Let us consider A. By Shannon’s
expansion we obtain

(AAN(TVB)V(-AA(LVB))
and simplifying we obtain:
¢y = AV (=ANB)

Notice that ¢ is deterministic, since every interpretation either falsify A or —A,
with implies that there is no interpretation that simultaneously satisfies both the
disjuncts. Furthermore every conjunction in ¢} is such that the two conjuncts
(ANT and =A A B) do not share propositional variables. So ¢} is in d-DNNF.

Let us not tranform ¢o in d-DNNF'. Notice that ¢2 is the conjunciton of two for-

mulas that share the propositonal variable D. Therefore we have to apply Shannon
expansion on ¢ w.r.t. the propositional variable D. We obuvtain:

(DANCVT)AN(LVE)V(-DA(CVL)A(TVE))
which is equivalent to
¢y =(DANE)V(=DAC)

Therefore the original formula ¢ is equivalent to ¢’ = ¢y A ¢ which is in d-DNNF.
The formula tree of ¢’ and how model counting can be obtained from the associated
circuit is shown in Figure [3
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5. Approximate algorithm for model counting

In this section we describe one of the most basic algorithm for approximate
model counting. The algorithm called APPROXCOUNT has beed introduced in Wei
and Selman [2005. The algorithm is based on a method called SAMPLESAT for
uniformly sampling models of a formula ¢. Let us first introduce the SAMPLESAT
algorithm.

5.1. SampleSat. SAMPLESAT algorithm is based on random walk strategies.
It requires in input a formula ¢ in CNF, i.e., a set of clauses {C1,...,C,}. Random
walk (RW) strategy to search for a truth assignment that satisfies a formula ¢ starts
from a random truth assignment. At every iteration the if the current assignment
satisfies a formula then it is returned; otherwise one unsatisfied clause C; is chosen
uniformly at random from ¢ and a variable in the clause is chosen by some heuristic.
The value of the variable is flipped. The algorithm repeats these steps until a
satisfying assignment is reached.

Algorithm 9 SAMPLESAT

1: Z < random assignments to the variabels of ¢
2: while true do
if Z = ¢ then
return 7
else
C <+ random clause C' € ¢ such that Z = C
p < SELECTVAR(C);
Z(p) + 1—-Z(p) > Flip the truth value of p in Z
9: end if
10: end while

@ N> oW

The function SELECTVAR(C') select a literal from the clause C. A random
selection of the literal when clauses are longer than 2 does not result in an unbias
choice. It has been shown in Selman, H. A. Kautz, Cohen, et al. [1993] that using
e-greedy strategy provide a better behaviour (but other stratecies are also possible
and could lead to better results).

For an assignment Z, the break degree of a propositional variable p is the number
of clauses that are true in Z and become false if we change the truth value of p.

break(p,T) = [{C" € ¢ | T |= C" and Ly ) = C'}

The SELECTVAR(C) method proposed by Selman, H. A. Kautz, Cohen, et al. 1993
selects a variable with break degree equal to 0 if there exists one, otherwise it selects
the variable of C with lower break degree with probability 1—e and a random literal
with probability e. (for some small €). Though this strategy does not guarantee
unbiased sampleing it is an improvement w.r.t., random sampling. The algorithm
is shown in Algorithm[I0] Advanced method are described in Selman, H. A. Kautz,
Cohen, et al. |[1993.

Let us now describe the APPROXCOUNT algorithm, which is shown ,in Algo-
rithm [TT] The algorithm is based on the following intuition. Let S be a set of models
of ¢ and S), the subset of S that assigns p to true, Le, S, ={Z € S| I(p) = True}.
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Algorithm 10 SELECTVAR(C,Z)

if there is a p in C' with break(p,Z) = 0 then

return p
else

with probability 1 — € return argmin,, ¢ break(p, )

with probability ¢ return a random propositional variable of C
end if

If S is a good sampling of the models of ¢ then we can estimate

#SAT(lp) _ Spl
#sar(o) "~ |S|
From which we have that
fsam(o) = 15 - #5a1(6,)
Which means that we can appriximate the model counting of a formula ¢ by mul-

tiplying the model counting of a simpler formula ¢, by the factor % The same

resoning can be done by considering the set S-, = {I € S| Z |= —p}, obtaining a
second approximation of #SAT(¢):

HSAT() = - H#IAT(0-)
| ﬁpl
For every literal | we call % the muliplying factor associated to the literal [.
Let l1,...,lx be a set of non contraddictory literals, then by iterating the above
argument we obtain the approximation
EX
(71) HSAT() = #SAT(B1y.... H e

Where S® is the assignments that satisfies @|;,... 1, ,. Notice that at eery iteration
we sample different models. The APPROXCOUNT algorithm uses this method to
approximate #SAT(¢). Finally let us see a small example on how APPROXCOUNT.

EXAMPLE 6.8. Let us ppply APPROXCOUNT to estimate the number of models
of the following formulas and compare the the exact solution.

(pAT)V (g A —s)
Run APPROXCOUNT with input ¢ = (p A1)V (g A —s) and k =2

(1) Repeatetly all SAMPLESAT to obtain a set S of n models for ¢. You can
decide the number n of models that you want. The larger n the better the
approrimation.

(2) suppose that S = {1010,1100,0110,1110,0100}, (an interpretation on
D, q,T, s is represented with the 4-bit value Z(p)Z(q)Z(r)Z(s));

(3) select a propositional variable x € {p,q,r,s} to split in order to minimize
(|Sz| = |S=z|)?. The proposiitional variables that minimize this difference
are p and r. Suppose that we select p

(4) S, = {1010,1100,1110}

(5) S-p, = {0110, 0100}
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Algorithm 11 APPROXCOUNT ¢ in CNF

1:m<+1 > m is called the multiplier factor
2: while |props(¢)| > k do > When ¢ is small we apply exact method
3: S < SAMPLESAT(¢) n times > Select n models for ¢ the larger the better
4: p < Select a propositional variable of ¢ > Heuristic: Choose p that
maximizes (|S,|—[S-p|)?

5: Sp—{Z € S|Z(p) =True}

6: S_p < {Z € S| Z(p) = False}

7: if |S,| > |S-,| then

8: m<—m- %

9: ¢ ¢|p
10: else
11: m<—m:- |5|€L‘
12: ¢ < ¢|-p
13: end if
14: end while
15: return m - #SAT(¢) > #SAT(¢) is computed with an exact method

S| _ 5

[S,] — 3

(6) since |Sp| > |S-p|, we choose to multiplication fuctor
(7) m=3.
(8) 6=l = (rV (4 A )
(9) repeatetly call SAMPLESAT in order to sample a new set of models for ¢
(10) suppose that S = {100,010,110}
(11) the propositional variable that minimies (|S.| — |S-z|)? are ¢ and r. Sup-
pose that we select g
(12) S, = {100,110}
(13) S-q = {010}
(14) since |Sq| > |S-q| we select the multiplicative factor
(15) m=m-3 =2
(16) 6= dl, = (rV ~s)
(17) since ¢ contains 2 < k variables, we exit the wile and return m - #SAT(rV

-5)=13.3=175

[S| 3

[Sql 7 2
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To understand quality of the result and measure the error let us compare the output
of APPROXCOUNT and the exact value of #SAT computed via truth table:

p g r s (pPAT)VI(gA—s)
1 1 1 1 1
1110 1
1101 0
1100 1
101 1 1
1010 1
100 1 0
1000 0
01 1 1 0
0110 1
010 1 0
0100 1
00 1 1 0
0010 0
000 1 0
0000 0
7

The error is around 7%.

5.2. Graph Neural Networks for Propositional Model Counting. Saveri
and Bortolussi 2022l TO DO
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6. Exercises

Exercise 91:
Explain the difference between #SAT(¢) and #SAT(¢, P) when P is a set of
propositional variables larger than the set of propositional variables that appears

in ¢.

Exercise 92:
Find an example in which ¢ |= ¥ but #SAT(¢) > #SAT(Y).

Exercise 93:
Prove that if ¢ contains p, then ¢|, is equivalent to ¢ A p. Provide a countere-
sample of this property when p does not occour in ¢.

Exercise 94:
Given a set of propositional variables p1, ..., p,, describe a method to produce
a formula that has exactly & models for every k < 2™ .

Solution Let b = b; ... b, be the bitwise representation of any the integer h between
0 and 2" — 1 (included). Let us define
n

n
én=/\ pin N\ b
i=1

=1
bi=1 b;=0

Notice that the formula ¢y, is satisfied by a single interpretation, i.e., the interpreta-
tion Z, such that Z(p;) = True if and only if b; = 1. Furthermore, for every g # h,
we have that there is no model that satisfies both ¢, and ¢,. We can therefore

define the formula 1

d<i = \/ on
0=1
which will be satisfied by exaclty k models. [

Exercise 95:
Use CPD to count the models of the formulas (A — C) A (B — C) and the
formula (AV B) — C. Solution The two formulas need to be tranformed in CNF.

They both are transformed in the following set of clauses:
(-A, B}, {—B,C}
Let us run CPD on them.

CPD(¢ = {{—-A, B},{=B,C}},n =0)
unit propagation is not applicable since there are no unit clauses
select the literal —A
P-n = {{ﬁBvC}}
CPD(¢ = {{—-B,C}},n=1)
unit propagation is not applicable since there are no unit clauses
select the literal =B

¢-5 ={}
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CPD(6 = {},n = 2)
return 2717 =232 =2 (P = A, B,C}
select the literal B
o5 ={{C}}
CPD(6 = {{C}},n =2)
apply unit propagation obtaining {} and n =3
return 2/PI-7 =20 =1
return 24+ 1 =3
select the literal A
¢-a ={{B},{-B,C}}
CPD(¢ = {{B}{~B.C}},n = 1)
apply unit propagation obtaining {} and n =3
return 2/PI=7 = 20 — 1
return 3+ 1 =4
U

Exercise 96:

Use CPD to count the models of the formula (A — B) A (B — C) A (C — D)
Solution CPD require the formula in CNF. So we first need to transform (A —

B)A (B — C)A(C — D) in CNF, which results in the forllowing clauses:
{-A,B},{-B,C},{-C, D}

CPD(¢ = {{—-A,B},{=B,C},{-C,D}},n=0)
unit propagation is not applicable since there are no unit clauses
select the literal = A
¢-a ={{-B,C},{~C,D}}
CPD(qb = {{ﬁB’ 0}7 {ﬁcv D}}7 n=1)
unit propagation is not applicable since there are no unit clauses
select the literal =B
¢-B = {{_‘07 D}}
unit propagation is not applicable since there are no unit clauses
select the literal =C
¢-c ={}
CPD(¢ = {},n =3)
return 2/P1=" =21 =2 (P = A, B,C, D}
select the literal C
¢c = {D}
CPD(¢ = {D},n =3)
apply unit propagation which returns ¢ = {} and n =4
return 2/P1-7 =20 =1
return 241 =3
select the literal B
¢B = {{0}7 {ﬁc’ D}}
CPD(¢ = {{C},{~C,D}},n=2)
apply unit propagation obtaining {} and n =4
return 2/P1-" =20 =1
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return 3+1=14
select the literal A
64 = {{BH-B,C}, {~C, D}}
CPD(QI) = {{B}{ﬁBv 0}7 {ﬁcv D}}, n=1)
apply unit propagation obtaining {} and n =4
return 2/P1-7 =20 =1
return 44+ 1 =5

To check the correctness of the result let us compute the truth table explicitly:

ABCD| (A = B)A(B = C)A(C = D))
1 111] 111 1 1111111
1110/ 1110 1110100
1101 1110 1000 011
1100/ 1110 1000 O0T10
1011 1000 011 1 1 11
1010/ 1000 011 0 100
1001 100 0 010 1 01 1
1000| 100 0 010 1 010
0111 011 1 111 1 111
0110/ 0110 111 0 100
0101 011 0 100 0 011
0100 011 0 1000010
0011/ 010 1 011 1 1 1 1
0010 0100 0171 0 100
0001 010 1 010 1 011
0000 010 1 010 1 010
8 8 8 8] 8128 5 8 128 8 8 12 8

Exercise 97:
Count the models that satisfy the formula (A - BV C)A (C — DV E)

Solution The formula is a conjunction of two formulas that share the propositional
C variable. We can therefore we can apply the Shannon reduction on C' obtaining
the formula:

CANA—=BVT)A(T =DV E)V
-~CNA—BV.1)AN(L—=DVE)

which is equivalent to

CNA = BVT)A(DVE)V
-CANA—= B)A(L—=DVE)

Since the disjunction is deterministic (since only one of the disjunct holds), we can
compute separately the number of models of the formulas and then sum up.

The number of models of CA(A — BVT)A(DV E)is1-4-3 =12 The
number of models of ~C A (A — B)A(L — DV E)is1-3-4=12In total we have
12 4+ 12 = 24 models.

Alternatively one can fill the truth table
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and counth the number of assignments that satisfy the formula. They are 24. O

Exercise 98:

Check if the following formulas are in d-DNNF form and if they are not explain

why.

Solution

negation occurs in front of a complex formula, while in NNF negation can

occur only in front of atomic formulas.

(1) =(pV ¢q) V (pVr)isnot in d-DNNF because it is not in NNF since the
(2) (pA—q)V(gA(rV(—rAs)))Isin d-DNNF.
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3) (pV@)A(rV(—rAs))Isnot in d-DNNF because (pV¢q) is not deterministic
since there is an interpretation that satisfies both p and q.

(4) ((pA(=pV (pAr))Is not in d-DNNF because it is not in DNNF since the
sub formulas p and (—pV (p Ar)) contains both the atom p, and therefore
the formula is not in DNNF.

Exercise 99:
Transform the following formula in d-DNNF.

(PVQ)A(RVS)A(~SVT)

Exercise 100:
Compute #SAT((P AR — Q) A (-R Vv =Y5)) using knowledge compilation
method.

Solution We first have to transform the formula in deterministic decomposable
negated normal form (d-DNNF).

(PANR—=Q)AN(-RV~S) =

(=PV-RVQ)A(~RV-S) =

(mPVLVQ)A(LVAS)AR)V ((-PVLRVQ)A(TV-S)A-R) =
((LvLv@Q)AP)V({(TVLVQ)A-P)AN(LV-S)AR)
(LVTVQAP)VI(TVTVQ)A-P)A(TV-S)A-R)

V

11
> 8§
371 1 571 2
OO OO
1 2 0 1 2 3 1 1
() ) s (T s
1/ \1 1/ \2 2/ \1 1/ \3
() P (V) OSSO
0/0] \l /0 \! 0/1] \! /1) \!

L 15 € T LI LI T @ T T Q
Let us verify the correctenss of the result by compiling the truth table
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PQRS| (PAR)= Q)A(- RV = 8S)
TTTT TTT TTTF FTFFT
TTTF TTT T T T FTTTF
TTUFT TFF T T T TFTFT
TTFF TFF TT T TFTTF
TFTT TTT FF F FTFFT
TFTF TTT FF F FTTTF
TFFT TFF TF T TFTFT
TFFF TFF TF T TFTTTF
FTTT FFT TTVF FTFFT
FTTF FFT TT TV FTTTF
FTFT FFF TT T TFTFT
FTFTF FFF TTTTFTTTF
FFTT FFT TF F FTFVFT
FFTF FFT TF T FTTTF
FFFT FFF TF T TFTFT
FFFF FFF TF T TFTTTF
|

Exercise 101:
Codify in #S AT the problem of counting how many different k-tuples (i1, ... ,1is5)

of integers < 8 such that i; <15 < .- < 5.

Solution Let p;;, for 1 <4 <5 and 1 < j < 8, be a propositional variable that
stands for “there is a j in position ¢”. The set of strings that satisfy the conditions
of the exercise are those that satisfy the following formulas:

5 8
/\ \/ Dij in every position there is at least one digit

i=1j=1
5 8
/\ /\ =(pij A pik) in every position there is at most one digit
i=1j<k=1
4 8 8 In the next position can occour only num-
/\ Pij — \/ Pit1,k ber larger or equal to the one present in
i=1j=1 k=3 the current position

O

Exercise 102:

Codify in #SAT the problem of counting how many different strings can be

made by reordering the letters of the word “SUCCESS”?

Solution The reordering of the string “SUCCESS” is any string that contains three
“S”s, two “C”s, one “U” and one “E”. Let us introduce the following propositional

variables
S; 1<¢<7 there is an ”S” in position ¢
C; 1<¢<7 there is an ”C” in position 4
U; 1<¢<7 there is an ”U” in position i
E; 1<: <7 there is an "E” in position %
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We have the following axioms:

7
/\ S;vVC;VU; V E; In each position there is at least one letter
i=1
/\ -(U; NUy) At most one "U”
i#]j
/\ -(E; N Ej) At most one "E”
i#]
N\ ~(CinC;ACy) At most two 7 C”
itk
N\ (i ASj A SkSy) At most tree 7S”

i#j#kth
O

Exercise 103:

To buy a computer system, a customer can choose one of 4 monitors, one of 2
keyboards, one of 4 computers and one of 3 printers. But only certain combinations
are allowed. Provide some example of how you can express constraints on possible
combinations with propositional formulas, and codify the problem of determining
the number of possible systems that a customer can choose from as model counting.

Exercise 104:

Suppose you have three coins: the faces of the first coin are black and white,
the faces of the second coin are yellow and green, and the faces of the third coin
are blue and red. In an experiment you toss the first coin; if you obtain a black
you toss the second coin otherwise you toss the third coin. What are the number of
possible outcomes? Encode the problem of counting the possible outcomes of this
simple experiment in the problem of model counting a set of formulas

Exercise 105:
Transform the formula (AV B) A (-BV C) A (=D V E) in d-DDNF form, and
use it for model counting. Solution Split in

(1) (AVB)A(—-BVC)
(2) (-DVE)

since they don’t have common variables, and treat them separately
(1) let us consider (AV B) A (=B V C)

(AVB)A(-BVCO) Apply Shannon’s expansion on B
(BAAVT)A(LVC)V(=BA(AVL)A(TVC(C)) ind-DDNF
The last formula has:
1-1+1)-0+1)+(1-1+0)-(14+1)=4

models
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(2) Let us now counsider (=D V E)

-DVFE Apply Shannon’s expansion on D
(DA(LVE))V(-DA(TVE)) in d-DDNF

The last formula has:
(1-(04+1)+@1-(1+1)=3

The total number of models is 4-3 =12. O

Exercise 106:
Transform the following formula in d-DNNF.

(PVQ)AN(RVS)A(=SVT)
Solution Notice that the formula is the conjunction of two formulas that do not

have common propositional variables. We can therefore proceed to transform each
subformula in d-DNNF.
(P V Q) is transformed (via Shannon’s expansion) in

PA(TVQ)V-PA(LVQ)

(RV S) A (=S VT) instead is the conjunciton of two formulas that have one
propositional variable in common (i.e., S). Therefore we have to consider the two
cases in which S is true and S is false. We therefore rewrite the formula by using
the Shannon’s expansion

(SARVT)A(LVT))Y)V(=SA(RVL)A(TVT))
THe result d-DNNF transofmraiton is the conjunction of the two resutls:, i.e.,

PA(TVQ)V-PA(LVQ)A
(SARVT)A(LVT)V(=SA(RVL)A(TVT))

Exercise 107:

Explain in at most 10 lines, why if ¢; and ¢5 don’t share propositional variabels
then #SAT (¢1 A ¢2) = #SAT (¢1) - #SAT (¢2)

Solution A model Z of ¢; A ¢ is an assignment of all the variables in ¢y and ¢2
that satisfies both ¢; and ¢q. Since ¢; and ¢2 do not have variables in common,
we can split the assignment 7 in two assignments Z; and Zs where Z; assigns the
variables in ¢; and Z, the variables in ¢5. Furthermore, we have that Z; = ¢; and
T5 = ¢2. Therefore all the models of ¢1 A ¢ corresponds to all the pairs Z; and Z
where Z; is a model of ¢; for i =1, 2.

Graphically:
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Explain in at most 10 lines, why if ¢; and ¢5 don’t share propositional variabels
then #SAT (1 V o) = #SAT(¢1) - 2721 4 #SAT(¢o) - 21711, where Py ad P, are

the set of propositional variables that occours in ¢; and ¢ respectively.

Exercise 109:

Find a formula for #SAT(¢1 <> ¢2) under the ussumption that ¢; and ¢o

don’t share any propositional variable.

Solution Notice that ¢ <> ¢2 is equivalent to (¢1 Ap2)V (—d1 A—¢s). Furthermore
the set of models that satisfy (¢1 A¢2) is disjoint from the set of models that satisfy

(m¢1 A —¢p2). This implies that

#SAT (p1 Y ¢p2) = #SAT(p1 N p2) + #SAT (—dp1 A —2)
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Since ¢1 and ¢o don’t share any propositional variable, then we have that
H#SAT (1Y ¢2) = #SAT(¢1) - #SAT (¢2) + #SAT (=¢1) - #SAT (~2)

Let P; and P, be the set of propositional variables occurring in ¢, and ¢, respec-
tively, then we have that #SAT(—~¢;) = 2/P) — #SAT(¢;) for i = 1,2. We can
therefore conclude that :
#SAT (g1 Y. ¢2) = #SAT(¢1) - #SAT (92) + (271 = #SAT (1)) - (272! — #SAT(¢2))
= 2P UPel _olPrlaeS AT (6g) — 272 4 S AT (¢1)
+2-#SAT (1) - #SAT (¢2)

O
Solution(alternative) According to the definition of exclusive or, we have that
01 Y o is equivsalent to

(01 A =92) V (md1 A ¢2)
The above formula has the following “nice” properties. The disjunciton is determin-
istic, which means that there is no interpretations that satisfies both the formulas
of the dijunction. Le., the models of (¢1 A —¢2) are not models of (¢ A ¢2) and
viceversa. Furthermore the disjunciton is also smooth, i.e, the set of propositional
variables in the two disjuncts are the same. The third “nice” property derives from
the fact that ¢y and ¢2 do not share any propositional variable, which means that,
we can obtain the model counting of the conjunction as the product of the model
counting fo the conjuncts. We can therefore conclude that

#SAT (g1 ¥ ga) = 51+ (2" — 52) + 52+ (2" — 1)
where s; = #SAT(¢;) and n; is the number of propositional variables that appear
in ¢; fori=1,2. 0

Exercise 110:

Let Y be the connective for exclusive or, i.e., p Y ¢ is equivalent to (p A =q) V
(=p A q). Express #£SAT(¢1 Y ¢2) in terms of #SAT(p1) and #SAT(¢2) under
the hypothesis that ¢; and ¢ don’t share any propositional variable. Explain your
solution.

Exercise 111:
Show that if = ¢1 = ¢2, then

#SAT(¢1) = #SAT(¢2) . 9|P2\P1|=|P1\ P2
where P; is the set of propositional variables occourring in ¢; for i = 1, 2.
Solution Let us consider the special case in which Py C Py, We prove that
#SAT (¢1) = #SAT (92) - 271\ 72!

Let Z5 be an assignment to P that satisfies ¢2, and let Z; be an estension of Z, for
the variables in P; \ Pa. We have that Z; = ¢ and since = ¢1 = ¢ then Zy = ¢1.
Since there are 2/71\P2| different extensions of Z, we have that

#SAT (¢1) > #SAT (92) - 271\
. SInce we also have that = —¢1 = —¢9, for the same argument we can show that

#SAT(~d1) > #SAT (~¢s) - 2P1\P2!



6. EXERCISES 159

. Which implies that
2Pl — HSAT (1) > (272 — #SAT(¢p)) - 271\ P!
Since Py C Py we can conlcude that
#SAT($1) < #SAT(¢2) - 27 \P!
And therefore we can have the following lemma:

forall ¢1 and ¢ if = ¢1 = ¢2 and Py C Po
then #SAT (1) = #SAT (¢2) - 9IP1\P2|

‘We can now use lemma to show the main result. First notice that if = ¢1 = ¢o,
then = ¢; = ¢1 A ¢ for i = 1,2. By applying lemma we have that

#SAT(¢1 A do) = #SAT () - 2/P10P2\P1l
#SAT(¢1 A ¢o) = #SAT(¢2) - 2/P10P2\ P2
From which one can derive
#SAT (¢1) - 9IP1UPA\P1| _ H#SAT () - 9|PLUP\P, |
HSAT(¢1) - 2P\ = #SAT () - 2P\ P!
#SAT (1) = #SAT (¢g) - 211 \P2l=IP1\P1l

(72)






CHAPTER 7

Weighted model counting

Perhaps, before introducing weightd model counting, this is a good time to
summarise the inference tasks on propositional logic that we have described sofa
including the one that we are going to describe in this section. They are listed in

Table [7

| Task Name

| Input | Result

Description

Model checking;:

0,1

Z(¢)

Compute the truth value that the
interpretation Z assigns to the
formula ¢, or equivalently check
if ¢ is satisfied or not satisfied by
T.

Satisfiability:

maxz Z(¢)

Search for an assignment Z to the
propositional variables of ¢ that
satisfies ¢. If such an assignment
does not exist ¢ is unsatisfiable
otherwise it is satisfiable.

Maximum
Satisfiability:

b, w

maxz Z(¢) - w(T)

Search for an assignment Z that
satisfies the formula ¢ and max-
imize a weight function (or min-
imize a cost function) defined on
the interpretations of the propo-
sitional variables in ¢.

Model counting:

P

Count how many assignments to
the propositional variables of ¢
are models of (or equivalently

satisfy) ¢,

Weighted

Model counting:

¢, w

21 Z(¢) - w(I)

Compute the weighted sum of
the models of ¢ according to the
weight function w.

1. Introduction

Weighted model counting is a generalisation of model counting where models
have different weight, which is usually a positive numbers. Model counting is a
special case of weighted model counting where each model weight is equal to 1.
The most widespread application of weighted model counting is in probabilistic
inference. Indeed, a recent and effective approach to probabilistic inference can be

161
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obtained by reducing the problem to one of weighted model counting Chavira and
Darwiche 2008bl

The problem of Weighted model counting can be formulated as follows: Given
a propositional formula ¢ containing propositinal variables in P and a weight func-
tion w that assigns a non-negative weight to every truth assignment to proposi-
tional variables in P, weighted model counting (henceforth wMC) concerns sum-
ming weights of the assignments that satisfy ¢. formula. If every assignment has
weight 1, the corresponding problem boils down to model counting.

DEFINITION 7.1 (Weighted model counting). Foer every set of propositinal vari-
ables P and weight function w : 2P — RT. the weighted model counting of a
propositinal formula ¢ with propositinal variables in P w.r.t, w, is defined as:

(73) wMe(g,w) = > I(¢) - w(T)

Z:P—{0,1}

Weighted model counting and unweighted model counting (or simply model
counting) share a lot. Indeed as it will be clear in this section, many of the tech-
niques that have been developed for model counting can be equally applied or
generalized for weighed model counting. There are also approaches that reduces
weighted model counting to unweighted model counting Chakraborty et al. [2015]
Concerning the application of weighted model counting to probabilistic reasoning
we will describe them in details in this chapter.

In (unweighted) model counting each model of a formula counts 1; in weighted
model counting some models are more important/probable/preferrable than others.
To measure how much a model is important, it makes sense to associate a positive
weight w(Z) > 0 to each interpretation Z. Why positive? Well this is not strictly
necessary, however this is what happens. Furthermore, positive weights makes more
direct the connection with probability. In weighted model counting each model Z of
a formula counts for its weight w(Z). The eight w(Z) associated to the model Z can
be interpreted in probabilistically; i.e. the weight is proportional to the likelihood
of this model

EXAMPLE 7.1. Suppose that a supermarked is selling item categories a, b, ... f,
g. From the fidelity cards of the customers we observe the following records:

’ # I ITtemsets ‘
4 a b ¢ d
1 a b e f
7 a b
3 a c d f
2 g
1 d
4 d g

Every row of the above table reports the number of customers that have bought a
set of items that contains at least one item for each category listed in the row, (we
dont count how many items of the category he/she has bought). Notice that there
are 27 = 128 combinations of itemssets, and the table reports only the combinations
which has been observed at least once. Therefore, if a combination is not present
then, it means that no customer has ever bought items of that combination of types.
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FEvery combination of items can be seen as an interpretation on the set of proposi-
tions a, b, ...g, where a means “the customer has bought at least one item of type
a”, similarly for b, dots g. We can consider the number of times we observe a
combination as the weight of the corresponding interpretation. In other words we

will have the follwoing weight function

~—

coor oo ralN

O OO R O O
— O = OO O Ok
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We have 27 possible itemsets (interpretations ), and we can assigns to each
a weight equal to w(Z) where w(Z) is the number of times an itemset has been
observed. Given this for every formula in the language of a,...,g the weighted
model counting returns the number of customer that bought items with tipes that
respect the formula. For instance.

wMC(aA(bVe) =4+1+T7+3=15 The number of times that a cus-
tomer buys at least an item of
type a and at least one of type b
orc
wMC(aA—g) =0  No customer buys at the same
time an item of type a and an
item of type g.
#SAT(a = b)=4+14+7+2+1+4=19 It counts the number of times a
customer buys an item of type
b. Notice that in the computa-
tion we also take into account all
the cases in which the customer
does not buy a. This is due to the
“material implication” of proposi-
tional logicm that interprets a —
b as —aVb.

2. From #sat to wmc
Most of the results of model counting can be generalized to weight model count-
ing.
2.1. The partition function.

PROPOSITION 7.1. If ¢ is valid, then WMC(¢p, w) is equal to ZI:P—>{0,1} w(Z)

The quantity 7., o1y w(Z) is the sum of the weights of all the interpreta-
tions w.r.t., the weight function w. When P is clear from the context we use the
notation ) - w(Z). This quantity has an important role in many formalizations
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and algorithms. Therefore it has a special name: i.e., the partition function of w.
It is usually denoted by Z(w), or simply by Z, when w is clear from the context.

(74) Z(w) =Y w(I)
z
In many cases in which we have to perform weighted model counting and proba-
bilistic reasoning we have to estimate Z(w). This is usually a source of complexity.
Indeed in the most general case computing amounts in computing w(Z) for
all the interpretations 1, wich means that we have to do 2" calculations where n
is the number of propositional variables in P. Notice thta by seeing #SAT as a
special case of wMcC, where w(Z) = 1, computing the partition function Z(w) is
not problematinc since it is equal to 2".
Let us now see other propoerties of WMC.

PROPOSITION 7.2.
(1) If ¢ is unsatisfiable WMC(¢p, w) is equal to 0;
(2) #5T(~0) = Z(w) — WMC(B, w);
(3) If ¢ E 4 then wMC(¢, w) < wMC(¢, w);
(4) if ¢ is equivalent to 1, then WMC(¢, w) = WMC (¥, w);

PROOF. The proof is immediate. However it is worth noticing that property
(3) is tightly connected to the fact tht the weight function is positive for all the
interpretations. O

2.2. wmc and conjunction. Let us see how WMC behaves w.r.t, conjunction
and dijunction. The property that allow to factorize model counting of a conjunc-
tion ¢ A ¢ where ¢ and v do not share propositional variables can be reformulated
as follows: Let ¢ A1 be a formula on a set of propositional variables P such that
P(p)NP(¢p) = 0, and let w be a weight function on P. Let us consider the propoerty
(75) WMC(¢ A ¥, w) = WMC(¢, wp(g)) - WMC(Y, wp(y))
where wg is way to restrict w to a given subset of propositions @ C P. In the
general case property does not hold. Consider the following example.

EXAMPLE 7.2. Let P = {p, q}. Consider the following two weight functions:
wi(Z) =2-I(p) + 3 - I(q)
ws(Z) = 2F@ . 37(0)

In the following two tables we show the weight funcitons on the left, and the weights
of the formulas on the right.

p q|wi(Z) wy(Z))
00| 1 1 Y
0 1] 2 3 w |7 6 4
10| 3 2 w2 |8 9 6
1 1| 4 6

Let us now see how we can generalize the property of decomposition for model
counting to weighted model counting:
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PROPOSITION 7.3. Let w be a weight function defined on a set of propositional
variables P = {p1,...,pn}. For every Q C P let wg be a weight function defined
on the set Q, such that wp = w. If, for every pair of formulas ¢ and i that do not
share propositionla variables, it is true that:

(76) WMC(¢ A P, w) = WMC(¢, wp(g)) - WMC(), wp(y))
if and only if w can be specified in the following form:
(D) = {exp (S 0 T 407 - Z(op)) T

(77) }
0 Otherwise

+ —
for some formula ¢ and v;",v; € R

PROOF. Let I be the set of interpretations such that w(Z) # 0, then let ¢ be
be a propositional formula that is true if and only if Z € 1. For every Z € Z, let
PT the set of proposiitional variables true in Z and P~ those that are false. Let
¢z = NPT A A\—P~. Since Z is the ontly interpretation that satisfies ¢z we have
that w(Z) = w(¢z). From we have that

w(@) = [] wey®) - [] wey(-p)
peEP+ peEP—

If we define v} = log(wp,}(p;) and v; = log(wy,,}(—p;), the previous expression
can be rewritten as

exp (Z (vi" - Z(pi) + v -I(ﬂpz)))

i=1

The proof of the opposite direction is left by exercise. (Il

Not all the weight function can be expressed in the exponential form (76).
Consider for instance the weight function w; of Example[7.1} If w; were expressible
in exponential form there should exists four values v;r y Up s v;, and v, which are
solutions of the following syste of equations:
v, +v, =0
v, + v =log2
vf +v; =log3

vf +vf =log4

(78)

However, the system does not have a solution. Indeed, by summing the first and the
fourth equation and subtracting the other two we obtain that log4 = —log 3 —log 2
which is false.

