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1 Verification theorems and synthesis of optimal feedback
control

1.1 Finite horizon verification theorems
Consider the control system {

ẏ(s) = f(y(s), α(s)) s > t
y(t) = x

(1)

where y(s) ∈ Rn, and α ∈ A, with

A := {α(·) : R→ A, measurable and such that the solution of (1) y(·) exists unique in [t, T ]}.

The variable y(s) represents the state of the system at time s, while α is called control and A is
the set of the admissible controls. The solution y(s) of (1) will also be denoted by yx(s; t, α) or by
y(s;x, t, α). In this section 1.1 we won’t need any hypothesis on the set A 6= ∅ and on f .

We distinguish two types of controls:

• OPEN LOOP, which depend only on time,

• CLOSED LOOP, or FEEDBACKS or MARKOVIAN, which depend both on time and on
the state of the system. Feedback controls are measurable functions Φ: Rn×R→ A. Given
Φ, the corresponding trajectory, if it exists, is given by ẏ(s) = f(y(s),Φ(y(s), s)). Φ is
admissible if the trajectory exists unique in [t, T ], for every initial datum x ∈ Rn and if the
associated open loop control Φ placing αΦ(s) := Φ(y(s), s) is measurable.

An example of admissible feedbacks ig given by Lipschitz functions of Rn in A if f : Rn×A→ Rn
is Lipschitz (in all its variables). They are admissible since y 7→ f(y,Φ(y)) is Lipschitz, so we may
apply the global existence and uniqueness theorem for ordinary equations.

Definition 1. We define the cost functional

J(x, t, α) =

∫ T

t

l(y(s), α(s)) ds+ g(y(T )),

where the trajectory is y(s) = yx(s; t, α).
We call it Lagrange cost if the final cost is g ≡ 0, Mayer cost if the current cost is l ≡ 0, and

Bolza cost if l 6= 0 6= g.

Remark 1. We notice that, adding a variable, the general problem may be reduced to a Mayer
problem, i.e. with l ≡ 0. Indeed, let’s consider a new variable yn+1 with dynamics{

ẏn+1 = l(y, α)
yn+1(t) = xn+1

Then we have that
yn+1(τ) = xn+1 +

∫ τ

t

l(y(s), α(s)) ds.

Consider a new problem, with ỹ = (y, yn+1) and dynamics ˙̃y = f̃(ỹ, α), dove f̃ = (f1, . . . , fn, l).
Let us consider as new cost J̃(x̃, t, α) = yn+1(T )+g(y(T )) := G̃(ỹ(T )). We have that J̃(x, 0, t, α) =
J(x, t, α). Hence we may limit ourselves to study problems in which l ≡ 0.
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Let us now consider the dynamic programming equation of Mayer problem−Wt + supa∈A{−DxW · f(x, a)} = 0, in Rn × (to, T )

W (x, T ) = g(x).
(2)

Theorem 1 (verification). Let W ∈ C1(Rn × (to, T )) and continuous at t = T be a solution
of (2), and let t < T and x ∈ Rn be fixed. Then

1. for every α ∈ A the function s 7→ W (y(s), s), where y(s) is the trajectory relative to α, is
increasing (in wide sense);

2. W (x, t) ≤ inf
α∈A

J(x, t, α);

3. if there exists α∗ such that, setting y∗(s) = yx(s; t, α∗), we have that

Wt(y
∗(s), s) +DxW (y∗(s), s) · f(y∗(s), α∗(s)) = 0, ∀s ∈ [t, T ] (3)

then α∗ is optimal and W (x, t) = inf
α∈A

J(x, t, α).

Before proving the theorem, let’s point out some important remarks.

Remark 2. If W ∈ C1 we may change sign in the equation (2), which becomes

Wt + inf
a∈A

DxW · f(x, a) = 0.

Hence (3) is equivalent to state that α∗ is such that:

DxW (y∗(s), s) · f(y∗(s), α∗(s)) = inf
a∈A

DxW (y∗(s), s) · f(y∗(s), a)

Remark 3. The theorem suggests a method to find the optimal control (Optimal Feedback
Synthesis):

1. solve (2);

2. look for an admissible feedback Φ(y, s) ∈ argmina∈A(DxW (y, s) · f(y, a));

3. the optimal trajectory is given by ẏ∗(s) = f(y∗(s),Φ(y∗(s), s)), y∗(t) = x.

Unfortunately, in general (2) has no classical solution, and argmin isn’t continuous. Later we’ll
see an example in which we may apply this procedure.

Let us now prove the theorem.

Proof. We notice that the function s 7→W (y(s), s) is absolutely continuous, since y(s) is so. Then
it is differentiable for almost every s ∈ [t, T ], and the following holds

d

ds
W (y(s), s) = Wt +DxW · f(y(s), α(s)) ≥Wt + inf

a∈A
{DxW · f(x, a)} = 0. (4)

Then it is increasing. For what is shown in the previous point, we have that

W (x, t) ≤W (y(T ), T ) = g(y(T )) = J(x, t, α)

Moreover, if hypothesis (3) holds, the inequality (4) becomes

d

ds
W (y∗(s), s) = 0

almost everywhere, hence W (y∗(·), ·) is constant. Then, W (x, t) = g(y∗(T )) = J(x, t, α∗). More-
over, we have that, for every α ∈ A, J(x, t, α∗) ≤ J(x, t, α), hence

W (x, t) = J(x, t, α∗) = inf
α∈A

J(x, t, α)
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Now we give the generalization of the verification theorem to the general case (Bolza problem).
Define the pre-Hamiltonian

H(p, x, a) := f(x, a) · p+ l(x, a),

and the Bellman Hamiltonian

H(p, x) := sup
a∈A
{−f(x, a) · p− l(x, a)} = − inf

a∈A
H(p, x, a).

Note that H(p, x, a) ≥ −H(p, x) for all a ∈ A.

Theorem 2 (verification). Let W ∈ C1(Rn × (to, T )) and continuous at t = T be a solution of
the Cauchy problem with terminal value

Wt + inf
a∈A
H(DxW,x, a) = 0 , in Rn × (to, T )

w(x, T ) = g(x) .

(CT)

Then, ∀x ∈ Rn,∀ t0 < t < T ,

1. the function s → W (yx(s;α, t), s) +
s∫
t

l(y(τ), α(τ))dτ is increasing (in wide sense) for any

admissible control α.

2. W (x, t) ≤ v(x, t) = inf
α∈A

(
T∫
t

l(y(s), α(s))ds+ g(y(T )) ,

3. if ∀s ≤ T we have

H(DxW (y∗(s), s), y∗(s), α∗(s)) = inf
a∈A
H(DxW (y∗(s), s), y∗(s), a)

where y∗ is the trajectory controlled by α∗, then α∗ is an optimal control, i.e.,

J(x, t, α∗) = v(x, t) ,

and W (x, t) = v(x, t).

Proof. Homework.

Note that the PDE in (CT) is the Hamilton-Jacobi-Bellman equation satisfied by the value
function (in viscosity sense)

−vt +H(Dxv, x) = 0 .

1.2 Finite Horizon Linear-Quadratic regulator (LQ control)
Let A ∈ Mn×n be an n× n matrix with real coefficients and let B ∈ Mn×m. Consider the
controlled system

ẏ = Ay +Bα,

where α ∈ L2([0, T ],Rm), and the cost functional is

J(x, t, α) =

∫ T

t

[
y(s)TMy(s) + α(s)TRα(s)

]
ds+ y(T )TQy(T ),

with Q,M ∈ Sym(n), R ∈ Sym(m). Then in this case

f(y, a) = Ay +Ba, l(y, a) = yTMy + aTRa, g(y) = yTQy.

Notice that the set of controls is Rm, hence non compact, and that all data are unbounded.
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Moreover suppose
R positive definite.

The dynamic programming equation is

Wt +DxW ·Ax+ xtMx+ inf
a∈Rm

{DxW ·Ba+ aTRa} = 0. (5)

Let’s compute the Hamiltonian. Let H̃(p, a) = pTBa+ aTRa. The partial derivative of H̃ is

∂H̃

∂a
(p, a) =

∂(pTBa+ aTRa)

∂a
= BT p+ 2Ra

which vanishes in

a = −R
−1BT p

2
=: amin.

Since H̃ has at most linear growth in p, but quadratic growth in a, we can easily see that

lim
|a|→+∞

H̃(p, a) = +∞.

Indeed, since R is positive definite, it is enough to estimate from below

aTRa ≥ λmin|a|2

where λmin is the smallest eigenvalue of R. Hence, for fixed p the function H̃(p, a) attains its
minimum in amin. Then

inf
a∈Rm

H̃(p, a) =

− 1

2
pTBR−1BT p+

1

4
pTBR−1RR−1BT p = −1

4
pTBR−1BT p = −1

4
pTSp.

where S := BR−1BT . Hence (5) becomes

Wt +DxW ·Ax+ xTMx− 1

4
DxW

TSDxW = 0,

with final condition W (x, T ) = xTQx.
Now let’s look for solution of the form W (x, t) = xTK(t)x, with K(t) ∈ Sym(n), K ∈ C1 in t.
Then

Wt(x, t) = xT K̇(t)x, DxW (x, t) = 2K(t)x.

Since for any matrix C we have xTCx = xT C+CT

2 x, the equation can be written as

xT (K̇ +KA+ATK +M −KSK)x = 0, ∀x ∈ Rn,

that is,
K̇ +KA+ATK +M −KSK = 0.

We have now obtained a terminal value problem for the Riccati matrix ordinary differential equa-
tion: {

K̇ = −KA−ATK −M +KSK
K(T ) = Q.

(6)

Theorem 3. If there exists K(·) ∈ C1((t0, T ), Sym(n)) continuous at t = T solution of (6), then
W (x, t) = xTK(t)x is a C1 solution of (2), hence W (x, t) = xTK(t)x = min

α∈A
J(x, t, α), and the

feedback control Φ(y, s) = −R−1BTK(s)y is admissible and optimal, for every x ∈ Rn, for every
t0 < t ≤ T .
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Proof. The first part follows from the previous calculations and the verification theorem, substi-
tuting p = DxW (y, s) = 2K(s)y in amin. It remains to check that Φ(y, s) = −R−1BTK(s)y is
admissible. The corresponding dynamical system is

ẏ(s) = (A− SK(s))y(s) ,

which is linear and therefore Lipschitz in the state, so there is existence and uniqueness of the
trajectory in [t0, T ].

Proposition 1. With the hypotheses stated in this section there exists t0 < T such that the
problem (6) has a unique solution K(·) ∈ C1((t0, T ), Sym(n)).

Proof. Existence and uniqueness of a matrix which is a solution in (t0, T ) follows from local
existence and uniqueness theorem for ordinary differential equations. We are left to check that
K(t) ∈ Sym(n) for all t. Transposing both sides of the two equations in (6) and recalling that
M,S,Q are symmetric, we can easily see that K(·)T solves the same Cauchy problem as K, hence
K(t) = K(t)T for every t.

Theorem 4. If we suppose that M,Q are positive semidefinite, and R is positive definite, then
(6) has a unique solution K ∈ C1((−∞, T ), Sym(n)) continuous at t = T .

Remark 4. Under the assumptions of this theorem the cost functional is nonnegative, J(x, t, α) ≥
0 for all x, t, α.

Proof. Let (t0, T ) be the maximal interval of existence of the solution. If t0 > −∞ we must
have lim

t→t0+
‖K(t)‖ = +∞. If we show that ∀τ < T ∃Cτ such that ‖K(t)‖ ≤ Cτ ,∀t ∈ [τ, T ],

we may conclude. Denote by ‖ · ‖ the norm of the trace (‖X‖ :=
∑n
i=1 |λi| where λ1, ..., λn are

the eigenvalues of X ∈ Sym(n)), with ‖ · ‖2 the Euclidean norm. By Theorem 3 it follows that
xTK(t)x = min J(x, t, α) ≥ 0, hence K(t) ≥ 0 and λmin(K(t)) ≥ 0.

Consider now α ≡ 0 and let y0
x(·) := yx(·; t, 0) be the corresponding trajectory. Since y0

0(·) ≡ 0,
from the estimates on the solution of the controlled system we get that |y0

x(s)| ≤ Cτ |x|, for every
s ∈ (t, T ). Thus, for τ ≤ t ≤ T ,

xTK(t)x ≤ J(x, t, 0) =

∫ T

t

y0(s)TMy0(s) ds+ y0(T )TQy0(T ) ≤

≤ (T − t)‖M‖2C2
τ |x|2 + ‖Q‖2C2

τ |x|2 ≤ C̃τ |x|2.

Hence xTK(t)x ≤ C̃τ |x|2 holds, so K(t)− C̃τI ≤ 0, i.e., it is a negative semidefinite matrix. Thus
we must have λmax(K(t))− C̃τ ≤ 0. Ultimately, since λmin ≥ 0,

‖K(t)‖ ≤ nmax |λi| = nmaxλi = nλmax ≤ nC̃τ =: Cτ .

An important property of Riccati’s ordinary equations is that they can be reduced to linear
systems.

Theorem 5. Let U, V ∈ C1((t0, T ),Mn×n) be solutions in (t0, T ) ofU̇ = AU − SV
V̇ = −MU −ATV
U(T ) = I, V (T ) = Q,

such that detU(t) 6= 0 for all t ∈ (t0, T ). Then K(t) := V (t)U−1(t) solves the Cauchy problem for
Riccati equation (6).

Proof. It follows from a direct calculation based on the identity dU−1/dt = −U−1U̇U−1. The
reader is invited to check it.

Remark 5. In dimension n = 1 Riccati equation is scalar and it may be solved explicitly by
separation of variables, or by solving the 2× 2 linear system of the previous theorem.
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1.3 Teorema di verifica a orizzonte infinito
[Non in programma dal 2019]

Vediamo ora una versione del precedente teorema di verifica nel caso in cui il tempo T di
arresto non sia finito. Notiamo che il costo corrente convergerà grazie ad un termine di sconto
esponenziale.

Theorem 6 (di verifica). Consideriamo l’equazione di Bellman stazionaria

δW + sup
a∈A
{−DW · f(x, a)− l(x, a)} = 0, in Rn. (7)

Sia J∞(x, α) =
+∞∫
0

l(y(s), α(s))e−δs ds. Sia W ∈ C1 soluzione di (7), e sia x ∈ Rn fissato. Allora,

1. per ogni α ∈ A la funzione ϕ(t) = W (y(t))e−δt +
t∫

0

l(y(s), α(s))e−δs ds è crescente;

2. sia AWx = {α ∈ A tali che limt→∞W (y(t))e−δt = 0}. Se esiste α∗ ∈ AWx tale che, detto
y∗(s) = yx(s, α∗), si ha che

δW (y∗(s))−DW (y∗(s)) · f(y∗(s), α∗(s))− l(y∗(s), α∗(s)) = 0, per q.o. s > 0 (8)

allora α∗ è ottimo in AWx e W (x, t) = infα∈AWx J∞(x, α).

Proof. Come in precedenza calcoliamo la derivata di ϕ(t):

ϕ′(t) = e−δt(−δW +DW · f(y, α) + l(y, α)) ≥ e−δt(−δW + inf
a∈A

(DW · f(y, a) + l(y, a))

per quasi ogni t, che è 0 per l’ipotesi 7. Quindi, ϕ è crescente. Se vale (8), la disuguaglianza al
punto precedente è in realtà un’uguaglianza. Quindi, ϕ∗ è costante. Allora,

J∞(x, α∗) =

∫ +∞

0

l(y∗(s), α∗(s))e−δs ds = lim
t→+∞

ϕ∗(t) = ϕ∗(0) = W (x),

mentre per un controllo α ∈ AWx qualsiasi si ha

W (x) = ϕ(0) ≤ lim
t→+∞

ϕ(t) = J∞(x, α).

1.4 Problema del regolatore lineare (LQ control) a orizzonte infinito
[Non in programma dal 2019]

Siano A ∈MN (R), B ∈MN×m(R), α ∈ L1
loc((−∞, T ),Rm). Consideriamo il sistema

ẏ = Ay +Bα,

il cui funzionale costo è dato da

J∞(x, α) =

∫ +∞

0

[
y(s)TMy(s) + α(s)TRα(s)

]
e−δs ds,

con M ∈ Sym(N), R ∈ Sym(m). Quindi, in questo caso f(y, a) = Ay + Ba, l(y, a) = yTMy +
aTRa. Supponiamo inoltre che M sia semidefinita positiva, R definita positiva. Si noti che i
controlli α ora prendono valori nell’insieme illimitato Rn.
L’equazione di Bellman stazionaria in questo caso è

−δW +H(DW ) + xTMx+DW ·Ax = 0,

7



dove H(p) = −p
TBR−1BT p

4 . Formuliamo il seguente ansatz: cerchiamo la soluzione nella forma
W (x) = xTKx, K ∈ Sym(N). Allora, l’equazione diventa

xT (−δK +KA+ATK +M −KBR−1BTK)x = 0.

