LECTURE 22, May 30, 2023
MEAN-FIELD GAMES.
PROBLEN: Hand to sturly NASH EQUILIBRIA with MANY players.
If we look fa equil. in feedseck fork vie PDES. : state \rightarrow d state din. for eech aject, N ajents. Full stite: ocim Nd systen of N PDES, each in $\mathbb{R}^{N d}$
Examples. finencial nerkets $N \sim 10^{s}$

- Earercy olistrisutiol. $N \sim 1^{5}$
- crowd motion $n \sim 10^{2}$ nxlinea
Solving MPDES in $N d$ din is not FEASIDCE if $N d>10$.

Idee. 2006 JMLaszy, PL. Liols
2005-6 P.Caikes, M, Huang, R. Malhene.
Suvr.: "agents are similen", ad they interact ohly vie the costs $c_{\neq j)}$ Via the EMPInicot MEASURE of the other playess $1 \frac{1}{N-1} \sum_{i \neq j} \delta x_{i}$

Similanity with GEAN-FIELD THEORIES IA PHYSICS:
look for Simple MACROSCOPCC DESCRIBTION of complex phenonene instead MicRoscopic obsuintix.

Q: How describe populations of particles or rational agents?
Answ.: by its distribution in the state space:
\{omonht of agents in $B \subseteq \mathbb{R}^{d}$ at time $\left.t\right\}=\mu_{t}(B)=$

$$
=\int_{B} d \mu_{t}(x)=\int_{B} m(x, t) d x
$$

if μ_{t} has a density $m(0, t)$
Q: How does μ_{t} evolve in tim?
Def: $\Psi: \underline{X} \rightarrow \bar{Y}, \quad \geq, \bar{\Psi}$ metric, $r \in \mathbb{P}(\mathbb{X})$

the PUSH-FORWARD meame of μ vie Ψ is: $\forall B S Y$ Bree

$$
\begin{aligned}
& \text { (\#rel } \\
& \chi_{z}(y):= \begin{cases}1 & y \in z \\
0 & y \notin z\end{cases}
\end{aligned}
$$

$\operatorname{Rmh}(\#) \Leftrightarrow \int_{\underline{I}} X_{B}(y) d(\Psi \# \mu)(y):=\int_{\Sigma} X_{\Psi^{-1}(B)}(x) d \mu(x)$

$$
=\int_{\bar{X}} x_{B}(\sim(x)) d \mu(x)
$$

Any $\delta: \bar{Y} \rightarrow \mathbb{R}$ meas le can be crpotinated by
"simple furctions" $\quad \Rightarrow$

$$
\begin{equation*}
\int_{\underline{Z}} g(y) d(\Psi \# q)(y)=\int_{\underline{\Sigma}} g(\Psi(x)) d \mu(x) \tag{x}
\end{equation*}
$$

Q: Blow does μ_{t} evolve if each ageut follows.

$$
\dot{y}(0)=f(y(0), s) \quad(D S) ?
$$

Def. $\Phi=$ flow ass. (. (DS) i.e.

$$
\begin{aligned}
\Phi(x, y)=\text { solat (imes of } \quad\left\{\begin{array}{l}
\dot{j}=f(y, 1) \\
y(0)=x
\end{array}\right. \\
\Rightarrow \frac{\partial \Phi}{\partial s}=f(\Phi(x, 0), s), \quad \Phi(x, 0)=x \quad \forall \lambda
\end{aligned}
$$

$$
\text { Thm, } \exists \text { ! }
$$

N,B. If liping, hees ins $\Rightarrow x+\Phi(x, 0)$ is BIJECTIVE
its invense is $\Phi^{-1}(0,1)$
Def : Givel $\mu_{0} \in \mathbb{P}\left(\mathbb{R}^{d}\right), \mu_{s}:=\Phi(0,1) \# \mu_{0}$ push fow and of μ_{0} by Φ (or by f...)

Went to olerive an equetion for hs.
Tehe $\psi: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}$ meas.le (test) fh. Ass. $\psi \in C^{\prime}$

Now sump. $\operatorname{supp} \psi$ Connect in $\mathbb{R}^{d} \times[0, T)$

$$
\int_{0}^{T} \square \quad D
$$

$$
\left.\int_{\mathbb{R}^{d}} \psi(y, s) d \mu_{s}(y)\right|_{s=0} ^{s=T}=-\int_{\mathbb{R}^{0}} \psi(y, s) d \mu_{0}(y)=
$$

$$
\begin{gathered}
=\int_{0}^{T} \int_{\mathbb{R}^{d}}\left(\psi_{\Delta}+D_{x} \psi \cdot f\right)\left(y_{1},>\right) d \mu,(y) \quad \forall \psi \in C_{C}^{\prime}\left(C \mathbb{R}^{d} \times[0, T)\right) \\
(W C E)
\end{gathered}
$$