2.3. wmc and disjunction. Let us now see how weighted model counting
behaves with disjunction. The key property for decomposing model counting of
disjunction is determinism. By this property if ¢ A v is unsatisfiable we have that
#SAT(¢p V o)) = #SAT(¢) - 2™ + #SAT(1)) - 2" where m (resp. n) isthe number of
propositional variables that occours in ¥ but not in ¢ (resp, occour in ¢ but not in
). When n =m = 0, i.e., ¢ and ¥ contains the same set of propositional variables,
then we have that #SAT(¢ V ¢)) = #SAT(¢p) + #SAT(1)). This property is also true
in weighted model counting

A disjunctive formula ¢ V 1 is called smooth if ¢ and v contains the same
set of propositional variables. A formula ¢ is in sd-DNNF (smooth deterministic
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decomposable negated normal form) if it is in d-DNNF and every disjunction is
smooth.

PROPOSITION 7.4. If ¢ V ¢ is deterministic and smooth then

(79) WMC(¢ V b, w) = WMC(¢, wp(g)) + WMC(9), wp(y))
PROOF.
WMC(p VY, w) = Y w(T)
T=¢vy
= Z w(T) + Z w(T) By determinism
To T4

= WMC(¢, w) + WMC(¢), w)
= WMC(@, wp(g)) + WMC(1), Wp(y)) By smoothness
([l

To transform a d-DNNF formula into an sd-NNF formula we can apply the
following rule:

e Smoothing left: For subformula ¢ V ¢ with p € P(¢) \ P(¢) apply this
transformation

A (pV-p) VY

e Smoothing right: For subformula ¢ V v with p € P(¢) \ P () apply this
transformation

¢VYA(pV-p)

This results in:

on N @v-p)|viean A (gv-o)
pEP(Y)\P($) g€P($)\P(¥)

EXAMPLE 7.3. Smoothing (a Ab) V (¢ A —a) results in

(aNbA(cV—e))V ((eA—a)A(bV —b))

Notice that the conjunctions that are introduced by the smoothing rule are
decomposable. Furthermore the disjunctions introduced by the smoothing rules
are deterministic. Therefore by smooting an d-DNNF formula we will not loos the
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fact the d-DNNF’ness. However, if we want to transform a generic formula in sd-
NNF it is better to first transform it into d-DNNF and then apply smoothing in
order to obtain an sd-DNNF formula.

Proceeding in the opposite direction would not be optimal. Consider the fol-
lowing example

EXAMPLE 7.4. consider the formula (a Ab)V ¢, This formula is neither smooth
nor deterministic. Should we try to first smooth it and then make it deterministic
by applying Shannon’s expansion? or should we proceed in the opposite direction?
Let’s analize the two cases:

Smooth then determinism

(andb)Ve Smoothing

((anD)A(cV =)V (cA(aV—a)A(bV b)) Shannon’s expansion

(eA((anb)V(aV—-a)A(bV-b)))V(—cA (aAb)) the red disjunction is not
deterministic. So we

should apply again Shan-
non’s expansion.

Instead if we apply first Shannon’s expansion for determinism and then smoothing
we proveed as follows:

(aNb) Ve Shannon’s exp. on a
(bVve)Aa)V(eA—a)  Shannon’s exp. on b
(bV (eAN=D)ANa)V (cAN—a)  Smoothing
(bV(eAn=b)ANa)V(cA—aA(bV—=b)  Smoothing
(A (cV=e))V(eA=b))Aa)V (cA—-a N (bV —d))

2.4. Weighted model counting by knowledge compilation. When weight
function has the exponential form, i.e., the weights are associated with literals
weighted model counting can be performed on sd-DNNF formulas by transforming
into a sum-product circuit. In particular, an sd-DNNF formula can be transformed
a sum-product circuit as follows:

e Every leaf (literal) is associated with its weight;
e at every A-node we perform the product of the child nodes;
e at every V-node we perform the sum of the child nodes.

EXAMPLE 7.5. Consider the following weighted literals: w(a) = 2, w(—a) =1,
w(b) =5, w(=b) =3, w(c) =7 and w(—c) = 1.
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136

3. Weights and probabilities

In this section we recall the formal relationship between weighted model coungint
in propositional logic and probability. Let us first introduce the basic definition of
probability measure.

3.1. Basic probability. A probability[] space or event space is a set  to-
gether with a probability measure P on it. 2 is called the sample space and every
element of w is the otucome of some esperiment. Any subset of the sample space
is called event.

EXAMPLE 7.6.

(1) Tossing a coin. The sample space is Q@ = {H, T}, = {H} is an event.

(2) Tossing a die. The sample space is Q = {1,2,...,6}, A= {2,4,6} is an
event, which can be described in words as “the result of the draw is an
even number”.

(3) Tossing a coin twice. The sample space is Q ={HH,HT,TH,TT}. A=
{HH,HT} is an event, which can be described in words as “the frst toss
results in a Head”.

(4) Tossing a die twice. The sample space is Q = {(1,1),(1,2),...,(6,6)},
which contains 36 elements. “The sum of the results of the two toss is
equal to 107 is an event A = {(i,j) | i + j = 10}.

EXAMPLE 7.7. The set 1 = {Z | T : P — {0,1}} of assignments of a set
of propositional variable P is a sample space, and the set of interpretations that
satisfies a formula ¢ is an event.

P associates a number in [0, 1] to every subset of Q. A subset A of ) is also
called an event. This means that Pr associates the probability to each event A C Q)

Pr(A) = probability of A
with
(80) 0<Pr(4)<1

1This is not the most general definition of probability space, but it is sufficiend for our
purposes.
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The probability of the whole space 2 is normalized to be Pr(2) = 1 and the
probability of the empty set is 0 i.e, Pr(f)) = 0. For an element w € ) we may call
{w} an atomic event, and write Pr(w) instead of the more precise notation Pr({w})
to denote it’s probability.

For two disjoint subsets A and B of )

(81) Pr(AUB) =Pr(A) + Pr(B)

In this case we say that A and B are disjoint events.

When 2 is finite, every event A is equal to the union of the atomic events that
are contained in A. More precisely, if A = {w1,...,wk}, then A can be expressed
the union of the atomic events,

A={w1}U{wa} U U{ws}

Notice that every pair {w;} and {w;} with i # j {w;} N{w;} = 0. This implies,
that we can apply property , obtaining:

Pr(A) = Pr(w1) + Pr(ws) + - - - + Pr(wy)

In conclusion, if € is finite, the probability of every event can be obtained by
summing the probability the atomic events that belong to the event A. In other
words, if we know Pr(w) for every w € Q then we can compute the probability of
every event A by

Pr(A) = Pr(w)

weA

The requirment that Pr(£2) = 1 imposes also the restution that

Z Pr(w)=1

weN

i.e, that Pr is normalized to 1.

An important notion in probability theory is that of conditional probability.
Given two event A and B in 2 the probability of A conditioned by B, denoted by
Pr(A | B) is defined as:

Pr(AN B)

(82) Pr(A| B) = =5

EXAMPLE 7.8. Suppose that you draw a dice and you know that the result is
larger than 3, what is the probability that it is an odd number? Conditional proba-
bility P(A | B) provide the answer to this question. In this case, the conditioning
event is “the result of the toss is > 3 (B in the formula) and the conditioned event
18 “the result of the toss is odd”, A in the formula. If we are in presence of a fair
dice, we have that

P(ANB) 1
PrATB) = =5 ~ 3

3.2. From weights to probabilities. As shown in Example[7.7] one can see
the set of all interpretations I of a set of propositional variables P as a sample space,
where each interpretation is a single outcome of an experiment. This sample space
contains 2/ elements, and therefore it is finite. The weight function w maps every
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interpretation of P into a positive integer, we could therefore define the probability
of an interpretation as the normalized weight:
w(Z)
(83) Pr(Z) = =———=
o1 €l w(Z)
Notice that if w(Z) > 0 for every Z then Pr is a probability measure. Indeed we
have that The probability of the set of all interpretations is equal to 1:

Pr(l) = ZPr(I) — Z w(T) - D raw@)

DD ST B SR B

Every formula ¢ defines a set I, = {Z € I | T |= ¢} of interpretations, which
contains all the interpretations that satisfies ¢. This means that every ¢ corresponds
to the event Iy C I. Given this corrispondence, we can identify the event I with
a formula ¢, which allows us to talk about a “probability of a formula ¢” denoted
by Pr(¢), and defined by the following equation:

(84) Pr(¢) = > Pr(I)
I=¢
if we plug in the definition of Pr(Z) given in we obtain

w(Z) _ >z w(I)
Yz w(Z) Zth w(Z)

Pr(¢) =
Ik

which is equal to

1
(85) Pr(¢ | w) = mWMCw»W)
Weighted model counting allows also to define conditional probability. WHich is
Pr(¢ | ¥). Let us apply the definition:

Pr(s ] ¥) = Tpo

What is the event ¢ N7, In our convention ¢ denotes the event Iy of the proposi-
tional assignments that satisfies ¢ and similarly L,. Therefore ¢ N1 denotes I4NLy,

which is the set of propositional interpretations that satisfy both ¢ and . This
coincides with the event Iy, also written as ¢ A 1. We therefore have that

Pi(o] ¥) = et

If we replace the definition of probability of a formula in terms of weighted model
counting provided in we obtain

WMC(pAY)
_ Twuo(D) | _ WMC(@AY)
(86) Pr¢19) = <~ = “wac()

wMmc(T)
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4. wmc for inference in Bayesian Networks

Bayesian networks (BNs) are graphical models (graphical in the sense that they
are based on a graph) for probabilistic reasoning. The basic structure of a Bayesian
networks is a directed acyclic graph where the nodes represent variables (discrete
or continuous) and edges represent direct probabilistic connections between them.
These direct connections are often causal connections. In addition, BNs model
the quantitative strength of the connections between variables, allowing probabilis-
tic beliefs about them to be updated automatically as new information becomes
available.

4.1. Boolean Bayesian networks. In this chapter we consider only bayesian
network which are based only on boolean random variables, though bayesian net-
works are defined on any type of random variables.

A directed acyclic graph C' = (V, E) is a graph on the set of vertices V' and
with directed edges ¥ C V x V that does not contains cycles. A cycle is a sequence
(v, v1), (v1,v2), ..., (Up_1,v,) Where vy = v, and for all 0 < i < n (v;,v;+1) € E.
Given a directed graph G = (V, E) for every vertex v € V, we define par(v) = {v' |
(v',v) € E}.

DEFINITION 7.2 (Bayesian Network). A Bayesian network on a set of random
variables X = {Xy,...,X,} is a pair B = (G, Pr) is a pair composed of a directed
acyclic graph G = ([n], E) (where [n] = {1,...,n}) and Pr specifies the conditional
probababilities

PT(XZ =T; | Xpar(i) = wpar(i))
for every X; € X. B uniquely define the join distribution on X

(87) PT(X = $) = HPT(Xz = X | Xpar(i) = $pa7"(i))
i=1

EXAMPLE 7.9. The following simple Bayesian Netsork

Pr(A) =1 a|Pr(B=1|A=a)
— 03 0 0.4
’ 1 0.9

specifies the joint probability distribution P(A, B) = P(A) - P(B | A) shown in the
following table

a b|PA=a,B=0b)
0 0 0.42
0 1 0.28
1 0 0.03
1 1 0.27

EXAMPLE 7.10. As a second example consider the Bayesian network shown in
this picture taken from Sang, Beame, and H. Kautz|2009
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P(D=1)
0.5

d|P(F=1|D = d)
0.6

D[ P(G=1D=d)
1 0.7
0 0.2

~

[ g | P(H=1F=fG=g)
1 1 1.0
10 0.5
0 1 0.4
0 0 0.0

The above Bayesian Network specifies a probability distribution on four boolean
random wvariables, D, F, G, and H. Since they are boolean, they can take two
values 0 and 1. As in propositional logic, boolean variables are used to express
propositions, In this example we have that the propositional/random variables D,
E, F and G stand for the following propositions:

John is Doing some work
John has Finished his work
John is Getting tired

John Has a rest

SN e

Every node of the graph is associated with a table that expresses the probability
of the variables conditioned to the values of the parents. Theset tables are called
conditional probabuility table (CPT). For instance the table associated to the node
F states that:

The table specifies only the conditional probability for one of the two values of the
boolean variable, since the value of the other can be obtained by difference.

Pr(F=0|D=1)=1-Pr(F=1|D=1)=05
Pr(F=0|D=1)=1-Pr(F=1|D=0)=09
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The above Bayesian Network specifies the following joint distribution on D, F, G, H

d f g h|Pr(D,F,GH=d,f,qg,h)
0 0 0 0] 05-09-0.8-1.0=0.360
0 0 0 1] 05-0.9-0.8-0.0=0.000
0 01 0] 05:09-0.2-0.6=0.054
0 01 1] 05-09-0.2-0.4=0.036
01 0 0] 05-01-0.8-0.6=0.024
01 0 1] 05-01-0.8-0.4=0.016
01 1 0] 05-0.1-0.2-0.0=0.000
0 1 1 1| 05-01-0.2-1.0=0.010
1 0 0 0| 05-04-0.3-1.0=0.060
1 0 0 1| 05-04-0.3-0.0=0.000
1 01 0| 05-04-0.7-0.6=0.084
1 0 1 1| 05-04-0.7-0.4=0.056
1 1 0 0] 05-06-0.3-0.5=0.045
1 1 0 1] 05:06-0.3-0.5=0.045
1 1 1 0| 05-0.6-0.7-0.0=0.000
1 1 1 1| 05-06-0.7-1.0=0.210

1.000

From the previous example it should be clear that a Bayesian Network B with
boolean variables expresses a probility distribution on a set of inbterpretations on
the propositional variables corresponding to the random variables of B. Therefore,
An assignment to the random variables corresponds to a propositional interpre-
tation. To highlight this fact from now on we use P to denot the set of random
boolean variables (propositional variables) and Z to denote an assignment to them.

There are many possible tasks that can be done with a given Bayesian network
B = (G, Pr) on a set of propositional variables P. The task we consider here is
Conditional Probability Queries.

DEFINITION 7.3 (Conditional Probability Queries). Given a Bayesian Network
B on a set of propositional variables P a conditional probability queries is an ex-
pression of the form Prg(¢ | v), where @ is called the evidence, and ¢ the query.
The anwer to this query is
(88) Pr(¢ ANy) ZI\:¢A¢ Prs(7)

Prs(0) gy Prs(d)

In the previous example, If we want to know the probability that the work is
finished (F) given the fact that we see John at the sun having a rest (H), we have
to evaluate Pr(F | H); in this case F' is the query and H is the evidence.

4.2. Answering Conditional Probability Queries via wmec. Weighted
model counting can be used to compute the value Prg ¢ | 0. To this purpose we
exploit the relation between weighted model counting and probability, i.e., that

_ WMC(p A Y, w)
Pr(¢ly) = W

Therefore, the problem become to define a proper weight function w corresponding
to a given Bayesian Network. The method is based on the following steps
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(1) Extend the set of propositional variables P of the Bayesian Network, which
are called state variables with the following new variables called chance
variables For every state variable p that has parents k > 0 parent variables
introduce 2¥ new propositional variables py, for every b € {0,1}*. In the
previous example we introduce G and G1, Fy and Fy, and Hyg, Ho1, Hio,
and Hll-

(2) To each of the introduced variables associate the weight specified in the
corresponding line of the CPT. Le., w(pp) = Pr(p =1 | par(p) = b). In
the above example we have the following weights:

w(D) =0.5
w(Fy) =0.1 w(Fy) =05
w(Gp) = 0.2 w(Gy) =0.7
w(Hoo) = 0.0 w(Hyp) = 0.4
w(Hyg) = 0.5 w(Hi1) = 1.0
The weight of —pp is set to 1 — w(ps), and the weights of all the other

literals are set to 1.

(3) The intuition of the choice variable py is that it will be true of the parent
variables of p will take the values b. So for instance Fj it means that the
only parent of F', which is D will be false. The third step is to connect
the new variables to the variables in the graph; For every change variable
pp correspinding to a line Pr(p = 1 | par(p) = b), we add the following
formula, where par(p) = {p1,...,pr}

k k
Do < pA /\ Pi A /\ i
i=1

i=1
bi=1 b; =0

In our example we add the following formulas:
Fy < FAN-D Fy < FAD Go <~ GAN-D G+ GAND
Hy <~ HN-FAN-G Hy < HAN-FANG Higo< HANFA-G Hy1< HANFAG

(4) A further obtimization consistes in replacing literals with weight equal to
0 with formulas. In particular, if w(l) = 0 add the unweighted formula —I.
and remove the weight of [. In the above example for instance we remove
the weights for Hop and add —Hyp.
Let ®5 and wg be the conjunction of the formulas and the weight function obtained
by applying the previous steps to Bayesian network B, We then define the weight
function

wB(I) _ HI\:pb w(pb) . HIb&pb w(—\pb) if T ): g
0 Otherwise

Notice that w is more than a weight function. Indeed it is a probability distri-
bution on the models of ®g, since the partition function Z(wg) = Y ;w(Z) =
>z, W(Z) =1, ie, the weight of all the models of ®5 sum up to 1. Indeed we
have the following proposition:

PROPOSITION 7.5. Let B be a Bayesian networks on the boolean random vari-
ables X1,...,X,, that defines the joint probability distribution Pr(Xq,...,X,).
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o for every assignment © = (x1,...,%,) to the variables X1, ..., X,. there
is a unique interpretaiton I, that satisfies ®p and such that T(X;) = x;
e For every I that satisfies g

wg(Z) = Pr(X; =Z(X4),..., Xn = Z(X,))
The answer to the conditional probability query Pr(¢ | 1) w.r.t, the Bayesian
network B can be computed via weighted model counting.
WMC(Ps A ¢ A, wp)
WMC(®5 A Y, wg)

(89)

To this purpose we can use for instance knowledge compilation of ®z in an sd-
DNNF formula in order to compute the circuit. Notice that if the evidence 1) is
a conjunction of literals we can set the weights of the opposite literal to 0 in the
circuit of @5 and we immediately obtain a circuit for ® A4 Similarly, if the query ¢
is a conjunction of literals. THerefore in case of conjunctive conditional probability
queryies (i.e., queries in which the evidence and the query are conjunctions of
literals) once we have computed the circuit for @5 we can easily computeall the
answers of conditional probability conjunctive queries.

ExXAMPLE 7.11. The sd-DNNF of the ®g for the previous example is

DANFANFLANGANGAN(HANHy1V-HA=-H1))V
(=G AN=Gy A (HANHyoV—HA=-Hy)))V
("FANFLAN(GANGyLA(HANHyp V—-HA—Hp))

("G A =Gy A (H ANHypV-HA ﬂHoo)))
-DA(FANFy N(GANGoA(HANHy1 V—HA=Hi))
(—'G A =Gy A (H ANHigV—-HA —‘Hlo)))

(_'F AN E) AN (G A GO AN (H AN H(]1 V _|H A _‘H(]l))
(ﬁG A =Gy A (H A HpoV—-H A ﬁHQo)))

V
V
V
V
V

Formula can be converted in a sum-product circuit. Cg that cam be used to
compute the probability of any conjunctive formula. For instance to compute the
probability of H A =G, it is sufficient to set the weights of the literals —H and G
to 0. and compute the circuit. Therefore if we want to answer the conditional
conjunctive query Pr(D | H A —~G) we use the circuit to compute Pr(D A H A -Q)
and Pr(H N —Q). The anwer will be the fraction of the two results i.e.,

Pr(DAHA-G)
Pr(H A—G)

5. Learning weights

Until now, we have assumed that the weights associated to literals are given.
In this last section, we describe a basic method to automatically learn the weights
from a set of observations.

First, we have to define what is an observation. Since we want to learn a
weight function (or a probability distribution) on the set of interpretations of a
set of propositional variables P then the observations must be instances of such
assugnments. Suppose we have a set of observations which are represented as a
multi-set (i.e., a set with repeated objects) of interpretations I = (1), 7(2) . ()
where d the the size of the observations. The criteria used to learn the weights
is that of the maximum likelihood that requires to maximize the probability of
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observing the data. Formally, we want to find a set of parameters (weights) w such
that

(91) Likelihood(I | w) = Pr(I | w)

is maximal. We make the following simplifying hypothesis .The first one is that the
observations are i.i.d. (independent and identically distributed). This hypothesis
allows us to factorize the probability of all the observations as a product of the
probability of each single observation.

Likelihood(I | w) H Pr(Z | w

The second hypothesis concerns the form of Pr(- | w). We assume that this prob-
ability is specified via weighted model counting, i.e., that

1
Pr(Z|w)= mw(l’ | w)
The third and final hypothesis is that w(Z | w) is specified by an exponential form
w.r.t a given set of formulas ¢1, ..., ¢,. This means that

w(Z | w) = exp (Z wiz((bi))
=1

The problem consists in finding a tuple of weights w = (w1, ..., w,) that best fits
the observed data. Putting everything toghether we are interested in the vector of
real number w = (w1, ..., w,) that meximizes

1
Likelihood(I | w) = Z(w)? - exp ZZU}JI“ ()

i=1 j=1

Z(w) = 3 exp | S wiZ(6)

It is convenient to pass to the logarithmic space. Indeed due to the monotonicity of
the logarithmic function, we have that maximinzing a function f(z) is equivalent to
maximizing the logarithm of the function i.e. maximizing log(f(z)). We therefore
want to maximize the logarithm of the likelihood, also known as loglikelihood

LogLik(I | w) = log(Likelihood(H | w))

(92) —ZZwJ IO (¢;) — d - log(Z(w))

=1 j=1
n d
=33 0y I0(@y) - d-og(Z(w))
(93) = > wjny — d-log(Z(w)

where n; is the number of observations Z( for which the fornula ¢; is true. We
can try to maximize with gradient ascent approach, by putting to zeros the
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partial derivatives of the log likelihood w.r.t. the parameters w;.

OlogLik(T | w)

311),’ =0
0 (2?21 wj-n; —d- log(Z(w)))
8wj =0
4 Xo20) e (S0 T5)
e Z(w) -

requires exponential amount of time. We can use an approximation by learning the
weight of each formulas separately. I.e., we assume that it is the only formula that
we use to cmpute the weight function. We therefore consider the case where we
have a unique formula ¢, and compute the derivative w.r.t. the only parameter w;.

ny — d-> 7 Z(¢1) - exp(wi - Z(¢1))

Z(w) "
n d- Zz|:¢1 ~exp(w1) B
1 Z(w)
i d - #SAT(¢1) - exp(wr) _ 0
' Z(w)
_— d - #SAT(¢1) - exp(wy) —0
L s, o0(wh) + Xgpg, exp(0)

d - #SAT(¢p1) - exp(wy) .

#SAT(¢1) - exp(wi) + #SAT(¢1)

ny - exp(wy) - #SAT(P1) + 1 - #SAT(—¢p1) = d - exp(wy) - #SAT(d1)
ny - #SAT(=¢1)

(d — n1)#sAT(¢1)

= exp(w1)

B ny - #SAT(~¢1)
v =los ((d ) #SATE¢1)>

IN the following we summarize how weighted model counting can be used to
perform probabilistic prediction starting from a set of observations. Suppose that
you are interested in doing some predictions which are expressible with a proposi-
tional formula @ starting from a set of evidences which are expressed in terms of
a propositional formula E. In synthesis you want learn a set of parameters w that
allows you to answer the query Pr(Q | E, w).

(1) collect a set of d observations, i.e., 7M., ZW@ from which you want to
extract knowledge that can be used to answer your query.

(2) select a set set of propositional formulae ¢4, ..., ¢, that you want to use
to describe the properties of your data. How to choose this formula is a
matter of design. A possible criteria is to conisder formulas such that their
truth value has some impact on the answer to the query Pr(Q | E, w).

(3) learn the weights wy, ..., wy, separately using formula:

n; - #SAT(_\Qﬁj) )
—n;) - #SAT(;)

(94) w; = log ((d
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(4) apply inference i.e., compute Pr(Q | E,w) via weighted model counting.

ie.
WMC(Q A E, w)
Pr@ [ Byw) = wMc(E, w)
EXAMPLE 7.12. Suppose that we have I = ZM ..., T(3?) are summarized in the
following table:
’ # I Itemsets ‘
41a b ¢ d
1 |a b e f
7la b c
3 la c d f
2 g
1 d
4 d g

Suppose that we are interested in answering query of the form Pr(xz | y A —z) for
every ©,y,z € {a,b,c,d,e, f,g}. We can learn the weights of a set of formulas. See
for instance the following (randomly choosen)

1526
a w 10g(7.26>~076
726
-q wlog(15.26>fv076
1-26
:1 ~ —3.04
e w og<21.26> 3.0
2126
—e w—log<1.26>~3.04
12 (27 —25)
aANb w:10g710-25 ~ 8.21
7-(27 - 25)
1-(27—29)
enf wzlogwmé%
19- (27 —3-2%)
a— w = log 3.3.95
aANbANcAN—eN—f — w=lo 1 ~ —4.84
g ERGACTHICED) Y A
aNbA—cA-dNeNfA—g w = log(21- (27 — 1)) ~ 7.89

And then estimate for instance Pr(a | b, —c¢) via weighted model counting.
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6. Exercises

Exercise 112:
Given a set of propositional variable P, let w(Z) = |[{p € P | Z = p}|, i.e., w(T)
is the number of propositional variables that are true in Z. Compute WMC(T).

Exercise 113:

Given a set of propositional variable P, let w(Z) = z!{PEPITEP}H for some x # 0.
Compute WMC(T).

Exercise 114:

Let P = {p,q} be a set of propositional variables. Check if the following two
weight functions on the interpretations of P can be expressed in terms of a weight
function on the literals of P.

Zlp q|w@
7,10 0] 0
(95) o 1] 1
Zs |1 0| 2
.11 1] 3

Solution A weight funciton on the interpretation can be expressed in terms of a
weight function on the literals, if the weight of the interpretation is equal to the
product of the weight of the literals that are true in the interpretation, i.e., if

w(Z) = [ wp) @ w(-p)*»
peP

Therefore, to be expressed in term of a weight funciton on literals the weight func-
tion should be such that

THe first equation implies that either w(—p) = 0 or w(—g) = 0; but the second
equation implies that w(—p) # 0 and the third equation implies that w(# ¢q) # 0,
which is impossible. Therefore the weight function cnanot be expressed in
terms of weight funciton on literals. [J

Exercise 115:

Suppose you have three coins: the faces of the first coin are black and white,
the faces of the second coin are yellow and green, and the faces of the third coin
are red and green. In an experiment you toss the first coin; if you obtain a black
you toss the second coin otherwise you toss the third coin.

(1) Model this experiment in propositional logic and
(2) use model counting to determine what are the number of possible out-
comes?
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(3) Let p, ¢ and r be the probability of obtaining a black, yellow, and red
faces when tossing the first, second and third coin respectively. Compute
the probability of obtaining an outcome which is either red or green.

Solution We can use the language B, W, R, G,Y to state that in the outcome there
is a coin with a black, white, red, green, and yellow faces respectively. Notice that
this is possible since there is no possibility to have outcomes with two coins with
the same color face. We can now formalize the constraints of the game in terms of
the following formulas:

B+ W =1 The toss of the first coin can have only one result among

black and white
R+Y +G=1 The toss of the second or third coin can have only one

result since only one coin among the two is tossed

B —=Y VG If you have a black then you can have only one among
yellow and green since you toss the second coin

W — RV G If you have a white then you can have only one among red
and green since you toss the third coin

The models that satisfies all the formulas are 4
{B,Y} {B,G} {W, R} {W.G}
If we associate the following weights:
wB)=p wW)=1-p wl¥)=q w(@=1-¢ wR)=r wG) =1-r

In this wey however we assign two weights to the same atom G. Indeed we have to
distinguish when G is obtained by the second or by the third coin. To this purpose
we introduce two new atoms

Gy BNG Gy WAG

Adding these new propositions does not change the number of models since they
are fully defined in terms of the previous propositions. We still have 4 models by
they are:

{B,Y} {B,G, G2} {W, R} {W.G,Gs}
and update the weights for G to
w(Gz)=1—g¢q w(Gs)=1—r

w({B,Y})=pg w({B,G,G2}) =p(l1—q) w({W,R})=(1-p)r w{W,G,Gs})=(1-p)(1-7)

Notice that the weight of all the models sum up to 1, and therefore they can be
considered to be probabilities of the outcomes. Finally, the probability of in the
result we have either red or green, is equal to the probability of the formula RV G
which can be computed by the sum of the probabilities of the models that satisfies
RVG ie,pl—q@)+(1—-pr+(1—-p)(1-7r)=p(l—-¢q¢)+1—-p=1—pq. O

Exercise 116:
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Consider the set P = {p, q} of propositional variables and the following weight
functions:

Zlp q|uwm(@ Z|p q|w(T)
7, |0 O 1 ;|10 0O 4
I |0 1 2 I |0 1 3
s |1 0 3 Zs |1 0 8
11 1| 4 1 1] 6

Check if they can be expressed in terms of a weight function w : P — R¥.

Solution A weight function maps every interpretation of the propositional variables
into a positive real number. This mapping can be specified explicilty, by providing
the explicit weight for every interpretation (we have to specify 2™ numbers, where
n is the number of propositional variables) This is how we have specified the two
weight functions w; and ws of the exercise. Alternatively, and more compactly, the
weight function can be specified indirectly, by associating a weight to every literal,
and then define the weight of an assignment as the product of the weight of the
literals that are satisfied by the assignment. i.e.,

w(Z) = H w(l)

L€ Literals
Tl=l

With this method instead of specifying 2™ numbers we have to provide at most 2n
parameters (corresponding to the number of literals). However, this is not always
possible, i.e., there are weight functions that cannot be specified in terms of a weight
function on the literals. The exercise asks if the weight functions w; and ws can or
cannot be specified by a weight function defined on literals.

Let’s start with wy. If w; can be specified with the weight of the literals, then
we have that

wi(Zy) =1 =w(=p) - w(=g)
w1 (Z2) = 2 = w(-p) - w(q)
w1(Z3) = 3 = w(p) - w(~q)

( .

To find the weight function for the literals, we have therefore to solve the following
system of equations, where we have replaced w(—p), w(—q), w(q), and w(p), with
a,b,c and d.

a-b=1 a:%
a-c=2 c=2b
=
d-b=3 d:%
d-c=4 d=2

which does not have a solution. This implies that the weight funciton w; cannot
be expressed in terms of weight function on literals. Let us now consider wo. We
proceed in the same way:

-b=4

a
h=14%
a-c=3 3
= qc==
d-b=28 @
d=2a

d-¢c=6
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which has infinite solution for a # 0, for instance:

wep=3  wla=8  wp =1 wle)=6
w(-p) =1 w(—g) =4 w(p) =2 w(q) =3

Exercise 117:
Consider the following weighted formulas

literal | A -A B -B C =C
weight | 1 2 1 2 1 2

Compute the weight and the probabilities of the formulas
(AVB)—= (BVv()

Solution Let us compute the weights of all the interpretations.

A B C|uw@)
/0 0 O 8
r, |0 0 1 4
s 10 1 0 4
|10 1 1 2
s |11 0 O 4
Te|1 0 1] 2
|1 1 0 2
Ze|1 1 1| 1
Notice that the models of ¢ = (AV B) — (B V C) are all but Zs. therefore the

weight of the fomrula is the total weight (i.e., the weight of T) minus the weight of
Zs. IN summary

8
w(T) = Zw(L) =27
w(@) = w(T) - w(T;) = 23
_w(g) _ 23
Pr(¢) m a7

Exercise 118:
Consider the following weighted formulas

weight : literal

1 . A
2 -A
1 B
2 -B
1 C
2 -C
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Compute the weight and the probabilities of the formulas
(AVB)— (BVv()

Remember that in weighted model counting you multiply the weights of the literal
that are true. Solution

A B C w AVB—sBVC
0 0 0[2°=8 1
0 0 1]22=4 1
0 1 0]22=4 1
0 1 1]|2t=2 1
1 0 0]22=4 0
1 0 11]28=2 1
1 1 01]2t=2 1
1 1 11]20=1 1

the weighted model counting of the AV B — BV ('is equal to 23, and the probability
fq 23
is 52~ 0.85. UJ

Exercise 119:

Provide a weight function W : P — R™T, that is equivalent to weight function
defined in the previous exercise. Explain why such a weight function does not exist
for the weight defined in Exercise [6]

Exercise 120:
Given the following observations on the items bought by people.

] # I Itemsets \
4 la b ¢ d
1 b e f g
7la b
3 la c e f
2 g
1 b e
4 |a c d g

Learn the weights of the following formulas:

(1) anb—c
(2) bAc—dV f

Exercise 121:
Explain the relation between weight function and probability distribution on
the set of interpretation.