Tale condizione è soddisfatta se e solo se K soddisfa l’equazione matriciale di Riccati

−δK +KA+ATK +M −KBR−1BTK = 0

che si può riscrivere ponendo C := A− δI e usando l’identità −Kδ = −δKI+IK2 nella forma

KC + CTK +M = KBR−1BTK. (9)

Usando il teorema di verifica possiamo provare il seguente risultato:

Theorem 7. Se esiste una soluzione Kdi (9) allora W (x) = xTKx è soluzione C1 di (7), e se il
feedback Φ(y) = −R−1BTK(s)y genera un controllo open loop αΦ ∈ AWx , allora αΦ è ottimale, e
W (x) = minJ(x, α).

Example 1 (controllo LQ a orizzonte infinito, d = 1). Consideriamo l’equazione

ẏ = ay + α,

con α(s) ∈ R, a ∈ R. Supponiamo che il funzionale costo sia dato da

J(x, α) =

∫ +∞

0

e−δt(Rα(s)2 +m(y(s)− h)2) ds,

con R > 0, m ≥ 0. In questo caso l’equazione di Bellman stazionaria associata è data da

−δW + axW ′ − (W ′)2

4R
+m(x− h)2 = 0. (10)

Formuliamo il seguente ansatz: cerchiamo soluzioni nella forma Wδ(x) = kδx
2 + bδx+ cδ, cioè che

siano polinomi di secondo grado.
Si ottiene un sistema di tre equazioni a tre incognite, che in generale ha due soluzioni. Solo
una però è accettabile in questo contesto: infatti, per applicare il teorema di verifica deve essere
limt→∞ e−δtW (y∗(t)) = 0, dove il feedback ottimale è Φ(y) = − k

Ry −
b

2R e y∗ risolve ẏ = (a −
k
R )y − b

2R . Alla fine si ottiene

kδ = . . . , bδ =
2hm

a− δ − k
R

, cδ =
1

δ
(mh2 − b2

4R
).

Ci poniamo il seguente quesito: cosa succede per δ → 0? Questo problema prende il nome di
vanishing discount problem o problema ergodico.
Se m > 0, h 6= 0, a 6= 0, l’equazione (10) non ha soluzione quadratica per δ = 0. Anche un proced-
imento di limite per δ che tende a zero nell’espressione di Wδ non dà il risultato sperato, perché
Wδ → +∞. Invece, la strada giusta è quella di calcolare limδ→0 δWδ. Sostituendo l’espressione
esplicita si ottiene

lim
δ→0

δWδ =
mRh2a2

Ra2 +m
=: λ.

Inoltre, risulta che l’equazione, detta del controllo ergodico o equazione critica,

−λ+ axv′ − (v′)2

4R
+m(x− h)2 = 0

nelle incognite λ e v ha un’unica soluzione con v polinomio di secondo grado. Tale soluzione è
λ = λ e v(x) = limδ→0(Wδ(x)−Wδ(0)) + cost = k0x

2 + b0x+ cost.
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2 Game Theory

2.1 Zero-sum games
Let A and B be two sets and Φ: A×B → R be a function, which represents the gain of the first
player (player A) and the loss of the second player (player B). The goal of A is to maximize Φ,
whereas the goal of B is to minimize it.

2.1.1 First examples

We start by describing some examples of matrix games. Set A = {1, . . . ,m}, B = {1, . . . , n}. In
this case we can represent Φ by a matrix: we set Φ(i, j) = ϕij and define

M =


ϕ11 ϕ12 . . . ϕ1n

ϕ21 ϕ22 . . . ϕ2n

. . . . . . . . . . . . . . . . . . . . . .
ϕm1 ϕm2 . . . ϕmn


During the game player A chooses a row and player B chooses a column.

Example 2 (Head or Tail). Each of the two players chooses head or tail. A wins if both players
have made the same choice, otherwise B wins. The associated matrix is found easily:

T H
T 1 -1
H -1 1

Note that this game is equivalent to playing odds and evens with two fingers.

Example 3 (Splitting a cake). Two players must split a cake: A cuts the cake and then B gets
to choose what his part is. A can choose between cutting the cake into two almost equal slices,
1
2 + ε and 1

2 − ε, or cutting it into two slices of very different size, say 2
3 and 1

3 . The corresponding
matrix is:

small big
equal slices 1

2 + ε 1
2 − ε

different slices 2
3

1
3

2.1.2 Definitions and elementary results

From now on we make the following hypothesis:

Hypothesis 1: A and B are compact metric spaces, Φ: A×B → R is continous.

We define the marginal functions

Φmax(b) = max
a∈A

Φ(a, b), Φmin(a) = min
b∈B

Φ(a, b),

and we call best response maps the sets

RA(b) = {a ∈ A : Φmax(b) = Φ(a, b)}
RB(a) = {b ∈ B : Φmin(a) = Φ(a, b)}.

It holds the following

Lemma 1. Φmax : B → R and Φmin : A→ R are continuous.

9



Proof. We prove the continuity of Φmax at b = b. Let a be such that Φmax(b) = Φ(a, b). Then

Φmax(b)− Φmax(b) ≤ Φ(a, b)− Φ(a, b) ≤ ωΦ(d(b, b)),

where ωΦ is a modulus of continuity of Φ and d(b, b) is the distance between b e b. By exchanging
b and b we get that

|Φmax(b)− Φmax(b)| → 0, as d(b, b)→ 0.

Definition 2. We define the upper value of the game v+

v+ := min
b∈B

max
a∈A

Φ(a, b),

and the lower value of the game
v− := max

a∈A
min
b∈B

Φ(a, b).

A strategy b∗ that realizes the minimum in the definition of v+ is called a security strategy for B,
i.e.

max
a∈A

Φ(a, b∗) = min
b∈B

max
a∈A

Φ(a, b),

whereas a∗ that realizes the maximum in the definition of v− is called a security strategy for A.

Proposition 2. v− ≤ v+.

Proof. We have that
min
b∈B

Φ(a, b) ≤ Φ(a, b′)

for every b′ ∈ B. Then
v− = max

a∈A
min
b∈B

Φ(a, b) ≤ max
a∈A

Φ(a, b′)

for every b′ ∈ B. Thus we have that the inequality also holds for the minimum, i.e.

v− = max
a∈A

min
b∈B

Φ(a, b) ≤ min
b′∈B

max
a∈A

Φ(a, b′) = v+.

Remark 6. v+ is a ”security level” for B: it is the best result that B can obtain if A maximizes
Φ for every choice of B.

Definition 3. We say that the game has value v if v+ = v− =: v.

Let’s go back to the previous examples.

Example 4 (Head or Tail). It is easy to see that the minimum of each row is −1, whereas the
maximum of each column is 1. Thus it immediately follows that

v+ = min
b∈B

max
a∈A

Φ(a, b) = min
b∈B
{1, 1} = 1 > −1 = max

a∈A
{−1,−1} = max

a∈A
min
b∈B

Φ(a, b) = v−

Observe that in this case the value does not exist.

Example 5 (Splitting a cake). Analogously, we can check that in the "splitting a cake" game we
have:

v+ = min
b∈B

max
a∈A

Φ(a, b) = min
b∈B
{2

3
,

1

2
− ε} =

1

2
− ε = max

a∈A
{1

2
− ε, 1

3
} = max

a∈A
min
b∈B

Φ(a, b) = v−

Observe that in this case the game has value v = 1
2 − ε.
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Definition 4. A couple (a∗, b∗) ∈ A × B is called a saddle point of the game if for every a ∈ A
and for every b ∈ B it holds that

Φ(a, b∗) ≤ Φ(a∗, b∗) ≤ Φ(a∗, b).

Example 6. The name comes from a classical example: if A = B = [−1, 1], Φ(a, b) = b2 − a2,
then the graph of Φ has the shape of a horse saddle and the saddle point is (a∗, b∗) = (0, 0).

Note that (a∗, b∗) is a saddle point of the game if and only if

max
a∈A

Φ(a, b∗) = Φ(a∗, b∗) = min
b∈B

Φ(a∗, b).

Moreover, (a∗, b∗) is a saddle point of the game if and only if a∗ ∈ RA(b∗) e b∗ ∈ RB(a∗). If RA
and RB are functions (i.e. they take values in singletons), then a∗ is a fixed point of RA ◦RB and
b∗ is a fixed point of RB ◦RA.

Theorem 8. Under Hypothesis 1, the game has value v if and only if it admits a saddle point
(a∗, b∗) and in that case v = Φ(a∗, b∗).

Proof. Let us assume that (a∗, b∗) is a saddle point of the game. It is enough to prove that
v− ≥ v+. This is showed by the following:

v− ≥ min
b∈B

Φ(a∗, b) = Φ(a∗, b∗) = max
a∈A

Φ(a, b∗) ≥ v+.

Now we prove the other implication: we assume that the game has a value and we construct
a saddle point. Let a∗ be a security strategy for A and b∗ a security strategy for B. We want to
show that (a∗, b∗) is a saddle point of the game. It holds that

∀a Φ(a, b∗) ≤ max
a∈A

Φ(a, b∗) = v+ = v− = min
b∈B

Φ(a∗, b) ≤ Φ(a∗, b), ∀b.

We obtain equality in the previous inequalities by setting a = a∗, b = b∗ and thus v = Φ(a∗, b∗)
and (a∗, b∗) is a saddle point.

Corollary 1. If the game has a value, then
(i) (a∗, b∗) is a saddle point of the game if and only if a∗ is a security strategy for A and b∗ is a
security strategy for B;
(ii) if (a∗, b∗) and (a′, b′) are saddle point, then also (a∗, b′) and (a′, b∗) are saddle points (ex-
changeability property).

Proof. In (i) the "if" implication was proved in the previous theorem, whereas the "only if"
implication follows from the definition of security strategy for B and

min max Φ = Φ(a∗, b∗) = max
a∈A

Φ(a, b∗)

(ii) is implied by (i) because a′ is a security strategy for A and b′ is a security strategy for
B.

2.1.3 Other examples

Example 7 (Odds and Evens with three fingers). Two people simultaneously reveal a number of
fingers from 1 to 3. Player A wins if the sum of all shown fingers is even, whereas player B wins
if it is odd. The associated matrix is

1 2 3
1 1 -1 1
2 -1 1 -1
3 1 -1 1

This game does not have a value, because v+ = 1 > v− = −1.
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Example 8 (Rock, Scissors, Paper). The associated matrix is:

S C F
S 0 -1 1
C 1 0 -1
F -1 1 0

This game also does not have a value, because v+ = 1 > v− = −1.

Example 9 (Nim). There are two boxes, L and R, that contain n and m coins respectively. Two
people take turns removing k ≥ 1 coins from one of the boxes. The player who takes the last coin
wins.
We study the case n = 1,m = 2. It is easy to represent all possible developments of the game
by a tree diagram. This makes it easy to observe that the outcome of the game is completely
determined by the first choice of A and by the first choice of B. Let us suppose that A plays first.
Then we can construct the matrix of the game, denoting by 1L the choice of taking one coin from
the box on the left, 1R and 2R the choice of taking respectively one or two coins from the box on
the right. By convention, we also assume that the player that tries to take more coins than the
number available in that box loses. Then, supposing as usual that A chooses between the rows of
the matrix, we have

1L 1R 2R
1L 1 1 -1
1R 1 1 1
2R -1 1 1

In this case the game has value 1 and (1R, b) is a saddle point for every value of b.

Example 10. Set A = B = [0, 1] and Φ(a, b) = f(a − b), where f : R → R is continuous and
periodic of period 1. The game has a value if and only if f is constant. Indeed, maxa∈[0,1] f(a−b) =
max[−b,1−b] f = max f and minb∈[0,1] f(a− b) = min[a,a−1] f = min f do not depend, respectively,
on b and on a, and they coincide if and only if f is constant.

2.1.4 A minmax theorem

Theorem 9 (minmax theorem of Von Neumann). Let A,B be compact and convex subsets of a
vector space and let Φ ∈ C(A×B) be such that, for every b, a 7→ Φ(a, b) is concave and, for every
a, b 7→ Φ(a, b) is convex. Then there exists the value v = v+ = v−.

Proof. We prove the theorem in the special case A ⊂ Rn and B ⊂ Rm.

1. Let us first suppose that for every a the function b 7→ Φ(a, b) is strictly convex. Then it
clearly has a unique minimum point, i.e. for every a there exists a unique r(a) such that
Φ(a, r(a)) = minb Φ(a, b). We want to show that Φmin(a) = Φ(a, r(a)) is continuous. Since
Φ is continuous, it suffices to show that r is continuous. Fix a and let {an} be a sequence
such that an → a. Since B is compact, there exists a subsequence ank such that r(ank)
converges to some b. Moreover it holds that Φ(ank , r(ank)) ≤ Φ(ank , b) for every b. Passing
to the limit we obtain that Φ(a, b) ≤ Φ(a, b) for every b, so that it must necessarily be
b = r(a), by the uniqueness of the minimum point.

2. Let a∗ be a security strategy for A. We know that v− = max Φmin(a) = Φmin(a∗) =
Φ(a∗, r(a∗)). Set b∗ = r(a∗) and let us show that (a∗, b∗) is a saddle point. It suffices to
prove that Φ(a∗, b∗) ≥ Φ(a, b∗), ∀a.

3. Let a, b be arbitrary, 0 ≤ λ ≤ 1, µ = 1− λ. It holds

Φ(λa+ µa∗, b) ≥ λΦ(a, b) + µΦ(a∗, b) ≥ λΦ(a, b) + µΦmin(a∗), ∀b,
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where the first inequality is true by the concavity hypothesis and the second by definition of
marginal. Set aλ = λa+ µa∗. We have that

Φmin(a∗) ≥ Φmin(aλ) = Φ(aλ, r(aλ)) ≥ λΦ(a, r(aλ)) + µΦmin(a∗).

This implies that Φmin(a∗) ≥ Φ(a, r(aλ)) and by the continuity of r, passing to the limit as
λ→ 0, we obtain

Φmin(a∗) = Φ(a∗, b∗) ≥ Φ(a, r(a∗)) = Φ(a, b∗), ∀a

which proves the theorem under the initial additional assumption of strict convexity in the
b variable.

4. Now we are left with the general case. Let us consider Φε(a, b) = Φ(a, b) + ε|b|2, which is
strictly convex in the b variable. This implies that there exists a saddle point (aε, bε) for Φε,
namely

∀a Φε(a, bε) ≤ Φε(aε, bε) ≤ Φε(aε, b), ∀b.

By compactness there exists a subsequence εn such that aεn → a∗, bεn → b∗ and by continuity
Φε(aεn , bεn)→ Φ(a∗, b∗). Moreover, Φ(a, bεn) ≤ Φε(aεn , bεn) ≤ Φ(aεn , b) + ε|b|2. Passing to
the limit, we obtain the desired inequality: Φ(a, b∗) ≤ Φ(a∗, b∗) ≤ Φ(a∗, b).

Example 11. Let M be a n×m matrix and consider Φ(a, b) = aTMb, where a ∈ A, b ∈ B with
A ⊂ Rn, B ⊂ Rm compact and convex. Then Φ is bilinear and satisfies the hypotheses of the
previous theorem.

2.1.5 Mixed strategies for matrix games

If A and B are finite sets, then obviously they are compact but not convex and so the hypothesis
of the previous theorem do not hold. In particular, this implies that the previous theorem does
not apply to matrix games and indeed in Example 4 the game does not have a value. However,
given two sets A and B, we can define the sets of mixed strategies for player A and B, respectively,
as

P(A) := {µ probability measure on A}, P(B) := {ν probability measure on B}.

To every µ ∈ P(A) we can associate a random variable X defined by P (X ∈ S) =
∫
S
dµ, for every

S ⊆ A. Analogously, to every ν ∈ P(B) we can associate a random variable Y . Assuming that
X,Y are indipendent, we define

Φ̃(µ, ν) := E[Φ(X,Y )] :=

∫∫
A×B

Φ(a, b) dµ(a)dν(b).

Definition 5. If the game defined by (Φ̃,P(A),P(B)) has value v, we say that the game (Φ, A,B)
has value v in mixed strategies.

We observe that there is "copy" of A in the set of mixed strategies for player A (and analogously
there is a "copy" of B in P(B)) and that Φ̃ extends Φ. Indeed, it suffices to consider the application
from A into P(A) that maps a to δa, the Dirac delta concentrated at a (and analogously for B).
Moreover, Φ̃(δa, δb) = Φ(a, b). From now on these strategies will be called pure strategies.

Now let us consider an important example of mixed strategies.

Example 12 (matrix games). If A = {1, . . . ,m}, the probability measures on A can be identified
with the m-tuples that belong to the m-dimensional simplex ∆m:

P(A)↔ ∆m = {x = (x1, . . . , xm) ∈ Rm : x ∈ [0, 1]m,

m∑
i=1

xi = 1},
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and the analogous holds for B = {1, . . . , n}. Obviously ∆m is compact and convex. Moreover, we
observe that

Φ̃(x, y) =
∑
i

∑
j

ϕijxiyj = xTMy

is bilinear. Thus we can apply Von Neumann’s theorem to the game in mixed strategies and we
obtain the following

Corollary 2 (Von Neumann). Every matrix game has a value (and at least a saddle point) in
mixed strategies.

