Knowledge Representation and Learning
 9. Model counting in First Order Logic

Luciano Serafini
Fondazione Bruno Kessler

May 25, 2023

Model Counting in First Order Logic

- Is it possible to count the model of a first order formula?
- Without further specifications the answer is: a formula has 0 models, if it is not satisfiable, and it has an infinite number of models, it is satisfiable;
- indeed if a formula has one model with domain $\Delta_{\mathcal{I}}$ then it has an infinite set of models with domains isomorphic to $\Delta_{\mathcal{I}}$.
- What if we change our question in:
- is it possible to count the models of a first order formula, on a domain of a given finite, or countable cardinality?
- This question makes more sense and can be answered.
- We consider the special case in which the cardinality of the domain is finite, i.e., a natural number n.

First order model counting

Definition (First order model counting)

The problem of first order model counting is the problem of computing the number of \sum-interpretations that satisfies a first order sentence ϕ on a given finite domain of $n>0$ elements. The problem is denoted as

$$
\operatorname{FOMC}(\phi, n)
$$

Counting problems in FOL

- the number of undirected graphs with n nodes $\operatorname{FOMC}(U G, n)$

$$
U G \triangleq \forall x \forall y(\neg R(x, x) \wedge(R(x, y) \leftrightarrow R(y, x)))
$$

- the number of 3 -colored undirected graphs with n nodes $\operatorname{FOMC}(U G \wedge 3 C, n)$

$$
3 C \triangleq \forall x y\left(\left(C_{1}(c) \vee C_{2}(x) \vee C_{3}(x)\right) \wedge R(x, y) \rightarrow \bigwedge_{i=1}^{3}\left(\neg C_{i}(x) \wedge C_{i}(y)\right)\right)
$$

- the number of graphs with n vertexes every pair of nodes are connected with a path with length $\leq k . \operatorname{FOMC}\left(U G \wedge R_{\leq k}, n\right)$

$$
\begin{aligned}
& R_{\leq k} \triangleq \forall x \forall y\left(\left(\bigvee_{i=1}^{k} R_{k}(x, y)\right) \wedge\left(R_{1}(x, y) \leftrightarrow R(x, y)\right) \wedge\right. \\
&\left.\bigwedge_{i=1}^{k-1}\left(R_{i+1}(x, y) \leftrightarrow \exists z\left(R_{i}(x, z) \wedge R(z, y)\right)\right)\right)
\end{aligned}
$$

$R_{i}(x, y), x$ is connected with y with a path of lenght i

Formulating counting problems in FOL

Example

Count the possible configuraiton of a group of n people composed of Ph.D students and professor knowling that every student has a supervisor, every professor supervises at leas one student.

$$
\operatorname{FOMC}(S P, n)
$$

$$
S P=\left\{\begin{array}{l}
\operatorname{Prof}(x) \vee \operatorname{Stud}(x) \\
\operatorname{super}(x, y) \rightarrow \operatorname{Stud}(x) \wedge \operatorname{Prof}(y) \\
\operatorname{Stud}(x) \rightarrow \exists y(\operatorname{Prof}(y) \wedge \operatorname{super}(x, y))
\end{array}\right\}
$$

First order model counting

Example

Consider the definition of partial order. A binary relation, R, on a set A is a strict partial order if

- $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$
- if $(a, b) \in R$ then $(b, a) \notin R$

To determine how many partial orders can be defined on a set of n elements we can solve the problem:

$$
\operatorname{FOMC}\left(\begin{array}{c}
\forall x, y, z \cdot(R(x, y) \wedge R(y, z) \rightarrow R(x, z)) \\
\wedge \forall x, y \cdot(R(x, y) \rightarrow \neg R(y, x))
\end{array}, n\right)
$$

Number of partial orders on a set of n elements

n	Number of partial orders on a set of n elements
0	1
1	1
2	4
3	29
4	355
5	6942
6	209527
7	9535241
8	642779354
9	63260289423
10	8977053873043
11	1816846038736192
12	519355571065774021
13	207881393656668953041
14	115617051977054267807460
15	88736269118586244492485121
16	93411113411710039565210494095
17	134137950093337880672321868725846
18	261492535743634374805066126901117203
-Line Encyclopedia of Integer Sequences (OEIS)	

Example

The number of total relations on a set of n elements can be computed by a formula:

$$
\operatorname{FOMC}(\forall x \exists y \cdot R(x, y), n)=\left(2^{n}-1\right)^{n}
$$

Proof.