Exercise 122:
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Compute the weight for the following formula: (b — —¢) V (d <> f) from the
following itemset:

] # I Itemsets ‘
4 b ¢ d
2 la e f
6 |a b ¢
1|a c d f
3 |a c e g
5 d
9 b d e g

Solution We have to apply the formula for computing the weight given a set of

observations, i.e.,

< n - #SAT(—¢) >

w=1In

(d —n)#SAT(¢)

where n is the number of observations for which the fornula ¢ is true and d is the
total number of observations. Let us first compute #SAT((b — —¢) V (d <> f)). We
do it by truth table

bedf|l(b—o-c)Vv(de f)
1111] 1001 1 111
1110/ 1001 0 100
1101/ 1001 0 001
1100/ 1001 1 010
1011 1110 1 111
1010/ 11 10 1 100
1001 11 10 1 001
1000/ 11 10 1 010
0111/ 0101 1 111
0110/ 0101 1 100
0101 0101 1 001
0100/ 0101 1 010
0011 0110 1 111
0010/ 0110 1 100
0001/ 0110 1 001
0000/ 0110 1 010
14

Since we have to take into consideration also other three propositional variables not
appearing in the formula we have that we have that

#SAT((b— —c)V (d > f)) =14
#SAT(=((b— =) V (d > f))) =27 — #SAT((b = —c) V (d ¢ f)) = 16 — 14 = 2
d=4+2+6+14+34+5+9=30
n=2+6+1+3+5+9=26

By replacing this values in the formula we obtain

26 -
w=In <1> ~ 10g(0.928) ~ —0.074
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Exercise 123:
Prove that the formulas

Vy(P(y) A 3wQ(x)) VyP(y) A 3xQ(x)
are equivalent. (Suggestion: you have to show that every interpretation satisfies

the first formula if and only if it satisfies the second one).

Solution
T EVy(P(y) A3zQ(z)) <= foralld € AT, T |= P(z) A JyP(y)[ared]
— foralld € A%, T |= P(z)[azeq] and T = IyP(y)[az«d]
= foralld € AT, T |= P(x)[azeq) and T = FyP(y)
<= Z E=VzP(x) and T |= JyP(y)
< T =VzP(x)AJyP(y)

Exercise 124:

Let P = {p1,...,pn} be a set of propositional variables and < be a total ordelﬂ
on the set I of interpretations of P. Consider the problem of ginding a weight
function w : £ — R, where £ is the set of literals on P, such that

I<J ifandonlyif w(Z)<w(J)

(1) make a simple exempla with |P| = 2,
(2) discusso on the fact if the problem has always a positive solution or not.
(3) Outline a method to find the solution.

Solution

(1) Let us consider the following two orders of the interpretations of {p, ¢},
where ij represents the interpretation Z(p) = 1 and Z(q) = j.

(96) 00 <01 <10<11
(97) 00 < 11 < 10 < 01

In the order we can define w(—-p) = w(—¢q) = 1 and w(p) = 3, and
w(q) = 2, we obtain that

w(00) =1 <w(01) =2 <w(10) =3 <w(1l) =6
In the order instead we can write the following system of inequalities:
w(00) < w(10)
w(11) < w(01)
w(00) < w(11)

2A total order < on a set S is a binary relation on S such that (a) s 4 s, (b) if s # ¢ then
s<tort=<s,and (c) s <t < uimplies s < u. An example of total order is the usual order < on
integers.
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which can be rewritten as

w(=p)w(=g) <w(p)w(=g) _ Jw(=p) <w(p)
w(p)w(q) < w(=p)w(q) w(p) < w(=p)
which does not have any solution.
(2) From the previous example one can see that the problem does not always
have a solution.
(3) A method for solving this problem is to writhe explicitly the system of
inequalities for every 7 < J

n

Hw(pi)l—(pi) cw(—py)FPD < Hw(pi)J(pi) cw(—py) T (P
i=1 i=1
and try to solve it.

Exercise 125:
Compute the weighted model counting of the formula

(A— B)AN(B— (CV D))
via knowledge compilation with the following weight function:
lit |A -A B -B C -C D -D
w(lit)[3 1 1 3 3 05 4 2

You can check your result by computing WMC using truth table (this is not strictly
necessary for the exercize).

Solution We compute the WMC of the formula ® by compiling it in the sd-DNNF
form and then transform it in a computational circuit

(A— B)AN(B— (CVD)
(—AVB)A(-BVCVD

— — — —

to NNF

to DNNF with shannon expansion on B

(BA(CVD))V(-BA-A to d-DNNF

(BA(CV(-CAD)))V(—~BAN-A to sd-DNNF
(BA(CAN(DV-D)V(=CAD))AN(AV-A)V

(-BA=AN(CV-C)N(DV-D)) To circuit

(1-3-(44+2)+(05-4))-(34+1)) +
(3-1-(3+0.5)-(4+2) =
80 + 63 = 143



CHAPTER 8

First Order Logic

1. Introduction

First-order logic can be understood as an extension of propositional logic. In
propositional logic the atomic formulas have no internal structure—they are propo-
sitional variables that are either true or false. In First-order logic the atomic for-
mulas assert a property of an element of the domain of interest or the existence of a
relationship among multiple elements. To emphasise this fact First-Order Logic is
also called predicate logic. First-order logic, though not as expressive as full spoken
language such as English or Italian, introduces a more structured syntax to express
propositions. In particular, it allows us to express the fact that a certain object
has some property by introducing symbols for objects and symbols for properties,
and a way to combine the two in order to obtain the proposition that states that
the property holds for the object. FOL not only allow to state property of objects
but also relationships between objects as well as functions on objects. Form the
first-order logic perspective a “world” is described as a set of objects (aka domain,
or universe) and a set of functions and relations on these objects.

To understand what we gain by using FOL w.r.t .propositional logic consider
this simple example.

EXAMPLE 8.1. Suppose that we want to express the four propositions expressed
by the following four English statements:

(1) Mary is a person

(2) John is a person

(3) Mary is mortal

(4) Mary and John are siblings

Since the four statements express four different propositions, in propositional logic,
we introduce four different propositional variables, say p, q, r, and s, with the
following intuitive meaning.

p that stands for Mary is a person

q that stands for John is a person

r that stands for Mary is mortal

s that stands for Mary and John are siblings

By doing so, we lose much information about the relationship of the four propo-
sitions. For instance, we don’t represent the fact that proposition (1) and (3) are
about the same person, namely Mary; that proposition (1) and (2) states the same
property about two individual; that proposition (4) states a relationship between the
two individuals who are involved in propositions (1) and (2). All this relationship
between propositions is lost since propositional variables are atomic, i.e., they are
not built of simpler components.

187
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The language of FOL instead introduces symbols to describe the entities and
symbols for describing properties. For instance two symbols, e.g., M and J are
introduced in order to denote the two entities John and Mary, and a symbol P is
introduced to denote the property of being a person. Using these symbols in FOL
we can build the formula P(M) that represents the proposition that “the property P
holds for the entity M7 and the formula P(J) that represents the proposition “the
property P holds for the entity J” In a similar fashion FOL introduces a symbol S
to represent the sibling relation and uses the formula S(J, M) to state the property
that John and Mary are siblings.

Entities of a domain can be specified by providing a direct name, e.g., John,
Mary, . ..... but we can also refer to an entity in terms of how it relates to another
entity. For instance, even if we don’t have a specific symbol to denote the father
of Mary, in natural language we can refer to him with the definite description “the
father of Mary”. In this case “the father of” is a construct that allows building
the description of an entity starting from a description of another entity. We can
apply this construction as many times as we want, for instance obtaining definite
descriptions such as “the father of the father of Mary”. The language of first-order
logic introduces symbols to denote these constructors of description, they are called
functional symbols. For instance, if F' is a functional symbol corresponding to the
definite description constructor “the father of”, in FOL we can build the formulas
P(F(A)) that states that the father of Alice is a Person.

Not only FOL allows to have expressions to denote specific objects, FOL also
allows a set of symbols to denot any (not specific) object. This is similar to the
work “object” or “entity” or “thing” or “element” in english. This are very generic
terms that can be used to denote any specific element. They are different from
proper names since by composing a proer name with a predicate you obtain a
proposition, like in “John is a person”, instead by composing a variables with a
predicate you obtain “the object is a person” which is not a proposition, since we
don’t know to which objects it refers to. Individual variables are important since
they are necessary to introduce quantification. This is similar to what happens in
englis when we use “somebody” or “everybody”, and “something” or “everything”
Every individual variable  can be quantified either universlly (like in “everybody”)
or existentially (like in somebody) So we can say “somebody is a person” or “ev-
erybody is a person” or “every obejct is a person”. For this purpose the language
of FOL provides two new logical symbols (in addition to the boolean connectives)
called quantifiers Vo and dz for every individual variable = that stands for “for all
individual” and “there is an indivudual”.

In summary, while propositional logic describe a world in terms of a set of
propositions which are true and false, in FOL describe the worldss in terms of a
set of objects, which constitute the so called interpretation domain and a set of
properties and relationship between them.

2. Syntax of FOL

The language of FOL logic is defined relative to a signature. A signature X
consists of a set of constant symbols ¢y, ca, ..., a set of function symbols fi, fa, ...
and a set of predicate symbols pi,ps,.... Each function and predicate symbol
has an arity £ > 0. We will often refer to predicates as relations. Predicates
and function with arity equal to k are called k-ary predicate and k-ary functions.
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We also suppose that 3 contains an infinite set of variables zq,x1,.... To denote
variables we also use the last letters of the alphabet x,y, ..., possibly with indices.
For constants instead we use the first letters of the alphabet a, b, ... possibly with
indices.

Not every seqluence of symbols in ¥ are legal expressioons. In FOL we provide
a grammar for two types of expressions called terms, which are used to denote
objects in the domain of interests, and formulas, which are intended to denote
propositions about the domain of interests, which can be either true or false.

2.1. Terms in FOL. Terms are expression built starting from constants and
individual variables, by composing them with funciton symbols. As clarified above
they are descriptions of the objects of the domain of interest. We provide an
inductive definition of the set of terms for a signaturee X.

DEFINITION 8.1. Given a signature 3, the set of terms (more precisely Yi-terms)
is defined by the following set:

e a constant c; is a term

a variable x; is a term

o ifty,...,tx are terms and f is a k-ary function symbol, then f(t1,...,tx)
1S a term

e nothing else is a term.

Intuitively terms are used to denote objects in the domain of the world we want
to describe with our FOL language

EXAMPLE 8.2 (Terms).

e x;: denotes a generic object of the domain; Variables are supposed to range
over all the objects of the domain and they can be instantiated with any
one of them. This is why they are also referred as “individual variables”,
to keep them distinguished from “propositional variables” which instead
ranges over propositions.

e ¢;; a constant denotes one specific element of the domain.

o fi(x;,ck); complex term. This is similar to what we say in English when
we refer to a person in terms of “functions” of another preson, e.g., “the
father of John”, the person that stands between John and Mary

e f(g(z,y),h(z,y,2),y); a more complex terms. e.g. the father of the person
that stands between John and Mary

A term is ground or closed if it does not contain individual variables. Ground
terms are descriptions of some specific object in the domain. If there are no constant
symbol in the siguature then there is no ground terms. If there are no function
symbol then the set of ground terms coincides with the set of constants. If we
have at least one constant and one function symbol then the set of ground terms is
infinite. For instance if we have the constant Mary and the function motherOf then
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we have the following infinite set of terms:

Mary

motherOf(Mary)
motherOf(motherOf(Mary))
motherOf(motherOf(motherOf(Mary)))

2.2. Formulas in FOL. The simplest FOL expression that specifies a propo-
sition is called atomic formula and it states that a relation espressed by an n-ary
predicatﬂp holds for an n-tuple of objects specified by the terms t¢1, ta,. .., tn.

DEFINITION 8.2 (Atomic formula). An atomic formula on a signature ¥ is an
expression of the form p(ty,...,t,) there p is an n-ary predicate of X2 and t; are ¥
terms.

Roughly speaking atomic formulas in FOL correspond to propositional variables
in propositional logic. We will make this correspondence more precise later. For
now it is enough to think that the atomic formula Happy(John) (where “John”
is a constant symbol and “Happy” is a l-ary (unary) predicate, corresponds to
a propositional variables that we would have introduced in propositional logic to
formalize the proposition that John is happy. In fact, sometimes in propositional
logic we introduce the propositional variable “Happy(John)”, but in spite of the
fact that it looks the same as the first order atomic formula, it should be considered
as a string and not as a structured object.

As in propositional logic complex formulas can be built starting from atomic
formulas;

DEFINITION 8.3 (First order formulas). A (first order) formula on a signature
Y is defined as follows:

e an atomic formula is a formula;

e if ¢ and Y are formulas then —¢, ¢ N, ¢V U, ¢ — Y, and ¢ <> 1 are
formulas;

e if ¢ is a formula and x and individual variable, the Vx.¢ and Jz.¢ are
formulas;

e Nothing else is a formula.

Notice that the definition of first order logic formula extends the definition of
formula in propositional logic by adding a new rules for the operator Yz and Jz.
These operators are called universal and existential quantifier, respectively . The
intuitive reading fo Vx.¢ is “for every x ¢” and the intuitive reading of 3x¢ is “there
is an x such as ¢.

EXAMPLE 8.3. Consider a signature with a single 2-ary (binary) relation sym-
bol R. Since there are no constant symbols or function symbols, the only terms
are variables x1, o, .... The set of atomic formulas contains R(x,x), R(z,y),

IAn n-ary predicate, where n is a natural number, is a predicate with arity equal to n a
predicate with arity equal to n.



2. SYNTAX OF FOL 191

R(x;,x;) Examples of formulas are
Ve Ny Vz.(R(z,y) A R(y, z) = R(x, 2))
Va,Vy.3z.(R(z,y) — R(z,2) A R(z,y)

This formulas expresse that R is a transitive relation and a dense relation, respec-
tively.

Consider a signature with a constant symbol 0, unary function symbol s,
and unary predicate symbol E. Terms over this signature include z, 0, s(0),

s(x), s(s(0)), s(s(s...s(0) s(s(s...s(x)...)) .... Atomic formulas are obtained
by applying the unary predicate E to these terms, e.g. E(z), E(0), E(s(0)),
E(s(x)), E(s(s(0))), E(s(s(s...s(0)), E(s(s(s...s(z)...))) .... An example of

(non atomic) formula is the following:
E(0) AVz(E(z) +» —~E(s(z))

Sometimes we write function symbols and predicate symbols infix to improve
readability:

EXAMPLE 8.4. Consider a signature with a constant symbol 1, binary function
symbol +, and a binary relation symbol <, both written infix. Then v + 1 is a
term (that is the infix notation of +(x,1)) and Vz.(x < (y + 1)) is a formula
(corresponding to the infiz notation of Vo.(< (z,+(x,1)))).

As form propositional logic we should also clarify in case of ambiguity (because
we miss the parentesis) what are the precedence of the quantifier w.r.t, connectives.
We have that Yz and Jz have the same priority of =. This implies that they should
be applied before all the other connectives.

Quantifiers add expressive power to first order logic w.r.t propositional logic,
as they allow to state in a single formula a fact that holds for all the induvidual
of the domain, without eplicitly enumerating the property of each of them. Notice
that this is possible also when the domain contains an infinite set of objects (e.g.,
the natural numbers). In this case it would be impossible to write a propositional
formula since it would have infinite length.

ExAMPLE 8.5. Consider a signature with a constant symbol 0, unary function
symbol s, and unary predicate symbol E. As we have seen in the previous example
with this signature we can build an infinite set of terms, wich might denote an
infinite set of objects (e.g, the natural numbers). To express the same fact of the
previous example, without the help of universal quantifier we should have written
an infinite formula

EQO)AE(0) < ~E(s(0)A(E(s(0)) < ~E(s(s(0))))A(E(s(s(0))) < ~E(s(s(s(0)))))A. ..,

which is not possible in propositional logic.

For every first order formula ¢ we can define the formula tree that describe
the structure of the formula. The formula tree expresses how the formula has been
built using the rules of Definition B:3] The definition is analogous to the formula
tree for propositional formulas, with the addition of the universal and existential
quantifier.

EXAMPLE 8.6. The tree of the formula Vz(A(c)AB(c,x) — Jy(B(z,y)VC(y)))
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Qo) Ced @

2.3. Free and bound variables. If Vzt (resp. Jxt)) is a subformula of a
formula ¢, we way that ¢ is the scope of the that specific occurrenc of the quantifier
Va (resp. Jx). Notice that the scope is defined for every occurrence of a quantifier,
and that different occurrences of the same quantifier have different scope. For
instance the scope of the forst occurrence of Va in VaP(z) A Va(Q(z) A Jy.R(y)) is
P(x), and the scope of the second occurrence of Vz, is Q(z) A 3y.R(y)).

The notion of scope of the occurrence of a quantifier becomes rather clear if
you think to the formula tree of a formula ¢. Indeed an occurrence of a quantifier

Vz of a formula ¢ corresponds to a node n of the tree of the formula ¢ labelled with
Vz; its scope is the sub-tree rooted at the only child of n.

DEFINITION 8.4. The occurrence of a variable x in a formula ¢ is free if it does
not occour in the scope of a quantifier Vx or 3x. A wvariable x is free in ¢ if there
is at least one occurrence of x in ¢ that is free.

PROPOSITION 8.1. Let FV(¢) denotes the set of free variables of ¢, then
(1) FV(P(t1,...,tn)) is the set of variables that occour in some t;;
(2) FV(=¢) = FV(¢);
(8) FV(¢po)) = FV(p) U FV() for every connective o € {A,V, —, <>}
(4) FV(Qu.¢) = —FV($) \ {x} for Q € {V, 3}

If we want to make explicit the set of free variables of a formula ¢, we write
¢(x1,...,2,) where FV(¢) = {x1,...,2,). This is just notation; it should not in-
terpreted as we add the expression (1, ..., z,) at the end of the formula. Actually,
¢(x1,...,x,) is the same formula as ¢, they are two different way to denotes the
same formula. In the second method we make explicit that in ¢(zq,...,z,) we
made eplicit the set of free variables.

EXAMPLE 8.7. consider the formula
(98) Va(P(a,y) A 32P(, 2) - 3a(Q(2,y, 2, w)))

From the previous examples, it should be clear that a quantifier can occour
also in the scope of another quantifier. We should clarify whaT happens when a
quantifire of a variable & occours in the scope of another occurrence of a quantifier
of the same wariable. Who has the precedence on the variable?

The occurrence of a variable z is bounded by a quantifier Qz (either Vz or Jx)
is the first node labelled with Qz, that occurs in the path from the leaf of the
occurrence of x to the root of the formula tree. If there is no such a node we say
that the occurrence of x is unbound or free.
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EXAMPLE 8.8. In the previous ezample, the occurrence of x in the nodes B(z, x)
and B(z,y) is the root node Yx; the occurrence of y in B(x,y) is the node Jy.
Instead, the occurrences of z in A(z) and B(z,y) are unbound.

An occurrence of a variable x in a formula ¢ is bound if that occurrence is bound
by some quantifier. An occurrence that is not bound is said to be free. Note that
different occurrences of the same variable in a given formula can be both bound and
free, e.g., variable & occurs both bound and free in the formula P(x) A 3zP(z). A
formula with no free variables is said to be closed or a sentence. The formulas. If a
formula ¢ contains a free occurrence of a variable x is denoted by ¢(z); if ¢ contains
at least one free occurrence for each variable zy ..., xz, we write ¢(x1,...,2y,).

EXAMPLE 8.9. In the formula Vx(Q(x,y) — R(x,y)) the occurence of y is free
while the occurence of x is bound, therefore y is free while x is bound. In the formula
Va(Q(x,y) — JyR(x,y)) the occurrence of y in Q(x,y) is free while the occurence of
y in R(x,y) is bound. The two occurrences of x are bound. Therefore, the variable
x is bound while the variable y is both free.

2.4. Substitution of variables with terms. One of the most frequent oper-
ation that we have to do in a formula ¢(z1,...,z,) that contains the free variables
x1,...,Ty, 1S to replace one, some, or all free variables with terms. This iperation
intuitively means that you instantiate the variable, which intuitively denotes any
element of the domain, with one specific element described by the corresponding
term. The terms which replace variables can contains other variables, and as we
will see later this might creeate some problem.

DEFINITION 8.5. A substitution o is a function that assigns to every individual
variable x a term t. A substitution that replaces x1,...,x, with ti,...,t, respec-
tively and leave every other variables unchanged is denoted by x1/t1,...,zn/ts.
The result of applying the substitution x1/t1,...,xn /[ty to a term t(xq,...,2,) or
to a formula ¢(x1,...,x,), denoted by t(x1,...,x,)[0] and ¢(z1,...,x,)[0] is the
term or the formula obtained by replacing simultaneusly every free occurrence of
every x;, with t; if this occurrence doees mot occour in the scope of a quantifier of
a variable of t;.

EXAMPLE 8.10. Let ¢(z,y) = R(x,y) — FzR(y,2) and 0 = [x/a,y/f(2)] be
a substitution. The application of o to ¢ is ¢(a, f(2)) is R(a, f(2)) — JzR(y, 2).
Notice that the second occurrence of y in ¢ is not substituted because it occurs in
the scope of the quantifier Az and z occurs in the terms for which y is replaced.

Some remarks are in order. The application of a substitution z1/ty,...,x,/t,
to a term or a formula, should be done simultaneusly. This means that if some
t; contains a variable x; this variable should not be substitute. For instance the
application of the substitution z/a,y/x to P(z,y), i.e., P(z,y)[z/a,y/x] is P(a,x)
and not P(a,a).

The second remarks concerns the condition given at the end of Definition [8.5]
According to this condition, we cannot replace an occurrence of x with a term ¢(y)
if z occurs in the scope of a quantifier on y. For instance the substitution z/f(y)
in the formula P(z,y) A JyR(x,y), is equal to P(f(y),y) A JyR(x,y). Notice that
the occurrence of y in the scope of the existential quantifier Jy is not affected by
the substitution, since y occurs in f(y). For an intuiition on why this restriction is
important consider the following example
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EXAMPLE 8.11. To represent in FOL any person x does not like some piece of
music

(99) Va(person(z) — Jy(music(y) A —likes(x,y)))

If we believe that is true, then, intuitively, if we replace the variable x with
any term t denoting some person, we should also believe in the result of the sub-
stitution. Suppose that the language contains the function symbols composer such
that author(x) denotes the composer of apiece of music x. Consider the substitu-
tion o = x/composer(y). Notice that there is one occurrence of x in that is
in the scope of a quantifier of y, which is a variable in the term by which x is
replaced. If in the application of o to we ignore the condition given at the end
of Definition [8-5 we obtain the formula

Fy(music(y) N —likes(composer(y),y))

which is a closed formula that states there is some piece of music which does not
like to his/her composer. However, intuitively, this does not logically follows from

199)-

DEFINITION 8.6. A term t is free for x in ¢ if x does not occour in the scope
of some quantifier of a variable of t.

From now onw we will consider only substitutions [z;/t1,. .., %, /t,] for which
t; is free for x; in ¢ for every 1 <i < n.
Finally, we introduce an additional notation, which is rather intuitive for ex-

pressing the result of the application of a substitution 1 /t1,...,z,/t, to a term
t(zq,...,z,) or to aformula ¢(x1, ..., x,). When the contest is clear, we replace the
long notations t(xy,...,Zn)[x1/t1, ..., Tn/tn] and @(z1, ..., 2.)[x1/t1, ..., Tn/ts],

with t(t1,...,t,) and @(t1,...,t,).

3. Semantics of first order logic

The semantics of a logic describes how the symbols and the expressions of such
a logic can be interpreted in a mathematical structura that is intended to formalize
a state of the world. The semantics of propositional language is just an assignment
to propositional variables that state what is true and wat is false. The semantics
of first order logic is more complex and is based on the notion of X-structure.
The semantics of order logic with signature X is given in terms of a mathematical
structure, called X-structure, or equivalently a Y-interpretation.

DEFINITION 8.7 (X-interpretation). A M-interpretation T, or an interpretation
of X, consistes of:
o A non-empty set Az called the universe or the domain of the structure Z;
e for each constant symbol c, an element ¢& € Az;
e for each k-ary function symbol f in a k-ary function, f¥: A% — Az;
o for each k-ary predicate symbol P in a k-ary relation PT C A§
where AX denotes the set of k-tuple of elements in Az.
EXAMPLE 8.12. Consider the signature ¥ = (0, R) that contains only one cn-

stant symbol 0 and the binary predicate R Three examples of structures for this
signature are shown in the following picture
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The domain of the ¥-structure on the left is equal to {0,1,2,3,4,5,6} the con-
stant 0 is interpreted in 3 and the predicate symbol R is interpreted in the set of
pairs {(0,1),(1,0),(1,2),(2,1),...(5,6),(6,5),(6,1),(1,6)}. Notice the difference
between 0 which is an element of ¥ and the element 0 which is an element of the
doain of the X-structure.

On the right we hav a X-structure which domain is {0,1,2,3,4,5,6,7} the con-
stant 0 is interpreted in 0 and the prtedicate symbol R is interpreted in the set of
pairs {(0,1),(0,2),...,(0,7)}. The above example are finite structures since the
interpretation domain is finite, i.e., it conteins a finite number of elements.

It is also possible to have infinite X-structures. For instance the following
structure is infinite as it contains an infinite set of objects.

i1 g

R R R R R R

The domain of the above structure is the set of natural numbers N = {0,1,2,3,4,...},
the constant 0 is interpreted in 0 and the relation R is the set of pairs {(n,n+1) |
n € N}

Well studied structures in First order logic and in mathematics are (N, 0, <)
wehre N is the set of natural numbers < is the order relation between the natural
numbers and 0 is the smalles natural number. This structure is very similar to the
one shown above

ExXAMPLE 8.13. An undirected graph can be considered as a 3-structure for
the signature that contains the binary relation symbol E (for edge), where E is
interpreted as the edge relation. For example, the graph shown in Figurdd] can be
represented by a structure T with universe Az = {1,2,3,4} and ET is the irreflexive
symmetric binary relation

EI = {(1’ 2)7 (2’ 3)’ (37 4)’ (4’ 1)7 (2’ 1)7 (37 2)7 (47 3)’ (174)7 (1’ 3)7 (37 1)}

ExAMPLE 8.14. TODO: Add an example of a sigma structure that contains
also constants and functions
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FIGURE 1.

The terms and the formulas that can be constructed from the signature X
using the rules of First Order Logic are interpreted in a 3-structure. However, a
Y-structure provides the “meaning” of all the symbols in ¥ with the exception of
the variables (which are not in ). Since terms and formulas contains also variable,
in order to interpret terms and formulas in a ¥ structure we also have to provide
an assignment to the individual varialbes.

On could ask why the interpretation of individual variables is kept separated
form the interpretation of the symbols in . There is no technical reason, indeed
to keed them separated, and in some textbook you can find that an interpretiaton
also interpret the variabees. The main reason is that, in order to inverpret the
unversa and existential quanfiers on a variable z we have to consider all (or some)
instantiation of x, so we want to allow to modify the interpretation of variables in
order to provide the meaning of the quantified formulas.

DEFINITION 8.8. Given an interpretation I for the signature X (or equivalently
a X-structure Z), an assignment is a function a : X — Az form the set of individual
variables X to the interpretation domain Az.

Given a Y-structure Z and an assignment a to the individual variables in Az
we are now ready to define how terms and formulas are interpreted in Z.

DEFINITION 8.9. Let T be a X-structure and a an assignment for the individual

variables in Az the interpretation of a term t in T under the assignment a, denoted
by tX[a) is defined as follows:

e cla] = ¢ for every constant symbol c;

o 2Z[a] = a(x) for every individual variable symbol x;
o f(ti,...,tn)[a] = fX(t¥|al,. .., tE[a]) for every n-ary functional symbol n
and n terms ti, ..., t,.

Notice that the interpretation of a term, i.e., tX[a] is “context free”, i.e., the
interpretation of a term ¢ is independent from the context where it occurs.

REMARK 1. The interpretation of a term w.r.t. an assignment a depends only
on the value that a assigns to the variables that occurs in t. More formally, if a
and o' agree on the assignment to the individual variables occurring in t (and might
disagree on the assignment to other variables), then t%]a] = t*[a’].

The next step is to provide a definition of when a formula is true or false in
a Y-structure Z with respect to the assignment a. We start by defining wen an
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atomic formula P(ti,...,t,) is true in Z w.r.t., the assignment a, in symbols:
z }: P(t17' c 7tn)[a’]

DEFINITION 8.10. An interprertation I satisfies (makes true) the atomic for-
mula P(ty,...,t,) w.r.t. the assignment a, in symbols T = P(ty,...,t,)|a], if
the n-tuple of elements of Az obtained by interpreting each t; belongs to PL. In
symbols:

Tk Plty,....t)la) if (tFal,....t[a)) € PT

When 3 contains the equality binary predicate =, then it’s interpretation is
always the same and fixed to the set of pairs (d, d) with d € Az. As a consequence
we have that Z |= t; = ty if and only if t¥]a] is equal to tZ[a].

In the next definition we use the notation a,. 4 for an assignment a an indi-
vidual variable z and a domain element d, to denote the assignment obtained by
modifying a so that a(z) = d.

DEFINITION 8.11 (Satisfiability of a formula w.r.t. an assignment). An inter-
pretation I satisfies a complex formula ¢ w.r.t. the assignment a according to the
following rules:

TEonvla iff Tk dla and T k= la)
Thoveld if Ik old orT E vld]
Tho—vla f THel

[

a

[a] ]

[a] ]

[a] al or T = ¢ld]
I —¢la] iff T ¢ldl

[a] ]

[a]

[a]

Tho=vld off Tkoldiff Tk vl
T = 3x¢la]l iff thereis a d € Az such that T = Plagq)
I EVapla] iff foralld e Az, T = ¢laged]

When ¢ is a closed formula then Z |= ¢[a] iff Z = ¢[a’] for any assignment a’,
therefore the assignment does not play any role and we simplify the notaiton with
T = ¢ skipping the assignment.

The notation ¢[a] is very similar to the notation ¢[o] used for substitution where
o is a substitution of variables with terms. Though they are related, they should
not be confused. a and o are different concepts, since a maps variables into elmeents
of the domain Az, while o maps variables in terms in the signature . While ¢[o]
is a formula, obtained by replacing each free occurrence of a variable x with o(z)
, ¢la] is just a formula ¢ and an assignmennt a, no transformation is einvolved in
¢[a]. One should not think that ¢[a] is a formula obtained by replacing any variable
x with a(x) € AT. Indeed the result of this replacement is not a formula since a[x)
is en elment of the domian and not of the signature.

However there is a connection between the two expressions. This is stated by
the followin proposition

PROPOSITION 8.2. If tf[a] =d

(1) for every term s, s(x)%[azcq) = s(t)%|a].

(2) then T &= 6(t) iff T = $(x)[azea]-

PROOF. The proof is by induction on the terms and the formulas. O
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EXAMPLE 8.15. Considmﬂ structures represented by a rectangular grid of “dots”
Each dot has a color (red, blue, or green) and a size (small or large). An example
of such a structure is shown in the following picture

90 0

The logical language we use to describe our dot world has unary predicates red
, green, blue, small and large, which are interpreted in the obvious ways. The
binary predicate adj is interpreted in the adiacency relation that contains the pairs
of dots (d,d") contained in two slots with a wall in common. The binary predicates
sameColor, sameSize, sameRow, and sameColumn are interpreted in the relation that
contains the pairs of dots (d,d') that have the same color, the same size, they are
on the same row, or on the same column respectively. Finally, the binary predicate
leftOf is interpreted in the set of pair of dots (d,d') sich that d is left of d’ regardless
of what rows the dots are in. The interpretations of rightOf, above, and below are
similar.
Consider the following sentences:

(1) Vx(green(x) V blue(x))

(2) Jx,y(adj(z,y) A green(x) A green(y))

(8) Ax((3zrightOf z, x)) A (Vy(leftOflx,y) — blue(y) V small(y))))

(4) Va(large(x) — 3y(small(y) A adj(z, y)))

(5) Vx(green(z) — Jy(sameRow(x,y) A blue(y)))

(6) Vz,y(sameRow(zx,y) A sameColumn(z,y) — = = y)

(7) JxVy(adj(z,y) — —sameSize(x,y))

(8) YaxIy(adj(x,y) A sameColor(x, y))

(9) 3yvz(adj(z,y) A sameColor(x,y))

(10) 3x(blue(x) A Jy(green(y) A above(x,y)))

We can evaluate them in the model shown above: There they have the following
truth values:

(1) false
(2) true
(3) true
(4) false
(5) true
(6) true
(7) false
(8) true

(9) false
(10) true

For each sentence, see if you can find a model that makes the sentence true, and
another that makes it false. For an extra challenge, try to make all of the sentences
true simultaneously. Notice that you can use any number of rows and any number
of columns.

2 https://leanprover.github.io/logic_and_proof/semantics_of_first_order_logic.html
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REMARK 2. Notice that, t does not contain any variable then in evaluating t*[a]
the assignmnet a does not play any role. Indeet it is easy to see that tX[a] = t*[d’]
for every pair of assignments a and a’. We call such a term, ground term, and

since we don’t need the assignment to variables to evaluate it, we simplify t*[a] with
tt

REMARK 3. Consider now a term t that contains the variables x, (we denote
this with t(x)) and let a and o' be two assignments such that a(z) = a'(z). One
can see from the inductive definition that t*[a] = t%[a'], since the only variable that
occours in t is x. This can be extended to terms that contains n variables and to
formulas that contains n free variables.