Now we ask ourselves how to find saddle points in mixed strategies of matrix games.
We recall that (x∗, y∗) is a saddle point if and only if x∗ is a security strategy for the first

player and y∗ is a security strategy for the second player, namely if and only if

Φ̃min(x∗) = max
x

Φ̃min(x) = max
x

min
y

Φ̃(x, y) = max
x

min
y
xTMy,

and analogously Φ̃max(y∗) = miny maxx x
TMy, where x ∈ ∆m and y ∈ ∆n. It is known that the

minimum of a linear function defined on a polyhedron is reached at the vertices (if not, check it
as an exercise). The function y 7→ xTMy is linear and so it reaches its minimum for y of the kind
(0, . . . , 1, 0, . . . , 0), vertex of ∆m. It follows that

Φ̃min(x) = min
j

∑
i

ϕijxi = min
j

(xTM)j .

and analogously
Φ̃max(y) = max

i
(My)i.

Let us try to apply these last results to some of the matrix games that we have introduced before.

Example 13 (Head or Tail). We recall that the matrix of the game is given by

T C
T 1 -1
C -1 1

Let us compute Φ̃min(x). Since

xTM = (x1 − x2,−x1 + x2),

Φ̃min(x) = −|x1 − x2|. The maximum of Φ̃min(x) on ∆2 is 0 and it is obtained at x1 = x2 = 1/2.
By symmetry, the minimum of Φ̃max is obtained at y1 = y2 = 1/2. We conclude that the pair
(( 1

2 ,
1
2 ), ( 1

2 ,
1
2 )) is the unique saddle point in mixed strategies of the game, with value 0.

Example 14. Now we study a general 2× 2 game, with matrix

M =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
In order to determine Φ̃max(y), first we compute My, then we take the maximum of the two
components and finally we minimize it in ∆2. However it is easy to reduce this problem to a
minimum problem of a single variable: it sufficient to observe that y2 = 1 − y1. In this setting
the security strategies for the second player correspond to the minimum points in [0, 1] of the
maximum between two affine functions. Such a maximum is reached either at the endpoints of
the interval [0, 1] or at the point in which the two affine functions coincide. We conclude that, in
2×2 matrix games, if there is no saddle point in pure strategies, then there exists a unique saddle
point in mixed strategies (and it is possible to compute it explicitly solving two linear equations:
try it as an exercise).
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Example 15 (Rock, Paper, Scissors). This is a 3× 3 matrix game with the following associated
matrix

M =

 0 −1 1
1 0 −1
−1 1 0


We have that

xTM = (x2 − x3,−x1 + x3, x1 − x2).

We want to compute maxx∈∆3
min(x2−x3,−x1 +x3, x1−x2). We observe that the minimum can

not be positive, so it suffices to find x∗ ∈ ∆3 such that min(x2 − x3,−x1 + x3, x1 − x2) = 0. For
example, set x∗ = ( 1

3 ,
1
3 ,

1
3 ). By symmetry, we have that y∗ = ( 1

3 ,
1
3 ,

1
3 ) is a security strategy for

the second player and (x∗, y∗) is a saddle point in mixed strategies.

2.1.6 Mixed strategies in more general cases

Let (P(A),P(B), Φ̃) be a game in mixed strategies with A or B not finite. We would like P(A)
and P(B) to be compact metric spaces and Φ̃ to be continuous. On P(A) and P(B) we consider
the weak-star topology that comes from thinking of them as the dual spaces of C(A) and C(B)
endowed with the uniform convergence topology.

Definition 6. A sequence (µk) in P(A) converges weakly* to µ, and we write µk
∗
⇀ µ, if∫

A

f(x) dµk(x)→
∫
A

f(x) dµ as k →∞, ∀ f ∈ C(A).

An analogous definition is given for P(B). The following result comes from functional analysis.

Theorem 10. If A is compact, P(A) endowed with the weak* convergence is metrizable and
(sequentially) compact, i.e. from every sequence (µk) in P(A) it is possible to extract a subsequence
(µkj ) such that µkj

∗
⇀ µ ∈ P(A) as j →∞.

Remark 7. It is possible to prove that Φ̃ is continuous on P(A) × P(B) with respect to the
product topology of the weak* topologies, i.e. that for every µk

∗
⇀ µ in P(A) and νk

∗
⇀ ν in P(B)

it holds that

lim
k→∞

∫∫
A×B

Φ(a, b) dµk(a)dνk(b) =

∫∫
A×B

Φ(a, b) dµ(a)dν(b) = Φ̃(µ, ν).

Theorem 11 (generalization of Von Neumann’s theorem). Under hypothesis 1, there exists the
value (and at least a saddle point) in mixed strategies.

Proof. Convexity of P(A) and P(B) is immediate: if µ, µ̃ ∈ P(A), then λµ+(1−λ)µ̃ is a measure
such that (λµ+ (1− λ)µ̃)(A) = 1 and hence it is an element of P(A). The function Φ̃ is concave-
convex because it is bilinear, as it is easily verified. All other hypotheses of Von Neumann’s
minmax theorem are satistied for the game in mixed strategies by Theorem 10 and Remark 7.

The tutorial [Bre] presents a more constructive proof, which only uses the minmax theorem
for subsets of Euclidean spaces (which is the one that we have proved). We approximate the
infinite dimensional game with matrix games. Let {an}n be dense in A and {bn}n be dense in
B. Let us consider the sets AN = {a1, . . . , aN} and BN = {b1, . . . , bN}. By Corollary 2 the game
has a saddle point (µN , νN ) in mixed strategies and by compactness there exists a subsequence
converging to (µ∗, ν∗). Finally, it can be shown that (µ∗, ν∗) is a saddle point of the game. See
[Bre] for a complete proof of the more general case of Non-Zero Sum Games, which is the topic of
the next section.
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2.2 Non-Zero Sum Games
2.2.1 Notions of equilibrium

In general, Non-Zero Sum Games involve n players, each of them trying to maximize its gain Φi.
For simplicity, we only deal with the case n = 2. Let A, B be sets and ΦA,ΦB : A×B → R be the
payoff that the first and the second player respectively try to maximize. Observe that if ΦA = ΦB ,
then we have an optimization problem, whereas if ΦA = −ΦB we have a Zero Sum Game. We
make the following hypothesis:

Hypothesis 1′: A, B compact sets; ΦA,ΦB continous functions.

Example 16 (Bimatrix games). Set A = {1, . . . ,m}, B = {1, . . . , n}. The game is represented
by the matrix

ϕB11 ϕB12 . . .
ϕA11 ϕA12 . . .

ϕB21 ϕB22 . . .
ϕA21 ϕA22 . . .
...

...
...

...
...

...

Definition 7. A pair (a∗, b∗) is a Nash equilibrium if

ΦA(a, b∗) ≤ ΦA(a∗, b∗) ∀ a ∈ A and ΦB(a∗, b) ≤ ΦB(a∗, b∗) ∀ b ∈ B.

In other words, (a∗, b∗) is a Nash equilibrium if it is not convenient for any player to deviate from
its strategy if the other player does not.

Observe that in the case of Zero Sum Games, i.e. ΦA + ΦB = 0, Nash equilibria are exactly
the saddle points.

Definition 8. (a∗, b∗) is a Pareto optimum if there does not exist any pair (a, b) such that either

ΦA(a, b) > ΦA(a∗, b∗) and ΦB(a, b) ≥ ΦB(a∗, b∗),

or
ΦA(a, b) ≥ ΦA(a∗, b∗) and ΦB(a, b) > ΦB(a∗, b∗).

Observe that in the case of Zero Sum Games, every pair is a Pareto optimum. Moreover, Pareto
optima always exist: fix λ ∈]0, 1[ and let (a∗, b∗) be a maximum point for F (a, b) := λΦA(a, b) +
(1−λ)ΦB(a, b) (the existence of such a point is guaranteed thanks to hypothesis 1′). Then (a∗, b∗)
is a Pareto optimum, because otherwise, since λ, 1 − λ > 0, the point would not be a maximum
for F .

Let us study some examples of Non Zero Sum Games.

Example 17 (The Prisoner’s Dilemma). Two suspects of theft are offered a bargain: if they both
confess, each of them serves six years in prison, if one remains silent and the other confesses, the
first one serves eight years and the second one is free, if both remain silent they both serve one
year. The matrix that represent the game is:

C S
C -6 -8

-6 0
S 0 -1

-8 -1

where C indicates the choice to confess, S the one to remain silent. The only Nash equilibrium
is (C,C), whereas (C, S), (S, S), (S,C) are Pareto optima. Observe that (C,C) is not a Pareto
optimum and it produces the maximum total number of years of jail for the two supects.
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Example 18 (Arms race). We analyze a really simplified model of the arms race happened during
the Cold War. In this model, USA and URSS only have two choices: to continue to own only
conventional arms (C) or to build a nuclear arsenal (N). The matrix of the game is:

N C
N -1 -5

-1 10
C 10 0

-5 0

Again we have a unique Nash equilibrium (N,N), whereas the other pairs are Pareto optima.

Example 19 (Chicken run). This game was sometimes played by youngsters in the US some
decades ago1. Two cars are driven straight against each other. Both drivers can choose whether to
turn (T ) or continue to go straight (S). If no one turns, they collide and lose (−10). If both turn,
then they are even (+1). If one turns and the other does not, the one who turned loses (chicken!).
The matrix of the game is:

T S
T 1 3

1 -2
S -2 -10

3 -10

The pairs (T, S) and (S, T ) are both Nash equilibria and Pareto optima, whereas (T, T ) is only a
Pareto optima and (S, S) is not an equilibrium. There are two important differences with respect
to Zero Sum Games. First of all, the two Nash equilibria produce two completely different results
of the game and so it is not possible to define a unique "value of the game". Moreover, the
exchangeability property for saddle points of Corollary 1 (ii) does not hold anymore.

Example 20 (of a game with a continuum of strategies). Let A,B be closed and bounded intervals
and ΦA and ΦB differentiable. Suppose that there exists a Nash equilibrium (a∗, b∗) in the interior
of A×B. Then

∂ΦA

∂a
(a∗, b∗) = 0 and

∂ΦB

∂b
(a∗, b∗) = 0

Let (x(t), y(t)) be a regular parametrization of the level set of ΦA corresponding to the value
ΦA(a∗, b∗) and let us suppose that the implicit function theorem holds (i.e., ∇ΦA 6= 0); then

∂ΦA

∂a
x′ +

∂ΦA

∂b
y′ = 0

implies y′ = 0, i.e. the level set of ΦA has horizontal tangent at (a∗, b∗). Analogously, we obtain
that the level set of ΦB has a vertical tangent at (a∗, b∗). Hence we have a necessary condition
for a point in the interior of A×B to be a Nash equilibrium: it must lie in the intersection of two
curves, that are level sets of ΦA and ΦB respectively, and that satisfy these geometric conditions
at that point.

Example 21 (Cournot’s duopoly model 1838). We consider a market consisting of only two firms,
which produce the same good. The quantity produced by firm A is a ∈ [0,M1], whereas firm B
produces b ∈ [0,M2] (in quintals q). The selling price p is determined by the law of demand:
p = P − k(a+ b) (in dollars $), where k > 0 (the unit of measurement of k is $

q ). The returns of
the two firms are

ΦA(a, b) = pa = Pa− ka2 − abk, ΦB(a, b) = pb = Pb− kb2 − abk.
1see, e.g., the movies Rebels without a cause (Gioventù bruciata, 1955) and American graffiti (1973). The game

was also used by Bertrand Russell in a book of 1962 as a metaphor of the ongoing arms race.
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From the previous example, we have that a Nash equilibrium in the interior of the constraint must
satisfy the following equations

P − 2ka− bk = 0, P − 2kb− ak = 0,

which have ( P3k ,
P
3k ) as the only solution. Supposing P

3k < M1 and P
3k < M2, it is possible to show

that this point is really a Nash equilibrium of the game.

2.2.2 Nash theorem

Theorem 12 (Nash, 1951). Let A,B be compact and convex, ΦA,ΦB continuous. If for every b
the function a 7→ ΦA(a, b) is concave and for every a the function b 7→ ΦB(a, b) is concave, then
there exists at least one Nash equilibrium.

Before proving the theorem, let us make some remarks. First of all, observe that the minmax
theorem is a particular case of this one. Then, let us extend some of the definitions given for
Zero Sum Games. The best response maps become RB(a) = argmaxb ΦB(a, b) and RA(b) =
argmaxa ΦA(a, b). We have that (a∗, b∗) is a Nash equilibrium if and only if a∗ ∈ RA(b∗) and
b∗ ∈ RB(a∗).

Definition 9. A multifunction F : X  X is a function with domain X and values in P(X).

Definition 10. If F : X  X is a multifunction, x∗ is a fixed point of F if x∗ ∈ F (x∗).

With these definitions, (a∗, b∗) is a Nash equilibrium if and only if it is a fixed point of the
multifunction (a, b)  RA(b) × RB(a). Thus the proof of the above theorem can be obtained
using Kakutani’s theorem, a general fixed point theorem for multifunctions. This was indeed the
first proof, proposed by Nash in [Na50] (see [Bre] for more details). We will use instead a classical
fixed point theorem for single-valued functions, namely:

Theorem 13 (Brouwer). Let K ⊆ Rn be convex and compact, f : K → K continuous. Then there
exists a fixed point of f .

Remark 8. If K ⊆ R, the proof is an easy consequence of the Intermediate Zero Theorem: draw
a picture!

Let us go back to the proof of Nash’s theorem.

Proof. For simplicity, we restrict ourselves to the case A ⊂ Rn and B ⊂ Rm.

1. Suppose that ΦA,ΦB are strictly concave in a and b respectively. Then they have a unique
maximum point and the best reply map is single valued: RA(b) = {rA(b)} and RB(a) =
{rB(a)}. Moreover, rA and rB are continuous, as shown in the proof of Von Neumann’s
theorem. SinceK := A×B is compact and convex and f(a, b) := (rA(b), rB(a)) is continuous,
Brouwer’s theorem asserts that f has a fixed point and hence there exists a Nash equilibrium
(a∗, b∗).

2. If ΦA,ΦB are concave in a and b respectively, ΦAε (a, b) := ΦA(a, b) − ε|a|2 and ΦBε (a, b) :=
ΦB(a, b) − ε|b|2 are strictly concave in a and b respectively. Hence, by step 1, there exists
a Nash equilibrium (a∗ε, b

∗
ε). By compactness, there exists a subsequence εk → 0 such that

(a∗εk , b
∗
εk

) converges to some (a∗, b∗). Finally, it is easily checked that (a∗, b∗) is a Nash
equilibrium for ΦA,ΦB .

Corollary 3. All bimatrix games (i.e. games with A, B finite) have at least one Nash equilibrium
in mixed strategies.
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Proof. Recall that P(A) ↔ ∆m and P(B) ↔ ∆n, compact and convex. Moreover, Φ̃A(x, y) =
xTMAy and Φ̃B(x, y) = xTMBy are bilinear maps and so they clearly satisfy the hypotheses of
theorem.

We also state the analogous of Theorem 11 for Non-Zero Sum Games:

Theorem 14. If A,B are compact and ΦA,ΦB are continuous, then there exists a Nash equilib-
rium in mixed strategies.

Proof. We check that the hypotheses of Nash’s theorem are satisfied by reasoning as in the proof
of Theorem 11.

Example 22 (Welfare game). In order to encourage job seekers, a government prefers to give
financial support to unemployed who are actively looking for a job, rather than to help unemployed
who do not. On the other hand, if the welfare is too generous, unemployed who get the financial
support prefer not to look for a job.

seeking job not seeking job
welfare 2 3

3 -1
no welfare 1 0

-1 0

This game does not have Nash equilibria in pure strategies (check), but the previous theorem
guarantees that it has Nash equilibria in mixed strategies.

3 Differential Games
Let us consider the controlled system{

ẏ = f(y(s), a(s), b(s)), s > t,
y(t) = x,

(11)

where f : Rn ×A×B → Rn is continuous, and the two associated cost functionals:

JA(x, t, a, b) =

T∫
t

lA(y(s), a(s), b(s)) ds+ gA(y(T )),

JB(x, t, a, b) =

T∫
t

lB(y(s), a(s), b(s)) ds+ gB(y(T )).

Player A wants to maximize JA, while player B wants to maximize JB . Other possible gain
functionals may be infinite horizon functionals, i.e. of type

JA(x, a, b) =

+∞∫
0

lA(y(s), a(s), b(s))e−δs ds,

or, if T is a target, functionals of type minimal time, i.e.

tx = inf{t | yx(t; a, b) ∈ T }.