- For every node x we can select a non empty subset S of $\{1, \ldots, n\}$ such that $R(x, y)$ is true if $y \in S$.
- the number of non empty subsets of n elements are $2^{n}-1$.
- since there are n nodes. we have $\left(2^{n}-1\right)^{n}$ possibilities.

First order model counting - systematic solution

- in all the previous example we use different methodologies to count the models;
- the strategies that we as humans use cannot be easily implemented in a algorithms;
- the question is: is there a systematic way to compute $\operatorname{FOMC}(\phi, n)$

First order model counting via grounding

Since we are dealing which finite domains we can reduce first order formulas to equivalent propositional formulas by grounding quantifiers:

Grounding

Ground (ϕ, C) for every formula ϕ and set of constants C is defined as follows:

- $\operatorname{Ground}(\phi, C)=\phi$ if ϕ does not contain quantifiers;
- Ground $(\forall x . \phi(x), C)=\bigwedge_{c \in C} \operatorname{Ground}(\phi(c), C)$
- $\operatorname{Ground}(\exists x . \phi(x), C)=\bigvee_{c \in C} \operatorname{Ground}(\phi(c), C)$
- Ground $(\phi \circ \psi, C)=\operatorname{Ground}(\phi, C) \circ \operatorname{Ground}(\phi, C)$ for every connective o
- Ground $((\neg \phi, C)=\neg \operatorname{Ground}(\phi, C)$

First order model counting via grounding

Example

$\operatorname{Ground}(\forall x(A(x) \rightarrow \exists y(R(x, y) \wedge B(y))),\{a, b\})$

$$
\begin{aligned}
& A(a) \rightarrow(R(a, a) \wedge B(a)) \vee(R(a, b) \wedge B(b)) \wedge \\
& A(b) \rightarrow(R(b, a) \wedge B(a)) \vee(R(b, b) \wedge B(b))
\end{aligned}
$$

Example

$\operatorname{Ground}(\forall x, y \cdot(R(x, y) \rightarrow R(y, x)), C)=$

$$
\bigwedge_{c \in C} \bigwedge_{c^{\prime} \in C} R\left(c, c^{\prime}\right) \rightarrow R\left(c^{\prime}, c\right)
$$

First order model counting via grounding

Proposition

If ϕ is a first order sentence with no constant and function symbols

$$
\operatorname{FOMC}(\phi, n)=\# \operatorname{sAT}\left(\operatorname{ground}\left(\phi,\left\{c_{1}, \ldots, c_{n}\right\}\right)\right)
$$

Proof Outline.

For every model \mathcal{I} of ϕ on the domian of $\{1, \ldots, n\}$ We define the following bijection:

$$
\mathcal{I}_{F O L} \vDash p\left(x_{1}, \text { dots, } x_{n}\right)\left[a_{x_{1} \leftarrow d_{1}, \ldots, x_{n} \leftarrow d_{n}}\right] \text { iff } \mathcal{I}_{P R O P}\left(p\left(c_{d_{1}}, \ldots, c_{d_{n}}\right)\right)=1
$$

One can easily show that this mapping is an isomorphism between the set fo FOL interrpetatins on $\{1, \ldots, n\}$ and the propositional assignment $\mathcal{I}_{\text {PROP }}$ and thast $\mathcal{I}_{\text {FOL }} \models \phi$ if and only if $\mathcal{I}_{\text {PROP }} \models \operatorname{ground}\left(\phi,\left\{c_{1} \ldots, c_{n}\right\}\right)$

Size of Ground (ϕ, C)