PROPOSITION 8.3.

(1) If t(xy,...,2,) is a term that contains the variables x1,...,x,, then if
a(x;) = d'(z;) for every 1 <i < n, then tX[a] = t%[a'].
(2) If ¢(x1,...,x,) is a formiula that contains the free variables x1,...,x,,

then if a(x;) = d’(x;) for every 1 < i < mn, then I |E ¢(x1,...,2,)[a] iff
T E d(ay,...,zn)[d].

3.1. Satisfiability, Validity, and Logical Consequence. In every logical
language the notions of satisfiable formula, valid formula, unsatisfiable fomrula, and
the logical consequence relation is defined on the basis of the semantics of the logic.
The semantics of a logic defines how the symbols of the logic can be interpreted in
some structure called interpretation, and defines the satisfaction relation, usually
denoted by = between interpretation and the formulas of the logical language. The
definition of the above concepts is almost the same in all the logics. In the following
we report the specific definition for the first order logic, but the student is invited
to compare these definitions with the analogous definitions given for propositional
logic, in order to recognize the analogies and the (small) differences.

DEFINITION 8.12 (Model, satisfiability and validity). (1) Aninterpretation
T of a signature X is a model of a first order formula ¢ in the signature
Y w.r.t. the assignment a, if Pla] is evaluated true in I, in symbols if

T = ¢la]
(2) A formula ¢ is satisfiable if there is some interpretation T and some
assignment a such that I = ¢[al.

(3) A formula ¢ is unsatisfiable if it is not satisfiable.
(4) A formula ¢ is valid if every T and every assignment a T |= ¢[a)

REMARK 4. Consider ¢(x1,...,xy) to be any first-order formula with free vari-
ables x1,...,x,. We say that
o the sentence Ax1, ..., dxn.P(x1, ..., x,) is the existential closure of ¢;
o the sentence Va1, ...,V,.¢(x1,...,2,) is the universal closure of ¢.

Satisfiability and validify of open formulas (i.e., formuilas with free variables) cen
be reduced to satisfiability and validity of sentences (closed formulas = formulas
without free variabels). This is stated in the following proposition.

PROPOSITION 8.4.
(1) ¢(x1,...,xzy,) is satisfiable iff Jxq ... xp.d(x1,. .., T,) is satisfiable ;
(2) p(x1,...,xn) is valid iff Vo1 ... xp.d(T1,. .., 2,) is valid.
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PROOF. By exercize O

The relation of logical consequence, expresses the fact that one formula is true
under the hypothesis that a set of formulas are true.

DEFINITION 8.13 (Logical Consequence). A formula ¢ is a logical consequence
of a set of formulas T, in symbols T |= ¢, if for all interpretations T and for all
assignment a

IET = Ikl
where I |=T'la] means that T satisfies all the formulas in T' under a.

3.2. Properties of quantifiers. The most important extension of FOL w.r.t.,
propositional logic are quantifiers. In the following let us see the most important
properties of universal and existential quantifiers.

We start by showing that the formula Vz¢(z), read as “the propoerty specified
by the formula ¢(z) is true for every x”, implies ¢(t), i.e., that ¢ holds for every
closed term ¢.

PROPOSITION 8.5. For every term t and formula ¢(z) the formula
Vazg(z) — ¢(t)
1s valid.

PROOF. We have to prove that Z |= Vzg(xz) — ¢(t)[a] for every interpretation
7 and any assignment a. This is equivalent to prove that if Z = Vz¢(z)[a] then

I ¢(t)lal.
T = Vro(z)a] <= T |= é(x)[azq) for all d € AT
= 7 E ¢(x)[azea] for d = t¥[d]
= 7 = ¢(t)[a] by Proposition [3.2

The opposite properrty holds for the existential quantifier
PROPOSITION 8.6. For every term t and formula ¢(z) the formula

o(t) = Jxo(x)
n s valid.
A second important property is the duality of the two quantifiers, and the fact
that they are definable one in terms of the other. This property is shown by the

fact that for every formula ¢(x) with one free variable x, we have that the following
formulas are valid.

Va.¢(x) < ~Iz—d(x)
Jzr.¢(z) & ~Vr-g(x)

A third property concern the vacuous quantification. If a variable x is not free
in ¢ then quantifying ¢ on x does not have any effect. Indeed the formulas

Vo < ¢
e ¢
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are valid when z is not free in ¢.
Let us now see how quantifiers interacts with connectives. We start by noticing
that Vo commutes with A. Indeed thhe formula

Va(p A) < Voo AV

is valid. Differently we have that V does not commute with V. Indeed the formula
V(o V) > Yag V Vi

is not valid. Consider the following example.

EXAMPLE 8.16. Let P be a unary predicate, we have that Yz (P(x) V —P(x))
is true in every interpretation I, as every of the domain AT is either in PT or
not in PL; while Yz P(z) V Vz—~P(z) is true only in the interpretation where P is
interpreted either in the empty set of in the entire domain AT.

However, we have that this formula holds in one direction. indeed the formula
Yao VVxp < Va(o V)

is valid.

Let us now consider V and —. In English saying “not all flowers are beautifull”
it is not the same as saying “all flowers are not beautifull”. This holds also in FOL.
Inded the formula j

V¢ < Vo

is not valid.
The relationship between V and —. We have that the formula

Voo — Ve > V(o — o)
is not valid. Consider for instan the following interpretation.

EXAMPLE 8.17. Va—P(x) — VaP(z) is satisfied by all the interpretations.
where P is not interpreteed in the empty set. while Vx(—~P(x) — P(x)) is satisfied
only in the interpretations where P is interpreted in the emtore domain (since it is
equivalent to YxP(z)).

As happens for the disjunction we have that one direction is valid. Indeed
Va(p — ) = Vep — Vay
is valid.

As a final property, we show that V commutes with V and — under some
conditions. IN particular we have that if x is not free in ¢ we have that

V(o V) <> ¢V Var
Va(p — ¥) < ¢ — Vayp

are both valid.
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Let us perform the same analisys for the existential quantifier. We summarize

the results in the following table
Fz(p A ) < Tz A o)
Fz(p AY) — Txdp A Jxop
Jz(p V) <> Jxgp V Jxp
dr—¢ < —Ixe
—Jdrp — Jx—¢
Fz(¢p — ) + Jxg — Tz
(Fzp — Fzp) — 3x(d — ¢)
Fz(p A1) < ¢ A Tzt
Fz(p = ) < ¢ — Jazp

is not valid

is valid

is valid

is not valid

is valid

is not valid

is valid

is valid if x is not free in ¢

is valid if x is not free in ¢

Let us now see how quantifiers interacts one another. The formula
Vro — Jdxg

is valid. The validity is guaranteed by the fact that the domain AZ of any first order
interpretation Z is not empty. Indeed if Z = Vx¢, ¢ is true for all the elements of
the domain AZ, and since AZ is not empty then there exists at least one element
of the domain for which the property ¢(x) is true. Obviously the converse

dx¢p — Vo
Quantifiers of the same type can permute. Therefore
VaVyo < YyVro
dxdye < Jydze
are valid formulas. Instead, quantifiers of different type do not permute Indeed
Vrdyp < JyVzo

is not valid. An intuitive counteressample of the previous equivalence can be ob-
tained by a binary relation R. We have that VYa3yR(z,y) means that “exery z is
related via R with some y, while JyVaxR(z, y) means that there is a y with which
every x is related. A concrete example

YV 3y supervisor(y, x)
means that everybody has a supervisor. while the formula
JyVa supervisor (y, x)

everybody has the same supervisor, or there is somebody who is supervising every-
body.
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4. Exercises

Exercise 126:
Draw the parse tree of the formula Vo P(x) — 3y3z Q(y, z) A—3s R(x) respect-
ing the precedence of operators.

Exercise 127:

For each the following formulas say which are the free and the bound occur-
rences of variables in the following formula. For the bound variables indicate the
quantifier that bounds it.

(1) Jz(E(z,y) NIy —E(y, x));
(2) Vo (VzA(x, z) = Jy(R(z,y) AVzP(x, 2)));
(3) Vz(A(x) A B(z,y)) = VzA(z, 2).

Exercise 128:
Suppose that 3 contains the following symbols with the associated intuitive
meaning:

T Trento
R Rome
I Titaly
M Marocco
L Lorenzo
F' Francesca
major(x) The major of xmotherO f(x) the mother of z
fatherOf(z) the father of x
nationality(x) The nationality (country) of x
homeTown(x) The hometown of x
capital(xz) the capital of z
route(x,y) the route from x to y
routeThroug(x,y,z) The route from x to y passing through z

write the terms that corresponds to the following English description

1) the capital of Ttaly;

2) the hometown of Lorenzo;

3) the route that connects the hometowns of Lorenzo and Francesca,

4) the capital of the nationality of Francesca;

5) the route from the hometown of the father of Francesca and the mother
of Lorenzo passing through the capital of Marocco;

(6) the route going from the hometown of the major of the capital of Marocco

to the hometown of his/her mother gspassing through the hometown of

his/her grandfather.
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Exercise 129:

Using the following symbols with the associated intuitive meaning
a Adam
e Eva

¢ Cid

o8}

x) x is blond

@)

(z)
(r) xisacat
L(z,y)
T(x,y) = is taller than y

x loves y

Transcribe the following FOL sentences into English:
(1) T(c.e)
(2) L(c.e)
(3) =T(c,c)
(4) B(c)
(5) T(c,e) = L(c.e)
(6) L(c.e)V L(c,c)
(7) —(L(c.e) AL(c,a))
(8) B(c) + (L(c,e) Vv L(c,c)

Transcribe the following English sentences into sentences first order logic;

(1) Cid is a cat.

) Cid is taller than Adam.

) Either Cid is a cat or he is taller than Adam.
) If Cid is taller than Eve then he loves her.

) Cid loves Eve if he is taller than she is.

) Eve loves both Adam and Cid.

) Eve loves either Adam or Cid.

) Either Adam loves Eve or Eve loves Adam, but both love Cid.
) Only if Cid is a cat does Eve love him.

) Eve is taller than but does not love Cid.

(2
(3
(4
(5
(6
(7
(8
(9
10

(

Exercise 130:

Transcribe the following english sentence in FOL
(1) Everyone loves Eve.

Eve loves somebody.

Eve loves everyone.

Some cat loves some dog.

Somebody is neither a cat nor a dog.

Someone blond loves Eve.

Some cat is blond.

Somebody loves all cats.

No cat is a dog.

Someone loves someone.

Everybody loves everyone.

Someone loves everyone.

Someone is loved by everyone.
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(14) Everyone loves someone.
(15) Everyone is loved by somebody.

Exercise 131:
For each of the following formulas indicate: (a) the scope of the quantifiers (b)
the free variables, and (c¢) whether it is a sentence (closed formula)

Solution
O

Exercise 132:

Say if the term f(z,y) is free for z in the following formulas:
(1) Va(P(z,y,2) = IQ(z,y))
(2) Vz(R(y, z) A existszQ(z,y))
(3) P(x,y,2) A J2Q(z, 2)

Exercise 133:

Apply the substitution x/a, y/b, z/c to the formula VzP(x, y, z) — Yy(Q(x,y) A
JzR(z, 2))

Exercise 134:
Find an interpretation that satisfies the formula

P(a) A P(b) AVz(P(z) — Jy.(R(z,y) A —P(y)))

Solution

o AT=1{0,1}

e al =0

e b1 =0

o Pl = {0}

o BT ={(0,1)}

P
,-a b, R b

O

Exercise 135:
Transform in FOL the following sentences:
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(1) If in a ceremony somebody seats between two people that are married, he
or she must be their child;

(2) If a tree produces some apples then there must exist a farmer that takes
care of it.

(3) In a personal exhibition all the paintings are done by a unique painter.

Solution

(1) If in a ceremony somebody seats between two people that are married, he
or she must be their child;

(100)  Vayz(seatBetween(z,y, z) A married(x,y) — parent(z, z) A parent(y, z)

(2) If a tree produces some apples then there must exist a farmer that takes
care of it.

Va(tree(x) A produces(x, y) A fruit(y) — Jz(farmer(z) A takesCare(z, x)))
(3) In a personal exhibition all the paintings are done by a unique painter.

Va(personal Exib(z) — Jy(painter(y) A Vz(exposes(z, z) — paints(y, z)))

Exercise 136:

Translate the following sentences in FOL.

—~
—
~—

Everything is bitter or sweet

Either everything is bitter or everything is sweet
There is somebody who is loved by everyone
Nobody is loved by no one

If someone is noisy, everybody is annoyed

Frogs are green.

Frogs are not green.

No frog is green.

Some frogs are not green.

A mechanic likes Bob.

A mechanic likes herself.

Every mechanic likes Bob.

Some mechanic likes every nurse.

There is a mechanic who is liked by every nurse.

L e e e T L e e e Yo ey
=W N O OO Ui Wi
NN N W N N A NI N et

NN S N

Solution

(1) Everything is bitter or sweet
Va (bitter(z) V sweet(x))

(2) Either everything is bitter or everything is sweet

Yz bitter(x) V Vz sweet(x)
(3) There is somebody who is loved by everyone

JzVy loves(y, x)
(4) Nobody is loved by no one
—3Jz—3y loves(y, )
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(5) If someone is noisy, everybody is annoyed
Jz noisy(x) — Yy annoyed(y)
(6) Frogs are green.
vV (frog(x) — green(z))
(7) Frogs are not green.
Va (frog(x) — —green(x))
(8) No frog is green.
-3z (frog(x) A green(x))
(9) Some frogs are not green.
Jz (frog(z) A —green(x))
(10) A mechanic likes Bob
Jx(mechanic(x) A likes(x, Bob)
(11) A mechanic likes herself.
Jz(mechanic(z) A likes(z, x))
(12) Every mechanic likes Bob.
Vax(mechanic(z) — likes(z, Bob))
(13) Some mechanic likes every nurse.
Jx(mechanic(z) A Vy(nurse(y) — likes(z,y)))
(14) There is a mechanic who is liked by every nurse.

Jz(mechanic(z) A Yy(nurse(y) — likes(y, z)))

Exercise 137:

207

Given the FOL interpretation Z defined on the domain Az = {0,1} and the

Solution The interpretation Z can be graphically represented as follows:

interpretation: Z(P) = {0} and Z(R) = {(0,0),(0,1)} Z(a) = 0 and Z(b) = 1.
Verify whether the following formulas are true in M:
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P
b

0 R °

Let us now check the truth value of the formulas

(1) VzP(x) is false since thate is an element of the domain which is not in
Z(P);

(2) P(a) is true since Z(a) = 0 € Z(P);

(3) P(b) is false since Z(b) = 1 € Z(P);

(4) R(a,b) is true since (Z(a),Z(b)) = (0,1) € Z(R);

(5) —R(a,a) is false since (Z(a),Z(a)) = (0,0) € Z(R), which makes P(a,a)

true and therefore = P(a,a) false;
(6) JzR(a,x) is true since if x is assigned to 0 we have that the pair (Z(a),z) =

(0,0) € Z(R);

(7) VacR( ,b) is false because, if we assigne 0 to x we have that the pair
(z,Z(b)) = (0,1) ¢ Z(R);

(8) VxR( x,2) — P(z) is true. To show this we have to chrck the truth of
R(x,x) — P(x) for all the possible assignments of x. If z is assigned to

0, T E P(x)[z := 0] and therefore T = R(z,z) — P(x)[x := 0]; If
is assigned to 1, then we have that Z & R(x,x)[z := 1], and therefore
T | R(z,xz) — P(x)[z := 1], Since R(z,z) — P(z) is true for all the
assignments of x, we can conclude that Z |= Va(R(z,z) — P(z)) is true..
(9) Vz—-R(a,x) — P(x) is true. As in the previous case we have to check for
all the assignments of x. Since we have that Z = R(a,x)[z := 0] we have
that Z = = R(a,z) — P(x)[z := 0]; We also have that Z = R(a, z)[z := 1],
and therefore Z = = R(a,z) — P(x)[x := 1]. We can therefore conclude
that 7 = Vz(—-R(a,z) — P(x)
(10) Vz(P(x) — —R(a,x)) is false since if x is assignmet to 0 we have that
I W P(z) —» —R(a,z)[x =0] as 0 € Z(P) and (0,0) € Z(R).

O
Exercise 138:
Describe all the models of the following set of formulas in the domain {1, 2, 3}.
(101) Vo -R(z, )
(102) VaVy(R(z,y) = R(y,z)) A
(103) Va(A(z) = Jy(R(z, y) A Aly)))

Solution
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Z(A) Z(R)
0 any symmetric relation on {1, 2,3}

{1,2} {(1,2),(2,1)}

{1,3} {(1,3),3, 1)}

{2,3} {(2,3),(3,2)}

{12} {(1,2),(2,1),(1,3),(3,1)}
{1,2} {(1,2),(2,1),(2,3),(3,2)}
{1,231 {(1,2).(2,1),(1,3),(3,1),(2,3),(3,2))}
{1,3} {(1,3),(3,1),(1,2),(2, 1)}
{1,3} {(1,3),(3,1),(3,2),(2,3)}
{1,3} 1 {(1,2).(2,1),(1,3),(3,1),(2,3),(3,2))}
{2,3} {(2,3),(3,2)}

{273} {(27 3)7(37 2)7 (172)7(27 1)}

{2,3} {(2,3),(3,2),(1,3), (3, 1)}
{2,3) | {(1,2).(2,1),(L,3),(3,1),(2,3), (3,2))}
{1,2,3} {(1,2),(2,1),(1,3),(3,1))}
{1,2,3} {(1,2),(2,1),(2,3),(3,2))}
{17273} {(173)’ (37 1)7 (273)7(372))}
{1,2,3} | {(1,2).2,1),(1,3), (3,1),(2,3), (3,2))}

Exercise 139:

Consider the formula

Vavy(P(z,y) A Q(y, x))

209

Give an interpretation that satisfies it in the domain D = {John, Paul, Mary} Ex-

ercise 140:

Show the following equivalence:
(104) (VzP(x) AV2Q(z)) > Ve (P(z) A Q(x))

is valid

Solution Let us consider an interpretation Z on the domain A, To prove that (104))
is valid, we show that Z |= VaP(z) A VzQ(z) if and only if 7 |= V(P (z) A Q(x)).

ITEVz(P(z)AQ(z) e forallde A, T = P(z) A Q(x)[azd]
sforallde A, T = P(z) and 7 = Q(x)[azd]

Exercise 141:
Decide if

< T EVeP(z) and T = VaQ(x)
& T = VaeP(x) AVzQ(x)

VeQ(x) — YaP(x) + I2Vy(Q(y) V P(z))

is valid, satisfiable, non valid, or unsatisfiable.

Exercise 142:
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Decide if
VeQ(x) — YaP(x) < 32Vy(Q(y) V P(z))

is valid, satisfiable, non valid, or unsatisfiable, and explain your answer.

Solution One can try to rewrite the left part of the formula in order to obtain a
formula equivalent to the right part.

VzQ(x) — VaP(x)
—VaQ(x) VVzP(x)
Jz-Q(x) VVzP(x)
32-Q(2) Vv VyP(y)
F2¥y(-Q(2) V P(y))

One can now easily see that the obtained formula cannot be equivalent to 3zVy(—Q(z)V
P(y)). For instance the interpretation

Z(Q) = {a, b} Z(P) ={a}

satisfies JxVy(Q(z) V P(y)). Indeed Z = Q(a) and therefore Z = Vy(Q(a) vV P(y))
and therefore Z |= JaVy(Q(z) A P(y)). On the other hand Z p= JxVy(—Q(x)V P(y))
since there are no constants for which Q(z) is true, and Q(z) is not true for all
the elements of the domain. Since we have foound an interpretation that satisfies
the right hand side and do not satisfy the left hand side of the equivalence, the
equivalence is not satisfied by an interpretation and therefore it is not valid.

The formula is satisfiable, since the interpretation that makes VxP(x) always

true, satisfies noth the left and the right hand side of the equivalence.
O

Exercise 143:
Show that the following formula is not valid

(VaxP(z) VVzQ(x)) + Vo (P(x) V Q(x))
and provide an english sentence by instantiating the predicates P and @ in english
adjectives with is intuitively false.

Solution Consider the first order interpretation Z on the domain of natural num-
bers N={1,2,3,...}, where P is interpreted in the set of the even numbers, and @
in the set of odd numbers. We have that Z = Vz(P(z)V Q(z) as every natural num-
ber is either odd or even. However T (= VaP(z) and Z B VaQ(x) since not all the
numbers are even, or all the numbers are odd, and therefore Z £ Ve P(z) VVxQ(z).
O

Exercise 144:
For the following formula check if it is (a) valid, (b) satisfiable, (c) not valid,
(d) unsatisfiable. Notice that more than one option is possible.
VoIy(A(z) & R(z,y)) < Ve(A(r) < yR(z,y))

For each choice provide an argument that support your choice.

Solution The formula is not valid and satisfiable. Indeed we can provide a coun-
terexample, i.e., an interpretation that does not satisfy the formula, and an example
i.e, an interpretation that does satisfy it. Consider the two interpretations
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= (0) -4
(2)4

The leftmost interpretation does not satisfy the formula. Indeed Jy(A(z) + R(x,y))
is true for all the assignments to x, but (A(z) < JyR(z,y)) is false when z is as-
signed to 0. Indeed, while JyR(x, y)[x + 0] is true, because R(z,y)[z < 0,y + 2]
is true, A(z)[z < 0 is false, and therefore the equivalence A(z) <> JyR(x,y) is false
when z assigned to 0.

Instead, one can easily see that, the rightmost interpretation instead satisfies
the formula. [J

Exercise 145:
List all the models of Vz3yR(z,y) in the domain {1,2}.

Solution
1 2 1 2 1 2
o<«—»0 SGo+—0 O+—>0
1 2 1 2 1 2 0
o— 02> 0O+— 02> (= ] [ =]
1 2 1 2 1 2
O———r 02D CFoe—02> Cr0+—r 02>

Exercise 146:
List all the models of JzVyR(z,y) in the domain {1,2}.

Exercise 147:
Find a formula ¢ which is true for some interpretation with infinite domain,
but false for all interpretation with finite domains.

Solution Define ¢ to be the conjunciton of:
Vayz(p(e,y) Aply, 2) = p(z, 2))
\V/J)_\p(.ﬁ, Jf)
Vadyp(z,y)

We can verify that, for any finite interpretation, ¢ is false. On the other haqnd, ¢
is true under the interpretation Z with AT = N (the set of natural numbers and
I(R) ={(n,m) e N* | n <m} O






CHAPTER 9

Knowledge Representation in First Order Logic

First order logic, as any other logic, can be used as language to specify knowl-
edge about some particular domain. The type of knowledge that can be expressed
in first order logic is that a certain proposiiton that can be specified by a first order
sentence is true in all the possible configurations (worlds) of the domain we are
considering.

In describing a domain we want to impose that (non logical) symbols have a
specific semantics, so they cannot be interpreted deliberately. On the other hand
FOL semantics alone does not impose any specific constraint on the interpretation
of non logical symbol. For instance the constant “red” and “blue” can be interpreted
in the same domain element, with the effect that the formula red = blue is true. To
constraint the semantics of non logical symbols of a signature ¥ we have to limit
the way in which such symbols are interpreted; in other words, we require that %
is interpreted only in a subset of the entire set of X-structures. For instance, we
want to consider only the Y-structures in which red and blue are interpreted in
two distinct individuals of the domain. Or equivalently the -structures where the
formula —(red = blue) is true.

Another example is the following: Consider a signature ¥ that contains two bi-
nary predicates Ancestor and Parent. We would like that the two relational symbols
are interpreted according to the the usual (english) meaning of the corresponding
words. I.e., that

a person is an anchestor of another preson if and only if there is

(105) a chain of parents between the two

Put it formally the relational symbol Parent should be interpreted in the transitive
closure of the relation Parent. While in the previous example we easily come up with
a formula that captures the semantic condition, in this example coming up with a
formula that “captures” the constraint expressed in is not easy (actually it is
impossible in FOL).

DEFINITION 9.1. A first order theory on a signature ¥ is a set T' of first order
sentences closed under logical consequence, i.e, if ' = ¢ then ¢ € T. The set of
axioms of a theory I" is a subset A C T such that and A =~ for all v € T. Given
a class S of Y-structures, the first order theory of S is the set of sentences that are
true in all the X-structures of S.

One of the main motivation for the development of first order logic across the
end of the 19th century and the beginning of the 20th century was the so called
foundational crisis of mathemathics, that rises as a consequence of the discovery
of several paradoxes or counter-intuitive results in mathematical theories. In the
early 1920s, the German mathematician David Hilbert (1862-1943) proposed a

213
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research program, called Hilbert’s Progranﬂ that has the objective of describing
all of mathematics in axiomatic form, together with a proof that this axiomati-
zation of mathematics is consistent (i.e., not contraddictory). Stimulated by this
ambitious program during the 20th century mathematical logics and in particular
first order logic received a lot of attention from scientists, with the effect of devel-
oping a number of theories for different mathematical structures. These theories
are of particular importance for artificial intelligence, since the formalization of
knowledge about general concepts like time, quantities, space, ...can be mutuated
from axiomatization of mathematial structures such as linar orders, partial orders,
topologies, etc. In this chapter we report some example of axiomatic theories of
the most important mathematical structures.

First order logics has also been used to specify ontological knowledge. An
ontology is a formal, explicit, shared specification of a conceptualization of a domain
Gruber [1993, A conceptualization describes the objects, the concepts, and other
entities that are assumed to exist in some area of interest and the relationships that
hold among them. A conceptualization is an abstract, simplified view of the world
that we wish to represent for some purpose.

First order logical theories have received also a lot of attention since the be-
gining of Artificial Intelligence era. John Mc Carthy, one of the father of Artificial
Intelligence, in the 60’s proposed to use logical language to encode commonsense
knowledge about the world with (first order) logic McCarthy 1959, Since then
one of the most fruitflul field of artificial intelligence unde the label of Knowledge
Representation and Reasoning developed logical theories and reasoning methods
for (a subclass) of first order logical language. The paper E. Davis [2017| provides
a large set of examples of formalizing commonsense knowledge by means of (first
order) logical theores. Commonsense knowledge representation and reasoning is a
central problem in artificial intelligence, if we want to build agents that are capable
to operate in environments where humans can operate. Encoding commonsense
knowledge with a set of (first order) logical formulas is an approach that has been
pursued since the earliest days of the field of Al

1. First order theories for algebraic structures

Some important algebraic structure are very useful to represent the knowledge
and reason about certain phenomena. Having a first order logic axiomatization of
such structures is useful, since one can infer automaticaly facts that are true in the
structures. starting from the set of axioms.

1.1. Ordered sets. A set can be ordered in the sense that some elements
comes before than others. An order on a set can be used to represent many real
world aspects. For instance the answers obtained by a search engine are ordered
by relevance, the the set of sets are ordered by containment relation, the set of cars
can be ordered by price, the set of computer can be ordered according to the price,
the memory size, the cpu size, .... Orders can be total or partial, in the sense
that it is not necessary that for every pairs of elements of an ordered set one comes
before than another. Let us provide the formal definition of ordered set,

DEFINITION 9.2. A partially ordered set (poset) is a pair (S, <), where S is a
non empty set and <XC S x X is a binary relation which is

1h‘ctps ://plato.stanford.edu/entries/hilbert-program/#4
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(1) tramsitive i.e., for all s,t,u € S s <t and t < u implies s < u;
(2) symmetric i.e., s < s for every s € S, and
(3) antisymmetric i.e., it is not the case that s < s.

where we use the notation s <t for (s, t) €<.

Notice that a poset is characterized by a set and a binary relation. Therefore it
is X-structure where ¥ contains only one binary predicate R (i.e., a predicate symbol
with arity equal to 2). For simplicity let us call these structures R-structures.
However notice that not all R-structures are poset. So we have to find a set of
formulas that axiomatize the class of R-structures that are poset. This can be
done by considering the first order theory on the signature { R} that contains three
formulas, corresponding to the first order “translation” of the three conditions of
Definition [0.2 These formulas are

(106) VaVyVz(R(z,y) A R(y, z) = R(z, 2))
(107) Vavy(R(z,y) — - R(y,x))
(108) Ve-R(z,x)

The above formulas are one to one translation of the conditions on the order relation
of a poset. A poset (S, <) is totally ordered or is a linear order if for eveyr s,t € S
which are different, either s < ¢ or ¢t < s. R-structures that are total ordered can
be axiomatized by adding the axiom

(109) VaVy(R(z,y) V R(y,x) Vo =y)

A partially ordered (5, <) set is dense if for every s < t there is a w such that s < u
and u < t. Dense orders can be axiomatized by adding the axiom

(110) VaVy(R(z,y) — 3z(R(z,2) A R(z,y)))

1.2. Equivalence relation. Equivalence relations are very important since
it allows to partition a set of a set of equivalence classes. Therefore, it is a way to
represent clustering of points.

DEFINITION 9.3. An equivalence relation on a set S is a subset R C S x S that
satisfies the following properties.
(1) Reflexive: (s,s) € R for all s € S;
(2) Symmetric: (s,t) € R implies (t,s) € R;
(3) Transitive (s,t) € R and (t,y) € R implies (s,u) € R

The theory of equivalence relation can be obtained by translating the above
properties in first order logic:

(111) VzR(z, )
(112) VaVy(R(z,y) = R(y,x))
(113) VaVyVz(R(z,y) A R(y, z) = R(z, 2))

1.3. Peano arithmetic. One of the most important mathematical structure
is the set of natural numbners N = {0, 1,2, ...} with the arithmetic operations for
addition and product and the usual order relation. This is called the standard model
for arithmetic. One important question that have been addressed by mathematical
logicians is whether is is possible to provide a set of axioms A in a signature X
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such that every Y-structure that satisfies A is isomorphic to the standard model of
arithmetic.

A (possible) signature ¥ that allow to describe what is true in this important
structure contains one constant 0 (we use 0 to distinguis this simbol from the natural
number 0), one unary function s (for successor), two binary function + and - (for
sum and product, used with infix notation) and one binary predicate < (for the
ordering, also used with infix notation). This segnature provides terms for every
natural number 0, 1,2, ..., They are 0, s(0), s(s(0)), . ... Furthermore

It has been shown that there is no set of axioms which are true only in the
Y-structures isormorphic to the standard model of arithmetic. Therefore one could
try to write a set of axioms that capture as much as possible all the formulas that
are true in the standard model of arithmetic. This was provided by the Peano
with the so called Peano Arithmetic which is the set of formulas that are logical
consequence of the following (infinite) set of axioms

(114) Va(~s(z) = 0)

(115) VaVy(s(x) = s(y) - = y)

(116) Ve(r 4+ 0= z)

(117) VaVy(xz + s(y) = s(z +y))

(115) Va0 =0)

(119) Vavy(x - s(y) = (z-y) + x)

(120) ¢(0) AVz(d(z) = d(s(x))) = Voe(z)

does not express a single formula but an infinite set of formulas for every in-
stantiation of ¢ with a formula with the free variable x. All the logical consequence
of the above axioms is called the Peano Arithmetic. The standard model of arith-
metic is a model of the Peano Arithmetic but there are -structures that satisfies
Peano’s axioms but are not isomorphic to the standard model of arithmetic. The
reason why this is the case, and what is a formal proof of this fact is out of the
scope of this lecture notes. It is the subject of a proper course in mathematical
logic. Here it is enough to be aware that even with realitively simple structures
like the standard model of arithmetic we cannot devise a set of formula that fully
characterize it.

However, everything that one can infer from the set of Peano’s Axioms will be
true in the standard model of arithmetic.

2. First Order Theories for Labelled Graphs

A broad class of data, ranging from similarity networks, workflow networks
to protein networks, can be modeled as graphs with data values as vertex labels.
A graph is a mathematical structure which is whidely used to represent a set of
objects which are connected one another in some way. Many data comes in the
form of graphs, and therefore being able to represent knowledge about graphs in
first order logic is important.

DEFINITION 9.4. A graph is a pair G = (V, E) where V' is the set of vertices
and E is the set of edges. An edge is a pair (v,v') of vertices with v # v'. A
graph is directed if the edge (v,v") is considered different from the edge (v',v) and
undirected if (v,v') and (v',v) are the same edge.
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To axiomatize graphs in first order logic we need only one binary predicate E.
Directed graphs can be axiomatized by the only axioms

(121) Vr-E(z,x)

For undirected graphs we have to add also the fact that E is symmetric i.e. the
axiom

(122) Vay(E(z,y) — E(y,z))

There are additional properties on graphs that can be axiomatized in terms of first
order logic. Unfortunately the most important properties on graph structures, such
as k-colorability, or connectivity cannot be axiomatized in First Order Logic. For
these property one has to adopt an extension of FOL called monadic second order
logic Gurevich 1985 Nevertheless, FOL formulas can be used to formalize proper-
ties on possible labelling of nodes and vertices of a graph. Let us first introduce
the notion of labelled graph.

DEFINITION 9.5.

In the above definition we consider the integers from 1 to n as possible labels
from vertexes and nodes, however, any other set could be chosen. Notice that a
graph labelled with a set of labels {1,...,n} is isomorphic to a X-structure {A,7Z}
where A = V| ¥ contains a unary predicate for p; for every i € {1,...,n} and a
binary predicate r; for every i € {1,...,n}. The formula p;(x) means that x is
labelled with ¢ and the formula r;(z,y) means that there is an edge from = to y
and it is labelled with 1.