Example 23 (pursuit-evasion). In pursuit-evasion games player A runs, while player B runs after
him. The associated system is {

y′A = fA(y, a)
y′B = fB(y, b)
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where yA, yB ∈ Rn
2 , n even, and the target is T = {(yA, yB) | yA = yB}.

We ask ourselves which kind of control functions we may choose. At first we try with open-lopp
controls, e.g. a(·) ∈ L1(I, A), b(·) ∈ L1(I,B), where I is an interval. We notice that this choice
doesn’t fit for zero-sum games; indeed, back in our example, let’s suppose that the run takes place
around a table. Then, if JP = inf{t | yP (t) = yE(t)}, we have that JE = −JP = J and it is a
zero-sum game. In this case, it is clear that it is completely irrealistic to suppose that the two
players choose at the initial time their strategies for every following time. In reality the strategy
is chosen moment by moment, looking at one’s own position and at the opponent’s position.

3.1 Verification theorems
Given T > 0, with uA, uB we’ll denote the feedback controls

uA : [0, T ]× Rn → A, uB : [0, T ]× Rn → B,

whose associated dynamics is f(y(s), uA(s, y(s)), uB(s, y(s))).

Definition 11. A measurable couple (uA, uB) is admissible if for all x ∈ Rn and for all t ∈ [0, T ]
there exists an unique solution defined in [t, T ] to the system:{

y′(s) = f(y(s), uA(s, y(s)), uB(s, y(s)))
y(t) = x

Definition 12. An admissible couple (u∗A, u
∗
B) is a Nash equilibrium in feedback strategies for

initial time t0 and initial position x0 if

• u∗A is optimal for the first player, i.e. it maximizes JA(x0, t0, uA, u
∗
B) among feedbacks uA

such that (uA, u
∗
B) is admissible, and

• u∗B is optimal for the first player, i.e. it maximizes JB(x0, t0, u
∗
A, uB)among feedbacks uB

such that (u∗A, uB) is ammissible.

Let us now state the following hypothesis:
Hypothesis 2: There exists a couple of continuous functions (u]1, u

]
2) : Rn × Rn × Rn → A × B

such that ∀x ∈ Rn,∀ p1, p2 ∈ Rn, (u]1, u
]
2)(x, p1, p2) is a Nash equilibrium of the static game with

gain functions

ΦA(a, b;x, p1) = p1 · f(x, a, b) + lA(x, a, b), ΦB(a, b;x, p2) = p2 · f(x, a, b) + lB(x, a, b),

namely,

u]1(x, p1, p2) ∈ argmaxa∈A ΦA(a, u]2;x, p1), u]2(x, p1, p2) ∈ argmaxb∈B ΦB(u]1, b;x, p2). (12)

Sufficient conditions for the existence of at least one equilibrium (u]1, u
]
2) are given by Nash’s

theorem, while the possibility to choose it in a continuous way should be checked case by case.
The following lemma gives some more explicit conditions. We will use it in our main application,
namely linear-quadratic games.

Lemma 2. Let’s suppose that the dynamic and the current gain functions have the decoupled form

f(x, a, b) = f0(x) +B1(x)a+B2(x)b,

with B1(x) ∈Mn×m1
, B2(x) ∈Mn×m2

,

lj(x, a, b) = lj1(x, a) + lj2(x, b), j = A,B,

and that

1. A ⊆ Rm1, B ⊆ Rm2 are closed (possibly unbounded),
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2. either A is compact or lim|a|→∞ lA1(x, a)/|a| = −∞,

3. either B is compact or lim|b|→∞ lB2(x, b)/|b| = −∞.

Then there exists (u]1, u
]
2) with property (12). If moreover A and B are convex and the functions

a 7→ lA1(x, a) and b 7→ lB2(x, b) are strictly concave, then the Nash equilibrium is unique.

Proof. By the decoupling hypothesis, for every x, p1, p2, (u]1, u
]
2) are determined by

u]1 ∈ argmaxa∈A {p1 ·B1(x)a+ lA1(x, a)} , u]2 ∈ argmaxb∈B {p2 ·B2(x)b+ lB2(x, b)} .

Then the existence of u]1 and u]2 comes from Weierstrass’ theorem, while uniqueness follows im-
mediately from the strict concavity hypothesis.

Theorem 15 (Verification theorem for Nash equilibria). Besides Hypothesis 2 let’s suppose there
exist W1,W2 ∈ C1(Rn × (t0, T )) continuous in t0 and in T solving the system

∂tW1 +DW1 · f(x, u]1, u
]
2) + lA(x, u]1, u

]
2) = 0

∂tW2 +DW2 · f(x, u]1, u
]
2) + lB(x, u]1, u

]
2) = 0

u]1 = u]1(x,DW1, DW2), u]2 = u]2(x,DW1, DW2)
W1(x, T ) = gA(x)
W2(x, T ) = gB(x),

(SHJ)

and let’s suppose that the feedbacks couple(
u]1(x,DW1(x, t), DW2(x, t)), u]2(x,DW1(x, t), DW2(x, t))

)
is admissible. Then such couple is a Nash equilibrium for t0 and for all x0 ∈ Rn.

Notice that the first equation in (SHJ) may be rewritten, thanks to the definition of u]1,

∂tW1 + max
a∈A
{DW1 · f(x, a, u]2) + lA(x, a, u]2)} = 0, (13)

and in the same way for the second equation, referring to the definition of u]2,

∂tW2 + max
b∈B
{DW2 · f(x, u]1, b) + lB(x, u]1, b)} = 0. (14)

Hence (SHJ) is a system of two H-J-B equations coupled via u]1(x,DW1, DW2) and u]2(x,DW1, DW2).
The theorem we just stated is a direct consequence of the verification theorem for non-

autonomous equations (i.e. with time-depending data) which is an easy variation of the previously
presented verification theorems (the proof is left as an exercise for the reader).

Theorem 16 (Verification theorem for non-autonomous HJB equations). Let f̃ : [t0, T ] × Rn ×
A → Rn and l : [t0, T ] × Rn × A → R be measurable in t and continuous in (x, a) and let
W ∈ C1(Rn × (t0, T )) be continuous in t0 and in T , solving{

∂tW + maxa∈A{DW · f̃(t, x, a) + l(t, x, a)} = 0
W (x, T ) = g(x).

(15)

If α∗ is admissible and such that, defining y∗(s) := yx(s; t, α∗), we have

(Wt +DW · f + l)|(s,y∗(s),α∗(s)) = 0,

then α∗ is optimal for the cost functional J(x, t, α) :=
∫ T
t
l(s, y(s), α(s))ds+g(y(T )) on the trajec-

tories of ẏ(s) = f̃(s, y(s), α(s)) with initial conditions y(t) = x. Moreover W (x, t) = J(x, t, α∗).
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Proof ot the theorem 15. By (13), W1 satisfies (15) with

f̃(t, x, a) := f
(
x, a, u]2 (x,DW1(x, t), DW2(x, t))

)
,

l(t, x, a) := lA

(
x, a, u]2(x,DW1(x, t), DW2(x, t))

)
,

which are continuous, and moreover the max in (15) is reached for a = u]1(x,DW1(x, t), DW2(x, t)).
Then Theorem 16 implies that u]1(x,DW1(x, t), DW2(x, t)) is optimal for the first player if the
second player uses u]2. A symmetric argument about equation (14) completes the proof that the
couple (u]1, u

]
2) is a Nash equilibrium.

Let us look now at some application of the theorem.

3.1.1 LQ differential Games

Consider the equation
ẏ = Ay +B1a+B2b,

where A ∈Mn×m, B1 ∈Mn×m1
, B2 ∈Mn×m2

, and the controls a, b are respectively in Rm1 and
Rm2 . The cost functionals are

JA(x, t, α, β) = −
∫ T

t

(
y(s)T

M1

2
y(s) +

|α(s)|2

2

)
ds+ y(T )T

Q1

2
y(T ),

JB(x, t, α, β) = −
∫ T

t

(
y(s)T

M2

2
y(s) +

|β(s)|2

2

)
ds+ y(T )T

Q2

2
y(T ),

with M1,M2, Q1, Q2 ∈ Sym(n).
Let’s check Hypothesis 2 holds: consider the static game whose cost functionals are given by

ΦA(a, b) = p1 · (Ax+B1a+B2b)− xT
M1

2
x− |a|

2

2
,

ΦB(a, b) = p2 · (Ax+B1a+B2b)− xT
M2

2
x− |b|

2

2
.

We are in the same hypotheses of Lemma 2 and it may be easily computed that the maximum of
ΦA(·, b) is reached only by a = BT1 p1, while the maximum of ΦB(a, ·) is reached only by b = BT2 p2.
Hence the only possible Nash equilibrium is (BT1 p1, B

T
2 p2), and

u]1(p1) = BT1 p1, u]2(p2) = BT2 p2

are continuous, so Hypothesis 2 holds. The system becomes
∂tW1 +DW1 · (Ax+B1B

T
1 DW1 +B2B

T
2 DW2) = xT M1

2 x+
|BT1 DW1|2

2

∂tW2 +DW2 · (Ax+B1B
T
1 DW1 +B2B

T
2 DW2) = xT M2

2 x+
|BT2 DW2|2

2

W1(x, T ) = xTQ1x
2 , W2(x, T ) = xTQ2x

2

(16)

As we did for optimal control, let’s state the following ansatz : let’s look for solutions of the
problem of the form

Wi(x, t) =
xTKi(t)x

2
, i ∈ {1, 2}

with Ki symmetric matrix n× n. Let’s substitute in (16) and set

Si := BiB
T
i , i = 1, 2,
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noticing that they are symmetric matrices; moreover in each quadratic form which appears in the
expression we write the matrix in symmetrized form, namely

KiSjKj =
KiSjKj +KT

j SjKi

2
, i 6= j.

So we get an equality bewtween two quadratic forms which holds for all x if the following system
of Riccati ordinary matricial equations is verifiedK̇1 = M1 −K1S1K1 −K1(A+ S2K2)− (A+ S2K2)TK1

K̇2 = M2 −K2S2K2 −K2(A+ S1K1)− (A+ S1K1)TK2

K1(T ) = Q1, K2(T ) = Q2.

(17)

Theorem 17. If Riccati system (17) has solutions K1(·),K2(·) ∈ C1((t0, T ), Sym(n)), Ki con-
tinuous in T , then Wi(x, t) = xTKi(t)x are solutions of the system (16) in (t0, T ]×Rn, hence thet
are the value corresponging to a feedback Nash equilibrium given by

u∗1(x, t) = u]1(DW1(x, t)) = BT1 K1(t)x

u∗2(x, t) = u]2(DW2(x, t)) = BT2 K2(t)x

Moreover, there exists t0 < T such that (17) has solution in C1([t0, T ], Sym(n)) and such a
solution is unique.

Proof. The first statement comes from verification theorem and previous calculations.
Existence and uniqueness for a local solution for the system (17) comes from the general theory

of ordinary differential equations thanks to the local Lipschitz continuity of the right hand side
of (17). The fact that the matricesKi are symmetric can be shown as in Proposition 1, namely
checking that the couple K1(·)T ,K2(·)T is a solution of (17), thanks to the symmetry of Mi and
Qi, and then using the uniqueness of the solution to get Ki = KT

i .

3.1.2 Zero-sum LQ differential games

Let’s consider the special case of 0-sum differential games, where lB = −lA = −l, gB = −gA = −g,
p1 = −p2 = p. Hypothesis 2 can be simplified and replaced by the following.

Hypothesis 2′: There exists a couple of continuous functions (u]1, u
]
2) : Rn × Rn → A × B such

that ∀x ∈ Rn,∀ p ∈ Rn, (u]1, u
]
2)(x, p) is a saddle point of the 0-sum static game with gain-cost

functional Φ(a, b;x, p) = p · f(x, a, b) + l(x, a, b), i.e.

u]1(x, p) ∈ argmaxa∈A Φ(a, u]2;x, p), u]2(x, p) ∈ argminb∈B Φ(u]1, b;x, p).

Definition 13. (u∗1, u
∗
2) admissible is a saddle point of the 0-sum differential game in feedback

strategies if
J(t, x, u1, u

∗
2) ≤ J(x, t, u∗1, u

∗
2) ≤ J(x, t, u∗1, u2),

for every u1 feedback such that (u1, u
∗
2) is admissible, for every u2 feedback such that (u∗1, u2) is

admissible.

Corollary 4. Let’s suppose Hypothesis 2’ holds and that W ∈ C1 solves∂tW +DW · f(x, u]1, u
]
2) + l(x, u]1, u

]
2) = 0

u]i = u]i(x,DW )
W (x, T ) = g(x)

(18)

If (u∗1, u
∗
2) = (u]1(x,DW (x, t)), u]2(x,DW (x, t))) is admissible, then it is a saddle point of the

0-sum differential game in feedback strategies, and W is the value of the game, i.e., W (x, t) =
J(x, t, u∗1, u

∗
2).
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Proof. Note that W1 = W e W2 = −W satisfy the first two equations of the system (SHJ).
By Theorem 15, the control (u∗1, u

∗
2) is a Nash equilibrium for the differential game in feedback

strategies. Then it is also a saddle point. By Theorem 16 we get also W (x, t) = J(x, t, u∗1, u
∗
2).

Remark 9. If the static game of Hypothesis 2′ has a saddle point, then it has value:

Φ(u]1, u
]
2;x, p) = min

b
max
a

Φ(a, b;x, p) = max
a

min
b

Φ(a, b;x, p).

Such request is called Isaacs condition; it is weaker than Hypothesis 2′ since it doesn’t require the
continuity of the saddle point with respect to (x, p). In this case (18) becomes

∂tW + min
b∈B

max
a∈A
{DW · f(x, a, b) + l(x, a, b)} = 0,

or also
∂tW + max

a∈A
min
b∈B
{DW · f(x, a, b) + l(x, a, b)} = 0,

which go by the name of Isaacs equations.

Application 1 (0-sum LQ games). Consider the linear system

ẏ = Ay +B1a+B2b,

where A ∈Mn×m, B1 ∈Mn×m1 , B2 ∈Mn×m2 , and the controls a, b are respectively in Rm1 and
Rm2 . Let the functional J , which represents the gain of the first player (hence the cost for the
second player) be given by:

J = −
∫ T

t

(
yT
M

2
y +
|α|2

2
− |β|

2

2

)
ds+ yT

Q

2
y.

We get
u]1 = BT1 p, u]2 = −BT2 p,

and looking for solutions of the form W (x, t) = 1
2x

TK(t)x, we get a single ordinary matrix Riccati
equation {

K̇ = M −KA−ATK +K(B2B
T
2 −B1B

T
1 )K ,

K(T ) = Q .
(19)

Besides the existence for small times of the feedback Nash equilibrium, which comes from Theorem
17, under additional hypotheses we may prove the existence also for larger times.

Corollary 5. If Q ≥ 0, M ≤ 0, and B2B
T
2 − B1B

T
1 ≥ 0, then there exists a unique solution of

(19) in (−∞, T ].

Proof. Since B2B
T
2 − B1B

T
1 ≥ 0, by a well-know fact of linear algebra there exists a matrix B

such that BBT = B2B
T
2 −B1B

T
1 . Hence the ordinary matrix Riccati equation has the same form

of the optimal control one, and by the hypotheses of semi-definiteness of Q and M we can use
Theorem 4 to get the existence of a global solution K ∈ C1((−∞, T ), Sym(n)).

3.1.3 An example: advertising in a duopoly

Let y1, y2 be the market percentages of the two firms, with y1 + y2 = 1. The controls αi are the
amount of money invested in advertising (α2 = β). The dynamics, called Lanchester dynamics, is

ẏi = αi(1− yi)− αjyi, i 6= j, αi ≥ 0.

If the unitary cost of the advertising is equal for the two firms, the gain may be modeled with

J i(x, t, α1, α2) =

∫ T

t

(
riyi −

α2
i

2

)
ds+Riyi(T ),

24



for suitable constants ri > 0, Ri ≥ 0. We want to phrase the problem as a 0-sum game. Using
the equality y2 = 1− y1 we get

J1 − J2 =

∫ T

t

(
(r1 + r2)y(s)− α2

2
+
β2

2

)
ds+ (R1 +R2)y(T )− r2(T − t)−R2.

