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What is it?

Characteristics

1) Networked, local system

2) Heatingl COOlIng Or bOth - [Source: https://www.rehau.com/]
3) Public = requires political action
4) Heat recovery from waste heat and renewables



What is it?
Characteristics

1) Supply station(s)
2) Distribution system
3) Substations

[Source: https://www.rehau.com/]



Why do we need DH?

Advantage
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[Source: Annuario AIRU 2021]



Who are the typical users?

FIGURA 4 Volumetria teleriscaldata distinta
per tipologia d’'utenza

VOLUMETRIA RISCALDATA - milioni di m*
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FIGURA 5 Energiatermica erogata distinta
per tipologia d'utenza
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A bit of history

First generation

 Tgen
Where: New York, Paris..
Why: replace polluting coal
boilers in big cities
Heat carrier fluid: Steam
Characteristics:

Steam leakage, huge heat
losses, corrosion




A bit of history

Second generation

Where: URSS

Why: Planned economy

Heat carrier fluid:

Superheated water (>100°C)
Characteristics:

Oversized pipes with no thermal insulation
«Production-driven» regulation




A bit of history

Third generation

Where: Scandinavian countries

Why: Efficiency and energy security concerns
Heat carrier fluid:

Hot water (90/60°C)

Characteristics:

Pre-insulated pipes

«Demand-driven» regulation




A bit of history

Fourth generation

Where: Scandinavian countries

Why: Heat demand reduction, renewables
Heat carrier fluid:

Hot water (70/40°C)

Characteristics:

Increased supply from renewable heat,
use of twin pipes

«Demand-driven» regulation




A bit of history

Fifth generation

Where: Western Europe

Why: Heat demand reduction, renewables
Heat carrier fluid:

Ambient/low temperature water (<50°C)
Characteristics:

Decentralized reversible heat pumps
Simultaneous heating and cooling possible
Free floating temperature in the loop
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Economic feasibility

Linear heat density

Ratio between annual heat demand and length of the (transmission)
pipes

Energy delivered to  Overall network Llréeez:]rsnsat
the buildings (MWh) length (km) (MWh/m)
Asiago 9’711 13.47 0.72
E T (M Wh) Brescia DH 981’194 379.8 2.58
— Brescia DC 32122 7.91 4.06
lnet ( m ) Ferrara 134’816 82.58 1.63
Forni di Sopra 1’614 3.08 0.52
San Martino di Castrozza 17727 15.19 1.17
Verona 260'395 80.63 3.23
Vicenza 38’967 23.15 1.68

Torino 1'790°025 598.66 2.99



Economic feasibility

Linear heat density
Ratio between annual heat demand and length of the pipes

< specific Investment costs incl. house station; n=22
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Economic feasibility

Linear heat density

Ratio between annual heat demand and length of the pipes

 Er(MWh)
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Economic feasibility
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System design

Distribution network

Specific cost [€/m]
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System design

Distribution network

In order to size the district heating network pipes, the following
procedure can be followed:

1) Estimate target heat demand and peak load of the connected
buildings + heat losses (kW)

2) Use nominal AT (e.g. 30 K) to find corresponding mass flow rate

3) Calculate diameter with either constant velocity (e.g. 0.65 m/s) or
constant pressure loss (e.g. 150 Pa/m)



System design

Distribution network

Steel

* Advantages: High strength and good flexibility, can be joined by welding for a high-integrity joint

that can be inspected for quality control, widely available in all sizes, familiar material to most
workforces.

* Disadvantages: Relatively high cost, highl¥ susceptible to corrosion and will require corrosion
0

protection. Skilled labor force required for welding. Slower installation, especially in larger
diameters.

PE and HDPE

* Advantages: Low weiEht, very flexible, can be fusion welded for high-integrity joints, available in
sizes up to 1.6 m. Leak free and fully restrained (no anchor blocks).

* Disadvantages: Low strength compared to steel results in significant wall thickness and thus cost
in larger diameters. Increased wall thickness also reduces inside diameter, which results in higher
pressure losses and may require larger sizes for the same flow rates. Larger-diameter fusion
welding machines may be of limited availability. Cost fluctuates with oil price.