To axiomatize the labelled graphs we have to add the following axioms that
states that every node and edge has exactly one lable.

n n
(123) YV (\/ pl(x)> A VaVy /\ =(pi(x) A pj(x))

i=1 i<j=1

n
(124> Vavy /\ ﬁ(TZ‘(xvy) /\Tj(x?y))
i<j=1
Axiom states that every vertex shuld be labelled with at least one lable.
Instead, axiom states that between every pair of nodes either there is no arc,
if —r;(x,y) is false for all 4, or there is one arc labelled with 4, in case r;(z,y) is
true. This axiom guarantees tha r;(x,y) is true for at most one 7. Often graph
labelling involves only vertexes. In this case we have only one binary relation r,
where r(z,y) means that there is an edge between = and y, and axiom is
vacuously true.
Additional logical formulas can be used to axiomatize other constrains on the

labels of the graph. Consider the following example:

ExAMPLE 9.1. A neighborhood constraintSong et al. [201/] specifies label pairs
that are allowed to appear on adjacent vertexes in the graph. A constraint graph
S = (L,C) is an undirected graph, where L is a finite set of labels and C' is a set
of edges on L. For every graph G = (V. E), A labelling ¢ : V — L of G with labels
L satisfies the constrains specified in S if the following condition holds:

(125) (v,0") € V implies (£(v),L(v")) € C
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FIGURE 1. The graph on the left specifies the constraints that
a labelling with a, b, ¢, d should satisfy. It is a graph whose nodes
are the labels, and arcs represents admitted labelling of adjacent
nodes. In the center, we show a graph on 5 nodes which are labelled
with a, b, ¢, and d. This labelling, however, does not satisfy the
constraints since the labelling of nodesl 1 and 4, which are adjacent,
violates the constraint since (b, d) is not an arc in the constraints
graph on the left. Instead, the labelling shown on the right respect
all the constraints specified by the constraints graph.

The constraint (125) can be easily expressed in first order logic.

(126) Vavy { r(z,y) =\ (@) Api(w) v pi() Api(y))
(¢,5)€C

Therefore the class of graphs that satisfies (126)) are the labelled graphs which re-
spects the constraint expressed by the constraint labelling graph S = (L,C).

3. First order theories for ontologies

An ontology is a formal, explicit, shared specification of a conceptualization of a
domain Gruber (1993 A conceptualization is a formal description of the objects, the
concepts, and the relations that are assumed to exist in some domain of knowledge.
There are many example of ontologies that ranges from very general ontologies
(called top-level or upper ontologies) to domain specific ontologies. Three well
known and used examples of upper ontologies are Basic Formal Ontology (BFO)
Arp, Smith, and Spear [2015| Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) Borgo and Masolo 2009, and Unified Foundational Ontology
(UFO) Guizzardi [2015. In upper level ontologies concept like “state”, “event”,
“process”, are organized in a hiararchical structure and they high level relations
like “being part of”, “having a quality” are used to related these concepts. An
exceprt of the concept hierarchy of DOLCE is shown in Figure

Domain specific ontologies are ontologies which are specific for one particular
domain. They have an important role in integration of heterogenous data Lenzerini
2002 and as a semantic interface for querying and accessing data Xiao et al. [2018|
Large and important ontologies has been developed for instance in the domain of
of medicine. For instance the SNOMED CT ontology is a systematically organized
collection of medical terms. SNOMED CT concepts are organised into 19 distinct
hierarchies, each of which cover different aspects of healthcare. An excerpt of one
of the hierarchies of SNOMED CT is shown in Figure
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agentive non-agentive:
physical physical
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body place

FIGURE 2. An excerpt of the concept hierarchy of DOLCE.

Bacterium

Coccus

Enteric
Bacterium

Gram- Gram- Gram-
negative positive variable
coccus coccus coccus

FIGURE 3. An excerpt of one of the concept hierarchies of
SNOMED CT.

There are three main relationships that are formalized in an ontology. The
concept hierarchy (also called is-a herarchy) the parthood-hierarchy (also called
mereology) and the attributes properties. Let us see how they are usually formalized
in first order logic.

3.1. Taxonomies in FOL. A taxonomy T is a DAG (directed acyclic graph)
T = (C,H) where C is the set of concepts and H (the hierarchy) are the edges
between concepts that form a DAG on E. The arc (¢,d) € H states the fact that
the concept d is a specification of ¢. For instance in Figure 3] the arc from “Coccus”
to “Gram negative Coccus”, states that the concept of “gram negative coccus” is
a specification of “coccus”.

One possible way to formalize a taxonomy T = (C, H) in FOL is to associate to
every concept ¢ € C' a unary predicate c(z), For instance in formalizing SNOMED
CD in FOL we introduce the predicate Bacterium, where the formula Bacterium(z)
formalizes the fact that the object x is a bacterium, and the unary predicate Coccus,
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Bacterium
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FIGURE 4. A visualization of the FOL semantics of the exceprt
of SNOMED CT of Figure [3]

where Coccus(xz) means that = is a coccus. First order semantics associates to
every unary predicate a subset of the domain element. Therefore, in the FOL
formalization of a taxonomy, concepts are seen as sets of objects. We say that this
is an extensional semantics for concepts.

To formalize the information contained in the hyerarchical part H of a taxon-
omy, we consider the fact that if a condept d is a specification of a concept ¢, then
everyt instance of d must also be an instance of ¢. Therefore, we tranform the fact
that (¢,d) € H in the proposition “every element of the domain that is ¢ must be
also d” that in forst order logic can be rendered as:

(127) Vz(c(z) — d(z))

Consequently the FOL semantic of a Taxonomy 7' = (C, H) is given in terms of
set conainment. For instance the semantics of the part of the Snomer hierarchy
shown in Figure [3| is shown in Figure {4| For every taxonomy T = (C, H) let T'r
the the theory obtained translatinc H in first order axioms according to As
a consequence of this modelling we obtain the intuitive fact that when (¢,d) € H
and (d,e) € H. we have tha formula . As a consequence we have that if there
is a path ¢y, ca,...,c, that connects c¢; to c,, we have that

(128) I'r = Va(en(z) = c1(x))

In the SNOMED example we have that if 'syomeDp-cT is the axiomaticazion of the
SNOMED-CT hierarchies in FOL, then

Psnomep-cr = Vo (GramNegativeCoccus(z) — Bacterium(z))

Formalizing a taxonomy T = (C, H) in a first order theory allows to infer new
specialization relations that are not explicitly stated in H which are the result of
the transitive closure of H. These new specialization are shown in dashed lines in
Figure 2] and

A second aspect of a taxonimi that can be formalized in FOL is the relation
between syblings. Usually, but not necessarily, the childrens of a concepts are
disjoint concepts, L.e., concepts for which the concept obtained by the conjunction
of two siblings is empty. This constraint can be explicitly formalized in FOL with
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the axiom:

(129) Vi N\ —d@) Ae(x))

(c,d),(c,e)eH
d

For instance in the DOLCE taxonomy, we can add the axiom
Vz—(agentivePhysicalObject(z) A nonAgentivePhysicalObject(x))

The last important aspect of a Taxonomy concern the fact that the children concepts
dy,...,d, cover the parent concept c. More precisely that every instance of the
parent concept c is an instance of at least one child concept ¢;. This can be easily
modeledd in FOL with the axioms

(130) Vo | c(x) — \/ d(x)

(c,d)eH

For example in the SNOMED-CT taxonomy we can formalize the fact that a coccus
is either gram positive, or gram negative, or gram variable, by the axiom

Vx (Coccus(z) — GramNegativeCoccus(z) V GramPositiveCoccus(z) V GramVariableCoccus(z))

3.2. Axiomatizing concept relations. A second iportant conponent of an
ontologies is consituite by the set of relations that connects concepts. For instance
kThe most important ontological restrictions on relations concerns the domain and
the range that states that a certain relations connects two concepts. To state that
the domain of a relation r is the concept ¢, in FOL we can use the axioms

(131) VaVy(r(z,y) — c(x))
(132) Va(e(x) = Jyr(z,y))

To state that the range of a relation r is the concept d, in FOL we can use the
axioms

(133) VaVy(r(z,y) — d(y))
(134) Va(d(y) — Jzr(z,y))

It is also often the case that in ontology we have constraints that involves both
the domian and the range of a relation. For instnce one can state that the engine
of an electric car is electring and the engine of a non electic care is a fossile fuel
engine. This can be done with axioms of the form

(135) Va(c(x) = Vy(r(z,y) — d(y)))
In the car example this become:

Va(ElectricCar(x) — Vy(hasEngine(x, y) — electricEngine(y)))
Va(car(z) A —ElectricCar(xz) — Vy(hasEngine(z, y) — carbonFuelEngine(y)))
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3.3. Cardinality constraints on relations. In ontologies we often need to
state that a concept instance is related with a (more than, less then or exactly a)
number of instances with another concept. For example we want to state that a
car has exactly four wheels, that a group has at least two members and that a car
cannot have more than 7 seats. This can be done with the following FOL axiom

At least n

—

S
I
—

(136) Vo | e(x) = Jy; ... Jyn r(z,y:) A d(y;) /\ x; # )

At most n

>:

(137) Vo | e(z) = Yy1 ... VYyni1 (r(z,y;) Nd(yi)) \/ Ty = Tpal

1

<.
I

3.4. Concept definition in FOL. As a final aspect of ontologies we consider
the notion of defined concepts. In an ontology one can distinguish between primitive
concepts and primitive relations and defined concepts and defined relations.

For primitive concepts we don’t need to provide a definition in terms of other
concepts. For instance the concept of electic car can be defined as a car with one
electic engine, hybrid car is a car that has one electric and one carbon fuel engine.
As follows

Va (electricCar(x) > car(z) A Vy(hasEngine(y) — electricEngine(y))

Va(hybridCar(x) <> car(z) A Jy(hasEngine(y) A electricEngine(y)) A
Jy(hasEngine(y) A carbonFuelEngine(y)))

Va(carbonCar(z) > car(z) A Vy(hasEngine(y) — carbonFuelEngine(y))

We also need to add the axiom that states that a car has at least one engine.
otherwise a car without engine will be both an electic and a carbon car.

Va(car(z) — Jy(hasEngine(y) A carbonFuelEngine(y) V electicEngine(y)))
3.5. Reasoning with FOL ontologies. to be finished

4. First order theories for commonsense

to be finished see https://cs.nyu.edu/~davise/guide.html Guide to Ax-
iomatizing Domains in First-Order Logic
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5. Exercises

Exercise 148:

Formalize in first order logic the following english statements using the following
predicates

B(x,y, z) y is between z and z
S(x) x is a square
T(x) x is a triangle
C(z) x is a circle
A(z,y) x is above y

(1) If a circle is between two squares then it is above some triangle
(2) two triangle cannot be one above the other unles one of them is between two
squares;
(3) A circle must be always between two triangles;
(4) it is not possible that an object is between two distinct pairs of objects.
Solution
(1) If a circle is between two squares then it is above some triangle
Vayz(B(x,y,2) A S(x) AC(y) A S(z) = Fw(Aly, w) AT (w)))
(2) two triangle cannot be one above the other unless one of them is between two
squares;
Vay(T(z) AT (y) AN Az, y) = Fzw(S(2) AS(w) A (B(z,2,w) V B(z,y,w))))
(3) A circle must be always between two triangles;
Va(C(z) = Jyz(T(y) ANT(2) A Bly, x,2)))
(4) it is not possible that an object is between two distinct pairs of objects.
Vayz(B(x,y,2) AB(z',y,2") wz=2" Nz =2)
d






CHAPTER 10

Herbrand Theorem and Skolemization

To check satisfiability of a first order sentence ¢ on the signature ¥ we have to
produce an X-structure Z that satisfies ¢, i,e Z |= ¢. The naive procedure used for
propositional logic, in which we check for all possible interpretations, is not working
for FOL, since there are infinite many interpretations. Indeed we are free to choose
the interpretation domain AZ with any possibly infinite set, and therefore we have
infinite possibilities to interpret the symbols of X.

The question, is whether there is a sistematic method to generate the -
strucutre for ¢ such that if ¢ is satisfiable, sooner or later we will encounter an
interpretation that satisfies it.

The Herbrand’s Theorem, called so after Jacques Herbrand (1908-1931), allows
to reduces the problem of checking the satisfiability of a first-orde formula to the
check of satisfiability of a set of propositional formulas. In this chapter we gradually
introduce the theorem.

To keep the treatment simle in this chapter we consider only the case of First
order language without equality.

1. Herbrand interpretation

Herbrand proposes the main idea to interpret terms in themselves. Notice
that the definiton of ¥-structure (AZ,Z) A% can be any non empty set. Herbrand
poposed to consider A as the set of all ground terms that can be built from the
signature 3. Since AT must contain at least one elment, Herbrand required that ¥
contains at least one constant symbol.

DEFINITION 10.1 (Herbrand Universe). The Herbrand’s universe of a signature
Y that contains at least one constant symbol, is the set, denoted by A™ of ground
terms of X.

ExampLE 10.1. If ¥ contains two constants a and b and no function symbol
then, the Herbrand’s Universe of ¥ is {a,b} since a and b are the only ground terms
that one can build in X. If, instead ¥ contains a binary function symbo f then the
set of ground terms, and therefore the Herbrand’s Univers of 3 contains an infinite

225
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set of terms. i.e.,

a b

fla,a) f(a,b) f(b,a) f(b,b)

f(a, f(a,a)) f(a, f(a,b)) f(a, f(b;a)) f(a, f(b,0))

f(b, f(a,a)) f(b, f(a,b)) f(b, f(b,a)) f(b, f(b,0))
f(f(a,a),a) f(f(a,b),a) f(f(b,a),a) f(f(b,b),a)
f(f(a,a),b) f(f(a,b),b) f(f(b,a),b) f(f(b,b),b)
f(fla,a), fa,a))  f(f(a,a), f(a,b)) f(f(a,a),f(ba)) [f(f(a a),f(b,b))

One can easily se that with one constant and a function symbol the Herbrand’s
Universe is infinite. Instead if there is no function symbols then the Herbrand
universe has the same size of the number of constants in X.

An alternative way to define the Herbrand’s Univers for ¥ is by induction
i.e., the herbrand universe A¥ for ¥ is the smalles set that satisfies the following
conditions

(1) Every constant of ¥ belongs to A¥
(2) ifty,...,t, € Al and f is an n-ary function symbol of 32, then f(t1, ..., t,)
ING

Once we have defined the set A™ to fully define an interpretation, we have to
specify the interpretation function for the elements of 3. The obvious way is to
define the interpretation of constants and function symbols so that every terms is
interpreted in itself, and every predicate with arity equal to n as a set of n-tuples
of terms. i.e., in a subset of A;‘.

DEFINITION 10.2. An herbrand interpretation of a signature 3 is composed by
the pair (A%, H), where

(1) A¥ is the Herbrand’s universe of ¥;

(2) H(c) = c for every constant symbol ¢ € X;

(3) H(f) : t1,...,tn = f(t1,...,t,) is the function that maps an n-tuple of
terms of AL in a term of AH | for every n-ary function symbol f;

(4) H(P) C (A" is a set of n-tuples of terms in A¥, for evert n-ary pred-
icate symbol P € 3.

A simpler way to see an Herbrand interpretation is by seeing it as a mapping
from ground atomic formulas to {0,1}.

(138) H : GroundAtoms(X) — {0, 1}

This definition is very close to the definition of propositional interpretation, where
GroundAtoms(X) is the set of proposiional variabels. The set GroundAtoms(X) is
called the Herbrand’s base for X.

ExXAMPLE 10.2. The following is an example of an Herbrand Interpretation that
satisfies the following set of formulas:
—friend(x, x)
friend(x,y) — friend(x,y)
friend(x,y) — knows(x, mother(y))
friend(Mary, John)

I =
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Mary, John,

mother(Mary), mother(John),

mother(mother(Mary)), mother(mother(John))

mother(. .. mother(Mary) ...), mother(...mother(John)...),...

A =

friend(John, Mary), friend(Mary, John),
knows(John, mother(Mary)),
knows(Mary, mother(John)),
knows(mother(Mary), mother(John))

H =

2. Satisfiability in Herbrand’s Interpretation

Satisfiability in Herbrand interpretations is defined as the problem of checking
if a formula ¢ is satisfiable by an Herbrand’s Interpretation on the signature of
¢. One of the main version of the Herbrand’s theorem states that satisfiability in
general, can be reduced to satisfiability by an Herbrand’s interpretation

ProrosiTION 10.1. If H is an Herbrand interpretation then for every ground
term t H(t) =t.

PROOF. By induction on the complexity of ¢. If ¢ is the constant ¢ then H(c) =
¢ by definition. If t = f(t1,...,t,) then

H(f(trs oo tn)) = HO)H (), - - HEn))
=H(f)(t1,.-- tn) By induction hypothesis
= f(t1,...,tn) By definition H(f)

PROPOSITION 10.2. H = ¢(x)[azq] iff H = o(t)
PROOF. By induction on the complexity of ¢ (exercize) O
PRrROPOSITION 10.3. H |= Vz ¢(x) if and only if H | ¢(t) for all ground term

PROOF.
H EVro(x) fif H | é(x)[ag:] for all ground terms ¢
ftff H = ¢(t) for all ground terms ¢
(]

DEFINITION 10.3 (quantifier-free formula). A formula ¢ is quantifier-free if ¢
has no occurrence of either of the quantifiers ¥ or 3.

Notice that a quantifier-free formula is the combination of a set of atoms using
the propositional connectives. Notice that all the individual variables that occours
in a quantifier-free formula are free. Furthermore if a uantified free formula do not
contains individual variables, then it is just a propositional formula.

EXAMPLE 10.3. The following are examples of quantified free formulas.
P(a) vV Q(b,x) = R(x,y, 2)
R(a,b, f(c)) vV R(b,a,g(a, b))
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the second one does not contains individual variables, hence it is a propositional
formula.

If we quantify universally the free variables of a quantified free formula we
obtain a universal sentence.

DEFINITION 10.4 (Universal sentence). A universal sentence is a sentence (closed
formula of the form

Vo Vg .. Vo, ¢(xr,. .., 2n)
where ¢(x1,...,Tn) 18 a quantifier-free formula.

In other words universal sentences admit only universal quantifiers at the be-
ginnin of the formula. We will see later that every formula can be transformed in
an equi-satisfiable universal sentence. If we instantiate every variable of a universal
sentence we obtain a propositional formula, that is called a ground ifnstance of the
universal sentence.

DEFINITION 10.5 (Ground instance). A ground instance of an universal sen-
tenceVay ... Vo,.0(x1, ..., x,) is a sentence ¢(ty, ..., t,) obtained by replacing each
occurrence of x; with a term t; that does not contain variables.

THEOREM 10.1 (Herbrand’s Theorem). A universal formula ® =Vay,...,Ve,o(z1,...,2,)
is satisfiable if and only if it is true in an Herbrand interpretation in the signature
of ¢ (if ¢ does not contain any constant we extend the signature with a constant a)

PROOF (SKETCH). If ® is satisfiable by an Herbrand interpretation then it is
satisfiable. Let us proove the contrary. Suppose that ® is satisfied by the interpre-
tation Z. Starting from Z we can build the following herbrand interpretation H, on
the domain of ground terms A where ¥ is the signature of ® possibly extended
with a constant a if ® does not contain constant symbols. For every n-ary predicate
p we define H(p)

H(p) = A{(t1,. . ta) € AE [T Eplte, ... ta)}

For every formula ¢(x1, . .., x,) we can prove by induction that the formula Va1, ..., z,é(z1, ..., 2,) —
o(t1,...,t,) is valid for every n-tuple of ground terms. This implies that

(139) TE ot tn)
and therefore that H = ¢(t1,...,t,). This implies that

H ': d’(xla s 7xn)[ax1<—t1,...,a:n<—tn]
and therefore that H = ®. O

The immediate consequence of the Herbrand’s theorem is that, to check if
& =Vry,...,z, ¢(x1,...,z,) is satisfiable we can check if it is satisfiable only in
the herbrand interpretations. If there is no herbrand interpretations that satisfies
® then the formula is surely unsatisfiable.

A second, and related consequence, is that if ® is unsatisfiable, then also the
set

Ground(®) = {@(t1,...,t,) | t; € A}

is not sartistiable. But one can notice that Ground(®) is a set of propositional for-
mula, and therefore we can apply the main results of satisfiability in proposiitional
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formula. In particulare, we use the compactenss theorem (Theorem ?7?) that states
that an infinite set of proposiitonal formula I'" is not satisfiable if and only if there
is a finite subset I'g of I' that is not satisfiable. We can therefore conclude that
® is unsatisfiable there is a finite set G C Ground(®) of groundings of ® that is
unsatisfiable.

If we find a way to enumerate Gy, G1,Ga,... (i.e., generate an infinite se-
quence) of all the finite subsets, of Ground(®) such that for every finite subset
G C Ground(®) there is an i such that C; = C we could check at every iteration
if G; is satisfiable, and if Ground(®) is not satisfiable we enventuall find an ¢ such
that G; is not satisfiable. This very naive idea is implemented in Algorithm If

Algorithm 12 First Order Satisfiability,

Require: A universal formula ® = Vz4,...,V2, ¢(z1,...,2,)
>} < the signature of ®
if Constants(X) = () then

Y+ XU{a}
end if
A + Constants(X)
while True do

G + GROUND(®, A)

if PROPOSITIONALSAT(G)=UNNSAT then

return UNSAT

end if

A~ AU{f(t1,...,tn) | f € n-ary-Funct(2), ¢; € A}
: end while

= = =
M» =2

® is unsat, then by the Herbrand theorem we have that there is a finite subset of
Grounding(®) that is unsat let k be the masimum dephth of the terms that appear
in G, then at the k-th iteration the set G will be a subset of GROUNDING(®, A)
which sill be inconsistent, and therefore the algorithm terms returning UNSAT

3. Prenex normal form

In the previous section we only consider universally quantified formulas. In this
section we show how to extend this result to the entire set of first order formulas,
that inculdes also existential quantified formulas.

DEFINITION 10.6. A formula is in prenex normal form if it is in the form of

(140) Q121 Qupn d(x1, ..., 2p)
where each Q; is either 3 or ¥V and ¢(x1,...,x,) is a quantified free first order
formula.

Every formula can be reduced in prenex normal form by using the following
rewriting rules:
e rewrite the — and <« in terms of — and V and A;
e switch the — and the quantifiers with the rule:
—Vrp = Jx—¢
—Jxp = Var-¢
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e switch the binary connectives A and V and the quantifier with the rules
under the hypothesis that  does not

vw( ) N p = Va(p(z) Ay)

ro(x) VY = Va(o(z) V)
31‘(15( )N = Tz(d(z) AY)
Az g(x) Vp = Fu(o(z) vV ¥)

If « appears free in ¢ we can rewrite Qx ¢(x) into the equivalent formula
Qy ¢(y) for some new variable y before applying the rules.
e the following rules can also be used but not strictly necessary

e g(z) v Irp(z) = Fu(d(x) V ¢ (x))
Vo ¢(x) AV (x) = Va(o(z) A ()

e finally it is possible to switch the existential and universal quantifier with
the following rule

VaIy(o(z) o ¥(y)) = FyVa(o(z) o ¢¥(y))

if x is not free in ¢(y) and y is not free in ¢(z). As it will be clearer
later, moving the existential quantifier out of the scope of an universal
quantifier can be convenient.

Let us see an example about how to rewrite a formula in prenex normal form
EXAMPLE 10.4. Consider the formula
(VeIyP(z,y) — J2Q(z)) vV VzQ(x)
We first rewrite the —
(=VzIyP(z,y) vV IzQ(x)) V VaxQ(x)
Then we push the — in front of atoms
(FaVy—P(z,y) V I2Q(x)) V VzQ(x)
Then we can apply the rule that commutes 3x and V on the first disjunct
Jz(Vy-P(z,y) vV Q) V VzQ(x)
and push out the Y quantifier
¥y (~P(z,y) vV Q(x)) Vv VzQ(x)
We can also push out the first existential quantifier since x is not free in VxQ(x)
FVy(~P(z,y) vV Q(z) V VzQ(z))

Now if we want to push out the quantifier | forallz since x is free in =P (z,y)VQ(x)
we have to rename the variablel obtaining

JaVy(=P(z,y) V Q(x) V V2Q(z))
now we can apply the rule to obtain
JaVyVz(—P(z,y) v Q(z) v Q(2))

which is in prenex normal form.
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4. Skolemization

Skolem normal form is named after the late Norwegian mathematician Thoralf
Skolem.(1887-1963). Skolemization is the operator of replacing existential quanti-
fiers either with constants (0-ary functions) or with functions, obtaining an equi-
satisfiable formula.

Before providing the general definition let us consider the following siple ex-
ample of proposition in FOL. Consider the proposition “Every preogrammer has
written at least one computer program”, In FOL this can be formalized as

Vax(Programmer(z) — Jy(Program(y) A Author(z,y))

If it is the case that for every programmer we can find a program written by
him/her, there exists a function from programmers to programs that selects one
program for every programmer, and such that the author of the program selected
by this function for some programmer z is x him/herself. Notice that there might
be more than one program written by the same programmer, however f will pik
one of them. To formalize this line of reasoning, we can extend the signature with
a new symbol f that intuitively represent the funciton that select one program for
every programmer, and we use f in place of the existential quantifier, by rewriting
the original formula in

Va(Programmer(xz) — Program(f(z)) A Author(z, f(z)))

The previous example can be generalized by rewriting any formula of tghe
form VzIyo(z,y) in Ved(x, f(z)) for some new function symbol f. This is also
possible when there is no universal quantifier in front of 3. I.e., The formula
Jz¢(x) can be rewritten in ¢(a) for some new constant a. Generalizing even more
the formula VaVy3z¢(x,y, z) can be rewritten in VaVyo(z,y, f(z,y)) for some new
binary function symbol f. Let us make this process fully general.

DEFINITION 10.7 (Skolemization). Let ® be a formula in prenex normal form
that start with m universal quantifiers followed by an existential quantifier. Ie., ®
is in the form:

Y 1Vas . Ve 3Tme1Qma1Tma2 - - - Qunnd(T1, ..., Tp)

a formula in prenex normal form the Skolemization if the operation of introducing
a new n-ary function symbol f and replace Ty with f(x1,...,2m), and remove
the existential quantifier. ILe., transforming the formula in

Y 1Vas .. Ve QmioTmaa - - Qun® (X1, ..oy Ty f(X1,0 0 T )y T2y -+ -5 Tp)

PROPOSITION 10.4. Let W be the Skolemization of a forula ® Every model that
satisfies ® can be extended to an interpretation I by providing the interpretation of
the skolem function f that satisfies V.

PROOF. We prove the property for the special case where ® is VazIyR(x,y),
The general proof looks the same. In this special case ¥, the skolemization of ® is
VxzR(x, f(x)). Let us show that ® is satisfiable iff ¥ is satisfiable

(=) If Va3yR(z,y) is satisfiable, then there is an interpretation Z, such that
T |= Vx3y R(x,y). This implies that, for every element d € AT, there is an elmenet
d' € AT such that (d,d’) € Z(R). Let I’ be the interpretation on the same domain
of Z with Z(R) = Z'(R) and Z'(f) is a function that maps d into a d’ such that
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(d,d’) € Z(R). This implies that for every d € AT, T’ = R(x, f(z))[x « d]; and
therefore that 7' |= Vo R(z, f(z)).

(<) If VzR(x, f(x)) is satisfiable, there is an interpretation Z of R and f such
that for every d € A%, (d,Z(f)(d)) € Z(R) and therefore for every d € AT there is
a d' (which is Z(f)(d)) such that (d,d’) € Z. This implies that Z = VaIyR(z,y). If
we consider Z’ the restriction of Z to the signature that contains only R, we have
that 7' = Vz3yR(z,y)) and therefore that Yx3y R(x,y) is satisfiable. O
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5. Exercises

Exercise 149:
Let ¥ be a signature that contains the constants ¢ and b and no function
symbols, List all the ground instances of the following two universal sentences

(1) VaVy P(z,y) — R(x)
(2) Vo P(z,z) = R(x)

Exercise 150:

Consider the universal formulas
VaVyo(z,y))
VaVye(g(w,y), f(x))

What is the relationship between the set of grounding of the two formulas?

Exercise 151:
Prove that the following reqriting rules transform a formula in another formula

which is equivalent to the original formula. More formally for every rule A = B
you have to show that A = B and B = A

V¢ = dx¢

—Jxp = Vao¢

Jx () V Jz(x) = Jz(p(x
Vo ¢(x) AV (z) = Va(o(z
Vo ¢(x) Ap = V(o

Vo ¢(x) Vi = V(o

(

VoIy(p(z) o ¥(y)) = FyVa(o(z) o P(y)) (o

where (%) means that z is not free in ¢ and (xx) that x is not free in ¥ (y) and y
is not free in ¢(x). For the rules that have application restrictions (%) and (#x),
find an example of a formula that does not satisfies the restriction and that is not
equivalent to the formula obtained by applying the transformation.

Exercise 152:
Find the prenex normal form of

Vo (yR(x,y) AVy-S(x,y) — -(3yR(z,y) A P))

Solution

VaVy JyoVys (—R(z, y1) V S(z,92) V ~R(z,y3) V —P)

Exercise 153:
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Transform the following formula into prenex normal form:
Va3 F (u, 2, y) — 3e(=VyG(y,v) —» H(x))]

Solution

Vady3z[F (u, z,y) A ~G(z,v) A —H(z)]

Exercise 154:
Which of the following expressions are in prenex normal form?

2)
3)
4) R(z,y)
5)

Exercise 155:

Let ¥ be the signature of a formula ¢(z,y), Explain how a Y-structure T
that satisfies Vadyg(x,y) can be extended in a X'-structure Z' on the signature
Y obtained by extending ¥ with a new unary function symbol f, such that 7’ |=

vz ¢(z, f(x)).

Exercise 156:

Consider the followin english sentences which that involves existential quanti-
fiers. Translate them in FOL using universa dna existential quantifier; trasnform
them in prenex normal form and then in skolemized prenex normal form.

(1) Every philosopher writes at least one book;
(2) All students of a philosopher read one of their teacher’s books;
(3) There exists a philosopher with students.

Solution
(1) Every philosopher writes at least one book.

YV (Phil(z) — Jy(Book(y) A Writes(x, y)))
Rewrige Implication:
Va(=Phil(z) vV Jy(Book(y) A Writes(z,y)))
Transform in prenex normal form
Va3y(=Phil(z) V (Book(y) A Writes(z,y)))
Skolemize: substitute Jy with g(x)
Vax(=Phil(x) vV (Book(g(x)) A Writes(z, g(z))))
(2) All students of a philosopher read one of their teacher’s books.
VaVy(Phil(z) A StudentOf(y, z) — Jz(Book(z) A Writes(z, z) A Reads(y, 2)))
Eliminate Implication:
Va¥y(=Phil(z) V =StudentOf(y, ) V 3z(Book(z) A Writes(x, z) A Reads(y, z)))
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Transform in prenex normal form
VaVy3z(-Phil(z) V =StudentOf(y, x) V (Book(z) A Writes(x, z) A Reads(y, z)))
Skolemize: substitute 3z by h(z,y)
VaVy(=Phil(x) V =StudentOf(y, ) V (Book(h(z,y)) A Writes(z, h(x,y)) A Reads(y, h(x,y))))
(3) There exists a philosopher with students.
JzJy(Phil(z) A StudentOf(y, x))
Skolemize: substitute 3z by a and Jy by b
Phil(a) A StudentOf(b, a)

Exercise 157:
Trensform the formula —(3z(P(x) — VzP(x))) in skolemized prenex normal
form.

pointsExercise 158: (4 points Pt.)

Let ¥ be the signature of a formula ¢(z,y), Explain how a Y-structure T
that satisfies Va3ygp(x,y) can be extended in a Y'-structure Z' on the signature
¥ =X U{f/1} obtained by extending ¥ with a new unary function symbol f, such
that 7' = Va¢(x, f(x)). How is it called this operation?

Solution The transofrmation described in the exercize is called Skolemization.
Skolemization allow to eliminate quantifiers by introducing new constant or function
symbolis. It is proved that Skolemizaiton perserves satifiability. I.e., the original
formula is satifiable if and only if the SKolemized formula does.

Let us now solve the exercize. Our objective is to define an interpretation of f,
i.e., Z'(f) such that Z' |= Va¢(z, f(x)). This means that for every element d € AT
we have to find a d’ such that Z'(f)(d) = d’ and such that Z |= ¢(z,y)[z + d,y +
d']. Notice that for every element d of the interpretation domain AZ, the fact that
T = Va3yp(x,y). implies that T |= Jyo(z,y)[z < d]. This implies that there is
a d' such that 1 = ¢(x,y)[xz + d,y < d']. Let us define the interpretation of the
function symbol Z'(f) : d — d'. Then we have that 7' = ¢(x, f(x))[x < d]. If we
repreat this reasoning for all the d of the domain we have a complete definition of
T'(f), such that T = ¢(x, f(z))[z + d] for all individuals d € AZ. From this we
can conclude that 7' = Vao(x, f(x)). O






CHAPTER 11

Satisfiability in First Order Logic

In this chapter we consider the problem of satisfiability in first order logic. I.e.,
we introduce an algorithm that check if a first order sentence ¢ is satisfiable. We
consider the more general formulation of checking if a set of first order sentencs
I" is satisfiable. As for propositiona logic, the problem of checking validity and
logical consequence in first order logic can be reduced to satisfiability. Therefore,
a procedure for checking satisfiability can be used also for checking if a formula ¢
is valid, by checking satisfiabilty of —¢ and if ¢ is a logical consequence of a set of
formulas T" by checking if I'U {—¢} is not satisfiable. However, we start with a bad
news. Indeed it has been proved that such an algorithm does not exist.