Define r = r1 + r2 and R = R1 +R2; the 0-sum game with cost functional

J(x, t, α, β) =

∫ T

t

(
ry − α2

2
+
β2

2

)
ds+Ry(T ).

is equivalent to the previous game. Set f(x, a, b) = (1 − x)a − xb, l(x, a, b) = rx − a2

2 + b2

2 ,
g(x) = Rx. Isaacs equation is

Wt +Wxf(x, u]1, u
]
2) + l(x, u]1, u

]
2) = 0,

where (u]1, u
]
2) is a saddle point for the static game Φ(a, b, x, p) = pf(x, a, b) + l(x, a, b). We easily

get that u]1(x, p) = p(1− x) if p ≥ 0, 0 if p < 0, and that u]2(x, p) = px if p ≥ 0, 0 if p < 0. Hence,
if Wx ≥ 0 the equation becomes {

Wt +
W 2
x

2 (1− 2x) + rx = 0
W (T, x) = Rx

Let’s state the following ansatz : we look for solutions of the form W (t, x) = c(t) +K(t)x, with K
and c of class C1, K ≥ 0. Hence we get the equation

ċ+ K̇x+
1− 2x

2
K2 + rx = 0,∀x ∈ R,

which leads to the system 
K̇ −K2 + r = 0

ċ+ K2

2 = 0
K(T ) = R
c(T ) = 0

We immediatly get that c(t) =
∫ T
t
K2(s)/2 ds. The equation for K may be solved explicitly, for

example with variables separation, and we see that the solution exists for all t ≤ T and moreover
K(t) ≥ 0. This may also be shown by a simple qualitative analysis. Indeed

√
r and −

√
r are

stationary solutions (equilibria) of the equation, hence if R >
√
r also K(t) >

√
r for all t, and if

0 ≤ R <
√
r we get −

√
r < K(t) <

√
r. Moreover, in the firts case K̇(t) > 0, hence the solution

exists unique in (−∞, T ) and it is increasing. In the second case K̇(t) < 0, hence K is decreasing
and so K(t) ≥ R ≥ 0, and then also in this case the solution exists in (−∞, T ). In conclusion,
there exists a unique solution in this form, W (t, x) = c(t) + K(t)x, for every R ≥ 0, with K and
c of class C1 and defined for every t ≤ T .

Moreover, the feedbacks u∗1(x, t) = u]1(x,Wx(x, t)) = (1−x)K(t) and u∗2(x, t) = u]2(x,Wx(x, t)) =
xK(t) are the saddle point of the differential game.

3.2 Zero-sum differential games
3.2.1 Value functions and Dynamic Programming

In this section we want to give a definition of value of a 0-sum differential game such that it
satisfies a suitable equation of Hamilton-Jacobi type. First we need some definitions.

Definition 14. Let At = {a : [t, T ] → A measurable}, and Bt = {b : [t, T ] → B measurable}. A
strategy for the 1st player is a map α : Bt → At; it is non-anticipating if for every t ≤ s ≤ T , and
for every b, b̂ ∈ Bt such that b(u) = b̂(u) q.o. u ≤ s, we have that α[b](u) = α[b̂](u), q.o. u ≤ s.
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Let Γt := {α : non-anticipating strategy of A} and ∆t := {β : non-anticipating strategy of B}.
Note that ∀b ∈ Bt, ∀α ∈ Γt there exists a unique solution of{

ẏ(s) = f(y(s), α[b](s), b(s)), t < s

y(t) = x
(20)

Recall that the gain of player A and the cost of player B are given by the single functional

J(t, x, a, b) =

∫ T

t

l(y(s), a(s), b(s)) ds+ g(y(T )).

Definition 15. The lower value of the game is

V (t, x) = inf
β∈∆t

sup
a∈A

J(t, x, a, β[a]);

The upper value of the game is

U(t, x) = sup
α∈Γt

inf
b∈B

J(t, x, α[b], b).

The game has a value if V = U .

Example 24. Examples of strategies:

• Constant strategies. Let a ∈ At and set α[b] = a for all b ∈ Bt.

• Let Ψ: B → A be given and set α[b] = Ψ ◦ b. If Ψ(b(·)) is measurable for any b ∈ Bt, then
α ∈ Γt.

• Feedbacks: let Φ: Rn × [t, T ]→ A be such that for all b ∈ Bt there exists a unique solution
of {

q̇(s) = f(q(s),Φ(q(s), s), b(s))
q(t) = x

and such that s→ Φ(q(s), s) be measurable. Then set α[b](s) = Φ(q(s), s).

Example 25 (Berkovitz - the lower value and the upper values can be different). Consider{
ẏ = (a− b)2

y(0) = x ∈ R

where A = B = {0, 1}, l = 0, g strictly increasing. If B wants to minimize the cost functional we
expect he plays the strategy β∗[a](s) = a(s). For such choice we get

V (t, x) ≤ sup
a
g(yx(T, t, a, β∗[a])) = g(x).

On the other hand we expect that A plays the strategy

α∗[b](s) =

{
1 if b(s) = 0

0 if b(s) = 1

For such choice we have ẏ(s) = (α∗[b]s)− bs))2 = 1 for all s ≥ t, and therefore y(s) = x+ s− t for
all b ∈ Bt. Then

U(t, x) ≥ g(x+ T − t) > g(x) ≥ V (t, x).

Remark 10. From the example we understand that there is an information advantage for the
player choosing non-anticipating strategies. However, any more realistic notion of value lies be-
tween V and U , and so, if V = U all reasonable notions of value coincide because in such a case
the information advantage is irrelevant.
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Here are the standing assumptions in this section. We suppose that A,B are compact and

• f : Rn × A×B → Rn continuous, bounded, and globally Lipschitz in x, uniformly in (a, b),
i.e., there exists C1 > 0 such that |f | ≤ C1 and |f(x, a, b) − f(x̂, a, b)| ≤ C1|x − x̂|, for all
x, x̃ and all (a, b) ∈ A×B;

• l : Rn × A × B → Rn continuous, bounded, and globally Lipschitz in x, uniformly in (a, b),
i.e., there exists C2 > 0 tsuch that |l| ≤ C2 and |l(x, a, b)− l(x̂, a, b)| ≤ C2|x− x̂|, for all x, x̃
and all (a, b) ∈ A×B;

• g : Rn → R bounded and globally Lipschitz , i.e., there exists C3 > 0 such that |g| ≤ C3,
|g(x)− g(x̂)| ≤ C3|x− x̂|, for all x, x̂.

Theorem 18 (Dynamic Programming Principle). Under the previous assumptions we have the
following: ∀ 0 ≤ t ≤ t+ σ ≤ T , ∀x ∈ Rn

V (t, x) = inf
β∈∆t

sup
a∈At

{∫ t+σ

t

l(yx, a, β[a]) ds+ V (t+ σ, yx(t+ σ))

}
where yx(s) solves ẏ = f(y, a, β[a]), for t < s, y(t)=x,

U(t, x) = sup
α∈Γt

inf
b∈Bt

{∫ t+σ

t

l(yx, α[b], b) ds+ U(t+ σ, yx(t+ σ))

}
where yx(s) solves (20).

Proof. For simplicity we suppose l = 0; we know from the previous study of the Bolza problem
that the case l 6= 0 can be reduced to a Mayer problem, i.e., with l = 0. We define

W (t, x) := inf
β∈∆t

sup
a∈At

V (t+ σ, yx(t+ σ))

where yx is the solution of the system given the controls β e a. We want to prove the inequalities
V (t, x) ≤W (t, x) ≤ V (t, x).

For the first inequality we fix ε > 0. Then, by definition of inf there exists δ ∈ ∆t such that

W (t, x) ≥ sup
a∈At

V (t+ σ, yx(t+ σ))− ε.

Moreover, for any z ∈ Rn consider the lower value starting from z at the initial time t+ σ:

V (t+ σ, z) = inf
β∈∆t+σ

sup
a∈At+σ

g(yz(T ))

with yz solution of {
ẏ = f(y, a, β[a])
y(t+ σ) = z

Then there is a δz ∈ ∆t+σ such that

V (t+ σ, z) ≥ sup
a∈At+σ

g(yz(T ))− ε.

We define a strategy for the 2nd player based on the choices above:

β̄[a](s) =

{
δ[a](s) t ≤ s ≤ t+ σ

δz[a](s) t+ σ ≤ s ≤ T, z = yx(t+ σ; t, a, δ[a])

Note that β̄ ∈ ∆t and yz(T ; t+ σ, a, δz[a]) = yx(T ; t, a, β̄[a]). Then

W (t, x) ≥ sup
a∈At

g(yx(T ; t, a, β[a]))− 2ε ≥ V (t, x)− 2ε.
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Letting ε tend to 0 we get the 1st inequality.
[Non in programma dal 2019]

Vediamo ora come ottenere la seconda. Fissiamo ancora una volta ε > 0: esiste β1 ∈ ∆t tale
che

V (t, x) ≥ sup
a∈At

g(yx(T ))− ε

Per definizione W (t, x) ≤ sup
a∈At

V (t+ σ, yx(t+ σ)). Quindi, esiste a1 ∈ At tale che

W (t, x) ≤ V (t+ σ, y1
x(t+ σ)) + ε

dove y1
x è la soluzione del sistema con controllo a1. Come fatto in precedenza definiamo una

strategia, questa volta per il primo giocatore, a partire dalla strategia a. Per ogni a ∈ At+σ
definisco un controllo ã ∈ At con

ã(s) =

{
a1(s) t ≤ s ≤ t+ σ

a(s) t+ σ ≤ s ≤ T

e definisco β2 ∈ ∆t+σ come β2[a](s) = β1[ã](s), per s ∈ [t+ σ, T ]. Allora,

V (t+ σ, z) ≤ sup
a∈At

g(yz(T ; t+ σ, a, β2[a]))

quindi esiste a2 ∈ At+σ tale che

V (t+ σ, z) ≤ g(yz(T ; t+ σ, a2, β2[a2])) + ε.

Definiamo

a3(s) =

{
a1(s) t ≤ s ≤ t+ σ

a2(s) t+ σ ≤ s ≤ T

Notiamo che per come abbiamo costruito i controlli, yz(T ; t + σ, a2, β2[a2]) = yx(T ; t, a3, β1[a3]).
Mettendo assieme le disuguaglianze precedenti si ottiene che

W (t, x) ≤ V (t+ σ, y1
x(t+ σ)) + ε ≤ g(yz(T ; t+ σ, a2, β2[a])) + 2ε =

= g(yx(T ; t, a3, β1[a3])) ≤ sup
a∈At

g(yx(T )) ≤ V (t, x) + 3ε (21)

Facendo tendere ε a 0 si ottiene la seconda disuguaglianza, da cui W = V .
The second statement of the theorem, concerning U , can be obtained in a similar way by

defining W̃ (t, x) = sup
α∈Γt

inf
b∈Bt

U(t+ σ, yx(t+ σ)) and proving the inequalities U ≤ W̃ ≤ U .

Theorem 19. There exists C4 > 0 dipending on T such that

1. |V (t, x)|, |U(t, x)| ≤ C4, per ogni 0 ≤ t ≤ T , per ogni x;

2. |V (t1, x1)− V (t2, x2)| ≤ C4(|t1 − t2|+ |x1 − x2|), per ogni 0 ≤ t1, t2 ≤ T , per ogni x1, x2;

3. |U(t1, x1)− U(t2, x2)| ≤ C4(|t1 − t2|+ |x1 − x2|), per ogni 0 ≤ t1, t2 ≤ T , per ogni x1, x2.

Proof. To prove 1 it is enough to note that by the assumptions on f and l we have

|J(t, x, a, b)| ≤ C2(T − t) + C3 ≤ C2T + C3.

[Non in programma dal 2019]
Dimostriamo il punto 3 (la dimostrazione di 2 è analoga): siano x1, x2 fissati, e 0 ≤ t1 ≤

t2 ≤ T . Vogliamo stimare U(t1, x1) − U(t2, x2). Esiste una strategia α1 tale che U(t1, x1) ≤
infb∈Bt1 J(t1, x2, α, b) + ε. Dato b0 ∈ B costante e b ∈ Bt2 , definiamo il controllo b̃ ∈ Bt1 così:

b̃(s) =

{
b0 t1 ≤ s ≤ t2
b(s) t2 ≤ t ≤ T
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Sia α ∈ Γt2 definita da α[b](s) = α[b̃](s), per s ∈ [t2, T ]. Allora vale:

U(t2, x2) ≥ inf
b∈Bt2

J(t2, x2, α, b).

Quindi, esiste b ∈ Bt2 tale che U(t2, x2) ≥ J(t2, x2, α, b)−ε. Confrontiamo le traiettorie yx1(T ; t1, α, b̃)
e yx2

(T ; t2, α, b): si ha che

|yx1
(t2)− x1| ≤ C|t1 − t2|,

|yx1(s)− yx2(s)| ≤ eC1T |yx1(t2)− x2|

per t2 ≤ s ≤ T , dove la seconda stima si ottiene dalla prima con la disuguaglianza di Gronwall
perché b(s) = b̃(s) e α[b](s) = α[b̃](s) per t2 ≤ s ≤ T . Sommando e sottraendo x1 si ottiene

|yx1
(s)− yx2

(s)| ≤ CT (|t1 − t2|+ |x1 − x2|).

Infine supponiamo per semplicità l ≡ 0 e osserviamo che

J(t1, x1, α, b̃)− J(t2, x2, α, b) = g(yx1(T ))− g(yx2(T )) ≤ C3|yx1(T )− yx2(T )| ≤
≤ C3CT (|t1 − t2|+ |x1 − x2|).

3.2.2 Isaacs Equations

We define the upper and lower Hamiltonians by

H+(x, p) := min
b

max
a
{p · f(x, a, b) + l(x, a, b)}

H−(x, p) := max
a

min
b
{p · f(x, a, b) + l(x, a, b)}.

Proposition 3. The Hamiltonians H+, H− : Rn×Rn → R are continuous and there exists K > 0
such that, for F = H+, H−, we have

|F (x, p)− F (x̂, p)| ≤ K|x− x̂|(1 + |p|) (Lx)

|F (x, p̂)− F (x, p)| ≤ C1|p− p̂|. (Lp)

Proof. We show the estimate for H+. There exists b′ ∈ B such that

H+(x, p) = max
a
{p · f(x, a, b′) + l(x, a, b′)};

moreover, there exists a′ such that

H+(x̂, p) ≤ p · f(x, a′, b′) + l(x, a′, b′).

Then

H+(x̂, p)−H+(x, p) ≤ |p||f(x, a′, b′)− f(x̂, a′, b′)|+ C2|x− x̂| ≤ K|x− x̂|(1 + |p|).

We conclude by exchanging x and x̂.
Next we prove the continuity in p. Take b′ as above; there exists â such that H+(x, p̂) ≤

p̂ · f(x, â, b′) + l(x, â, b′). Moreover,

H+(x, p) = max
a
{p · f(x, a, b′) + l(x, a, b′)} ≥ p · f(x, â, b′) + l(x, â, b′),

and then
H+(x, p̂)−H+(x, p) ≤ |f(x, â, b′)||p− p̂| ≤ C1|p− p̂|.

By exchanging p and p̂ we get (Lp), which combined with (Lx) implies the continuity of H+.
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Theorem 20. Under the current assumptions the upper value U is the unique bounded and con-
tinuous viscosity solution in [0, T ]× Rn of{

−(Ut +H+(x,DU)) = 0 in ]0, T [× Rn,
U(T, x) = g(x),

and the lower value V is the unique bounded and continuous viscosity solution of{
−(Vt +H−(x,DV )) = 0 in ]0, T [× Rn,
V (T, x) = g(x).

To prove Theorem 20 we need the following technical lemma.

Lemma 3. Suppose Λ ∈ C(A×B). Then ∀σ > 0,∀ t0 ∈ R

max
a∈A

min
b∈B

Λ(a, b) = inf
β∈∆t0

sup
a∈At0

1

σ

∫ t0+σ

t0

Λ(a(s), β[a](s)) ds.

Proof. Call λ the left hand side of the equation, θ the right hand side.We show first that λ ≤ θ.
Take a∗ such that λ = minb∈B Λ(a∗, b). Then

θ ≥ inf
β∈∆t0

1

σ

∫ t0+σ

t0

Λ(a∗, β[a](s)) ds ≥ λ,

because the integrand is ≥ λ at each point.
Next we prove the other inequality. First we show that, for all ε > 0, there exists ϕ : A → B

measurable such that
Λ(a, ϕ(a)) ≤ min

b∈B
Λ(a, b) + ε.

For all a there is b(a) such that Λ(a, b(a)) = minb Λ(a, b) := λ(a), but we do not know if the map
b is measurable. By continuity, for all a there is r > 0 such that

Λ(a′, b(a)) ≤ λ(a′) + ε, ∀ a′ ∈ B(a, r).

By compactness there exist a1, . . . , an and r1, . . . , rn such that A ⊆
⋃n
i=1B(ai, ri), and setting

bi := b(ai) we get
Λ(a′, bi) ≤ λ(a′) + ε,

for all a′ ∈ B(ai, ri). Then we can define ϕ(a) = bi if a ∈ B(ai, ri) and a /∈ B(ak, rk), k < i. This
function is measurable and it satisfies the desired inequality.

Now we define the strategy β∗ ∈ ∆t0 as β∗[a](s) = ϕ(a(s)). Then

θ ≤ sup
a∈At0

1

σ

∫ t0+σ

t0

Λ(a(s), β∗[a](s)) ds

≤ sup
a∈At0

1

σ

∫ t0+σ

t0

min
b

Λ(a(s), b) ds+ ε ≤ λ+ ε.