System design

Distribution network
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System design

Distribution network

Table about installation centre distance

Dimensions mm mm mm
De casing PE 90 110 125
A1 Installation centre distance 150 200 250
Typical heights in a ditch
Width of the ditch at soil level(?) soil level
hi A1 De , A1 De Al
% cm sand

beaten sand

h3

min 10cm X

- 00

Hight of ditch bottom
A1+De+A1+De+A1

slope angle?

mm
140
250

Width of

mnwm ditch bottom

h1+h2+h3

mm mm mm mm mm mm

160 200 225 250 315 400

250 250 250 350 350 350
Legend:

h1 = minimum height of the filling-up with ridded material from excavation
debris, the 80cm height is the minimum value to prevent soil freezing,
mechanical tamping with a vibrator with max. pressure 100Kpa

h2 = minimum height of sand layer above the pipes with mixed medium 0-
4mm granulometry, manually tamped

h3 = minimum height of sand layer on the bottom of the excavation with
mixed medium 0-4mm grain size, manually tamped

A1 = minimum distance to install the pipes for processing operations

De = outside diameter of the pipes

[Fonte: https.//www.aquatechnik.it/]



System design

Example: Nord Piovego
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System design

Example: Nord Piovego

2"d generation network operated
with constant flow.

Mixing valve on the return
(primary side) of the heat
exchangers regulates the flow
rate depending on the building
heat demand.
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System design

Example: Nord Piovego

Difficult to make efficiency measures on large existing buildings with
multiple uses



System design

Heat supply stations
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System design

Cooling supply stations
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System operation

Important characteristics

User substations

* Direct vs indirect connection

e SH-only, DHW-only, SH+DHW

Heat supply station

* Constant flow vs variable flow operation



System operation

User substations

From network

Te - Tsu,set

Supply temperature sensor

(secundary side)

Outdoor air sensor

supply L‘-"*EE}FF

To network Q
return q=18]

Motorized 2-way
control valve Braze-plate heat
exchanger

[Source: https://www.techno-system.it/]
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System operation

User substations

5 3 —B70| | e(t) = Tsu,meas(t) - Tsu,set(t)
ii
g —»
§
g
@ ¢ Tsu,set e(ﬁ)
. : : + Process
Outdoor aif temperature, T____ ['C] _

Te (t) - Tsu,set (t)

Y(t) = Tsu,meas(t)



System operation

Network

Example of pressure distribution with 2 lines and +50% mass flow (plot
on the right)
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System operation

Network
Example of pressure distribution from supply to critical user

Network pressure condition during winter and summer
4 Winter

/ period
| Substation HF!S-igI;I differential h;l:!;ﬁl]‘l"?.. Far end
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e ki
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Substation actual differential pressure

Pump supply
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System operation

User substation

Differential pressure controller ensures that the MCV regulates the flow
with approximately constant AP at all network operating conditions.

ATATATAYAVAYAVAY)
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[Source: https://www.danfoss.com/]




System operation

The user typically “calls” for heat when needed with a 2-way valve on
the primary side, possibly with weather compensation (electronic
control system needed).

DH operator

1) Ensure each customer, especially critical one, has AP > APmin (e.g.
150 kPa)

2) Save energy i.e. reduce flow rate (or supply temperature) when
heat demand is low



System operation

Case study

Example from Verona Centro Citta’s network:

Figure 3.2 Plan of the district heating network of Verona Centro Citta obtained with QGas [73] (the
blue dots represent the substations and the green dots represent the supply stations).
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Table 3.1 Installed thermal and electrical power of the supply stations.

Supply station Heat generation Units | Total installed power
Gas-fired internal combustion 5 11 MW (11.25 MW.)
CCC engines 5 2.0 MWy
Heat pumps 3 255 MWa
Gas boilers
CRV Waste heat from foundry 1 1.1 MW
CSD Gas boilers 3 3.4 MW




System operation

Case study

Variable flow control in main heat supply station. Example from Verona
Centro Citta’s network:
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System operation

Case study

Variable flow control in main heat supply station. Example from Verona
Centro Citta’s network:
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System operation

Heat supply station

Position of additional heat supply stations

[Source: Ben Hassine I, Eicker U, 2014]
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