Satisfiability in first order logic is semi-decidable. Which means that any algo-
rithm that checks satisfiabil8ty of a first order sentence will eventually terminate if
the formula is not satisfiable but might run infinitely if the formula is satistiable.
The proof (which is out of the scope of this notes) is based on the fact that the
halting problem can be encoded in first order formula ¢ and if we have an algorithm
that check satisfiability of ¢ this means that we have an algorithm that decided the
halting problem.

However the fact that when a formula is not valid the algirhtm might not
terminate, does not prevent us in searching for a countermodel of such a forula. If
such a countermodel is found then we can conclude that the formula is not valid.
However, we cannot avoit the fact that the search of such a ountermodel can go on
forever.

The algorithm for checking satisfiability of first order sentences is deebly based
on the Herbrand theorem presented in the previous chapter. The Herbrand the-
orems thells us that if a set of univerally quantified formulas I" is not satisfiabile,
then there is a finite subset of ground formulas of I which are not satisfied. There-
fore our algorithm will search for such a finite subset of formulas. THe algorithms
is based on two main stesp, called resolution and unification. We describe them
separately in the following two sections, and in the final seciton we show how they
can jointly use to chesk satisfiability in first order logic.

1. Finite Model Finding

Given a set of first order sentences to check its satisfiability, we can search a
finite model, i.e., a ¥-structure on a finite domain. There are many mehods for
performing finite model finding see for instance Reger, Suda, and Voronkov [2016}
Torlak and Jackson [2007; McCune 2003} J. Zhang and H. Zhang 1996} Baumgartner
et al. 2009

A basic method for finite model finding is to iteratively search for models with
increasing domain size starting from 1. That is, the search is started for models of
domain size 1 only. If that fails, the search is repeated for a model of size 2, then of

237
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3, and so on. If a formula has a finite model in theory it will be eventually found.
Clearly if the fomrula has only infinite models then the procedure will continue
indefinitely. Despice it’s simplicity most of the methods follows this approach. One
of the first systems for FOL finite model finding is called MACE4McCune 2003
MACE4 transform the problem of finding a model of size n of a first order
sentence ¢ by doing the following three steps:
(i) transform ¢ in prenex univerally quantified conjunctive normal form (per-
forming also Skolemization)

(ii) ground the obtained formula in the finite set of constant {1,...,n}
(iii) Enrich the set of ground clauses with clauses for equality for every term that
appear in the ground clauses which is different from 1,... n

(iv) Search for a propoisitional assignment that satisfies the entire set of clauses.
(v) If such an assignments is found, extract the first order model from it.

EXAMPLE 11.1. To generate a model of size 2 for the formula Vz(P(c,z) —
=Q(c,x)) ANVaVy(—P(x,y) — 2Q(x, 2)), it is first translated in the clause clause

{=P(c,z),=Q(c, )} {P(z,9), Q(f(x),y)}

The clause is then grounded w.r.t. the domain {1,2} obtainining the set of ground
clausees

{-P(c,1),-Q(c, 1)} {p(1,1),q(f(1),1)} {r(1,2),q(f(1),2)}
{=P(c,2),7Q(c,2)} {p(2,1),q(f(2), 1)} {r(2,2),4(f(2),2)}
We extend the set of clauses with the following clauses:
{c=1,c=2} {f(1)=1,f1)=2} {f(2)=1,f(2)=2}
{c#1,c#2} {f() #1,f(1) #2} {£(2) #1,-f(2) # 2}
and the clauses
{=P(c,1),c #1,P(1,1)} {=P(c,1),c#2,P(2,1)}
{-Q(f(1),1), f(1) #1,Q(1,1)} {=Q(f(1),1), (1) #2,Q(2,1)}
{=Q(f(2),1), f(2) #1,Q(1,1)} {=Q(f(2),1), f(2) #2,Q(2,1)}
where the atom x # y is a shortcut for ~(x = y).
In MACE4 steps (iii), (iv), and (v) are performed with a specific algorithm. Here, to
simplify the presentation we propose to rephrase the problem of searching a finite
domain for a set of ground clauses in a problem of propositional satisfiability by
adding a set of clauses that manages with equality between terms that appear in

the grounding of the first order clauses. A naive implementation of a model finder
algorithm based on SAT is shown in Algorithm

2. The resolution rule

The resolution rule is a simple, yet powerful, inference rules that allows to infer
that a formula, called resolvent is true whenever two formulas are true. It can be
presented in the following form

oV MV

(141) RS
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Algorithm 13 Finite Model Finder

Require: a first order formula ¢
1: n+1
2: ¢ < prenex skolemized clausal form of ¢
3: while true do

4: ¢n < Ground(¢,{1,...,n})

5: for Every term ¢ that appears in ¢, which is not 1,...,n do
6: poU{{t=1,t=2,...,t =n}}

7 fori=1,...,n—1do

8: for j=i+1,...,ndo

9: anu{{t#iat#j}

10: end for

11: end for

12: for P(...,t,...) that appear in ¢,, do

13: fort=1,...,ndo

14: On — G U{=P(... t,...),t 4, P(...,4,...)}}
15: end for

16: end for

17: end for

18: T < SAT(¢n)
19: if 7 # UNSAT then

20: return 7
21: else

22: n<n+1
23: end if

24: end while

Most of the time, the resolutin rule is used when the presmises are clauses, and
therefore it is written as

{117"'7lk7p} {"p7lk+l7"~7ln}
{li,..., 1}

ExAMPLE 11.2 (Applications of resolution).

{p,q,—r}  {~gq,—r} {-p,q,-r} {r} {-p} {p}
{p,—r} {-p.q¢} {}

PROPOSITION 11.1. The rules (141) and (142)) are correct. ILe, the resolvent
s a logical consequence of the premises.

(142)

PROOF. We have to show that, for every interpretation Z and for every assign-
ment a to the free variables of ¢, 1 and x we ahve that

i 7 (6 V) A (=% V x)la, then T = ¢V x[a

Suppose that Z = (¢ V) A (=0 V x), then Z = ¢V and Z = - V x This implies
that Z |= ¢V, and therefore that either Z = ¢por Z E . f Z = ¢, then T = ¢V x;
If 7 = 4, then from the fact that Z = —¢ V x we have that Z = x. Which implies
that Z = ¢ V x. O

The resolution inference rule is a very general inference pattern which includes
many inference rules that involves propositional connectives. Indeed, many common
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inference rules for propositional connective reduce to one or two application of the
resolutin rule when the formula sare transformed in CNF. We summerize some of
them in the following table.

Rule Name

Original form

CNF form

Modus Ponens W p=y {p} {-p,q}
q {a}
Modus tollens 94 P4 {-q} {-p,q}
il {-p}
Chaining pP—q a=r {pa {-gr}
=w {-p,7}
Reductio ad absurdum pP—a pP—mq {-p,a} {-p g}
P {-p}
{p.a} {-w.r}
Reasoning by case pVg p=rT g {g.r} {—q, 7}
r {r}
Tertium non datur p_"p {r} {-»}
L {1

2.1. Satisfiability via resolution. Using resolution it is possible to build a
decision procedure that decides if a set of clauses I' are satisfiable. To check if
a set of propositional formulas is satisfiable, you have transform them in a set I’
of clauses and then apply PROPOSITIONAL RESOCUTION algorithm. The simple

Algorithm 14 PROPOSITIONALA RESOLUTION
1: while C; U {p} €T, CoU{-p} €T and C; UCy ¢T do
2 I'«—Tu {Cl U CQ}

3: if {} €T then

4:

5

return Unsat
end if
6: end while
7: return Sat

algorithm Propositional Resolution, applies the resolution rule to all the possible
pairs of clauses that contains opposite literals. Notice that the rules is applies
also to the resolvent clauses obtained from the applicaiton of the resolution rule to
other clauses. The algorithms terminates, since the number of clauses that can be
build using the propositional variables occurring in I' are finite, and since at every
iteration a new clause is added to I, the while loop eventually terminates. However,
differently from DPLL the propositional resolution decision procedure does not
provide an assignmnet that satisfies the set of clauses I' it they are satisfiable.

EXAMPLE 11.3. Decide if the set of clauses {{—p,q},{—q,7}, {p}, {—r}} issat-
isfiable using PROPOSITIONAL RESOLUTION. The followint tree shows the applica-
tions of the resolution rules to the different clauses.
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{=q,r} {-p,q}

By repeated applications of the resolution rule, we obtained the empty clause. THere-
fore, we can conclude that the set of initial clauses are not satisfiable. This is a
consequence of Proposition[I1.1. Indeed if there is an assignment that satisfies the
initial set of clauses, this assignment should satisty also all the clauses that can
be dreived via resolution from this initial set. Which implies that such an assign-
ment should satisfy the empty clause. Since there is no assignment that satisfies
the empty clause, we can conclude that there is also no assignment that satisfies the
initial set of clauses.

Notice that resolution allows to prove (un)satisfiability of a set of clauses,
Therefore, if we want to check validity of a formula ¢ we have to check the un-
satisfiability of the formula —¢. However, before applying Propositional Resolution
we have to transform —¢ is CNF

EXAMPLE 11.4. To prove by resolution that the following formula is valide
(PVOA(pVT)=qVr

we first have to transform the negation of the formula in CNF, obtaining the fol-
lowing set of clauses

{p,q} {-p.r} {~a} {-r}
By appltying resolution we can obtain the following clauses:

{=p,7}  {p.q}
{~¢t  {a,r}

{=r}  {r}
N/
{

The fact that the negation of the CNF of the initial formula is not satisfiable allows
us to infer that the negaciton of the formula is not satisfiable, and therefore that
the formula itself is valid.

In a very similar method we can use propositional resolution to check if a
formula ¢ is a logical consequence of a set of formulas T, i.e, that T = ¢. To this
aim we check if the CNF of T' U {—¢} is satisfiable using propositional resolution,
by exploiting the well known connection stating that I' U {—¢} is unsat if and only

if T = ¢.
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ExampPLE 11.5. To prove by propositional resolution that
(g—=p)(gVvr),prhg—r)FEr

we have to transform the premises (the formulas on the left of the |= symbol) and
the negation of the conclusion (the formula on the right of the = symbol) in CNF,
obtaining the following set of clauses:

{pa _'Q} {‘LT} {_'pa _'Q7T} {_'T}

and then. by applying Propositional Resolution we can try to derive the empty clause:

{e.7y  {-p,~q¢.r}  {qr} {p,—q}

The rule of propositional resolution is complete in the sense that if a set of
clauses I' are not satisfiable, then there is a finite number of applications of the
resolution rule such that derives the empty clause.

THEOREM 11.1. (Completeness of propositional resolution) If T is a set of un-
satisfiable clauses then the algorithm Propositional Resolution terminates with “Un-
sat”.

PROOF. The proof is by induction on the number of propositional variable
sthat aoccurs in T,

Base case. If T' contain 0 propositional variables then I' = {{}}, and the
PROPOSITIONAL RESOLUTION terminates with “unsat”

Inductive step. . Suppose that I' contains n+1 variables and the theorem is true
for the set of clauses that contains n variables. Let p a variable that occours in T’
Then I'|, and I'|-, are not satisfiable. Bt induction Propositional Resolution applied
to I'|, will generate the empty clause. By performing the same rule applications to
the original clauses in I" (from which we have removed —p), we obtain the clause
{—p}. Following the same argument, since I'|, is inconsistent, we ahve that from T’
we can derive the clause {p}. Therefore, by a final application of the rule we
can derive the empty clasue, and therefore the algorithm will return “unsat”. O

3. Unification

Theorem [L1.1|states that the rule of resolution is sufficient for checking unsatis-
fiability (and therefore, satistiability, validity, and logical consequence) for propois-
tional formula. However, this rule is not sufficient to perfomr the same task for first
order logic. For instance we know that Va(P(z) — Q(z)) A P(a) — Q(a) for some
constant a is valid. To use the resolution method to prove it’s validity, we trans-
form it in clausal formu obtaining the two clauses {—P(z), Q(x)},{P(a)},{-Q(a)}
but we cannot apply the resolution rule to them, since P(x) is different from P(a).
However, since every variable in a clause is implicitly univerally quantified, the
{=P(z),Q(x)} can be considered as a template for any clause {—~P(t), Q(¢)} for ev-
ery term ¢. This means that this clause also “contains” the clause {—P(a),Q(a)}.
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Therefore, one can derive the clause {Q(a)} and by resolution we can derive the
empty clause {}.
TO FINISH

4. Deciding (un)satisfiability in FOL
TO DO
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5. Exercises

Exercise 159:
Let 0 = [z/f(y)],A = [y/z] and p = [2/a]. compute:

Exercise 160:
Find two substitutions o and 3 such that ao 8 # S o a.

Exercise 161:
Prove that the composition of substitutions is associative. L.e., that for every
substitutions «, 3, and ~:

(aof)oy=ao(Boy)

Solution Let o, 8 and v the following substitutions

a=[r1/t1, ..., Tn/ty]

B=lyr/u1, ... yn/un]

v =[z1/v15. -y 2n/N0]
To prove the associativity property, we use the fact that for every substitution
o =[z1/t1,...,x,/ty], then, for every substitution 6, then

ool =[x1/t10,...,2,/t,0]

i.e., 0o# is the substitution obtained by applying the substitution # to all the terms
t; of the substitution o. We therefore have that

ao(fory)=[z1/ti(BoY),...,Tn/tnB 07)]
with
Bory=I[yr1/ury, s Yn/Yn"]
And therefore we have that

ao(Boy)=lx1/tiy1/ury, s yn/YnV] - Tu/talyr/uays - Yn /Y]
We also thave that
(o B) = [zi/tiyr/ur .. yn/Un]s . T /tu[y1/us, . . Yn/un]]
and therefore
(aoB)oy=lzr/trilyr/ur-. ., yn/unlv, .. Tn/talyr/ua, . .. yn/unl]
= [x1/tilyr/ury - Yn/Un)y - TSt yr /urys - s Yn/uny]]

Exercise 162:
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Find the most general unifier (MGU) of the set of atoms {P(a,y), P(zf (b))}
Exercise 163:

Find a most general unifier for the set {P(a,z, f(g(y))).P(z, f(2), f(u))} So-
lution 6 = [z/a.x/f(a),u/g(y)] O

Exercise 164:
Determine whether or not the set W = {Q(f(a),g(x)),Q(y,y)} is unifiable.
Solution W is not unifiable. OJ

Exercise 165:

Determine whether each of the following sets of expressions are unifiable. If yes
give a MGU:

(1) {Q(a,z, f(2)),Q(a,y,y)}
(2) {Q(z,y,2),Q(u,h(v,v),u)}

Exercise 166:

Transform the following formula in prenex Skolemized conjunctive normal form:

Ve3y3z(father(z,y) A mother(x, z))A
Veyzw(father(x, z) A mother(x,w) A father(y, z) A mother(y,w) — sibling(x,y)

Solution

father(z, f(x))
mother(xz, m(x))

—father(z, z) V —mother(z,w) V - father(y, z) V —mother(y, w) V sibling(z,y)

O

Exercise 167:

From the clauses of the previous exercise prove that

sibling(x, x)

Solution
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= father(x,y), mother(xz,w),

{—sibling(x, x) —father(z,y), mother(z,w),
\ sibling(z, 2)
o= lx/zZ]
{—father(x,y), ~mother(z,w), sibling(z, ) {mother(z,m(z))}

\/

oc=lx/z,m(x

{father(z, f(x {—father(x,y), sibling(z, x)}

\/

o=[z/z,m(x)/w, f(x

{sibling(z, ) {—sibling(x,x)}

\/

o=lx/z,m(x)/w, f(x

{

OO0 Exercise 168:

Find a most general unifier for the set

{P(a,z, f(9()-P(z, f(2), f(u))}

Solution

o= [z/a,z/f(a),u/g(y)]
[0 Exercise 169:

Apply the resolution and unification rule to the following clauses
—P(z,y) V-Q(z,b,y)
Qa, 2, f(z,w)) V m(w,b)
x,y, z,w are variables, and a, b are constants Solution The two clauses contains

two opposite literals on the predicate @) that unify which are:

Q(x,b,y), Q(a, 2, f(2,w))
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Their most general unifier is
o= [z/a,y/f(b,w),z/b]
By applying the resolution rule we obtain the clause
_'P(av f(ba w)) v m(w7 b)
O

Exercise 170:
Find all resolvents (i.e., all the clauses that can be derived from the application
of first order resolution) of the following two clauses:

1= {—‘P(SU, y)> _'P(f(a)a g(ua b))v Q(‘Ta u)}
¢ = {P(f(‘r)’g(av b))7 _‘Q(f(a)v b)v _'Q(av b)
where x, y, and u are variables and a and b are constants. Solution Let us first

rename the variables in order to be sure that there is no clashing. We rename the
variable x of the second clause with z obtaining

¢2 = {P(f(2),9(a,b)), ~Q(f(a),b), ~Q(a,b)
The two clauses contains four pairs of opposite literals that can bee unified. In
the following table we report each pair of literal the most general unifier, and the
corresponding resolvent

Lit. in ¢ Lit. in ¢o Unifier resolvent

—'P((E,y) ( ( ) (a‘v )) x/f(z),y/b _'P(f( ) (U b))vQ(f(Z)au)v_'Q(f a)’b)v_‘Q(avb)
ﬁP(f(a)vg(u7b)) ( ( ) g(a7 )) Z/avu/a ( ) (‘T7a) ﬁQ(f(a')ﬂb)>ﬁQ(a7b>

Qz,y) ~Q(f(a),b z/f(a),y/b | =P(f (a ),b), ~P(f(a), g(u,b), P(z,g(a,b)), ~Q(a,b)
Q(xvy) _'Q(a b) x/avy/b ( a, )7 (f( ),g(u,b)),P(f(z),g a,b )’_‘Q(f(a)’b)
U

Exercise 171:
Apply the resolution and unification rule to the following clauses

ﬁP(‘r’ y) 4 ﬁ62(33’ ba y)
Q(a, z, f(z,w)) Vm(w,b)

x,y, z,w are variables, and a, b are constants Solution
~P(z,y) vV -Q(z,b,y) Q(a,z, f(z,w)) Vm(w,b)
o=lz/a,y/f(bw),z/b

P(a, f(b,w)) Vm(w,b)

Exercise 172:
Conisder the following facts:
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(1) Married people are humans;

(2) Every human has a mother;

(3) A parson is the mother in low of sombody, if she is the mother of his/her
wife/husband;

Formalize them in a formula ¢ by using the predicates

Human(z): z is a Human;

Mother(z,y): x is the mother of y;
MotherInLow(x,y): z is the mother in low of y;
Married(z, y): « is merried with y.

and show by resolution that from ¢ is follows that every married person has a
mother-in-low. Solution
(1) Married people are humans:
Vay(Married(x,y) — Human(z) A Human(y))
(2) Every human has a mother:
Vo (Human(z) — JyMother(y, x))

(3) A parson is the mother in low of sombody, if she is the mother of his/her
wife/husband:

Vayz.(Mother(z,y) A Married(y, z) — MotInLow(z, z))
We can transform in prenex CNF obtaining

Vaey—Married(x,y) V Human(z)
Vay—Married(x,y) V Human(y)
VaIy—Human(x) V Mother(y, x)
Vayz—Mother(z,y) V ~Married(y, z) V MotInLow(x, z)

The third clause need to be scolemized by introducing a new function say f obtain-
ing, the set of clauses

(143) —Married(x,y) V Human(zx)

(144) —Married(x,y) V Human(y)

(145) —Human(x) V Mother(f(z), z)

(146) = Mother(xz,y) V ~Married(y, z) V MotInLow(x, z)

From this set of clauses we want to derive the fact that every married person has
a mother-in-low, which can be translated into

Vaz(Married(z, z) — JyMotInLow(y, z))
We first need to negate and transform it in prenex CNF. obtaining
z, 2Vy(Married(x, z) A =MotInLow(y, z))

By applying skolemization we introduce two new constants a and b, and we obtain
the clauses

(147) Married(a, b)
(148) —MotInLow(y,b)



5. EXERCISES 249

We can now apply the following resolution and unification chain:

(149) Human(a) (47, ([143), z/a, y/b
(150) Mother(f(a),a) , , z/a
(151) —Married(a, z) V MotInLow(f(a), z) (150), x/a, y/f(a)
(
(

—_
o
[\

~—

—~Married(a, b) (151)),(148), =/b, y/ f(a)
153) 1 (152),(147)

Since we can derive the empty clause L form the set of clauses and the negation of
the conclusion, it means that the conclusion logicall follows from the initial clauses.
O

Exercise 173:
Use resolution to decide if
VzQ(z) — VaP(x) + F2Vy(Q(y) V P(2))

is valid, satisfiable, non valid, or unsatisfiable, and explain your answer.

Solution We have to negate the formula and then transform it into Skolemized
negatd normal form: For the CNF transformation, We use the fact that =(A <> B)
is equivalent to (AV B) A (mAV —B).

~((VzQ(z) = VaP(x)) < (F2Vy(Q(y) Vv P(2)))) <
(VeQ(z) — VaP(z)) V (F2Vy(Q(y) Vv P(2))) A
(=(V2Q(z) = VaP(x)) V =(32¥y(Q(y) Vv P(2))))
We treat the two conjuct separately. Let us start with the first one.
VzQ(z) — VaP(x)) vV (32Vy(Q(y) vV P(2))
We rename variables.
VzQ(z) = YwP(w)) vV (32vy(Q(y) v P(2))
We rewrite the — in terms of V.
VaQ(x) v VuwP(w)) V (39 (Q(y) V P(2))
and push the negation close to the atoms
(Fz-Q(z) v VwP(w)) vV (32Vy(Q(y) vV P(2))
We apply Skolemization
(=Q(a) vV VwP(w)) V (Vy(Q(b) V P(2))
‘We mode the universal quantifiers into the front
Vyw(=Q(a) vV P(w) V Q(y) v P(b))
We therefore obtain the clause
{=Q(a), P(w),Q(y), P(b)}
Let us now conider the second conjunct
(~(V2Q(z) — Ve P(z)) vV ~(32¥y(Q(y) V P(2))))

We push the negation close to the atoms
(VeQ(z) A Jz=P(x)) VVz3y(-Q(y) A —P(2))
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We apply skolemization, introducting a new constant ¢ (notice that you cannot use
the constants used in the previous clauses) and the skolem function f.

(VzQ(x) A P(c)) V Vz(=Q(f(2)) A =P(2))

We move the quantifiers in the front

Vez((Q(z) A=P(e)) V (=Q(f(2)) A ~P(2)))

and transform the matrix in CNF obtaining the clauses

{Q2), ~Q(f(2))}{Q(x), ~P(2)}, {~P(c), ~Q(f(2))}, {=P(c), ~P(2)}

Summing up the set of clauses we have obtained are the following:

(154) {=Q(a), P(w), Q(y), P(b)}
(155) {Q(2),~Q(f(2))}
(156) {Q(z),~P(2)}
(157) {=P(c), ~Q(f(2))}
(158) {=P(c),=P(2)}
Notice that the set of clauses can be satisfied by the following interpretation:
AT = {0}
Z(a) =Z(b) =Z(c) =0
Z(f) = f(0) =~
I(P)=1(Q) =0

Since the negated of the formula is satisfiable, the formula is not valid. To check
that the formula is satisfiable we have to build the an interpretation that satisfies
it. To this purpopse it is convenient to transform it in CNF and then try to
find an interpretation that satisfies each clause; This will show that the formula
is satisfiable, Alternatively, we can try to derive the empty clause; In this case we
would have proven that the formula is not satisfiable. Let us first transform the
formula in CNF, We have that A <> B is equivalent to the conjunction of A — B
and B — A; therefore let us transform each of the two part of the equivalence
in CNF We start from the first equivalente, and we push the negation inside, and
rewrite the implication

(VzQ(z) = VaP(x)) — 32Vy(Q(y) V P(z)) <

~(VaQ(z) — VaP(x)) V 32Vy(Q(y) V P(2)) <
(VzQ(z) A~V P(x)) v 32¥y(Q(y) V P(2)) <
(VzQ(z) A Jz~P(x)) v 32y (Q(y) V P(2))

Now let us rename the variables
(VzQ(z) A FJw—P(w)) V I2Vy(Q(y) V P(z))

Distribute the and w.r.t., or
(VeQ(z) v 32Vy(Q(y) V P(2))) A (Sw=P(w) vV 32Vy(Q(y) vV P(2)))

Skolemization

(V2Q(z) VVy(Q(y) V P(a))) A (=P (b) v Vy(Qy) v P(c)))
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Prenex normal form
Vey((Q(z) V Q(y) V Pa)) A (=P(b) V (Q(y) V P(c)))
and clausal form
{Q(2),Q(y), P(a)}
{=P(),Q(y), P(c)}
Let us now consider the opposite implication
F2Vy(Q(y) V P(2)) = (VaQ(z) = VaP(x)) ¢
~(F2Vy(Qy) V P(2))) V (=VaQ(z) V Vo P(z)) <>
Va3y(Q(y) A ~P(2)) V (Fe-Q() V VaP() <

Now let us rename the variables
Vz3y(-Qy) A —~P(2)) V (Fe-Q() V VwP(w))
Skolemization and prenex normal form
Vz(=Q(f(2) A=P(2)) V (=Q(c) V VwP(w)) +
Vzw(-Q(f (2 ) ~P(2)) vV (=Q(c) V P(w)) <>
Vzw(=Q(f(2)) V ~Q(c) V P(w)) A ( (2) V=Q(c) v P(w))
and rewrite in CNF

z

{=Q(f(2)), ~Q(c), P(w)}
{=P(2), Q(c), P(w)}
Therefore the set of clauses are:
{Q),Q(y), P(a
{=P(b),Q(y), P(
{=Q(f(2)),~Q(e), P(
{=P(z),Q(c), P(w)}

Notice that the interpretation that interpret Z(P) in the entire domain, will satisfy
all the four clauses. Therefore the initial formula is also satisfiable. [J

g

Exercise 174:
Consider the following facts:
(1) John likes all kind of food.
(2) Anything anyone eats and not killed is food.
(3) Anil eats peanuts and she is still alive
Prove by resolution that John likes peanuts. (Suggestion: you have to perform the
following steps: 1. Formalize the statements in first order logic, 2. trasform in CNF
3. negate the goal, 4 derive the empty clause by resolution and unification).

Solution Step-1: Conversion of Facts into FOL
(1) Va(food(x) — likes(john,x))
(2) VaVy(eats(y,z) A alive(y) — food(x))
(3) eats(Anil, peanuts) A alive(alice)
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Step-3: Conversion in CNF
(1) {=food(z),likes(john,x)}

E g {—eats(y, x), ~alive(y), food(x)}
(4)

Step-1: add negation of the goal
(1) {=food(z),likes(john,z)}

{eats(Anil, peanuts)}

1
2
3
4) alive(alice)

)

(2) {~eats(y, z), ~alive(y), food(x)}

(3) {eats(Anil, peanuts)}

(4) alive(alice)

(5) —likes(john,peanuts)

{~likes(john, peanuts)} {—~food(x),likes(john,z)}
{—~food(peanuts)} {—eats(y, x), ~alive(y), food(z)}
{—eats(y, peanuts), malive(y) } {eats(Anil, peanuts)}
{—alive(alice)} {alive(alice)}

>~

Since we derived the empty clasue it means that the goal logically follows from the
premises. [

Exercise 175:
Consider the following statements

A grandparent of a person is a parent of a parent of the person
Translate the above facts in FOL using the following symbols:
P(z,y) = x is a parent of y, P is a binary predicate
G(z,y) = x is a grandparent of y, G is a binary predicate

Then use resolution to show that if x and y have the same parents they also have
the same grandparents. Only formulate the problem in clausal form without doing
the resolution proof.

Solution The definition of grandparent can be obtrained by formalizing the sen-
tence: “x is a granparent of y if there is a z that has = as parent and is the parent
of z. In FOL

Vavy(G(z,y) < 32P(z,2) A P(z,7))
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in clausal form after Skolemization:

{ﬁG(.%‘,y),P(.I',f(LU,y))}
{(=G(z,y), P(f(2,y),y)}
{—\P(I,f(l‘,y)),ﬁP(f(I,y),y),G(Z‘,y)}

The goal states that if two people has the same parents, then they have the same
grandparents. Let us first formalize the sentence x and y has the same parents.
This can be formalized by Vz(P(z,x) <> P(z,y)) Similarly “z, y having the same
grapdparents” can be formalized with the formula Vz(G(z,z) < G(z,y)). The
entire statement is the implication between the two formulas for every x and y.
ie.,

VaVy(Vz(P(z,x) < P(z,y)) = Vz2(G(z,2) + G(z,y)))

Negate the goal and transform in CNF

VaVy(Vz(P(z,x) <> P(z,y)) = Vz(G(z,z) + G(z,y)))

FoIy(V2(P(z,z) <> P(z,9)) AJz—(G(z,z) < G(z,9)))

Vz(P(z,a) < P(z,0)) A =(G(c,a) + G(c,b)))

{=P(z,a), P(2,b)},{=P(2,b), P(z,a)},{~G(c,a), =G(c,b)},{G(c,a), G(c,b)},

Exercise 176:

Prove by resolution that the following sets of clauses are not satisfiable.

{=P(),Q(z), R(z, f(2))},  {-P(2),Q(z),S(f(z))} {T(a)}
{P(a)} {~R(a,2),T(2)} {-T(x),~Q(x)}
{=T(y),~S(v)}
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Solution
(159)

(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)
(172)
(173)
|

P

{=P(2),Q(x)
{Q(a),

(a)

R(a, f

{=P(x),Q(x)

{Q(a),

T(a)

_'T(x)’

—Q(a)
{R(a, f(a))}
{=R(a,2),T(2)}

{T(f(a))}
—T(y),
—S(f(a))

O

(a)

S(f(a)

—Q(x)

=S(y)

(a))}

R(z, f(x))}

»S(f(2))}
)}
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By assumption
By assumption

from ) and with z/a

By assumptlon

from ) and ( with z/a

By assumption

from and ( with z/a
from and .

By assumption

from and ( with z/f(a)
By assumptlon

from and ( with z/a
from and (163)

from ) and .



CHAPTER 12

First Order Model Counting

In the same manner in which first-order logic is a generalization of propositional
logic, one can ask him/herself how propositional model counting generalizes to first-
order model counting. This amounts to making sense of the questions: how many %
structures satisfy a first-order formula? Without further specifications, the answer
is: a formula either has 0 models, if it is not satisfiable, or it has an infinite number
of models if it is satisfiable. Indeed if a formula has one model Z with domain AT
then it has an infinite set of models with domains isomorphic to AZ. If we change
our question to: is it possible to count the models of a first-order formula on a given
domain? This makes more sense. However, if a formula is satisfiable by an infinite
domain there are still infinite models. Indeed if A7 is infinite and 7 is a one-to-one
function from AZ to AT we can define an interpretation Z™ that satisfies the same
formulas of Z (proof by exercise). If AZ is infinite then when Z |= ¢ there might
be infinite Z™ that satisfy ¢. For this reason, we concentrate on first-order model
counting on a finite domain that contains n elements. Without loss of generality,
we concentrate on the domain of the first n integers {1,...,n} also denoted by [n].

DEFINITION 12.1 (First order model counting). The problem of first order
model counting is the problem of computing the number of ¥-structures that satisfy
a first-order sentence ¢ on a given finite domain of n > 2 elements. The problem
is denoted as

FOMC(¢,n)

REMARK 5. Notice that in first-order model counting, we are interested in the
case in which the domain contains at least 2 elements. This is because if n = 1
the problem reduces to propositional model counting. Indeed, if n = 1 we have that
the formula Veg(x) < Jxg(x) and Q121,...,Qnxnd(x1,...,2,) is equivalent to
Ved(x,...,x). This amounts in propositional model counting ¢(a,...,a) for some
constant a. FOMC(¢, [1]) = #SAT(Ground(¢, {a})).

1. Formalizing Counting Problems in fomc

First-order model counting provides a general methodology for solving a prob-
lem of counting a set of items w.r.t. some integer parameter n. Such a methodology
is based on three main steps.

(1) Define a FOL signature ¥ such that the items to be counted are mapped
one-to-one is a set S of Y-structures on a domain of n elements;

(2) Provide a complete axiomatization of S in terms of a finite set of first
order formula ¢1,...,¢,. This means Z = ¢ A -+ A ¢y if and only if
corresponds to an element of S.

(3) Compute FOMC(¢1 A - -+ A ¢, n).

255
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In the following, we provide a few examples of the formalization of counting
problems in FOMC.