Proof of Theorem 20. We will show only the statement about V , the other is analogous.
1. By definition V (T, x) = g(x).
2. We prove that V is a subsolution. Let (t0, x0) be a local maximum point of V −ϕ, with ϕ ∈ C1.
Assume by contradiction thta −(ϕt(t0, x0) +H−(x0, Dϕ(t0, x0))) > θ > 0, i.e.,

ϕt(t0, x0) +H−(x0, Dϕ(t0, x0)) < −θ < 0. (22)
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For simplicity we assume l = 0, and then

H−(x, p) = max
a

min
b
p · f(x, a, b).

Set Λ(a, b) := f(x0, a, b) ·Dϕ(t0, x0). Then, by the previous Lemma,

H−(x0, Dϕ(t0, x0)) = inf
β∈∆t0

sup
a∈At0

1

σ

∫ t0+σ

t0

f(x0, a(s), β[a](s)) ·Dϕ(t0, x0) ds.

Set y(s) = yx0(s; t0, a, β[a])). For σ sufficiently small, from (22), the estimate |y(s) − x0| ≤ C1s
for all a ∈ At0 , β ∈ ∆t0 , and the continuity of f, ϕt, Dϕ, we get

inf
β∈∆t0

sup
a∈At0

1

σ

∫ t0+σ

t0

[ϕt(s, y(s)) + f(y(s), a(s), β[a](s)) ·Dϕ(s, y(s))] ds ≤ −θ
2
.

We can integrate and obtain

inf
β∈∆t0

sup
a∈At0

[ϕ(t0 + σ, y(t0 + σ)− ϕ(t0, x0)] ≤ −σθ
2
.

Recalling that (t0, x0) is a local maximum point of V − ϕ, we arrive at

inf
β∈∆t0

sup
a∈At0

[V (t0 + σ, y(t0 + σ))− V (t0, x0)] ≤ −σθ
2
,

a contradiction with the Dynamic Programming Principle, which says that the right hand side is
0.
3. The proof that V is a supersolution follows a similar argument: the reader is invited to work
out the details.
4. The uniqueness of U and V as solutions in BUC([0, T ]×Rn of the terminal value problem for
the corresponding Isaacs equation follows from the Comparison Principle for viscosity solutions,
which holds by the properties (Lx) and (Lp) of the Hamiltonians: see, e.g., Theorem 1, sect. 10.2,
p. 547 of [E].

The following corollary of the previous theorem guarantees the existence of the value the Isaacs
conditions is satisfied.

Corollary 6. 1. V (t, x) ≤ U(t, x), for all (t, x) ∈ [0, T ]× Rn;

2. if H+(x, p) = H−(x, p) for all (x, p), then U = V .

Proof. It is an immediate consequence of the inequality H+ ≥ H−, following from the definitions,
and of the Comparison Principle among viscosity sub- and supersolutions, which holds because
the Hamiltonians satisfy the properties (Lx) and (Lp).

3.2.3 Existence of the value for differential games in mixed strategies

Let P(A),P(B) be the sets of probability measures on A e B, respectively. Define

f̃(x, µ, ν) :=

∫∫
A×B

f(x, a, b) dµ(a) dν(b)

l̃(x, µ, ν) :=

∫∫
a×B

l(x, a, b) dµ(a) dν(b).

Lemma 4. f̃ and l̃ satisfy the same hypotheses as l and f , if we endow P(A),P(B) with the
topology induced by the weak-star convergence.
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Proof. P(A),P(B) are compact with the weak-star topology by Theorem 10. Let us prove that f̃
and l̃ are continuous. Let (xn, µn, νn)→ (x, µ, ν), then:

|f̃(xn, µn, νn)− f̃(x, µ, ν)| ≤
|f̃(xn, µn, νn)− f̃(x, µn, νn)|+ |f̃(x, µn, νn)− f̃(x, µ, ν)| ≤

≤
∫∫

A×B
|f(xn, a, b)− f(x, a, b)| dµn(a)dνn(b)+

+

∣∣∣∣∫∫
A×B

f(x, a, b) dµn(a)dνn(b)−
∫∫

A×B
f(x, a, b) dµ(a)dν(b)

∣∣∣∣ ≤
≤ C1|xn − x| · 1 + o(1) (23)

for n→∞, where we used that µn, νn are probability measures and Remark 7. Moreover,

|f̃(x, µ, ν)| ≤
∫∫

A×B
|fx, a, b)| dµ(a)dν(b) ≤ C1,

e
|f̃(x̂, µ, ν)− f̃(x, µ, ν)| ≤

∫∫
A×B

|f(x̂, a, b)− f(x, a, b)| dµ(a)dν(b) ≤ C1|x̂− x|.

We define the values in mixed strategies as

Ṽ (t, x) = inf
β∈∆̃t

sup
a∈Ãt

J̃(t, x, a, β[a]), Ũ(t, x) = inf
α∈Γ̃t

sup
b∈B̃t

J̃(t, x, α[b], b)

where Ãt and B̃t are the mixed strategies for the two players (in control theory they are called
relaxed controls), ∆̃t is the set of non-anticipating mixed strategies Ãt → B̃t for the second player,
whereas Γ̃t is the analogue for the first.

Application 1. We first apply relaxed controls to optimal control problems with a single player.
The interest of this result is that the existence of optimal controls can be proved within relaxed
controls (see the references in [FR] or [BCD]).

Proposition 4. Let J̃(t, x, b) be the cost functional for a control system (with a single player B
who wishes to minimize a cost). The value in mixed strategies defined above coincides with the
value previuosly defined, i.e., Ṽ (t, x) = V (t, x).

Proof. We compare
H̃(x, p) = min

ν∈P(B)
{f̃(x, ν) · p+ l̃(x, ν)}

and
H(x, p) = min

b∈B
{f(x, b) · p+ l(x, b)},

that are the Hamiltonians associated to the values Ṽ and V , respectively. We have

H̃(x, p) ≤ min
b∈B
{f̃(x, δb) · p+ l̃(x, δb)} = H(x, p).

Moreover, ∀ν:

f̃(x, ν) · p+ l̃(x, ν) =

∫
B

(f(x, b) · p+ l(x, b)) dν(b) ≥

≥
∫
B

min
b∈B
{f(x, b) · p+ l(x, b)} dν(b) =

∫
B

H(x, p)dν(b) = H(x, p) · 1 (24)

because ν is a probability. Then H̃(x, p) ≥ H(x, p), which is the other inequality. Then the
Hamilton-Jacobi-Isaacs equations for ṽ and v coincide. By the uniqueness of the solution of such
equation with prescribed terminal data we get the conclusion.
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Application 2. Now we apply mixed strategies to 2-person 0-sum differential games. First we
show that the value in mixed strategies exists.

Corollary 7. The game A,B, f, l, g has a value in mixed strategies.

Proof. Let H̃+ and H̃− be the Hamiltonians of the differential game in mixed strategies:

H̃+(x, p) := min
µ∈P(B)

max
ν∈P(A)

{p · f(x, ν, µ) + l(x, ν, µ)} = min
µ∈P(B)

max
ν∈P(A)

F (ν, µ)

F (ν, µ) =

∫∫
A×B

(f(x, a, b) · p+ l(x, a, b)) dµ(b)dν(a)

The function F is bilinear. In particular it is concave in ν and convex in µ. Therefore we can
apply Von Neumann Theorem (recall that P(A) and P(B) are compact and convex) and we get
H̃+ = H̃− =: H̃.

As in the previous proof, the uniqueness of solutions to Hamilton-Jacobi-Isaacs equations with
prescribed terminal data implies Ṽ = Ũ , and therefore the existence of the value.

Finally we show that the value in pure strategies, if it exists, coincides with the one in mixed
strategies.

Corollary 8. Under the previous assumptions

V (t, x) ≤ Ṽ (t, x) = Ũ(t, x) ≤ U(t, x).

Proof. We show that V (t, x) ≤ Ṽ (t, x). The proof of Ũ ≤ U is analogous. We introduce the lower
value function ṼA(t, x) of the game where the first player uses relaxed controls Ãt while the second
uses nonanticipating strategies with values pure strategies, i.e., Ãt → Bt, that we denote with ∆̄t.
Then the definitions give

V (t, x) ≤ ṼA(t, x) := inf
β∈∆̄t

sup
a∈Ãt

J̃(t, x, a, β[a]).

Note that ṼA solves an Isaacs equation with Hamiltonian

H−A (x, p) := max
µ∈P(A)

min
b∈B
{f̃(x, µ, δb) · p+ l̃(x, µ, δb)} =

= max
µ∈P(A)

min
ν∈P(B)

{f̃(x, µ, δb) · p+ l̃(x, µ, δb)}, (25)

as we saw in Proposition 4. Then H−A = H̃− and by uniqueness ṼA = Ṽ , and thus V ≤ Ṽ .

We conclude the section by computing the value function in mixed strategies for an example
of game without value in pure strategies.

Example 26. Given the sistem ẏ = (a− b)2 in R, with controls a, b ∈ {0, 1}, l ≡ 0 and g ∈ C1(R)
with g′ > 0, we compute H−, H+, V, U . This is the Berkovitz example and we know that the value
does not exist. We have

H−(x, p) = max
a

min
b

[(a− b)2p] =

{
0 se p ≥ 0

p se p < 0,

H+(x, p) = min
b

max
a

[(a− b)2p] =

{
p se p ≥ 0

0 se p < 0.

We guess that the upper and lower value are

U(t, x) = g(x+ T − t), V (x, t) = g(x).
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In order to prove it we first note that they satisfy the terminal conditions of the Cauchy problem.
Moreover, ∂V

∂t = 0 and ∂V
∂x = g′(x) > 0. Since H− is null on positive numbers, H−(Vx) = 0,

and then Vt + H−(Vx) = 0 is satisfied. By uniqueness, V (t, x) = g(x) is the solution of the
Hamilton-Jacobi-Isaacs equations.

In the same way ∂U
∂t = −g′(x + T − t) and ∂U

∂x = g′(x + T − t) > 0. Since H+ is the identity
on positive numbers, H+(Ux) = g′(x+ T − t), and then Ut +H+(Ux) = 0.

Finally we observe that V (t, x) < U(t, x), because g′ > 0.
Next we look for the value function Ṽ in mixed strategies. To this purpose we compute

the Hamiltonian H̃, which corresponds to the value in mixed strategies of the static game with
Φ(a, b) = (a− b)2p. The associated matrix is

(Φi,j) =

(
0 p
p 0

)
We look for a mixed strategy x = (x1, x2), with x1 + x2 = 1 and x1, x2 ≥ 0 that maximizes the
expected value of Φ. By the method of Section 2.1.5 we compute

max
(x1,x2)

min
j=0,1

1∑
i=0

Φi,jxi = max
(x1,x2)

min{px2, px1} = max
0≤x≤1

min{p(1− x), px} =
p

2
,

as it can be seen by analysing separately the cases p > 0 and p < 0. Then we solve the Cauchy
problem {

Ṽt + 1
2 Ṽx = 0

Ṽ (T, x) = g(x).

This is a linear transport equation, and the solution is

Ṽ (t, x) = g

(
x+

T − t
2

)
.

Then we have
V (t, x) < Ṽ (t, x) = Ũ(t, x) < U(t, x) ∀ t < T.

Observe also that the three value functions have all the same profile as the final cost g, but V
is stationary, whereas the velocity of propagation of Ṽ is a half of the one of the upper value U ,
and then it is the mean between the velocities of propagation of the two value functions in pure
streategies.

4 An introduction to deterministic Mean Field Games
Nash equilibria are very hard to analyse in dynamic games when the number of players N is not
small. Suppose that the state x of each player lives in Rd, so the state space is RNd. Then the
system of Hamilton-Jacobi equations in the verification theorem has N PDEs, each in dimension
Nd. The numerical solution of such a system in hard if Nd > 3 and intractable if Nd > 10. The
problems with multi-agent system that are interesting for applications have a much larger scale.
For instance, the agents of the finantial markets are of the order N ∼ 104, models of crowd motion
involve at least N ∼ 102 pedestrians, the consumers of the energy market in a big country like the
US are of the order N ∼ 105.

However, in these fields the players can be assumed to be very similar among them and to
influence only the cost functional via their empyrical mean

1

N − 1

∑
i6=j

δxi , δx = Dirac mass in x.

Then one can try to carry ideas from the Mean-field theories in Physics into these games. This was
done independently by Lasry and Lions in France and Caines, Huang and Malhame in Canada,
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starting around 2005-6. The theory took the name of Mean Field Games, usually abbreviated
MFG. It aims at approximating, for large population size N , the system of N H-J PDEs (or
matrix Riccati ODEs in the L-Q case) by a simpler model, possibly in dimension d, that describes
macroscopically the behavior of the population of players.

In MFG the population of agents is modelled by a probability measure µt on the state space
of a single player Rd, such that µt(B) =

∫
B
dµt(x) represents the percentage of agents that are in

the Borel set B ⊆ Rd at time t if the population is at an equilibrium (to be properly defined in
the spirit of Nash). Often µt has a density m(x, t) and in that case

µt(B) =

∫
B

dµt(x) =

∫
B

m(x, t)dx.

The other unknown of the MFG is the value of the game for a generic agent at the equilibrium.
Before deriving an MFG model we need some preliminaries.

4.1 The continuity equation.
We need a preliminary notion of measure theory. Given two metric spaces X and Y , a measurable
map Ψ : X → Y , and µ ∈ P(X), the push-forward of µ by Ψ, Ψ#µ, is defined by

Ψ#µ(B) := µ(Ψ−1(B)), ∀ Borel B ⊆ Y.

If µ(Ψ−1(Y )) = 1, e.g., Ψ is surjective, then Ψ#µ ∈ P(Y ). Observe that, if χB is the characteristic
function of the set B, the previous definition reads∫

Y

χB(y)d(Ψ#µ)(y) =

∫
X

χΨ−1(B)(x)dµ(x) =

∫
X

χB(Ψ(x))dµ(x).

Then, for any bounded Borel-measurable function g, by approximation with simple functions we
can get ∫

Y

g(y)d(Ψ#µ)(y) =

∫
X

g(Ψ(x))dµ(x). (26)

Now we want to describe the evolution of a population with distribution in space at time
t described by µt ∈ P(Rd), if each agent moves with dynamics driven by a vector field f :
Rd × [0, T ]→ Rd satisfying the global existence and uniqueness of trajectories.

Definition 1. Φ : Rd × [0, T ]→ Rd is the flow associated to f if Φ(x, s) = y(s) where y(·) solves{
ẏ(s) = f(y(s), s) , s > 0,
y(0) = x.

We know that x 7→ Φ(x, s) is invertible and denote the inverse with Φ−1(·, s).

Definition 2. If µo is a Borel probability measure on Rd, we denote with µs := Φ(·, s)#µo ∈ P(Rd)
its push-forward by the flow Φ, i.e.

µs(B) := µo
(
Φ−1(·, s)(B)

)
, ∀ Borel set B ⊆ Rd.

Now we look for an equation satisfied by µs. By (26), for all bounded and measurable ψ :
Rd × [0, T ] we have ∫

Rd
ψ(y, s)dµs(y) =

∫
Rd
ψ(Φ(x, s), s)dµo(x). (27)

If ψ ∈ C1 we can use (27), differentiate under the integral sign, and then apply (27) again to get

d

ds

∫
Rd
ψ(y, s)dµs(y) =

∫
Rd

(ψs +Dxψ · Φs) (Φ(x, s), s)dµo(x)

=

∫
Rd

(ψs +Dxψ · f) (y, s)dµs(y).
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Now we take ψ with compact support in Rd × [0, T ) and integrate both sides in time from 0 to T
to get∫

Rd
ψ(y, 0)dµo(y) = −

∫ T

0

∫
Rd

(ψs +Dxψ · f) (y, s)dµs(y) ds, ∀ψ ∈ C1
c (Rd × [0, T )). (WCE)

Definition 3. If µ. : [0, T )→ P(Rd) satisfies (WCE), we say it is a weak or distributional solution
of the initial-value problem for the continuity equation

∂m

∂s
+ divx(mf) = 0 (CE)

with initial condition µ0.

So we have proved the following

Lemma 5. The push-forward µs = Φ(·, s)#µo of µo ∈ P(Rd) by the flow Φ associated to f
satisfies (WCE), i.e., it is a weak solution of (CE) in Rd × (0, T ) with the initial condition µo.