- If ϕ contains an n ary predicate $R\left(x_{1}, \ldots, x_{k}\right)$ then $\operatorname{Ground}(\phi, C)$ contains $|C|^{k}$ propositional variables.
- For instance Ground $(\forall x(A(x) \rightarrow \exists y .(R(x, y) \wedge B(y))), C)$ contains $2|C|+|C|^{2}$ propositional variables.
- $|C|$ variables of the form $A(c)$;
- $|C|$ variables of the form $B(c)$;
- $|C|^{2}$ variables of the form $R\left(c, c^{\prime}\right)$.
- with 10 constant whe have 120 variables, i.e., 2^{120} models.
fomc via grounding

$$
\operatorname{FOMC}(\phi, n)=\# \operatorname{sAT}(\operatorname{Ground}(\phi,\{1, \ldots, n\}))
$$

The complexity of $\operatorname{fomc}(\phi, n)$ grows exponential w.r.t, the size of the domain n. In practice it is hard to go beyond 10 objects even with simple formulas.

Lifrability

- is there a method to compute $\operatorname{FOMC}(\phi, n)$ such that the complexity is not explonential in n ?
- if such a method exists we will say that the problem of $\operatorname{FOMC}(\phi, n)$ for ϕ is liftable.
- A method to achieve liftability is to exploit symmetries of First Order Formula.

The language \mathcal{L}^{2}

Definition

For every $k \geq 1$ the language \mathcal{L}^{k} contains all the first order formulas that can be build using only k individual variables.

Example

The following are formulas of \mathcal{L}^{2};

- $\forall x \exists y(R(x, y) \wedge A(x) \wedge B(y) \wedge \neg x=y)$
- $\exists x(A(x) \wedge \forall y(R(x, y) \rightarrow \exists x R(y, x) \wedge B(x))$

Example

$\forall x, y, z . R(x, y) \wedge R(y, z) \rightarrow R(x, z)$ is a formula in \mathcal{L}^{3}, that formalizes the fact that R is a transitive relation. Such a condition cannot be expressed in \mathcal{L}^{2}.

The above example shows that \mathcal{L}^{2} is less expressive thatn \mathcal{L}^{3}.

Definition (1-type)

Given a FOL signature Σ a 1-type is a conjunction of maximally consistent set of literals containing exactly one variable and no constants.

Example (1-type)

Let $\Sigma=\{A / 1, R / 2, S / 3\}$ (the notation X / n means that X is a predicate with arity equal to n)

$$
\begin{array}{ll}
A(x) \wedge R(x, x) \wedge S(x, x, x) & A(x) \wedge R(x, x) \wedge \neg S(x, x, x) \\
A(x) \wedge \neg R(x, x) \wedge S(x, x, x) & A(x) \wedge \neg R(x, x) \wedge \neg S(x, x, x) \\
\neg A(x) \wedge R(x, x) \wedge S(x, x, x) & \neg A(x) \wedge R(x, x) \wedge \neg S(x, x, x) \\
\neg A(x) \wedge \neg R(x, x) \wedge S(x, x, x) & \neg A(x) \wedge \neg R(x, x) \wedge \neg S(x, x, x)
\end{array}
$$

Proposition

If Σ contains n predicates there are $2^{n} 1$-types.
We use natural number $1(x), 2(x), \ldots, 2^{n}(x)$ to denote the 1-types.

Definition (2-table)

Given a FOL signature Σ a 2-table is the conjunction of a maximally consistent set of literals containing exactly two distinct variables x, y and no constants and the literal $x \neq y$.

Example (2-table)

Let $\Sigma=\{A / 1, R / 2\}$

$$
\begin{array}{ll}
R(x, y) \wedge R(y, x) \wedge x \neq y & R(x, y) \wedge \neg R(y, x) \wedge x \neq y \\
\neg R(x, y) \wedge R(y, x) \wedge x \neq y & \neg R(x, y) \wedge \neg R(y, x) \wedge x \neq y
\end{array}
$$

Proposition

if \sum contains n_{i} predicates with arity equal to i, then there are $2 \sum_{i} n_{i}\left(2^{i}-2\right)$
We use $1(x, y), 2(x, y), \ldots$ to denote 2-table.