EXAMPLE 12.1. The number of undirected graphs with n nodes can be obtained
by rFoMc(UG,n)

UG 2 VaVy(=R(z,z) A (R(z,y) < R(y,x)))

EXAMPLE 12.2. The number of undirected graphs with n nodes with at most k
arks can be obtained by FOMC(UG A |R| < k,n) were

k+1 k+1
|R| < kéVxl...kaHVyl...Vka /\ R(l’l,yl) — \/ (.’EZ = N Y; :yj)
i=1 i<j=1

ExXAMPLE 12.3. The number of 3-coloured undirected graphs with n nodes is
equal to FOMC(UG A 3C,n)
3
50 2 ¥a¥y((C1(0) ¥ Ca(a) ¥ Co(@)) A Rlw,y) — N\ (<Cila) A Ci(y))
i=1
In the formula, we use the connective ¥ for exclusive or, which is definable in terms
of the other connectives. Namely, a¥ b= (aVb) A —(a Ab).

EXAMPLE 12.4. the number of graphs with n vertexes, and such that every pair
of nodes are connected with a path with length < k. To encode this the problem
we have to extend the signature with k new binary symbols Ry ... Ry. Intuitively
Ri(z,y), z is connected with y with a path of length i. We can solve this counting
problem my computing: FOMC(UG A R<j,n)

R £ VaVy Ry (x,y)
AVay (R<i(z,y) < R(z,y))
k—1
AVVy( /\ (R<i(,y) © (R<i—1(z,y) V 2(R<im1 (2, 2) A R(2,9)))
i=2

EXAMPLE 12.5. Compute the number of configurations of a group of n people
composed of PhD students and professors knowing that every student has a supervi-
sor that is a professor, every professor supervises at least one student. To formalize
the problem, we introduce two unary predicates Prof/1 and Stud/1 that represents
the professors and the students respectively, and a binary predicate Super/2 that
represent the relations between a student and his/her supervisor. To compute the
number of the configuration described above we can compute FOMC(SP, n) where SP
is the following set of formulas:

Profix) ¥ Stud(x)
SP =< Super(xz,y) — Stud(x) A Prof(y)
Stud(x) — Jy(Prof(y) A Super(z,y))

2. Solving FOMUC for specific FOL formulas

Before considering a systematic and general enough method to solve FOMC(¢, n)
for every formula ¢ in (a subclass of) first-order language. let us see some examples
on the solution of FOMC(¢, n) for specific formulas ¢.
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EXAMPLE 12.6. To compute FOMC(¢,n) when ¢ is
Jx3y(A(z) A R(z,y) A B(y))

We can reason as follows: if A is interpreted in a subset of a elements and B is
interpreted in a subset of b elements. then R cannot be interpreted in any subset of
)\ Z(A) x [n]U[n] x [n] \ Z(B). Since there fre 2" +2"* — 2% such a subsets, we

have that
FOMC(¢, 2n 219n ZZ < > < >2an+bn ab

EXAMPLE 12.7. To count the models of FOMC(VzR(a,x),n) we can proceed as
follows. We have n possibilities to interpret the constant a and for all the other
n — 1 can be connected via R with any subset of [n] which means that there are
2n(n — 1) possible choices. We, therefore, have that

(174) FOMC(VzR(a, z)) = n2"("=1)

EXAMPLE 12.8. Formulas which are largely used in knowledge and ontology
engineering have one of the following two forms:

¢1 £ Va(A(z) = Vy(R(z,y) — B(y)))
¢2 £ Va(A(z) — Jy(R(z,y) A B(y)))

¢1 can be rewritten in YaVy(A(x) A =B(y) — —R(z,y)). If A is interpreted in a
elements and B in b elements then =R should contain T(A) x Z(—B) plus some
subset of T(—A) x Z(—B) UZ(—A) x Z(B) UZ(A) x Z(B). Therefore there are
gn®—an-+ab possible interpretation of /R and therefore also prossible interpretations

of R. Therefore the total number of interpretations that satisfies ¢o is

FOMC(¢1,7n ZZ ( ) ( )2” —antab

About ¢o, if T(A) contains a elements and Z(B) b elements then, for every element
in Z(A) we have to select a non empty subset of Z(B) and any subset of Z(—B).
Therefore for every element of T(A) we have (2° — 1)2"~° possibilities. For the
elements not in Z(A) we can select any subset of the n element having gn(n—a) —
gn*—an possibilities.

FOMC(¢2, n) ZZ ( ) ( ) _ 1)agn’-ab

ExaMPLE 12.9. Counting the number of transitive relation on a set of n el-
ements has been the object of study in discrete mathematics. In first-order model
counting terms this means finding a formula for FoMc(Trans(R),n) where

Trans(R) & VaVy¥z(R(z,y) A R(y, z) — R(x, 2))

Mala |2022 proves that any formula for the number of transitive relations on a
set cannot be a polynomial. At the same time it provides some interesting re-
cursive lower and upper bounds for FOMC(Trans(R),n). To have an idea of how
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FOMC( Trans(R),n) behaves w.r.t. n we report here the sequence reported by the
On-Line Encyclopedia of Integer Sequences (OFIS) OFEIS Foundation Inc. |n.d.

n  FOMC(Trans(R),n) | n  FOMC(Trans(R),n)

1 2 10 7307450299510288

2 13 11 3053521546333103057

3 171 12 1797003559223770324237

4 3994 13 1476062693867019126073312

5 154303 14 1679239558149570229156802997

6 9415189 15 2628225174143857306623695576671

7 878222530 16 5626175867513779058707006016592954

8 122207703623 17 16388270713364863943791979866838296851

9 24890747921947 18  64662720846908542794678859718227127212465

3. FOMC via grounding

A first naive idea to develop a general procedure to compute FOMC(¢,n) can
be obtained by grounding the formula with n constants, which results in a proposi-
tional formula, and then apply propositional model counting. Since we are dealing
with finite domains we can reduce first order formulas to equivalent propositional
formulas by grounding quantifiers:

DEFINITION 12.2. For every First Order sentence (= formula with no free
variables) ¢ on a signature X, and set of constants C', Ground(¢,C) is recursively
defined as follows:

(1) Ground(¢,C) = ¢ if ¢ does not contain quantifiers;
(2) Ground(Vx.¢(x ),C) = Aeec Ground(o(c), C)
(3) Ground(Iz.¢(x),C) =\ .o Ground(¢(c),C)

(4) Ground(¢ o ,C) = Ground(p,C) o Ground(¢,C) for every connective
o€ {A,V,=, o}
(5) Ground(—¢,C) = =Ground(¢,C)

In other words the operation of grounding a firt order formula w.r.t, a set of
constants C' replaces the universal quantifier Vo with a big conjunction where the
variable x is replaced with each constant ¢ € C' and each existential quantifier Jx
is replaced by a big disjunciton where c is replaced with each of the constant in C.

EXAMPLE 12.10. Ground(Vx(A(x) — Jy(R(z,y) A B(y))), {a,b})
A(a) = (R(a,a) A B(a)) V (R(a,b) A B(b)) A
A(b) = (R(b,a) A B(a)) V (R(b,b) A B(b))
EXAMPLE 12.11. Ground(Vz,y.(R(x,y) — R(y,x)),C) =
/\ /\ R(e,c) = R(,¢)
ceC el

Let us now shw the circumstances under which FOMC(¢,n) can be translated
in propositional model counting.

PROPOSITION 12.1. If ¢ is a first order sentence on a signature ¥ containing
only predicate symbols (i.e., no constant and function symbols), then

FOMC(¢,n) = #SAT(Ground(¢, {c1, ..., cn}), HBsufer,....cn})
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where for every signature X, HByx, denotes the Herbrand’s base (i.e. the set of
ground atomc) that can be built from X.

PrROOF OUTLINE. For every model Z of ¢ on the domian of {1,...,n} We
define the following bijection:
Iror E p(@1,.- 0|z, dy,... .2, d,) it ZrrOP(P(Cdy s - - -5 ca,)) =1
One can easily show that this mapping is an isomorphism between the set fo FOL
interrpetatins on {1,...,n} and the propositional assignment Zprop and thast
Zror | ¢ if and only if Zprop = ground(é,{c1...,cn}) O

Notice that Proposition [12.1| requires that the formula does not contain neither
constants nor functional symbols. If these symbols are there one have to provide
also an interpretations of constants and function symbols. The rewriting is still
possible but a bit more convoluted. Consider for instance the face that ¢ is the
formula Yz R(a,x) for some constant a. The grounding is R(a,c1) A--- A R(a, ¢).
Notice that HB{g.a,c,....c,} contains (n + 1)? distinct propositional atoms, and
only n of them occour in the grounding. This implies that #SAT(R(a,c1) A -+ A
R(a,cn), HBRoacr....c) = mc(R(a,c1) A -+ A R(a,cp)) - 20D =n — gn’4ntl
The difference is due to the fact that on the domain of n element a is interpreted
in one of the elements of the domain, and therefore a = ¢; is true for at least
one ¢;, Furthermore, when a is interpreted in the same element than ¢; then the
propositional variable R(a, ¢;) is equivalent to R(c;, ¢;) therefore the two propositon
cannot be interpreted independently.

The positive aspect of the metod of grounding in that it is a general method for
FOMC which works for every first order sentence (without constants and function
symbols). However, it has one major drawback, which is the fact that the grounding
operation has the undesirable effect of exponentially exploding the formula. For
instance the grounding of the formula Qiz1,...,QnxrP(21,...,2;) on a domain
of n elements generates a conjunction of n* formulas ¥(cy, ..., c) where n = |C|.
This conjunction will contain a polinomially large (in n) number of propositional
variables and we know that model counting algorithm take exponential time in the
number of propositional variables. This means that the complexity of this method
will grow exponentially with the number of domain elements.

4. Liftability in FOMC

The notion of liftability has been introduced in Statistical Relational Learning
models Poole [2003| as the capability of carry out probabilistic inference without
grounding a probabilistic model to every single instance in the domain, assuming
that objects are undistinguished. Since, one of the most important motivation for
developing first order model counting is to develop liftable methods for probabilistic
inference, the notion of liftability is very central in FOMC.

DEeFINITION 12.3 (Liftable class of formulas). A class C of first order formulas
are liftable (for FOMC) if for every sentence ¢ € C there is an algorithm to compute
FOMC(¢,n) that runs in time polynomial in n.

The work Jaeger and Van den Broeck 2012/ the authors provides a set of positive
and negative results on liftability of certain classes of first order logic formulas. Here
we concentrate with one of the most well known classes of first order logic formulas
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for which FOMC has been shown to be liftable. This is the C? class. In the rest of
the capter we concentrate on this class.

5. The Two-Variable Fragments: £?

FO? is the class of first order logical formulas that contains only two variables.
Conventionally, these two variables are x and y. chapter we will mainlybe dealing
with this fragment and its various extensions. From now on,

DEFINITION 12.4. For every k > 1 the language LF contains all the first order
formulas that can be build using only k individual variables.

EXAMPLE 12.12. The following are formulas of FO?;
o Vady(R(z,y) N A(x) A Bly) A —x =y)
o Jx(A(x) AVy(R(z,y) — JxR(y,x) A B(z))

EXAMPLE 12.13. Va,y,z.R(x,y) A R(y,2) — R(x,z2) is a formula in L3, that
formalizes the fact that R is a transitive relation. Such a condition cannot be
expressed in L.

From now on we will concentrate on £2.

5.1. Types and tables. In the following, we introduce the notion of 1-type.
A 1-type describe one of the possible configuration of any element of a domain.
A 1-type is a combination of all the unary properties an individual can have, e.g.,
“being red”, “being italian”, “not being male”, ....

DEFINITION 12.5 (1-type). Given a FOL signature ¥ a 1-type is a conjunc-
tion of maximally consistent set of literals containing exactly one variable and no
constants.

EXAMPLE 12.14 (1-type). Let ¥ = {A/1,R/2,5/3} (the notation X/n means
that X is a predicate with arity equal to n) The set of 1-types of ¥ are:

A(z) AN R(z,z) A S(z,x,x) A(x) AN R(z,z) A —S(z, 2, x)
A(x) A —R(x,x) N S(z,z, ) A(z) A —R(z,z) AN —S(x, z, x)
—A(z) A R(z,z) A S(x,z, ) —A(x) A R(xz,z) A —=S(x,z, )
—A(z) N -R(x,z) A S(z,z, x) —A(z) N —R(z,z) N =S(z,z, )

Notice that in a 1-type we have also atoms with binary, ternary, and more in
general n-ary predicates. The key point is that these predicates are applied only to
a (n-tuple) of a single variable.

PrOPOSITION 12.2. If ¥ contains n predicates there are 2" 1-types.

We use natural number 1(x), 2(x), ..., u(z) to denote the 1-types. w is used
to denot the last 1-type and the total number of 1-types. The notation i(y), where
i(z) is 1-type and y a variable is the result of replacing x with y in i(x). We use a
similar notation for constants ¢ where i(c) denotes the replacement of  with ¢ in
the 1-type i(x).

Analogously to 1-types, which describe the values of all the boolean properties
of an individual, we want to have a similar notion that describes the type of rela-

PPN

tionship between two individuals. e.g “x is the boss of y”, “x is older than y” “x
is a friend of y”, “x and y share the same office”, .... Notice that x and y must
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stay for two distinct individuals since the case in which x and y denotes the same
individual is already part of the 1-type of x (e.g., “x is the boss of 2" ). THis is
the notion of 2-table

DEFINITION 12.6 (2-table). A 2-table of a FOL signature ¥ is any conjunction
of a mazximally consistent set of literals containing exactly two distinct variables
x,y and the literal x # y.

EXAMPLE 12.15 (2-table). Let X = {R/2,5/2}
R(z,y) A R(y,z) A S(x,y) AS(z,y) Ao #y

R(z,y) N R(y,x) AN S(z,y) A=S(y,z) Nz #y
R(z,y) A Ry, z) A=S(2,y) A S(y,z) Nz #y
R(z,y) N R(y,z) N =S(x,y) AN=S(y,z) Nz #y
R(z,y) AN=R(y,z) NS(z,y) NSy, 2) ANz #y
R(z,y) N=R(y,z) A S(z,y) A=S(y,z) Nz #y
R(z,y) N=R(y,z) N=S(2,y) NS(y, ) Ne #y
R(z,y) N =R(y,z) A =S(x,y) AN=S(y,2) Ne #y
=R(z,y) A R(y,x) A S(z,y) AS(y,z) N £y
“R(z,y) AR(y,z) A S(x,y) N=S(y,x) Nz #y
“R(z,y) A R(y,x) A=S(@,y) ANS(z,y) Ne #y
~R(z,y) A R(y,x) A ~S(z,y) A=S(y,z) Nz #y
~R(z,y) ARy, z) A S(z,y) ANS(y,z) ANz #y
“R(z,y) A~R(y,x) A =S(z,y) ANS(y,x) N #y
—R(z,y) N —R(y, x) A=S(2,y) A=S(y,z) Nz #y
“R(z,y) AN AS(z,y) NSy, x)R(y, x) Ao #y

A special case of 2-tables happens when the signature contains only unary
predicates. In this case there is only a single 2-table which is x # y.

Similarly to what we have done for 1-types, we use the notation 1(x,y), 2(z,y), . ..

to denote 2-table of a FOL signature ¥, and b denotes the number of the 2-tables.

PROPOSITION 12.3. if ¥ contains n; predicates with arity equal to i, then there
are 222 Mi(2'=2)

We assume an arbitrary order on 1-types and 2-table. Finally we define 2-type
that is a full description of the properties of two distinct domain elements and their
relations.

DEFINITION 12.7 (2-type). Given a FOL signature ¥ a 2-type is the conjunc-
tion of a maximally consistent set of literals containing at most two distinct vari-
ables x,y and no constants and the literal x # y.

Notice that a 2-type is the conjunction of two one types one for x and another
for y and a 2-table. Therefore we denote 2-types with three numbers iji(z,y)
where 7 and j are the 1-types of  and y respectively and [ is the 2-table of x and
y. Formally we have that iji(z,y) is equal to i(z) A j(y) Al(z,y).

b(z,y)
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EXAMPLE 12.16. The set of 2-types of the FOL signature ¥ = {R/2} are
R(z,x) A R(y,y) A R(z,y) A R(y,x) N # y

R(z,z) AN R(y,y) AN R(z,y) AN—R(y,x) ANz #y
R(z,2) A R(y,y) N —R(z,y) AN R(y,z) Nx #y
R(z,z) A R(y,y) N ~R(z,y) N ~R(y,x) Nz #y
R(z,z) A =R(y,y) A R(z,y) N R(y,x) Nx #y
R(z,2) A=R(y,y) A R(z,y) N =R(y,z) Nz # y
R(z, ) A=R(y,y) A R(z,y) A R(y,z) Nz #y
R(z,z) N =R(y,y) A ~R(z,y) ARy, z) Nz #y
~R(z,2) A R(y,y) AN R(z,y) AN R(y,z) Nz # y
—R(z,2) A R(y,y) N R(z,y) A\ —~R(y,z) Nz #y
“R(z,z) A R(y,y) A R(z,y) A R(y,z) Nz #y
~R(z,z) A R(y,y) AN ~R(z,y) A\~R(y,z) Nz #y
~R(z,2) N=R(y,y) A R(z,y) AN R(y,z) Nz # y
—R(z,2) N=R(y,y) A R(z,y) A\—~R(y,z) Nz #y
“R(z,z) N ~R(y,y) AN ~R(z,y) NR(y,z) N\o #y
~R(z,z) A =R(y,y) A ~R(z,y) A =R(y,z) Nz #y

The above 2-types can be visualised in the following 16 graph templates:

T Yy x Yy x Y x Yy
[ ] [ ) o———»0 oOt+—©0 O+—>»0
x Yy T Yy T Yy T Yy
(e~ ] [ ] SGO———>0 SGO0+—0 FO0O+—>0
T Yy T Yy T Y x Yy
° [ =) — 02> o———04> 0—r 04>
T Yy T Y T Yy T Y
e [ = =} [ =) Croe—024> CFO—> 04D

DEFINITION 12.8. For every X-structure T
(1) a constant c realizes a I-type i if T = i(c);
(2) every set of two constants {c,d} realizes a 2-type ijl(x,y), with i < j if
either T = ijl(c,d) or T = ijl(d,c);
(3) every set of two constants {c,d} realizes a 2-type iil(x,y), if ¢ < d implies
that T = iil(c, d).

1-types and 2-types are exclusive in the sense that a domain element realizes
one and only one 1-type; and a pair of domain elements realizes one and only one
2-type. This is formally stated by the following proposition:

PRroOPOSITION 12.4. For every interpretation I:
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FIGURE 1. The left graph shows an interpretation on ¥ = {R/2},
the graph on the right highlight with the corresponding colors q‘the
1-type of every node and the 2-tables for every pair of nodes.

(1) Every domain element realizes a single 1-type i;
(2) Every unordered pair of domain elements (i.e, any set of two domain
elements) realizes a single 2-type ijl with i < j.

PROOF. Let’s start by proving that every domain element realizes a one and
only une 1-type. For every n-ary predicate P and every constant we have that
either Z = P(c,...,c) or Z = —P(c,...,c), but not both. Therefore Z |= i(c) only
for the 1-type

/\ P(z,...,x) A /\ -P(z,...,z).
IZEP(c,...,c) T#EP(c,...,c)
Similar reasoning can be done for 2-tables and 2-types. ]

EXAMPLE 12.17. Let ¥ = {R/2} then we have the following 1-types
1(z) £ R(z,z),

and the following 2-tables

)= R
)
)

1(z,
2(
(

(T, y) NR(y,z) Nz #y
R(z,y) N—R(y,x) Nz #y
~R(z,y) ANR(y,x) Nz £y
—R(z,y) N=R(y,x) Nz #y

(1>

)
ST~

1>

)

<

lI>

4(x,y)

Suppose that we have an interpretation I as shown in the left part of Figure [1|
This interpretation can be equivalently represented by associating to every element
of the domin {1,...,7} one specific 1-type and to every pair of elements a 2-table,
as shown in the right graph of Figure [

In associating the 2-table one have to pay attention to the order of nodes,
indeed if (¢, d) realizes the 2-table I(x,y) it is possible that d, ¢ realizes a different
2-table. For instance we have that in the above example Z |= 2(¢,d) if and only if
7 = 3(d,c). In order to maintain the fact that one pair of nodes realizes a single
2-table, we consider the following order:
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o if 7 |=i(c) A j(d) we consider the order (c,d) if i < j and (d,¢) if j > i;

o if 7 |=i(c) Ai(d) we consider (¢, d) if ¢ < d otherwise we consider (d, c).
With this ordering every {c,d} contained in the domain is associated with a single
2-type ijl(x,y) with i < j.

5.2. Cardinality vectors. The 1-type cardinality vector of a -structure 7
is a vector k = (kq, ..., k,) where u is the number of 1-types of X.. where k; is the
number of elements of the domain of 7 that realize the i-th 1-type. Since every
element of the domain realizes one and only one 1-type Y. k; = n the size of the
domain of 7.

A 2-table cardinality vector of an interpretation is a vector h = (h");<; of
vectors, such that n for every pair of 1-types i < j the vector of integers hi =
(hY, ... h) sisuch that kY = (hY,... ), where b is the number of 2-tables of
Y and h;j contains the number of pairs of domain elements that realize the 2-type
17l

EXAMPLE 12.18. Let us consider the interpretation shown in Figure[]l The
1-type cardinality vectors is

k= (17 )

Indeed we hae that 2, 4, 6 and 7 realize the 1-type 1(x), and 1, 3 and 5 realize the
1-type 2(x). The 2-type cardinality vector is

hll = (07 17 74)
h' =(2,1,0,9)
h = (07 07 72)

Let us summarise some equality about cardinality vectors.

e > k=>""k =n. This follows directly from the fact that every element
of the domain realizes one and only one 1-type.
o YR =3 hi'= %7_1) this derives from the fact that if {c, d} realizes

il then both ¢ and d realizes i and therefore there are ( _kik(irl)) subsets
- 2

2
of two elements of a set of k; elements.

e > h =% h’ =k; - k; (if i # j) This is a consequence of the fact that
every subset {a,b} realizes one and only one 2-type ijl with ¢ < j, and
that a and b realize ¢ and j respectively. Therefore there is a total of k;k;
sets that realizes some 2-table ijl for some .

e > h=>% Z;’:l kY = @ This is the consequence of the fact that

") subsets of 2 elements of a set of n elements.

there are (2

6. FOMC of universal formulas

In this section we provide a mathematical formula (a polinomial) that allows
to compute the first order model counting of a restricted class of formulas of £2.
They are universal formula that contains no constant and function symbols and
only the two variables x.y. In other words they are formulas of the form

(175) VaVye(z,y)
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We start by observing that, for every cardinality vector (k,h) there are

(176) (e )m()

% 1<J

distinct interpretations that have the cardinality vector (k, h) where for every pos-
itive integers a, b1, ..., by, with > . b; = a

@« Yo @
bi, .. bm/) bl bol---by!

Suppose that for some cardinality vectors (k, h), we have that h;j # 0, then every
interpretation with this cardinality vector should have a pair {c,d} that realizes
ijl. If 7 satisfies also Vayo(z,y), then Z should also satisfy the grounding of ¢(z,y)
with {e,d}. Le., ¢(c,¢) A p(d,d) A ¢(e,d) A ¢(d, c). But this is only possible if the
formula

o(c,c) A o(d,d) A d(e,d) A(d,c) Nile) Aj(d) Al(e,d)
Let us introduce this notion formally

DEFINITION 12.9. A 2-type ijl(x,y) is consistent with a universal formula
VaVyo(z,y), if and only if the propositional formula

(177) 1jl(c, d) N Ground(p(x,y),{c,d})

for a pair of distinct constants ¢ and d is satisfiable. 2t(¢) denotes The set of
2-types consistent with Va¥y ¢(x,y).

Notice that the first part of formula ie., ilj(c,d), is a conjunction of
literals, and contains all the atoms that appears in ¢(c,d). This implies that if
is consistent then the only assignment Z that satisfies ijl(c, d), satisfies ¢(c, ¢),
o(c,d), ¢(d,c) and ¢(d,d).

A simple method for computing the set 2¢(¢) is via truth table

EXAMPLE 12.19. Consider the formula. VaVy(R(x,z) ANz # y A R(z,y) —
—R(y,x))) Let us compute the grounding of this formula w.r.t., the constants ¢, d.
it is

Ground(NaVyp(x,y), {c,d}) = R(c,c) Ac# ¢ A R(e,¢) — = R(c, )
AR(d,d) Ad # d A R(d,d) — ~R(d, d)
ANR(c,c) ANec# d AN R(c,d) — —R(d,c)
AR(d,d) Ad # ¢ A R(d,c) — —R(c,d)

We have that ¢ # c is always false while ¢ # d is always true. This allow to simplify
the above formula as follows:

(R(e,¢) AN R(c,d) = =R(d,c)) A (R(d,d) A R(d,c) — —R(c,d))
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2-type |R(c,c)R(d,d)R(c,d)R(d, c)[((R(¢c,c)ANR(c,d))——R(d, c)) AN((R(d, d)AR(d, c))——R(c, d))
111(c,d)| T T T T T T T F F F T T T F F
112(c,d)| T T T F T T T T T T T F F T F
113(¢,d)| T T F T T F F T F T T T T T T
114(e,d)| T T F F T F F T T T T F F T T
121(c,d)| T F T T T T T F F F F F T T F
122(c,d)| T F T F T T T T T T F F F T F
123(c,d)| T F F T T F F T F T F F T T T
124(c,d)| T F F F T F F T T T F F F T T
221(c,d) F F T T F F T T F T F F T T F
222(c,d)| F F T F F F T T T T F F F T F
223(c,d) F F F T F F F T F T F F T T T
224(c,d)| F F F F F F F T T T F F F T T

Therefore the set 2t(¢) contains the 3-types which evaluates the formula ¢ to
be true (i.e.,they are consistent with the formula).

If 451 is not consistent with Vay(o(z,y), i-e., if ijl & t2(¢), then any interpreta-
tion that contains at least one (¢, d) that realizes the 2-type ijl should be excluded
from the count of the model. All the remaining interpretations will be models of
Vayp(x,y). We can therefore modify equation bu adding an indicator function
that excludes these models from the summation.

PROPOSITION 12.5. A pure universal formula VaVy ¢(x,y) is equivalent to

(178) Vavy [ z £y — \/ \/ ijl(z,y)

i<j ijie2t(e)
on the class of models that contains at least 2 elements.

PROOF OUTLINE. Let Z; ..., 7 be the models of VaVy.¢(x,y). For every Z;,
every {a,b} C [n] realizes exaclty 1 2-type, ijl which implies that ;I is consistent
with VzVy ¢(x,y). Therefore ijl € 2t(¢). This implies that Z; |= (178).

Viceversa suppose that Z = VaVy ¢(x,y). Then either Z [~ ¢(a,b) for a # b
(case (1)) or Z |~ ¢(a,a) for some a (case (2))

a,b). Let 170 be the two type realized by c¢,d in Z, we have that

1) If 7 = ¢(a,b). Let ijl be th lized by c¢,d in Z h h
@(c,d) A ijl(e,d) is not consistent and therefore ijl(c,d) € 2t(¢). Since
{c,d} can realize only a single 2-type we have that Z [~ \/, ;9.4 @il(a, b)
and therefore Z }£= (178)

(2) If Z = ¢(a,a) let ¢ be another element of the domain. This ¢ exists since
we have at least two elements. Suppose that ¢ < j (the proof of the other
case is analogous) Let ijl be the 2-type realized by {a,c} in Z then we
have that Z £ ¢(a,a) A ¢(c,c) A ¢(c,a) A p(a, ) Aijl(a,b). We are now
back to case (1).

d
EXAMPLE 12.20. VaVy(R(z,z) A R(z,y) — R(y,y)) is equivalent to:
VaVy (z #y — 111(x,y) V 112(x, y) V 113(x, y) V 114(z,y) V
123(z,y) V 114(x, y)
221(z,y) V 222(z,y) V 223(x,y) V 224(x,y) V
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Property allow us to transform the problem of counting the models of

VaVy¢(z,y) in the problem of counting the models of (178). Notice that an inter-
pretation Z with cardinality vectors (k, k) is a model of (178) iff for

(179) hi #0 = ijl € 2t(¢)
As a consequence all the models of VaVy ¢(z, y) are those that have a cardinality

vector that satisfies the condition f (179). Finally notice that condition (179)) can
be represented with

]lhij {1 if h;j =0ormn;#0

i1€2t(9) — Y0 Otherwise

where 1;;;c24(¢) is the indicator function for the set 2¢(¢). We can therefore conclude
the following:

rovtc(ve, o)) = 3 (1) TT (“p”) Tt
1 l

k.h i<j=
u k .7 . i
=3 () 1T () Tt
k i<j=1 k !
u b k(i,5)
n
B kZ; (k) ,<Hl (ZZI ﬂiﬂeztw))
, i<j= =
_ (Z) I] ot
k.h i<j=1

with

THEOREM 12.1. Let ¢(x,y) a quantifier free formula that contains p predicate
symbols and the two free variables x andy and no constant and functional symbolss;

(180) FOMC(Vx,y.qs(x,y),n):Z(Z) IT =~
1<i<j<u

k
u k . . ij
(181) FoMC(Vr,y.¢(x,y),n) = Z (Z) H < (;L,i?))) H ]l?jllth(qS)
k.h i<j=1 !

o k= (ki,ki,...,ky), s.t., > ki=mn;
* nyj = #8AT(Ground(vavys(w,y), [2]) A i(1) A j(2))

hilky=1) i g
o k(i,j) = 2 ,
ki - k; Otherwise

Theore [[2.1] provides two formulas for computing the first order model counting
of a pure universal formula. The first formula require to consider only the cardi-
nality vector for the 1-types (i.e., k). This formula is simpler but as we will see
later considering only the cardinality of the 1-types could not be enough to perform
weighted first order model counting. The second and more complete formula con-
sider also the cardinality vectors for the 2-tables (i.e., h). Considering alse these
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vectors will become essential when weights of the models are specified as weight on
binary predicates.

EXAMPLE 12.21. Consider the formula ® = Vo (=R(z,z) A (A(z) A R(x,y) —
A(y)). Let us compute the first order model counting in the domain of 4 elements,
i.e FOMC(®,4).

o Let us first determine which are the 1-types and the 2-table for this formula

1-types 2-tables
1(z) = A(z) A R(z, x) L(z,y) = R(z,y) A R(y, =)
2(x) = A(z) A ~R(z, x) 2(x,y) = R(x,y) A ~R(y, z)
3(x) = ~A(z) A R(z, z) 3(z,y) = ~R(z,y) A R(y, x)
4(x) = —A(z) A —R(z,x) Az, y) = ﬂR(w,y) ~R(y,z)

e then we have to compute 2t(¢ i.e., the 2-types which are consistent with
¢. For this we conside rthe formula

Ground(®, {c,d}) = =R(c,¢) A —~R(d,d)

A (A(e) A R(e,c) = A(c))
A (A(e) A R(e,d) — A(d))
A (A(d) A R(d, c)—)A ))

A (A(d) AR(d,d) —

That can be simplified in consistent with ¢. For this we conside rthe
formula

(182) —R(c,c) A—R(d,d) A (A(c) A R(c,d) — A(d)) A (A(d) A R(d, c) — A(c))

For this we could compute the truth table for all the 2-types, however this
will require a truth table with 6-4 = 24. We can simplify this computation
by observing that all the 1-types that contains R(x,x) are not consistent
with (182). So it is enoug to consider the 1-types 2(x) and 4(x).

A(c) A(d) R(c,c) R(d,d) R(e,d) R(d,c)
221(c,d) | T T F F T T T
22(c,d)| T T F F T F T
23(c,d)| T T F F F T T
24(c,d)| T T F F F F i
241(¢c,d) | T F F F T T F
242(c,d) | T F F F T F F
23(c,d)| T F  F F F T T
24(c,d)| T F F F F F T
Adl(c,d)| F F F F i i i
442(c,d) | F F F F T F T
443(c,d) | F F F F F T T
Milc,d)| F F  F F F F T

Therefore we have that 2t(¢) = {221,222, 223,224, 243, 244, 441, 442, 443, 444}
o from 2t(¢ we can compute n;; which is the number of ijl € 2t(¢)

n22:4 TL24:2 TL44:4
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All the others are equal to 0. We now have all the elements to compute

formula (180)).

4
+ (3 1.0 0)"?1”?2
+.
+ 4 S

0,4,0,0) "2

4
+ (g o) s
¥

Notice however that all the ny; where i or j are equal to 1 or 3 are equal to
0, and therefore when k; ore k; is different form there the resulting term
will be equal to 0, not contributing to the sum This means that we can
concentrate only on ko and ky. We can therefore simplify the formula in:

4 ko(kg—1) kg(ky—1)
LT DI () D S
kotha=4 2, 4
_ Z <;>4k2(k221) 2k2(4_k2)4(4*k2)2(3*k2)
ka=0 N2
/4
_ Z ka(kz—l)-‘rkz(4—k2)+(4—k2)(3—k2)
ko
k2=0
4
_ Z <4>2k§4k2+12
k2—0 k2

=21244.2946-2844.29 4212
=3-2'246.2% =13824

In the above equations we use the simplified notation (,:;) in place of (klnkz). This
is the standard notation for the binomial coefficient where for every pair of integers

azb. (3) = (b,ib) = Wlb)'

7. Cardinality Constraints

A cardinality constraint is an arithmetic expression that imposes restrictions
on the number of (pairs of) individual objects that belong to the interpretation of a
certain predicate. In other words, a cardinality constraint imposes some restriction
on the size of Z(Py),...Z(Py) for some predicates Pp,..., P,. A simple example
of a cardinality constraint is |A| = m, for some unary predicate A and positive
integer m. This cardinality constraint is satisfied by any interpretation Z in which
Z(A) contains exactly m distinct individual objects. A more complex example of
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a cardinality constraint could be: |A| 4 |B| < |C|, where A, B and C are some
predicates in the language.