The motivation of the last definition is the following. Assume

dµo(x) = mo(x)dx, dµs = m(x, s)ds, (H1)

i.e., µo and µs are absolutely continuous with respect to the Lebesgue measure, and therefore have
a (locally integrable) density. Suppose in addition that f is C1 in space and m ∈ C(Rd× [0, T ))∩
C1(Rd × (0, T )). In this case, if µ solves (WCE), then the density m solves (CE). To prove this
claim we take ψ ∈ C1

c (Rd × [0, T )) and rewrite (WCE) as∫
Rd
ψ(y, 0)mo(y)dy = −

∫ T

0

∫
Rd

(ψs +Dxψ · f)(y, s)m(y, s) dy ds . (28)

We integrate first by parts in time to get

−
∫
Rd

∫ T

0

(ψsm)(y, s) dsdy =

∫
Rd
ψ(y, 0)mo(y)dy +

∫
Rd

∫ T

0

(ψms)(y, s) ds

and note that the first term on the r.h.s. equals the l.h.s. of (28). Next we will use the product
rule

divx(mfψ) = divx(mf)ψ +mDxψ · f

and the divergence theorem, which gives∫
Rd

divx(mψf)(y, s)dy =

∫
∂suppψ

mψf · νdσ = 0 ,

where ν is the exterior normal to suppψ. Plugging these identities in (28) we obtain

0 =

∫ T

0

∫
Rd

(ms + divx(mf)) (y, s)ψ(y, s)dy ds.

This implies (CE) by the arbitrariness of ψ: if (CE) fails at some point (x, t) we get a contradiction
by choosing ψ > 0 with sufficiently small support centered at (x, t).

Viceversa, it is easy to see in the same way that (CE) and the initial condition m(y, 0) = mo(y)
(attained continuously) imply that µ satisfies (WCE).

36



4.2 A heuristic derivation of the MFG system
Consider a problem in Calculus of Variations, i.e., a control problem with dynamics

ẏ(s) = −a(s) a(s) ∈ Rd,

initial condition y(t) = x, and cost functional to minimize

J(t, x, a) :=

∫ T

t

(L(a(s)) + F (y(s), s)) ds+ g(y(T )).

We assume L is convex, lim|a|→∞ L(a)/a = +∞, and define the Hamiltonian

H(p) := L∗(p) := max
a∈Rd
{a · p− L(a)} (29)

i.e., the convex conjugate of L. The HJB equation associated to the problem is{
−ut +H(Dxu) = F (x, t) , in Rd×]0, T [,
u(x, T ) = g(x).

(HJB)

Lemma 6. Assume L ∈ C1, DL : Rd → Rd is invertible and (DL)−1 ∈ C1. Then H ∈ C1 and
DH = (DL)−1. Moreover, if u ∈ C1 is a solution of (HJB) then DH(Dxu(x, t)) is an optimal
feedback, i.e., the solutions of{

ẏ(s) = −DH(Dxu(y(s), s)) , s > t,
y(t) = x.

are optimal trajectories for the problem of minimizing J(t, x, ·).

Proof. The argmax in the definition of H (29) is attained at critical points of the pre-Hamiltonian,
i.e., at a such that p − DL(a) = 0. Since DL is invertible this has a unique solution Q(p) :=
(DL)−1(p). Then H(p) = Q(p) · p− L(Q(p)), so H ∈ C1 and

DH(p) = Q(p) +DQ(p) · p−DL(Q(p)) ·DQ(p) = Q(p)

because p = DL(Q(p)). This proves the first statement.
The optimality of the feedback control a = Q(Dxu) = DH(Dxu) follows from the verification

theorems of Section 1.1.

Then Lemma 5 tells us that, under the assumptions of Lemma 6, a population of agents with
the same individual cost F and all behaving optimally, with initial density mo, evolves as a weak
solution of the continuity equation (of Fokker-Planck type)

∂m
∂t − divx(mDH(Dxu)) = 0 , in Rd×]0, T [,

m(x, 0) = mo(x).
(FP)

Now suppose that we have N agents, with position yi(s) at time s, and the cost F of the N − th
agent depends on its own position in the state space and on the empirical mean of the others

µNs :=
1

N − 1

N−1∑
i=1

δyi(s).

So from now on F : Rd × P(Rd) → R, and for measures µ with a density m we will also write
F (x,m) = F (x, µ) (with a slight abuse of notation). The value function vN of the N -th agent
satisfies 

∂vN

∂t +H(Dxv
N ) = F (x, µN (t)) , in Rd×]0, T [,

vN (x, T ) = g(x).
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The measure µN describing a population of agents all equal to the N -th evolves according to the
weak form of the continuity equation

∂µN

∂t − divx(µNDH(Dxv
N )) = 0 , in Rd×]0, T [,

µN (x, 0) = µNo (x).

Now let us make the strong assumption that, asN →∞, µN
∗
⇀ µ and vN → u, with its derivatives,

in a suitable sense. If the limit µ has a density m, we may expect that m and u satisfy the system
of PDEs 

−ut +H(Dxu) = F (x,m) , in Rd×]0, T [,

mt − divx(mDH(Dxu)) = 0 , in Rd×]0, T [,

m(x, 0) = mo(x) , u(x, T ) = g(x) .

(MFG)

This is called the first order MFG system of PDEs. Note that the first equation is backward in
time with a terminal condition, and the second is forward in time with an initial condition, a very
unusual feature in the theory of PDEs.

The rigorous justification of the heuristic derivation given above is a very hard and largely
open problem. However, the system (MFG) can also be easily interpreted in terms of Nash-type
equilibria in the following sense.

Definition 4. A pair (µ, u) with µ : [0, T ]→ P(Rd), u : Rd × [0, T ]→ R is a MFG equilibrium if

• u is the value function of the optimal control problem with running cost F (y(s), µs)+L(a(s)),

• µ is the distribution of a population of agents following the optimal feedback DH(Dxu).

In other words, as long as the population evolves with distribution µ, it is not convenient for
any player to deviate from the feedback DH(Dxu) associated to µ itself. Note that, if µ has a
density m, the system (MFG) expresses exactly this equilibrium situation, with initial distribution
of agents mo and terminal cost g.

4.3 Distances in the space of measures
Let Q be a compact metric space with distance d. We want to define a metric on P(Q). For p ≥ 1
the Monge-Kantorovich distance on P(Q) is

dp(µ, ν) := inf

{(∫
Q2

d(x, y)pdγ(x, y)

)1/p

: γ ∈ P(Q2) with marginals µ and ν

}

where the definition of marginals is

γ(B ×Q) = µ(B), γ(Q×B) = ν(B) ∀ Borel B ⊆ Q.

This definition is strongly related to the theory of optimal transportation, originated in the work
of Gaspard Monge (1781) on how to move in an optimal way a mass of soil from one configuration
to another. Fundamental contributions were given by Leonid Kantorovich (1945) using linear
programming for infinite-dimensional problems in spaces of measure: he proved that the inf in the
above definition is attained as a min (see, e.g., Lemma 5.1 in [C]). Kantorovich won the Nobel
prize in Economics in 1975. The mathematical theory of optimal transport had an enormous
growth in the last 20 years and is a current subject of intensive research: we refer the reader to
the introductory book [S] and to the two monographs of the Fields Medalist C. Villani.

It can be proved that dp is indeed a distance on P(Q) (see, e.g., Lemma 5.2 in [C]). The
importance of these distances is that they metricize P(Q) with the weak-∗ convergence of measures.
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Theorem 21. (Prop. 5.3 in [C]) For a sequence µn in P(Q), µn
∗
⇀ µ if and only if dp(µn, µ)→ 0

as n→∞.

The most popular distance in optimal transport is d2, called the Wassertstein distance. Here
we will use instead the metric d1. It is also called Kantorovich-Rubinstein distance and it admits
the following very useful dual formulation.

Theorem 22. (Kantorovich-Rubinstein Thm. 5.5 in [C]) For all µ, ν ∈ P(Q)

d1(µ, ν) = sup

{∫
Q

ϕ(x)d(µ− ν)(x) |ϕ : Q→ R Lipschitz with Lip(ϕ) = 1

}
.

In the sequel, in order to work in a compact set but avoid the difficulties coming from boundary
conditions, we will work in the d-dimensional torus, i.e., Td := Rd/Zd. In other words, we assume
that all data and solutions are 1-periodic in each direction:

F (x+ k, µ) = F (x, µ), g(x+ k) = g(x), mo(x+ k) = mo(x), ∀ k ∈ Zd, x ∈ Rd, µ ∈ P(Td).

The basic assumption on the cost F of the interactions among players is

F : Td × P(Td)→ R continuous in the product metric | · |2 × d1, (F)

where | · |2 is the usual Euclidean distance in Rd.

Example 27. Consider F (x, µ) =
∫
Td K(x − y)dµ(y) with a kernel K : Td → R Lipschitz with

constant LK . Then

|F (x, µ)− F (z, ν)| ≤∣∣∣∣∫
Td
K(x− y)dµ(y)−

∫
Td
K(z − y)dµ(y)

∣∣∣∣+

∣∣∣∣∫
Td
K(z − y)dµ(y)−

∫
Td
K(z − y)dν(y)

∣∣∣∣
≤ LK |x− z|

∫
Td
dµ(y) + LK

∣∣∣∣∫
Td

K(z − y)

LK
d(µ− ν)(y)

∣∣∣∣ ≤ LK(|x− z|+ d1(µ, ν)).

Then F is Lipschitz for the metric of Td × P(Td) with constant LK .

Since we do not expect the system (MFG) to have classical solutions, in the next sections we
will consider solutions in the following generalised sense.

Definition 5. A pair (u,m) is a solution of (MFG) if

• u ∈ Liploc(Td × [0, T ]) ,

• m(·, t) is the density of µt, where µ ∈ C([0, T ];P(Td)) (µt is absolutely continuous with
respect to the Lebesgue measure in Rd for all t ∈ [0, T ]), and m(·, t) is bounded uniformly in
t;

• u solves the 1st equation of (MFG) in viscosity sense,

• m solves the 2nd equation in the weak sense of distributions,

• m(x, 0) = mo(x) and u(x, T ) = g(x) for all x ∈ Td.

4.4 A uniqueness result for the MFG system
The crucial assumptions to get uniqueness of solutions to (MFG) is the following monotonicity
condition due to Lasry and Lions [LL]:∫

Td
(F (x, µ1)− F (x, µ2)) d(µ1 − µ2)(x) > 0 , ∀µ1, µ2 ∈ P(Td), µ1 6= µ2. (M)

With a slight abuse of notation, for measures µi = midx having densities, we will write∫
Td

(F (x,m1)− F (x,m2)) (m1 −m2) dx > 0 , ∀m1,m2 ∈ P(Td), m1 6= m2.
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Theorem 23. Let (u1,m1), (u2,m2) be solutions of (MFG) in Td × [0, T ] (i.e., 1-periodic in all
space directions). If H ∈ C1 is convex and F satisfies (F) and (M), then u1 = u2 and m1 = m2.

Proof. We assume for simplicity that ui and mi are smooth, so that we can use the classical
derivation of a product and integration by parts for

u := u1 − u2 and m := m1 −m2.

The general case can be achieved by approximating u with smooth functions and multiplying it by
a cutoff function ξε (i.e., a smooth function with compact support which is ≡ 1 in [2ε, T −2ε]×Td
and ≡ 0 in ([0, ε] ∪ [T − ε, T ]× Td) and use uξε as a test function in the equations for mi. Then
the boundedness of the derivatives of ui and of mi are used to pass to the limit in the integrals
using (F) (see the proof of Thm. 8 in Sect. 1.3.3 of [CP]).

Observe that m solves the equation

mt − divG = 0, G := m1DH(Du1)−m2DH(Du2).

We multiply this equation by u and integrate in space and time to get∫ T

0

∫
Td
mtudxdt =

∫ T

0

∫
Td
u div(G)dxdt

and then ∫ T

0

∫
Td

(
d

dt
(mu)−mut

)
dxdt =

∫ T

0

∫
Td

(div(uG)−G ·Du) dxdt.

We use at the left hand side the fundamental theorem of calculus and the initial and terminal
conditions

m(x, 0) = 0 , u(x, T ) = 0

and apply the divergence theorem to the right hand side, to get

0 =

∫ T

0

∫
Td

(mut −G ·Du) dxdt , (30)

because
∫
∂Td uG · ndσ = 0 by the periodicity of uG (n is the unit normal at ∂Td). Next we use

that
ut = H(Du1)−H(Du2) + F (m2)− F (m1)

to rewrite (30) as

0 =

∫ T

0

∫
Td

(F (m2)− F (m1)) (m1 −m2)dxdt+∫ T

0

∫
Td

((H(Du1)−H(Du2)) (m1 −m2)− (Du1 −Du2) · (m1DH(Du1)−m2DH(Du2))) dxdt.

We claim that the last integral is non-positive as a consequence of the convexity of H. In fact this
implies, for all p1, p2 ∈ Rd,

H(p1)−H(p2) ≥ DH(p2) · (p1 − p2) , H(p1)−H(p2) ≤ DH(p1) · (p1 − p2) .

We multiply the first inequality by m2, the second by m1, then subtract the 1st from the 2nd, and
get

(m1 −m2)(H(p1)−H(p2)) ≤ (p1 − p2) · (m1DH(p1)−m2DH(p2)) , ∀ pi ∈ Rd,mi > 0,

which proves the claim. Then we obtain

0 ≤
∫ T

0

∫
Td

(F (m2)− F (m1)) (m1 −m2)dxdt.
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On the other hand, the monotonicity condition (M) says that∫
Td

(F (m2)− F (m1)) (m1 −m2) dx ≤ 0 ∀ t and < 0 if ∃t̄ : m1(t̄) 6= m2(t̄).

By the continuity in time of the integrand we get that m1 = m2. Now we conclude that u1 = u2

because they are viscosity solutions of the same Hamilton-Jacobi equation and therefore we can
use the comparison principle for such equations.

Example 28. If F (x, µ) = f(x,m(x)) for µ = mdx, with f : Td × [0,+∞)→ R and ∂f/∂m > 0,
then the monotonicity condition (M) is satisfied. This example does not satisfy the continuity
assumption (F) of F on P(Td), but the proof of uniqueness of solutions works with no changes if
f is continuous and mi : Td × [0, T ]→ R are continuous.

Example 29. Take F (x, µ) = f(·,m∗ξ(·))∗ξ(x) for µ = mdx, with f as in the preceding example
and ξ ∈ C1(Td) even. The reader can check that∫
Td

(F (x,m1)− F (x,m2)) (m1 −m2)dx =

∫
Td

(f(x,m1 ∗ ξ)− f(x,m2 ∗ ξ)) (m1 ∗ ξ −m2 ∗ ξ) > 0,

and then the condition (M) holds true.

Remark 1. There are examples of existence of multiple solutions of (MFG) when the monotonicity
condition (M) does not hold. The meaning of this condition is that it is costly to imitate the
behaviour of the other players, so it describes games where the population tends to spread around
rather than aggregate.

Remark 2. Condition (M) requires a strict monotonicity. It can be relaxed to monotonicity in
wide sense if the Hamiltonian H is strictly convex. The proof begins with the same argument,
but then it requires a uniqueness theorem for the continuity equation driven by a discontinuous
vector field. This is a deep and difficult result, see, e.g., [C] or Thm. 8 in Sect. 1.3.3 of [CP].

4.5 An existence theorem for the MFG system
Here the main assumption is the following.

∃C such that sup
x∈Td

(
|F (x, µ)|+ |DxF (x, µ)|+ |D2

xxF (x, µ)|
)
≤ C ∀µ ∈ P(Td). (F2)

It is easy to check that it is satisfied by the Example 27, F (x, µ) = K ∗ µ(x), if K ∈ C2(Td) (the
periodicity implies the boundedness of the derivatives of the kernel, and therefore of F ).

We will also restrict to the model case of H(p) = |p|2/2, although the result can be extended
to more general uniformly convex Hamiltonians with bounded second derivatives.

Theorem 24. (Thm. 4.1 in [C], simplified to the periodic setting). Assume (F), (F2), mo ∈
L∞(Td), and g ∈ C2(Td) with bounded 1st and 2nd derivatives. Then there exists a solution of−ut + |Dxu|2

2 = F (x,m) , in Td×]0, T [
mt − divx(mDxu) = 0 , in Td×]0, T [
m(x, 0) = mo(x) , u(x, T ) = g(x) .

(MFG’)

Outline of the proof. The proof is obtained by a fixed point argument based on Schauder’s Theo-
rem.
Step 1. Define the space

C := {m ∈ C([0, T ];P(Td)) : m(0) = mo}
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and note that it is a subset of the Banach space of continuous functions from [0, T ] to the signed
measures on Td, endowed with the uniform convergence. Note also that C is convex.
Step 2. For each m ∈ C consider the terminal value problem for the Hamilton-Jacobi equation

−ut +
|Dxu|2

2
= F (x,m), in Td×]0, T [, u(x, T ) = g(x). (HJ)

It has a unique bounded and uniformly continuous viscosity solution, which is periodic in space
(by uniqueness and the periodicity of the data). We call it u := Ψ1(m). Moreover it is the value
function of the problem in Calculus of Variations associated to (HJ), and form this representation
and assumption (F2) one can prove that u is Lipschitz continuous in Td × [0, T ] and semiconcave
in the space variables, i.e., D2

xxu ≤ C1Id: this is Lemma 4.7 in [C].
Step 3. We want to associate to u := Ψ1(m) a µ ∈ C that solves in the weak sense the continuity
equation

µt − divx(µDxu) = 0, in Td×]0, T [, µ(x, 0) = mo(x). (CE)

From Section 4.1 we know that a natural candidate is µ(s) := Φ(·, 0, s)#mo, the push-forward of
the initial measure mo by the flow Φ(x, t, s) associated to the ODE

ẏ(s) = −Dxu(y(s), s), s > t, y(t) = x. (ODE)

However, the vector field −Dxu is not Lipschitz, in fact it is merely defined almost everywhere
and can be discontinuous. The definition of a flow solving in a generalized sense (ODE) requires
a very careful analysis of the regularity properties of the optimal controls and trajectories of the
underlying problem in C. of V.: see Lemmata 4.8, 4.9, 4.11 and 4.12 in [C]. Once this is done it
can be proved that µ(s) := Φ(·, 0, s)#mo is a weak solution of (CE): Lemma 4.15 in [C].

