LECTURE 24, June Is, 2023

$$
\left(M F G^{\prime}\right)\left\{\begin{array}{l}
-u_{t}+\frac{\left|Q_{m}\right|^{2}}{2}=F(x, m) \\
\left.m_{t}-\operatorname{div}_{x}\left(m D_{x} u\right)=0 \quad \text { in } \pi^{d} \times\right] 0, T[\\
\left.m\right|_{t=0}=m_{0},\left.u\right|_{t=T}=g
\end{array}\right.
$$

Theorem (Existence of solutions.) Ass $m_{0} \in L^{\infty}\left(\pi^{d}\right), g \in C^{2}\left(\pi^{d}\right)$, (F) $F: \pi^{d} \times P\left(\pi^{d}\right)$ cont, fo $1 \cdot 1_{2} \times d_{1}$
(F2) $|F(x, \mu)|+\left|D_{x} F(x, \mu)\right|+\left|D_{x}^{2} F(x, \mu)\right| \leqslant d \quad \forall x \in \mathbb{\Pi}^{d}, \mu \in \mathbb{R}\left(\pi^{d}\right)$.
Then \exists a solution of (MFG')
Proof Step $1 \quad C=\left\{m \in C\left([0, \pi], P\left(\pi^{0}\right)\right), m(0)=m_{0}\right\}$ convex, closed \leq Banach shade with suphorm.

Step. 2 Fix $m \in C \quad \Psi_{1}(m)=u$ the sol. of

$$
-u_{t}+\frac{\left|D_{x} u\right|^{2}}{2}=F(x, m), u(x, \tau)=8(x) .
$$

Freon the famele cal prove $u \in \operatorname{Lip}\left(\pi^{d}\right) \& \exists C_{z}$: $u C_{1}$-semiconcere $D_{x x}^{2} u \leqslant C_{1} I_{d}$

Step 3. (the hed one) hiven u as above wat to selve (CE) $\mu_{t}-\operatorname{div}\left(\mu D_{x} u\right)=0, \mu(x, 0)=m_{0}(x)$.
Trouble $D_{x} u \in L^{\infty}$ obly. Want to lainild cal

$$
\mu(s)=\tilde{\Phi}(\cdot, 1, s) \# m_{0} \text { for suitable flow ass. }
$$

to $\quad \dot{y}=-D_{x} u(g)$, (ODE)
Idee Ereject. of (ODE) cholld be optinal fa poose. (1).
Cocstuaction of $\Phi: A(x, y)=\left\{\begin{array}{c}\text { opt. contales } \\ \text { for }(1)\end{array}\right\} \leq L^{2}\left([0, T], \mathbb{R}^{d}\right)$
"Stabderd fects":

$$
=\quad A(x, t) \neq 0 \quad \forall(x, t)
$$

- $(x, t) \rightarrow A(x, t)$ hes "clored graph": $\therefore e$.

$$
\left(x_{n}, t_{n}\right) \rightarrow(x, t), a_{n} \in A\left(t_{n}, x_{n}\right), a_{n} \rightarrow e \Rightarrow a \in A(x, t) \text {. }
$$

- "Set-volued aLelysis" $\Rightarrow \exists \bar{a}(\gamma, t) \in A\left(x_{1}+1\right.$ measure ble.
Def $\Phi(x, t, 1): x-\int_{t}^{J} \bar{a}(x, \tau) d \tau=y(1)$
Propentils: $s>t$
$\left.\bar{a}(x, t)\right|_{[s, T]}$ isoptimal
for $(y(0), J)$ and it is the unigue optinal control.

- $A_{0}(y, \Delta)$ singletion $\Leftrightarrow u$ diff.le at $(y, 0)$ E

$$
D_{x} u(y, s)=\bar{a}(y, s)(s)
$$

the wnique optinal catal.
From there cal dedno.