Notice that, the fact that an interpretation Z satisfies a cardinality constraint
v depends only from its cardinality vector (k, h) of the interpretation. Indeed the
cardinality of unary and binary predicates of an interpretation Z can be directly
computed starting from the cardinality vector of Z.

DEFINITION 12.10 (Satisfiability of a cardinality constraint). For every pred-
icate P we can compute |Z(P)| from the cardinality vectors k,h of T as follows,
where A is a unary predicate and R a binary predicate.

IZ(A)| = k(A) = Z {A®@)} Ni()] - ks
k(R) =Y [{R(z,2)} Ni(z)| - k;
=1
b
h(R) =Y [{R(z,y), R(y,x)} ni(x)| -
=1
IZ(R)| = (k,h)(R) = k(R) + h(R)

where, for every 2-table I, hy = Z?szl h;j, If v is a cardinality constraint then
T = v holds if the expression obtained replacing |A| with the value of k(A) and |R)|
with the value of (k,h)(R) is true, where k, h is the cartinality vectors of T.

EXAMPLE 12.22. Consider the formumrla ® = VaVy A(x) A R(z,y) — Aly).
This formula has the following 1-types and 2-tables:

1-types 2-tables
1(z) = A(z) A R(z, x) L(z,y) = R(z,y) A R(y, =)
2(z) = A(z) A —R(z, ) 2(z,y) = R(z,y) AN —~R(y,x)
3(z) = -A(z) AN R(z, ) 3(z,y) = "R(z,y) N R(y,x)
A(x) = ~A(x) A —R(z, ) A(x,y) = ~R(z,y) N ~R(y, z)

With the following n;

nip =4 nig =4 nig = nig =2
Tl22:4 n23:2 77,24:2

n3s = 4 N3g = 4

Az 4

Suppose that we are interested in counting the models of ® on a domain of 5
elements with the cardinality constraint |A| = 3, i.e., FOMC(® A |A| = 3,5). Since
the cardinality constraints involves only a unary predicate, we can adopt the formula
that sum over all possible cardinality vectors for unary predicates, and restrict



8. DEALING WITH EXISTENTIAL QUANTIFIERS 271
the cardinality vectors that satisfies k(A) = 3 i.e., k1 + ko = 3.

5 k(i,5)
Z <k‘1,k2,/€37k‘4> H miy

FOMC(Vx,y.® A |A| = 3,5)

ki+ko+kg+kg=5 1<i<j<u
k1+ko=3
= (3)(2) I ke
k1) \ks Y
ki+ko=3 1<i<j<u
ky+hkg=2
I f we want for instance to impose an additional cardinality constraint |R| = 2

on the binary predicate R, then we have to consider the expanded version of the
formula for FOMC, i.e., formula (181)) and additionally restrict the h wvector to
satisfy k,h(R) = 2

FOMC(Va,y.® A |A] = 3A |R| = 2,5) =

(2 (kG T
k Zﬁ (k1> (kS) Z H ( hii H ]lijll€2t(¢)
1R " i<j=1 1

k3tha=2 2-hy+ho+hg+k)+ka=2

8. Dealing with Existential Quantifiers

In order to perform model counting of formulas that contain existential quan-
tifier we suppose that the formula is on a special form called Scott’s Normal form.
In the following subsection we introduce such a form and show how every formula
can be transformed in Scott’s normal form which is counting-equivalent, i.e., the
resultinf formula has the same number of models of the original formula.

8.1. Scott’s Normal Form.

THEOREM 12.2 (Scott’s Normal Form Scott 1962 and Kuusisto and Lutz|2018]).
Every FO? sentence ® in the signature 2 can be transformed in a formula

(183) O = Vzy.¢(x,y) A /\ VaIy.abi(z,y)

i=1

where ¢ and 1; are quantified free formulas in the signature X' = X U{Py,..., Py}
for m new unary predicates P;, such that every X-structure T that satisfies ® can
be extended in a unique way in a X' -structure that satisfies ®’.

ProoF OUTLINE. To transform a formula ® in Scott’s normal form you have to
apply the following transformations until the formula does not contain subformulas
of the form Qy.a(xz,y) for some quantifier Q € {V, 3}

o If Qy.a(x,y) is a subformula of ® and «(x, y) does not contain quantifiers,
then replace it with a new predicate P(x) and define P(x) as Qy.a(x,y);
Collect all the definition of the predicates P(x) in T

> = @[Qy.a(x,y)/P(z)]
I = ' AVz.(A(7) < Qy.afx,y))
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e Transform the formula VzP(z) < Vya(z,y)) that belongs to I' in the
following way
Va(P(z) < Qy.a(z,y)) = Vo(P(z) = Qy.a(z,y)) A
Va(=P(z) = Qy.—a(z,y))
where @ is the dual quantifier than Q, (i.e., if Q is V then Q is 3 and

viceversa).
e then transform each implication as follows:

Vo (P(x) = Vya(z,y)) = VaVy.(P(z) — a(z,y))
Va(-P(z) = Jy-a(z,y)) = VaIy(-P(x) — —a(z,y))
Va(P(z) = Jya(z,y)) = VaIy(P(z) = a(z,y))

(z,9))

Va(-P(z) = Vy.ma(z,y)) = VaVy(—P(z) — —-a(z,y))

EXAMPLE 12.23. Consider the formula
(184) Va(A(z) = Jy(R(z,y) AVz(S(y,z) — B(z))))
We start by replacing the subformula Vx(S(y,z) — B(x) with Pi(y) and we add
the definition of Py obtaining
Va(A(z) = Jy(R(z,y) A Pi(y)))
AV (Pi(z) < Vy(S(z,y) = B(y)))
then we replace the formula Jy(R(x,y) A P1(y)) with Py(z) and add the definition
of Py obtaining:
Ve (A(z) — Pa(z))
AVa(Pi(x) © Vy(S(a,) - By)
AV (Py(z) < Fy(R(z, y) A Pi(y)))

Finally we replace the equivalence with the implication and move out the quantifiers
obtaining

Va(A(z) = Py(x))
A2y (Py(z) = (S(z,y) = B(y)))
AVaTy(-Pi(z) = ~(S(z,y) = B(y)))
AVxIy(Pa(x) = (R(z,y) A Pi(y)
AV2Vy(—Py(x) = —(R(x,y) A Py

)
y))

8.2. Inclusion-Exclusion principle. In this section, we provide a proof for
model counting of formulas in Scott’s normal form by meking explicit use of the
principle of inclusion-exclusion. A corollary of the principle of inclusion-exclusion
that will be used for preforming FOMC is the following:

)
(

COROLLARY 1 (WIilf 2005 section 4.2). Let Q be a set of objects and let S =
{S1,...,Sm} be a set of subsets of Q. For every Q C S, let N(2 Q) be the count

of objects in ) that belong to all the subsets S; € Q, i.e., N(2 Q) = ‘{nSiGQ Si}‘.



8. DEALING WITH EXISTENTIAL QUANTIFIERS 273

For every 0 <1 < m, let s; = Z|Q|:l N(D Q) and let eg be count of objects that d
onot belong to any of the S; in S, then

m

(185) co=» (-1)'s

=0

THEOREM 12.3. For an FO? formula in Scott’s Normal Form as given in (183)),
let &' = Vay.(®(z,y) AN, Pi(z) = —=U;(z,y)) where P;’s are fresh unary predi-
cates, then:

(186) roMo((I83), n) = (~1)>=*FIromo(®', (k, h))

(k,h)

Proor. TO BE REVISED Let Q be the set of models of Vzy.®(x,y) over the
language of ® and {¥;} (i.e., the language of ®’ excluding the predicates P;) and
on a domain A consisting of n elements. Let S = {Q¢}eca, 1<i<q be the set of
subsets of 2 where Q; is the set of w such that w = Vy.=¥; (¢, y). For every model
w of (I83)), w f~ Vy—V;(c,y) for any pair of i and ¢ i.e. w is not in any €. Also,
for every w € Q, if w & Q; for any pair of ¢ and ¢, then w = Jy.U;(c, y) for all ¢ and
for all c € Aie, w = AL, Vz3y.V,(z,y). Hence, w if and only if w & Q;
for all ¢ and 4. Therefore, the count of models of (183) is equal to the count of
models in £ which do not belong to any €2.;. Hence, If we are able to compute s; (as
introduced in Corollary, then we could use Corollaryfor computing cardinality
of all the models which do not belong to any €.; and hence FOMC(7 n).

For every 0 <1 <n-q, let us define

q
(187) =0 A |P| =1
=1

We will now show that s; is exactly given by FOMC(, n).

Every model of @] is an extension of an w € ) that belongs to at least [ elements
in 8. In fact, for every model w of Vay.®(z,y) i.e. w € Q, if Q' is the set of elements
of § that contain w, then w can be extended into a model of ®; in (lgl‘) ways. Each
such model can be obtained by choosing [ elements in Q" and interpreting P;(c) to
be true in the extended model, for each of the [ chosen elements Q. € Q’. On the
other hand, recall that s; = Z‘Q‘:l N(D Q). Hence, for any w € Q if Q' is the set

of elements of S that contain w, then there are (lQl,l) distinct subsets Q@ C Q' such

that |Q| = [. Hence, we have that w contributes (lQl/‘) times to s;. Therefore, we
can conclude that

s, = FoMc(®),n) = Z N(2Q)

Q=i
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and by the principle of inclusion-exclusion as given in Corollary [T} we have that :

n-q
FOMC(([183), 1) = eg = Z(—l)lsl
1=0

(—=1)'romc(®), n)

=0
n-q

=> (-1 > FoMC(®', (k, h))
1=0 (k.R)=S, | Pil =

= Y ()= P romc(@, (k, h))
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9. Exercises

Exercise 177:
Show that if |[AT| =1 then T |= Vag(z) < Jzd(x)

Exercise 178:
Prove that FoMc(¢, [1]) = #sAT(Ground(e, {1})).

Exercise 179:
List all the models of the formula
Ve-R(z,z) AVry(R(z,y) — R(y,z))
in the domain {1, 2, 3}.

Solution The intuitive reading of the formula is as follows:

e every object is not related with itself. (i.e., R is not reflexive)

e R is symmetric.
This means that we are interested in all the undirected graphs on the three edges
1, 2, and 3. Therefore for every subset of pairs of objects, there is a model. Which
implies that the number of models are 2() — 923 —8. A graphical representation
of the models are shown in the following:a

1 1 1 1 1 1 1
[ ] [ ] [ ] [ ] [ ] [ ) [ ]
o 3 o 3 o 3 e 3 e 3 o 3
[ ] J [ ] ./ / ./
2 2 2 2 2 2 2
7 ) 13 1 s Zs 1y
O

Exercise 180:
List all the models of the formula Vz(A(z) — B(z)) on the interpretation
domain {1, 2, 3}.

Exercise 181:
Let Z be a first order interpretation and 7 : AT — A7 be a isomorphism. Show
that the interpretation Z™ where

I"(a) = 7(Z(a))
I7(f) & (dy .. .dp) = w(x " (dy), ..., 7 (dn))
I7(R) £ {(x(d1),...,7(dn) | (dy,...,dn) € Z(R)}
is such that Z |= ¢ if and only if Z™ |= ¢ for every first order sentence ¢.

Exercise 182:

Provide an explicit mathematical formula to compute the number of models of
Vz(A(z) — B(z)) in the domain {1,2,3,...,n}.
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Solution The models of forallz.A(x) — B(x) are those in which B is interpreted
in a subset of the interpretation of A. Notice that we have (Z) possible ways of
interpreting A in a set of k objects. For any such interpretation B can take any
subset of the interpretation of A, i.e, 2. therefore the set of interpretations are

é(:)% = (1+2)" =3"

Exercise 183:
For the following formuls ¢ describe all the models in the domain {1,2,3} and
find an explicit mathematical formula that computes FOMC(¢, n)

Va(A(z) <> VyR(z,y))

Solution Notice that, in the above formula, the interpretation of R fully determines
the interpretation of A, and furthermore R can be freely interpreted in any subset
of pairs of elements of {1,2,3}. This means that the number of interpretations that
satisfies the above formula coincides with the number of interpretations of R, which
are 233 =29 0

Exercise 184:
Provide an explicit mathematical formula to compute the number of models of
the formula of the previous exercise in the domain {1,2,3,...,n}.

Exercise 185:
For each formuls ¢ in the following list, describe all the models in the domain
{1,2,3} and find an explicit mathematical formula that computes fomc(¢, n)

(1) IzA(x)

(2) Fz—-A(z)

(3) ~Va—A(x)

(4) VayR(x,y)

(5) JaVy—R(z,y)

(6) Va(A(z) — FyR(z,y))

(7) Vae3yR(z,y) ANVzyzR(x,y) N R(x,2) >y =2
(8) Vay(R(z,y) — A(x) A =A(y))

Solution

(1) 3z A(z): the set of models interpret A in a non empty subset of {1,2,3}.
The number of non empty subsets of {1,2,3} are 2% — 1.

(2) Jz—A(x) the set of models interpret A in a set different from the entire
domain. The number of such sets is 23 — 1.

(3) —Vax—A(x): This formula is equivalent to xA(x). See item 1.

(4) Vz3yR(z,y). The set of models of such a formula are the interpreta-
tions that associates to every element d € {1,2,3} at least one element
d' € {1,2,3} such that (d,d’) € RZ. Therefore a model of this formula
associates to every element d € {1,2,3} a non empty subset D C {1,2,3}
such that (d,d’) € RT for all d’ € D. Since the number of non empty
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subsets of {1,2,3} is 22 — 1 we have that the number of models of the
formula is equal to (23 —1)% = 7% = 343.

(5) JzVy—R(x,y). This formula is equivalent to -Vx3IyR(x,y). Therefore the
number of models of this formula is the total number of interpretations
(which is equal to 2%) minus the numbr of models of Vo3y—R(z,y) which
is equal to (23 —1)3 (see previous point). This means that the number of
models of the formula is equal to 27 — (23 — 1)3.

(6) Vz(A(z) — JyR(x,y)). An interpretation can associate to A any subset
of {1,2,3}. Given an interpretation of A, for every element in the inter-
pretation of A, R should associate a non empty set of elements of {1,2,3}.
This means that, if A contains k elements, we have 23 — 1 possibilities. If
A contains k elements there are (22 — 1)* possibilities for the other n — k
element R can be interpreted freely, allowing 23("~%). Therefore in total
there are (2% — 1)¥233=k) models where A is interpreted in a set of k
elements. Since there are (2) possible interpretations of A that contains
k elements, the total number of interpretations are

/3

5 (§)@ -+ 20)

k=0

(7) VaIyR(z,y) AVxyzR(x,y) AR(x, z) — y = z This formula states that R is
a total function on the domain {1, 2,3} i.e., for every element d € {1,2,3}
it associates one and only one element d’ € {1,2, 3} such that (d,d') € RZ.
The number of functions on a set of n elements are n™, in this case we
have 33 = 27 models.

(8) Vay(R(x,y) — A(x) A —A(y)). The formula state that the interpretation
of R must be a subset of AT x (=A)%. If A is interpreted in a set of k
k then R can be interpreted any subset of k(n — k) pairs. So there are
2k(n=k) possible interpretations of R. Since there are (}) interpretations
of A that contains k elements, the total number of models of the formula

are:
ZS n k( k)
2 n—

k=0

Exercise 186:

Provide an explicit mathematical formula to compute the number of models of
® 2 Va(A(x) — B(f(z))) in the domain {1,2,3,...,n}. To find this formula you
first have to find (and describe in text) a procedure on how you can build a model
for ®.

Solution For every i in A, we have to find an element j in B such that f(i) = j.
if B contains b elements we have b possibilities. So if we have a elements in a we
have b possibilities. For any other element j which is not in A we can fix f(j) to
be any element of the domain. so we have n possibilites. If A contains a elements
we have n"~® possibilites. Considering all the possible cardinalities of A and B, we

therefore have
FOMC(®, n) = Z (Z) Z (Z) bn"

a=0 b=0
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O
Exercise 187:
Ground the formula Vz3yR(x,y) in the domain {a, b, c}.
Solution
A \/ Ry
z€{a,b,c} ye{a,b,c}
O

Exercise 188:
Ground the formula Vz(A(xz) — 3zR(z,z)) in the domain {a,b,c}. Solution

AN A@d— \/ Rde)

de{a,b,c} e€{a,b,c}
Extensively written is:
(A(a) = R(a,a) V R(a,b) V R(a,c))
A (A(b) = R(b,a) vV R(b,b) V R(b,¢))
A (A(e) = R(c,a) V R(e,b) V R(c,¢))

Exercise 189:

Let £ be a first-order language that contains the unary predicate A and the
binary predicate R. Compute directly (without using the general formula) the
number of models of one of the following formulas on a domain of n elements.

(1) Vo,y.(R(z,y) = A(z) A —A(y))
(2) Va,y.(A(z) A Aly) — R(z,y))
(3) ¥a.(Ax) - FyR(z,y))

Solution
(1) Va,y.(R(z,y) — A(z) A —A(y))

(188)

3
S
N———
[\]
=z
3
|
&

k
k=1
(3) Va.(A(z) — JyR(z,y))
(190) > ( k) k(2" —1)(n — k)2"

Exercise 190:
How many ground atoms occour in a formula that contains A(z), B(y) and
R(x,y) when it is grounded with the set of constants {c1,...,¢c,}?
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Exercise 191:
Compute the grounding of Va(IyA(z,y) — Vz—B(z,w))

Exercise 192:
Find a formula for computing rFomc(VzR(a,x),n) where a is a constant.

Exercise 193:
Find a formula for computing FoMc(Vz(A(z) — A(f(z)),n) where f is a func-
tion symbol.

Exercise 194:
Find a formula that computes FoMc(Vzy(R(x,y) — 32S(z,y,2)),n)

Solution Suppose that Z(R) contains r pairs then for every pair (a,b) € Z(R) we
can associate a non empty subset S, such that (a,b,c) € Z(S) for all ¢ € S, 4.

This results in:

77,2

Z (T; )(271 _ 1)7"(2n)n2_7~ — (2n 1+ 2n)n2 _ (2n+1 _ 1>n2

r=0

Exercise 195:
List all the 1-types of the signature ¥ = {A/1, B/1, R/2}.

Exercise 196:
List all the 1-types, and 2-tables of the signature ¥ = {A/1, B/1, R/2,5/2}.

Exercise 197:
What is the cardinality vectors k, h of the following ¥-structure on the domain
[6] where ¥ = {A/1, B/1, R/2):
Z(A) ={1,3,5}
I(B) = {3,4,5)
Z(R) = {((2,2),(3,3),(3,5),(6,4),(5,3), (3,2)}

Exercise 198:

Compute the set 2t(¢) for the following formulas:
(1) Vavy(A(z) A R(z,y) = Ay):
(2) Vavy(R(z,y) — A(z) A B(y));
(3) Vavy(A(z) A B(y) =z #y).

Exercise 199:

In the formula

ronctinpanten =3 (1) T o
k

0<i<2P —1
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first order model counting if ®g(z,y) is A(z) A R(z,y) — —A(y), specify the values
of:

(1) the length of k
(2) the number of 1-types
(3) ny; for every pair of 1-type i < j

Exercise 200:
Compute FOMC(®,4) for the following formulas using the formula (180) (in
parenthesis the result)

(1) vavy(R(z,y) = A(x) A —A(y)) (162)
(2) VaVy(R(z,y) vV R(y,z)) (729

p )
(3) Vay(A(x) A Bly) © Rlx,y)) (236)

Exercise 201:
Using the formula for first order model counting of universal formulas in £2
compute FOMC(®, 3) where ® is the following fomrula:

(1) VYaVy(R(z,y) — R(y, x));

(2) VaVy(R(z,y) — ~R(y, x));

(3) VaVy(R(z,y) — —R(z,v));

(4) VaVy(R(z,z) — (R(z,y) — R(y,2)));
Solution

(1) VaVy(R(z,y) — R(y,x)); Let us first compute the n;; using the truth

table
(R(z,2) = R(z,2)) A R(z,y) = R(y,z))
R(z,z) R(y,y) A R(y,2)— R(z,y)) AR(y,y) = R(y,y))
0 0 Nnoo = 2
0 1 no1 = 2
1 0 nio = 2
1 1 nip = 2

Notice that n;; is the number of models of the formula (R(z,z) — R(z,x))A
R(z,y) = R(y,z)) AN R(y,z) — R(z,y)) when R(x,x) is interpreted in ¢
and R(y,y) is interpreted in j. Here we have 1 unary predicate R which is
applied to = (obtaining R(z,z) and to y obtaining R(y,y)). This means
that the dimension of k is equal to 2P = 2, i.e, k = (ko, k1). If we expan
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the fomula we obtain
3
k

k(0,0 kOl k(1.1
OOk

k

ke{(0,3), (1 2), ,(3,0)} (

ke{(0,3), (1 2),(2,1),(3,0)}

_<3 20(0 1)+03+3(3 1) n 1(1 10-1) 4, 2+2(2 1)
~\0

+ @)2“; Dbzl @)23“; 243042071

=23 +3.2%4+3.2% + 2% =2%23 =26
(2) VYaVy(R(z,y) = —R(y,z)); Let us compute first n;;.
(R(z,z) = ~R(z,z)) A R(z,y) = ~R(y,z))

3) 9k(0,0)+k(0,1)+k(1.1)

R(z,z) R(y,y) A R(y,z) = R-(z,y)) A R(y,y) = ~R(y,y))
0 0 Nnoo = 2
0 1 no1 = 0
1 0 nio = 0
1 1 nip = 0

The dimentions are the same as in the previous formula since we have
only the predicate R.

3\ k0,0 kOl k(1.1
)OI (4 KRR

ke{(0,3),(1,2),(2,1),(3,0) }

_ ( >2k(0 0)(ok(0,1)+k(1.1)
ke{(0,3), (1 2),(2,1),(3,0)}

_(3)20(0 1) 03+3(3 1) n ( ) 1(1 1) 12+2(2 1)
~\0

+<3>22(2 1)02 1+1(1 1) 3) 3(3— 1)0+3 0+0(0 1)
2 3

=1-0+3-0+3-0+1-2°=8

(3) VaVy(R(z,y) — ~R(z,x));
(4) VaVy(R(z,z) — (R(z,y) — R(y,2)));

Exercise 202:
The formula for first order model counting of formulas that contain exitantial
quantifiers is.

FOMC (Y, y.¢(z,y) A VaIyp(z,y),n) =
n k(P k(4,5)
Z (k) (—1)*t?) H Nyj
k 0<i<j<2rtl_1

Answer the following questions about the elements of the above mathematical for-
mula when: ¢(z,y) be R(z,y) and ¢(x,y) equal to Q(z,y)
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(1) what is P?

(2) what is the value of p

(3) what is the lenght of k

(4) on which formula do you compute n;;

Exercise 203:

Using the formula for first order model counting of formulas that contains
exitantial quantifiers, compute FOMC(®,n) where ® is one of the following fomrula:
o Vo .Jy.R(z.y)
e Vz.3y.(R(z,y) V R(y, z))
o Va,y.(R(z,y) = R(y,z)) AVz-R(z,z) AVz.Jy.R(x.y)

Exercise 204:

Formalize the following problem in FOL and formulate the solution in terms of
FOMC (you don’t need to actually compute the solution).

Suppose that 6 boys and 9 girls line up in a row. Let S be
the number of places in the row where a boy and a girl are
standing next to each other. For example, for the row GBGGB-
BGBBGGGBGG we have S = 8. The average value of S (if all
possible orders of these 15 people are considered) is closest to.
Solution Let ® be the conjunction of the following formulas.
L(z) ¢ Vy-N(y, )
R(z) < Yx-N(z,y)
Va(-R(z) — JyN(z,y))
S(x,y) <> N(z,y) A (B(z) <> ~B(y))

IL| = |R| =1
|B| =6
IN| = 14

Any model of ® on the domain of 15 elements has the following structure

LN N N NN N NN NN N N N NE

P —r0—r0—>r0——>0—>0—>0—>0—>0—>0—>0—>0—>0—>0—>0

B S SB B BS SB BS

where the six labels B can be randomly assignet to any of the elements of the
domain. FOMC(®,15) therefore count how many of such configurations exists.
For every k we can compute the cardinality of S, denoted by k(S). Therfore the
problem can be solved by computing

>k k(S) (115) IT<; ”Z‘(i’j)
>k (11:) ILi<; ”Z‘(W)

Exercise 205:

Formalize the following problem in FOL and formulate the solution in terms of
FOMC (you don’t need to actually compute the solution).
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A mission to Mars will consist of 4 astronauts selected from
14 available. Exactly 5 of the 14 are trained in exobiology. If
the mission requires at least 2 trained in exobiology, how many
different crews can be selected?

Solution We can easily formulate the problem as FOMC(®,14) where ® is the
following formula.

|[E|=5A|M|=4AN|MNE|l=2

Since there are no FOL formulas, and no binary predicates, we have that have that
n;; = 1 for all 45 which implies that the FOMC' formula reduces to

> ()

k

k(BE)=2,k(M)=5
k(MNE)=2

14
7,3,2,2

However this number include also all the possible choices of the experts in exobiol-
ogy, which is known. We have therefore to devide it by all the possible subset of 5
expers among the 14 astronauts, i.e., (154). The final result therefore is

(7.52,2)

(5)

which is equal to

Exercise 206:
Using the formula for FOMC

roMc(Vz, y.¢(x, y), Z < > H nfj(i’j)
k

compute FoMC(Vz, y(A(x) A R(z,y) — A(y)),3)

Solution We first have to compute the n;;. Notice that we have 2 unary predicates
A(z) and R(x,z). THerefore we have that 0 <i,j <22 —-1=3

A) R(z,x) Aly) Rlyy)| ny
0 0 0 0 noo = 4
0 0 0 1 nop = 4
0 0 1 0 nog = 2
0 0 1 1 nos = 2
0 1 0 1 nip = 4
0 1 1 0 nig = 2
0 1 1 1 nis = 2
1 0 1 0 Moo = 4
1 0 1 1 Moz = 4
1 1 1 1 n3s = 4
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The expansion of the formula for FOMC(¢,n) for n = 3 is the following.

(3,69),0,0) g0 + (2,137070)71007181 + (4 5’717 Ynoond, +
(2,(?,0,1)”00”%3 + (1,237070)71317111 + (4 13717 Jnoinoeniz  +
(1712,071)71017103”13 + (1,5’7270)11(2)21122 + (1 31,1)n02n03n23 +
(1,0,0,2)”227133 + (0,33070)71?1’1 + (0751,0)n11n12 +
(0723,071)7“1”%3 + (0,1372,0)”%2”22 + (071371)1)71127113”23 +
Eo,lz,o,zgn%?)n?ﬁ% + Eoég,ogngg + (0’5”2’1)71227123 +
0,0,1,2) 22733 + (0.00,3)733

The result can be obtaine by replacing the value of n;;, in the above expression. [

Exercise 207:
Use the formula for first order model counting to compute:

FOMC(R(z,y) = P(y,z),4)
Solution Let us recall the formula for first order model counting for unviversally

quantified formulas

rFOMC(Vz, y.do(x,y), Z ( ) H nfj(i’j)
0<

k= (ko ki, ... kan_1), ste, ook = m;

n n!

o (b= Tl Fal-kap 11

nij = #SAT(Ground(do(x,y) A oi(x) A aj(y), {a,b})
ai(z) = Ny 2 Ap(z) A A= Ap()

iy =0 ip=1

kio(kj—=1) oo .
Kig)=q 2 11
ki - k; Otherwise

Let us determine all the quantities contained in the formulas p = 2, since we
have the unary atoms R(z,z) and P(xz,x). Therefore we have to compute n;; for
0 <i<j<3. Let ®(a,b) be the grounding of R(z,y) — P(y,x) in the domain
{a, b}, i.e.,

®(a,b) = (R(a,a) = P(a,a)) A (R(b,b) — P(b,b))
(R(a,b) = P(b,a)) A (R(b,a) — P(a,b)))
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then the n;; are the following:

noo = #SAT(—R(a,a) A ~R(b,b) A =P(a,a) A =P(b,b) A ®(a,b)) =9
no1 = #SAT(—R(a,a) A =R(b,b) A =P(a,a) A P(b,b) A ®(a,b)) =
no2 = #SAT(—R(a,a) A ~R(b,b) A P(a,a) A —P(b,b) A ®(a,b)) =
nos = #SAT(—R(a,a) A =R(b,b) A P(a,a) A P(b,b) A ®(a,b)) =
n11 = #SAT(—R(a,a) A R(b,b) A =P(a,a) A P(b,b) A ®(a,b)) =
n1o = #SAT(—R(a,a) A R(b,b) A P(a,a) A —~P(b,b) A ®(a,b)) =
n13 = #SAT(—R(a,a) A R(b,b) A P(a,a) A P(b,b) A ®(a,b)) =
Ngg = #SAT(R(a,a) A —R(b,b) A P(a,a) A —~P(b,b) A ®(a,b)) =
na3 = #SAT(R(a,a) A =R(b,b) A P(a,a) A P(b,b) A ®(a,b)) =
nss = #SAT(R(a,a) A R(b,b) A P(a,a) A P(b,b) A ®(a,b)) =

We can now replace the elements in the general formula obtaining

>(,) 1

0<i<j<3
(4,5)#(1,2)

gk(i,3) — Z (;i) gb—k1k2
k

Exercise 208:
Using the formula in the slides compute the first order model counting for
Vaey(R(z,y) — —R(z,z) A =R(y,y)) in the domain of 3 elmenets.  Solution

We have 1 unary predicate which is R(x,z) (it is binary but applied to the same
variable it becomes like a unary predicate). Therefore we have to compute ngy n¢1
and ni1. Bach n;; indicates the number of assignments to unary and binary atoms
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that makes true the grounding of the formula with two elements a, b.

R(a,a) = —R(a,a) A ~R(a,a) A

(a,b) = —R(a,a) A ﬂR( ,0) A

R(b,a) — —R(b,b) A —=R(a,a) A

R(av a) R(ba b) R(av b) R<ba a) ( ) b) - _'R( ) ( ) b)

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Therefore ngg = 4 and ng; = n11 = 0. The formula for first order model counting

is
n k(i,5)
Z <k) L7
i<j

k

where n is the size of the domain and k is a vector of 2% positive integers that sum
to n, where u is the number of unary predicates. In our case n = 3, u = 1, and

therefore k is a vector containing two elements that sum to 3. We can therefore

use the binomial coefficient (:0 ) instead of the multinomial (k o )7 as they are

equivalent. The expansion of the fomula is as follows:

ko(kéJ 1) ko (3—ko) (3—1%)2(3—1,:0)
E Moo noy n1

ko=0
3
ko(kg—1) (3—kqg)(3—kq)
_ 3 4 s
’COIO

Notice that if & # 3 then the product is equal to 0 and therefore it does not
contributes to the sum. We have only to consider the case in which ky = 2, obtaining
the following expression

4% — 43 =96

Exercise 209:

Using the formula for first order model counting compu™ te the number of
models of the FO?-formula

Voy(R(z,z) — (R(z,y) — R(y,7)))

Solution Let us first determine which are the 1-types and the 2-tables. The
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1-types are

[

R(x,x),

(1>

and the following 2-tables

z,y) NR(y,z) Nz #y
JY)A-R(y,x) Nx # y
L2 -R(z,y) AR(y,x) Nz £y
L SR(z,y) AN=R(y,z) Nz #y

Now let us compute ni1, ni2 and nes. To do so we have to do the grounding of the
formula obtaining:

(R(e,c) = (R(c,c) = R(c,0))) A
(R(c,c) = (R(c,d) — R(d,c))) A
(R(d,d) = (R(d,c) = R(c,d))) A
(R(d,d) — (R(d,d) — R(d,d)))

which can be simplified in
(191) (R(c,d) = (R(c,d) — R(d,c))) AN(R(d,d) = (R(d,d) — R(e,d)))

Let us now construct the truth table

2-type |R(c,c)R(d,d)R
111(c, d)
112(c, d)
113(c, d)
114(c, d)
121(c, d)
122(c, d)

(c,

(¢,

(c,

(

(¢,

o

A

T o o H e e o M Ve e L ML R

L d)R(

o
-~
=
©
=

123(c, d)
124(c, d)
221(c, d)
222(c, d)
223(c, d)
224(c, d)

from which we have that nij; = 2, n1o = 3 and nys = 4 We can then replace in the
formula for FOMC

SRS ISES NSRS IS EE RERE
SRR SIS RN RS
SRS EOES EEE IS | EINE IS S
NNSNSSNSNESS

4
4 M (4—k)(3—=Fk)
Z<k>” nis gy P =494 4(3%7) 4 6(21341) + 4(2°8%) 4 2°
k=1

O
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