(WCE)
Def. ($W C E$) is weak foin (olistisutiond) of the CONTINUITY EQUATION

$$
(C E) \quad \frac{\partial m}{\partial s}+\operatorname{div}_{x}(m f)=0
$$

With initial condition er o.

$$
\begin{aligned}
& (x) \Rightarrow \int_{\mathbb{R}^{d}} \psi(y, 0) d \mu_{s}(y)^{(+1}=\int_{\mathbb{R}^{d}} \psi(\Phi(x, 0), 0) d \mu_{0}(x) \\
& \Phi \ddot{\#}^{\#} \mu_{0} \operatorname{Rn}^{d} \quad \mu_{s}=\Phi(2,1) \# \mu_{0} \\
& \left.\frac{d}{d s} \int_{\Omega^{d}} \psi(y, s)\right)_{0} \mu_{0}(y)=\int_{\Omega^{d}} \frac{d}{d s} \psi(\Phi(x, s), s) d r_{0}(x)= \\
& =\int_{\mathbb{R}^{d}}\left(\frac{\partial \psi}{\partial s}+\nabla_{x} \psi \cdot \Phi_{s}\right)(\Phi(x, s), s) d \mu_{0}(x)=(t) \\
& =\int_{\mathbb{R}^{d}}\left(\psi_{\Delta}+D_{x} \psi \cdot f\right)(y, s) d \mu_{s}(y)
\end{aligned}
$$

We proved:
Lehman Push-boured $\mu_{s}=\Phi(1, s)$ \# μ_{0} of $\mu_{0} \in \mathbb{P}\left(\mathbb{R}^{d}\right)$ via f satisfies $(W \subset E)$.

Motivation of the wane "continuity eq.
Surv. go sol. of (WCE) has density:

$$
\begin{aligned}
& d \mu_{0}(x)=m_{0}(x) d x, \quad d \mu_{s}(x)=m\left(x_{n}\right) d x \\
& m \in C^{\prime}\left(\mathbb{R}^{d} x(0, T)\right) \cap c\left(\mathbb{R}^{d} x[0, T]\right) .
\end{aligned}
$$

CLAIR: Un solves (CE). (WCE) is

$$
\begin{aligned}
& 0=\int_{\mathbb{R}^{d}} \psi(y, 0) m_{0}(y) d y+\int_{0}^{T} \int_{\mathbb{R}^{d}}\left(\psi_{s}+D_{x} \psi \cdot f\right) m(y, s) d y d s \\
& \int_{0}^{T}(\psi, m)(y, s) d s=\left.\psi m\right|_{0} ^{T}-\int_{0}^{T} \psi m_{s} d s= \\
& \text { Integrate by pants } \rightarrow=-\psi(y, 0) m_{0}(y)-\int_{0}^{T}\left(\psi m_{j}\right)(y, v) d 1 \\
& \operatorname{div}_{x}(m \psi f)=\operatorname{div}_{x}(m f) \psi+D_{x} \psi \cdot(m f) \\
& (I)=\int_{0}^{+} \int_{\mathbb{R}^{d}}\left[\left(-m_{s}-\operatorname{div}_{x}(m f)\right) \psi+\underset{x}{\operatorname{div}}(m \sim f)\right] d y d s \\
& \text { Ganssin. } \\
& \int_{\text {ind }} \operatorname{div}_{x}(m \psi f) d y=\int_{\partial \operatorname{supp} \psi} m \psi f \cdot r d \sigma=0 \\
& \Rightarrow 0=\int_{0}^{t}\left(m_{s}+\operatorname{div}_{x}(m f)\right) \sim d y d s \quad \forall \psi
\end{aligned}
$$

By the ansitazien of $\psi \Rightarrow m_{s}+\operatorname{div}_{x}(n f)=0$

$$
\operatorname{in} \mathbb{R}^{d} \text {. }
$$

Viceverse (HW) If un solves (CE) \&altains initiol - Wete, then $d \mu_{s}=\ln (-, 1) d x$ satisfies ($\omega \subset E$)

A HEURISTIC DERNATION of the MFG (reen Rield gene) Systom of PDEs.

Ref. Cndaliaguet LN 2013 (also with Pometta...)

- P.L.Lions lectures at College de Fralce.