- semicroup prok. $\quad \forall \quad t \leqslant J \leqslant J^{\prime} \leqslant T$

$$
\Phi\left(\Phi(x, t, s), s, s^{\prime}\right)=\Phi\left(x, t, s^{\prime}\right)
$$

- Φ colves tle $(O D E) \forall x \in \mathbb{R}^{d} \quad 0 \leq t<1 \leqslant T$

$$
\begin{array}{r}
\partial_{J} \Phi(x, t, s)=-D_{x} u(\Phi(x, t, s), s) \\
\cdot \quad\left|\Phi(x, t, s)-\Phi\left(t, t, s^{\prime}\right)\right| \leqslant\left\|D_{x} u\right\|_{\infty}\left|s-s^{\prime}\right|
\end{array}
$$

Conclusias of ster. $3 . \quad \mu(1)=\Phi(0,0,1) \# m_{0}$

- cis a weak solutiol of (CE)
- it is the UNIQUE WEAK SOCUT.

Def. $\Psi_{2}(u)=\mu^{\prime}$ (hand technical fact).

is well-dofined.
Sten. Q 1: $\Psi(m)=\mu \in e$? Lik estinate int for er

$$
(S) \quad d_{1}\left(\mu(s), \mu\left(\rho^{\prime}\right)\right) \leqslant\left\|D_{x} u\right\|_{\infty}\left|v-v^{\prime}\right|
$$

Pf of $(s), d_{1}(\nu, \bar{\nu})!=\inf \left\{\int_{\pi^{d}+\pi^{-d}}|x-y| d \gamma(x, y): \gamma\right.$ with magikels $r, \nu\}$

$$
\gamma\left(\pi^{d} \times B\right)=\nu(B), \gamma\left(B+\pi^{\phi}\right)=\bar{\nu}(\Omega) \quad \forall B \text { Borel: }
$$

Def. $G(x):=\left(\Phi\left(x, 0, s^{\prime}\right), \Phi(x, 0,>)\right)$
$G: \pi^{d} \rightarrow \pi^{d} \rightarrow \pi^{d} \quad$ Det. $\gamma:=G \# m_{0}$
Clain: the ney;inols of r ne $\Phi\left(x, 0, J^{\prime}\right) \# m_{0}=\mu\left(s^{\prime}\right)$ $\& \quad \Phi(x, 0,1) \# m_{0}=\mu(1)$
check: $\gamma\left(\pi^{0} \times B\right)=m_{0}\left(G^{-1}\left(\pi^{\checkmark}+B\right)\right)^{\prime}=m_{0}\left(\Phi(0,0, J)^{-1}(B)\right)$

$$
\begin{aligned}
& \Phi^{(0,0, s) \# m_{0}(B)=\mu(\Omega)(B)} \text { a claic. } \\
&\left.\Rightarrow d_{1}\left(\mu\left(s^{\prime}\right), \mu(0)\right) \leqslant \int_{\pi^{d}+\pi^{d}} \mid x-y\right) d j(x, s)=
\end{aligned}
$$

defi of \#

$$
\begin{aligned}
& =\int_{\pi_{d}}\left|\Phi\left(x, 0, J^{\prime}\right)-\Phi(x, 0, s)\right| d \ln _{0}(x) \\
& \leqslant\left\|D_{x} u\right\|_{\infty}\left|s^{\prime}-s\right| \underbrace{\int_{\infty}}_{\pi_{0} \|_{0}(x)}=1 / D_{x} u \|_{\infty}\left|s s^{\prime}\right|
\end{aligned}
$$

$$
\Rightarrow \Psi(m)=\mu \in \mathscr{L} \Rightarrow \mathscr{L}: C
$$

If $m=\Psi(m)$ is a fixed poictof \neq $u=\Psi_{1}(m)$ solves $H J$ in MFC'. \& H is a weak sol. of CE iL MFC'

So if in has a bonoled decsity (m, $\Psi_{1}(m)$) is a sol. of (MFG'). I heed

Lemene $\exists c_{2}: \quad \forall 0<J \leqslant T, \quad x, \bar{x} \not \mathbb{R}^{\phi}$

$$
|x-\bar{x}| \leqslant c_{2}|\Phi(x, 0,1),-\Phi(\bar{x}, 0,1)|
$$

i.e. the inverse $\theta($.$) of \Phi(0,0,0)$ is Lir with castant c_{2}.
Pf No, suenotes, use $D_{x x}^{2} u \leq c, I_{d}$. Lemn. $\forall s(s)=\Psi(m)(s)$ is ABS. Gnt. w.n.t. Cebesge \& if $\mu(0, J)$ is its density

$$
\left(L^{\infty}\right) \quad\|\mu(0,0)\|_{\infty} \leqslant c_{2}\left\|m_{0}\right\|_{\infty}
$$