In order to define Ψ2(u) := µ, the solution of (CE), we also need to know that it is unique.
This is standard if the vector field is locally Lipschitz in space (Lemma 4.16 in [C]), but we only
have −Dxu ∈ L∞. The uniqueness result for (CE), Theorem 4.18 in [C], requires very subtle
arguments of measure theory applied to transport equations with discontinuous vector fields.
Step 4. Now we define Ψ := Ψ2 ◦Ψ1 and check that it takes values in C, i.e., µ built in Step 3 is
continuous in time. Indeed we can prove the estimate (Lemma 4.14 in [C])

d1(µ(s), µ(s′)) ≤ ‖Dxu‖∞|s− s′|, ∀ t ≤ s ≤ s′ ≤ T. (S)

Then Ψ : C → C is well-defined. Moreover, for all s, µ(s) is absolutely continuous with respect to
the Lebesgue measure, and its density µ(·, s) satisfies, for some constant C2,

‖µ(·, s)‖∞ ≤ C2‖mo‖∞ ∀ s ∈ [0, T ]. (L∞)

From the construction of Ψ and these properties, we can conclude that a fixed point m of Ψ, if it
exists, is such that (m,Ψ1(m)) is a solution of (MFG’).
Step 5. Now we want to apply the Schauder fixed point theorem (see, e.g., Chapt. 3 of [BCD]).
The conditions to be checked are that C is a closed convex subset of a Banach space, Ψ : C → C is
continuous and Ψ(C) is compact. The properties of C are trivial. The continuity of Ψ follows from
the continuity of both Ψ1 and Ψ2. The map Ψ1(m) = u is continuous by the stability property of
viscosity solutions to (HJ) with respect to the uniform convergence of the data. The continuity
of Ψ2(u) = µ is proved in Lemma 4.19 of [C]. Finally, the compactness of Ψ(C) follows from the
Ascoli-Arzelà theorem: the equicontinuity is due to (S), and the equiboundedness is true because
P(Td) is compact for the metric d1.

Some more details on Steps 3 and 4. The flow Φ in Step 3 is built as follows. From Step 2 we
have that

u(x, t) = inf
a∈L2([t,T ],Rd)

∫ T

t

|a(s)|2

2
+ F (y(s),m(s))ds+ g(y(T )),
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where y(s) = x −
∫ s
t
a(τ)dτ . By a standard result in C. of V. the inf is attained, so we denote

with A(x, t) 6= ∅ the set of optimal controls. It can be proved that the graph of the multivalued
map (x, t) 7→ A(x, t) ⊆ L2([t, T ],Rd) has a closed graph, i.e., if (xn, tn) → (x, t), an ∈ A(xn, tn),
and an → a weakly, then a ∈ A(x, t). A classical theorem in set-valued analysis then implies the
existence of a Borel-measurable selection ā such that ā(x, t) ∈ A(x, t) for all (x, t). Now we define

Φ(x, t, s) := x−
∫ s

t

ā(x, t)(τ)dτ.

The properties of the flow Φ depend on the connection between the regularity of the value function
u and the set A(x, t), Lemma 4.9 of [C]. In particular

• for any s ∈ (t, T ] the restriction of ā to the time interval [s, T ] is optimal and the unique
element of A(y(s), s);

• u is differentiable at (x, t) if and only if A(x, t) is a singleton, and in this case Dxu(x, t) =
ā(x, t)(t).

Then it is easy to show that Φ has the semi-group property

Φ(x, t, s′) = Φ(Φ(x, t, s), s, s′) ∀ t ≤ s ≤ s′ ≤ T,

and it solves the system (ODE)

∂sΦ(x, t, s) = −Dxu(Φ(x, t, s), s) ∀x ∈ Rd, s ∈ (t, T ). (31)

This also give the estimate

|Φ(x, t, s)− Φ(x, t, s′)| ≤ ‖Dxu‖∞|s− s′|. (32)

Now we turn to the estimates of Step 4. The proof of (S) is a nice combination of the definition
of d1 and the definition of µ as push-forward of mo by Φ.

Proof of (S). Consider the map G : Td → Td × Td defined by G(x) := (Φ(x, 0, s′),Φ(x, 0, s)) and
the measure γ ∈ P(Td × Td) defined as γ = G]mo. It is easy to check that the marginals of γ are
Φ(·, 0, s′)]mo = µ(s′) and Φ(·, 0, s)]mo = µ(s). Then the definition of d1 gives

d1(µ(s′), µ(s)) ≤
∫
R2d

|x− y|dγ(x, y)

=

∫
Rd
|Φ(x, 0, s′)− Φ(x, 0, s)|dmo(x) ≤ ‖Dxu‖∞|s− s′|,

where the last inequality comes from (32).

In order to prove the absolute continuity of µ(s) with bounded density (L∞) we need the
following.

Lemma 7. For some constant C2 the flow Φ constructed above satisfies

|x− x̄| ≤ C2|Φ(x, 0, s)− Φ(x̄, 0, s)|, ∀ 0 < s ≤ T, x, x̄ ∈ Rd, (33)

and so the map x 7→ Φ(x, 0, s) has a Lipschitz inverse on its image Φ(Rd, 0, s).

Proof. We will use the property of a semiconcave function w with constant C1 on Rd that

(Dw(x)−Dw(x̄)) · (x− x̄) ≤ C1|x− y|2, ∀x, x̄ ∈ Rd where w is differentiable, (34)

which generalizes the classical monotonicity of the gradient of concave functions.
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For s > 0 define

y(τ) := Φ(x, 0, s− τ), z(τ) := Φ(x̄, 0, s− τ), τ ∈ [0, s].

Then (31) implies

ẏ(τ) = Dxu(y(τ), s− τ), ż(τ) = Dxu(z(τ), s− τ), τ ∈ [0, s],

with initial conditions y(0) = Φ(x, 0, s), z(0) = Φ(x̄, 0, s). Now for a.e. τ ∈ [0, s]

1

2

d

dτ
|y − z(τ)|2 = (ẏ − ż)(τ) · (y − z)(τ) ≤ |(y − z)(τ)|2,

where the inequality comes from (34) and the semiconcavity estimate D2
xxu ≤ C1Id stated in Step

2. A standard application of Gronwall inequality gives

|x− x̄| = |(y − z)(τ)| ≤ eC1(s−τ)|(y − z)(0)|, τ ∈ [0, s],

which implies (33) with C2 := eC1T .

Proof of (L∞). Call Θ : Φ(Rd, 0, s) → Rd the inverse of x 7→ Φ(x, 0, s) and recall that µ(s) :=
Φ(·, 0, s)#mo. Then, for any Borel set B ⊆ Rd and denoting with Ld the Lebesgue measure,

µ(s)(B) = mo(Θ(B)) ≤ ‖mo‖∞Ld(Θ(B)) ≤ ‖mo‖∞C2Ld(B),

where the first inequality uses the existence of a density in L∞(Td) for the initial measure, and
the last inequality follows from Lemma 7. This proves the absolute continuity of µ(s) with respect
to the Lebesgue measure and the estimate (L∞) for its density µ(·, s).

For the complete proof and references to the literature we refer to [C] (sect. 4, pages 18-31).
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6 Some historical notes and perspectives on Differential Games.

6.1 History
The first trace of game theory seems to go back to the Talmud, 500 b.C., where a mysterious
solution to a problem of division of a heritage was proposed without explanation and resisted all
attempts of interpretation until 1985, when Aumann and Maschler studied it within the theory of
coalitions in cooperative games and gave a rational motivation to it.

In the 19th century some economists started the analysis of equilibria and introduced ideas
that are nowadays considered part of Game Theory. The most important were Antoine Cournot,
who studied in 1838 a model of duopoly and found an equilibrium that today is called a Nash
equilibrium (in pure strategies), and Vilfredo Pareto, who introduced in 1896 the notion of optima
in non-cooperative games that took his name.

In the 20th century the paper [Bo] by Emile Borel proposed the name "théorie du jeu" but did
not have much impact. Even less impact had the paper [Ro1] by C.F. Roos who introduced in the
context of Calculus of Variations a notion of solution coinciding again with Nash equilibrium (in
pure strategies): in the data base MathSciNet of the A.M.S. the paper has no citations at all so
far, although published on a prestigious journal.

In 1928 John Von Neumann published the first of a series of papers that marked the official
beginning of Game Theory. His work culminated in the book [VNM] with Oskar Morgenstern,
dealing with non-cooperative and cooperative games with economic motivations and applications.
In 1934 the economist Von Stackelberg introduced the notion of equilibrium that took his name
for problems where a player has the role of Leader and the others the role of Followers (e.g., the
government and the enterprises, or the central bank of a state and the banks). (The reader can
find this notion in [Bre].)

After World War 2 the Rand Corporation was founded in Santa Monica to study the strategic
and military scenarios arising in the Cold War. Several mathematicians worked there for some
periods, including Von Neumann, Nash, Fleming, Isaacs, and almost all the main american game
theorists of the time. A very nice account of the developments of Game Theory and its interplay
with decision making in the US foreign policy is the book [P]. The work of John Nash started
in 1951 with his thesis at Princeton [N-thesis], where he proved the existence of equilibria for
non-cooperative N -person games in mixed strategies.

Two person, 0-sum, differential games started with a series of classified Rand Corporation
reports by Rufus Isaacs in 1954-56. In the Soviet Union the group of Pontryagin was working
on the same problems and with the same motivations, mostly pursuit-evasion problems arising in
the defense from ballistic missiles. The book [I] marked the public official birth of the theory of
Differential Games (DG in the following).
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The approach of Isaacs was based on the method of characteristics for the H-J-I equation to
produce piecewise smooth solution, and in a careful study of singularities where the characteristics
meet, in low-dimensional state space. He initiated a theory of singular surfaces associated to 0-sum
DG that allowed to solve explicitly some model problems.

The first definition of value function leading to a rigorous connection with the Isaacs equa-
tion is due to Wendell Fleming via a limiting procedure on discrete-time approximations [F61].
Other definitions of value were proposed and studied by A. Friedman [Fri] and in Russia by N.N.
Krassovski and A.I. Subbotin [KS], all based on the convergence of suitable approximate concepts.
The notion of value based on non-anticipating strategies was introduced by Varaiya and Roxin,
and mostly studied by Elliott and Kalton [EK] in a series of papers in the 70s.

The proof that the value function of a 0-sum DG is a viscosity solution was obtained in [ES] for
the Elliott-Kalton value, and by various authors for Friedman, Fleming and other notions of value.
The comparison principle for viscosity solutions of Crandall and Lions [CEL], and the consequent
uniqueness results for the Cauchy and Dirichlet problems for H-J-I equations, therefore give a sort
of meta-theorem stating that all reasonable notions of value of a DG must coincide. The notion
of value of Krassovski-Subbotin was proved by Subbotin to be the unique "minimax solution" of
the Isaacs equation [S84], a notion developed independently from the viscosity theory and later
recognized to be equivalent, see the book [S95].

A comprehensive survey of dynamic and differential games and their applications until 1995
is in the book of T. Basar and G.J. Olsder [BO]. The ideas of Isaacs on singular surfaces were
developed by authors such as J. Breakwell, P. Bernhard, Lewin, and especially Arik Melikyan,
whose book [Mel] combines the classical differential geometric methods with the theory of viscosity
solutions. L.C. Evans revisited and made rigorous some results by Isaacs and by Melikyan [Ev14]
and pointed out some challenging open problems.

Although DG were presented from the very beginning as the first step towards a mathematical
theory of conflicts, it was recognized as early as in 1961 by Fleming [F61] that they could model
different problems, where a controller wants to achieve some goal but the system governing the
state dynamics is affected by an unknown, uncertain disturbance. If one knows the statistics of
the noise, this problem can be modeled within stochastic control by minimizing the expectation
of the cost functional. If, instead, one wants or must perform a worst-case analysis, then the
disturbance can be modeled as an opposing player, therefore leading to a 0-sum deterministic DG.
In stochastic control this point of view is called risk-aversion. Two classical applications are the
landing of an airplane in a windshear, deeply studied in 80s-90s, and collision avoidance between
two vehicles: this was studied at length in aerospace and naval engineering and it is a current
topic of research in the automotive industry. A further important development of the connection
between deterministic DG and stochastic control was introduced in the book of T. Basar and P.
Bernhard [BB] for linear systems and developed by Soravia for nonlinear systems (using viscosity
solutions, see App. B of [BCD]): it is called H∞-control and is related to other relevant subjects in
system theory such as disturbance attenuation, risk-sensitive optimal control and robust control.

Dynamic and differential games found a very large number of applications, especially in Eco-
nomics and Management. Two fields where DG had an important impact in the last decades
are population genetics, where the theory of Evolutionary Games was started in the 70s by John
Maynard Smith and was continued by many mathematicians and biologists (for an introduction
see the book [HS]), and the control of pollution, see the survey [JMZ].

6.1.1 Nobel Prizes.

Nobel Prizes in Economics were awarded four times to groups of researchers in Game Theory. Some
of the recipients were mathematicians, others theoretical economists with a strong background in
Mathematics. They were

1994: Nash, Harsany, and Selten, for the theory of equilibria and its applications;
2005: Robert Aumann and Thomas Schelling, for the theory and applications of repeated

games;
2007: Myerson, Hurvicz, and Maskin for the theory of "mechanism design";
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2012: L.S. Shapley and Roth for the theory of cooperative games and coalitions.

6.1.2 Scientific societies.

There are two scientific societies in the field. They organize periodic meetings and publish journals
and series of books on the subject. They are the following.

- The International Society of Dynamic Games was founded in 1990 and joins different groups,
mostly of control engineers and applied mathematicians, with broad interests in games involving
dynamical system and not necessarily fitting in the classical axiomatic framework.

- The Game Theory Society was founded in 1999 and Aumann was its first president, it gathers
the community of "classical" game theorists, mostly economists and mathematicians.

6.2 Some future directions of Differential Games.
Besides the numerous potential applications, DG present also several challenging mathematical
problems. In all models presented in this course each player has full information at least on the
state of the whole system. This is not realistic in many instances, and modelling and handling
partial information, although studied in some examples, remains a major open problem.

Deterministic N -person DG give raise to strongly coupled systems of H-J equations. There
is no general theory for such PDEs. In fact, some negative results on the well-posedness were
proven by Bressan and co-workers (see [Bre]). So there seems to be no hope for a theory somehow
parallel to the one for the 0-sum case. If the control system is affected by white noise, the H-J-B
equations associated to the DG by the methods of stochastic control are of 2nd order uniformly
elliptic or parabolic, and a deep theory about them was developed, especially by Bensoussan and
Frehse. It leads to many existence results of smooth solutions but not to uniqueness, that is in
general false for such system of PDEs as well as for Nash equilibria. Therefore N -person DG
remain a challenging open field of research, both in the deterministic and in the stochastic setting,
especially if the number of player is not small.

The main emerging theory in the area, Mean Field Games (briefly, MFG), aims at modelling
precisely the hard case of a large population of players. This is possible if the players are very
similar and their influence on each other is small: what influences the costs and the dynamics of an
agent is only the distribution of the other agents (and white noise). Some ideas come from mean-
field theories in physics and statistical mechanics. The pioneers were Caines, Huang and Malhame
in Canada, using mostly methods of stochastic control, and, indipendently, Lasry and Lions in
France [LL] with an approach based on PDEs. The system of N HJB equation, each in RNd, is
replaced in the limit as N →∞ by a single HJB equation for the value of the representative agent
coupled with a Kolmogorov-Fokker-Planck equation for the distribution of the players, both in Rd.
There was an explosion of interest for MFG in the last decade, on the theoretical side and especially
on the side of applications, which are potentially a large number, e.g. financial market, issues in
social sciences such as opinion dynamics and crowd motion, decentralized communications, energy
markets, etc. For an account of the recent advances in the analytical aspects of MFG see the
lecture notes [CP] and the references therein. The probabilistic approach to MFG was developed
in the monograph by Carmona and Delarue [CD].
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