Take a popalation of agents with dynan'a

$$
\dot{y}(s)=-a(s) \quad, \quad a(s) \in \mathbb{R}^{d} \quad, y(t)=x
$$

Cost functional of the gevenic agely:

$$
J(t, x, a(1)):=\int_{0}^{t}(L(a(0))+F(y(0), 0)) d 0+g(y(T))
$$

Ass. $\lim _{|a,| \rightarrow+\infty} \frac{L(a)}{|a|}=+\infty$, convex, $H=L^{*}$ conved $\begin{gathered}\text { col } d^{\prime} .\end{gathered}$ HIIB assaciled is

$$
(H J B)\left\{\begin{array}{l}
-u_{t}+H\left(D_{x} u\right)=F(x, t) \quad \text { in } \mathbb{R}^{d} \times(0, T) \\
u(x, T)=g(x)
\end{array}\right.
$$

Leme (Verif, thm \approx Con.inLect. 5)

If $n \in C^{\prime}$ solves $(H J B), L E C^{\prime}, D L$ invertible, $(D L)^{-1} \in C^{\prime}$ $\Rightarrow D H\left(D_{x} u(x, t)\right)$ is an optimal feedback, $\because e$ e,

$$
\left\{\begin{array}{l}
\dot{y}(s)=-\underbrace{D H\left(D_{x} h(y(s), د)\right)} \\
y(t)=x
\end{array} \quad s>t\right.
$$

Les a sol. \& $a^{-1}(\cdot)$ minimits $J(t, x, \cdot)$,
Consequence of (CE) $\ddagger(H J B)$: If all a juts have the sene cost $L+F$, que all "retionel", \& $\ddagger u \in C$ sol of (HJB), Then the cistributibe of the population is a weak solus. of.

$$
\left\{\begin{array}{l}
m_{t}-\operatorname{div}_{x}\left(m \operatorname{DH}\left(D_{x} u\right)\right)=0 \\
m(x, 0)=m_{0}(x)
\end{array}\right.
$$

Wow supp fa N players, the cost of the $N-t h$ depelobs also on the enfinirial meas

$$
\begin{aligned}
& \mu^{N}(s)=\frac{1}{N-1} \sum_{i=1}^{N-1} \delta_{y^{i}(\Omega)} \quad \delta^{i}(s)=\text { Diner. } \quad . \\
& \text { of isth platen, } \\
& \mathcal{F}: \mathbb{R}^{d} \times \mathbb{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R} \\
& \left(y^{N}(0), \mu^{n}(0)\right) \\
& \text { - The value furiv of the v-th } \\
& \text { ploys solves } \\
& \left\{\begin{array}{c}
-\frac{\partial v^{N}}{\partial t}+H\left(D_{x} v^{N}\right)=F\left(x, \mu^{N}(t)\right) \\
v^{N}(x, T)=g(x) .
\end{array}\right.
\end{aligned}
$$

Sup. all player behove oPTInACMy, all equal to the Nth. Then $\delta_{y^{i}(s)}$ is a weak fol.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mu_{r}-\operatorname{div}\left(\mu D H\left(D v^{N}\right)\right)=0 \\
\mu_{0}=\delta_{x^{\prime}}
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{\partial \mu^{N}}{\partial t}-\operatorname{div}\left(\mu^{N} D H\left(D u^{N}\right)\right)=0 \\
\mu^{N}\left(t_{1} 0\right)=\mu_{0}(x)
\end{array}\right.
\end{aligned}
$$

Assume as $N \rightarrow \infty \quad \mu^{N} \rightarrow \mu_{t} \forall t, \mu_{t}$ Les a density $m(1, t), v^{N} \rightarrow u$ with all derivatives., F cont.

I "expect":

$$
(M F G)\left\{\begin{array}{l}
\left.-u_{t}+H\left(D_{x} u\right)=F(x, m) \quad \text { in } \mathbb{R}^{\prime \prime} x \mid 0, T\right) \\
m_{t}-\operatorname{div}\left(m D H\left(D_{x} u\right)\right)=0 \\
m(x, 0)=m_{0}(x), u(x, T)=g(x) .
\end{array}\right.
$$

N,B. System of Beckwend HJB Req.

- forward cont. eq.

A rijolals proof of the limit $N \rightarrow \infty$ is not kuhn yet.
CaN give a CAMME-THEORETIC jLCIIfication of (MFG) as describing a Nash-type equilibaich.

Dot. A pair $(\mu, h), \mu:[0, T] \rightarrow \mathbb{P}\left(\mathbb{R}^{\gamma}\right)$, $u: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}$ is a MFS equil. if.

* u is the value fun. of the opt. buts. probe. with bot $L(a(0))+F\left(g(s), \mu_{0}\right)$
- μ is the olistris. of a population of players all fallowing the feedach $D H\left(D_{x} u\right)$, optimal fe previous cot sol. pl.
"For an agent it is not courelielt. to deviate from DH(Dx u) if the rest of the prpulation does not deviate"