Pf. $\mu(s)=\Phi(\cdot, 0, s) \# n_{0} . B \leq \pi^{d}$ Bond.

$$
\begin{aligned}
& \mu(\Delta)(B)=m_{0}(\theta(B)) \leqslant\left\|m_{0}\right\|_{\infty} \mathcal{L}^{d}(\theta(B)) \leqslant \\
& \theta=\Phi(0,0, s)^{-1} \theta \frac{c_{2} \text { lin }}{} \quad \leqslant\left\|m_{0}\right\|_{\infty} c_{2} \mathcal{L}^{d}(B) \\
& \Rightarrow \mu(0) \text { A.c. w.r.t. } \mathcal{Z}^{d} \& \quad\left(L^{\infty}\right)
\end{aligned}
$$

Conclusibe of step 4 ! if $m \in e$ is a fixed point of \pm then ($m, ¥_{1}(m)$ is a sol of (MFC).

Step5 Schander fixed peint: $\Psi: e \rightarrow \varphi$, $e \subseteq$ Bahech shace, convex, ceosed, Ψ cout. \ddagger $\pm(e)$ conpect. $\Rightarrow \exists$ a fixed point.
$l \subseteq\left\{m![0, \tau] \rightarrow m_{1}\left(\pi^{d}\right)\right.$ coct. $\}$ with L^{∞} wark. I sighedmeasies
is convex $\$$ closed.
$\underline{Q 1}_{1:} \underline{\Psi}_{2} \cdot \Psi_{1}$ is coctinnols?

- $\Psi_{1}: m \rightarrow n$ is u at becanse $m \nrightarrow F(0, m)$ is gut by $(F) \Rightarrow \Psi_{z}$ is cout. by the 'ítasility proventy" ol visco. sols.
- Ψ_{2} cont. ... more difficult.... [Card.].
$\Rightarrow \approx$ is wht.
Q2 $\overline{\Psi(e)}$ sequatililly compact? Take $\mu_{n}=\psi\left(m_{n}\right)$
$(S) \Rightarrow \mu_{n}$ is equilirschitr, also equisdol. beeane $\mu_{h} \in \mathbb{P}\left(\mathbb{T}^{d}\right)$ which is Guna.t. Ascoli-Arzeli $\Rightarrow J \mu_{n} \rightarrow \mu_{k \rightarrow \infty} \in \underset{\mathcal{F}(e)}{ }$ umif. in $[0, T]$.

Couchs.: can epply Schande $\Rightarrow \exists m \in E$:

$$
m=7(m) \stackrel{\operatorname{step} 4}{\Rightarrow} \quad \exists \mathrm{sal} \text { of (MFC'). }
$$

Final remarks o decs
deterministic MFa ane HARDER then stochastic MFC.

Whet is stochastic control?

$$
\begin{aligned}
& \text { " } \dot{y}=-Q+\text { white " " }^{\text {noise }} \text { " } \frac{d w}{d t} \quad w=\text { wien mores } \\
& \text { use to } 7 \text { by Ito integrals. } \\
& \text { or Brownie motion. }
\end{aligned}
$$

$$
J=\mathbb{E}\left[S_{t}^{T} \cdots .\right] \quad \text { want to mil } J
$$

Can do Dy n Pop., find a HJB which is

$$
u_{t}+H\left(x, \frac{\Delta u}{x}\right)=\Delta_{x} u \text { a verebalic eqcotibe }
$$

hes smooth solutions!

- Il stock. MFC. $2^{\text {nd }}$ eq. is $d^{\text {is smooth. }}$

$$
u_{t}-\operatorname{div}_{x}^{v}\left(m D H\left(D_{x} u\right)\right)=\Delta_{x} u
$$

Solutions we CLASSICAC!
In stock MFC. The longe popmbetion limit
$N \rightarrow \infty$ hes been proved zigozocsly.
if (M) holols. The general case is open!
Probchistic approach to MIFC: Cankone-Delanue stich $2 v a l u k e s \sim 2018$
please, point out to me all typos, mistakes on unclear THinGs in the LEcture notes of the counsel