Definition (2-type)

Given a FOL signature Σ a 2-type is the conjunction of a maximally consistent set of literals containing at most two distinct variables x, y and no constants and the literal $x \neq y$.

Proposition

A 2-type is the conjuction of two 1-types $i(x)$ and $j(y)$ and a 2-table $I(x, y)$.

Example

$\Sigma=\{R / 2\}$

$$
\begin{aligned}
& R(x, x) \wedge R(y, y) \wedge R(x, y) \wedge R(y, x) \wedge x \neq y \\
& \neg R(x,, x) \wedge R(y, y) \wedge R(x, y) \wedge R(y, x) \wedge x \neq y \\
& R(x, x) \wedge R(y, y) \wedge \neg R(x, y) \wedge R(y, x) \wedge x \neq y
\end{aligned}
$$

The two type $i(x) \wedge j(y) \wedge I(x, y)$ is denoted by $i j l(x, y)$.

Realization of types and tables

Given a Σ structure, we say that

- a constant c realizes a 1-type i if $\mathcal{I} \models i(c)$
- a pair of constants (c, d) realizes a 2-table $I(x, y)$ if $\mathcal{I} \models I(a, b)$
- a pair of constants (c, d) realizes a 2-type $i j l(x, y)$ if $\mathcal{I} \models i j l(x, y)$.

Proposition

(1) Every constant realizes a single 1-type;
(2) Every pair of constants realizes a single 2-table;
(3) Every pair of constants realizes a single 2-type

Example

1-types

$$
\begin{array}{ll}
1(x) \triangleq R(x, x), & 1(x, y) \triangleq R(x, y) \wedge R(y, x) \wedge x \neq y \\
2(x) \triangleq \neg R(x, x), & 2(x, y) \triangleq R(x, y) \wedge \neg R(y, x) \wedge x \neq y \\
& 3(x, y) \triangleq \neg R(x, y) \wedge R(y, x) \wedge x \neq y \\
& 4(x, y) \triangleq \neg R(x, y) \wedge \neg R(y, x) \wedge x \neq y
\end{array}
$$

Proposition

Let $\Sigma=\left\{R_{1}, \ldots, R_{k}\right)$ be a FOL signature containing only relational symbols. Every Σ-interpretation on the domain $[n]$ is uniquely described by
(1) partition [n] in u-sets N_{1}, \ldots, N_{u} one for each one type;
(2) assign a two table to every ordered pair $c<d \in N_{i}$;
(3) assign a two table to every ordered pair $c \in N_{i}$ and $d \in N_{j}$ with $i<j$.

Cardinality vectors $(\boldsymbol{k}, \boldsymbol{h})$

- for every interpretation \mathcal{I} we define the vector $\boldsymbol{k}=\left(k_{1}, \ldots, k_{u}\right)$ such that k_{i} is the number of elements of \mathcal{I} that realizes the i-th 1 -type.
- for every $i \leq j$ we define the vector of integers $\boldsymbol{h}^{i j}=\left(h_{1}^{i j}, \ldots, h_{b}^{i j}\right)$, such that $h_{l}^{i j}$ contains a pair that realizes the 2-type ijl.

Example

1-types

$$
\begin{aligned}
& 1(x) \triangleq R(x, x), \\
& 2(x) \triangleq \neg R(x, x),
\end{aligned}
$$

2-tables

$$
\begin{aligned}
& 1(x, y) \triangleq R(x, y) \wedge R(y, x) \wedge x \neq y \\
& 2(x, y) \triangleq R(x, y) \wedge \neg R(y, x) \wedge x \neq y \\
& 3(x, y) \triangleq \neg R(x, y) \wedge R(y, x) \wedge x \neq y \\
& 4(x, y) \triangleq \neg R(x, y) \wedge \neg R(y, x) \wedge x \neq y
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{k} & =(4,3) \\
\boldsymbol{h}^{11} & =(0,1,1,4) \\
\boldsymbol{h}^{12} & =(2,1,0,9) \\
\boldsymbol{h}^{11} & =(0,0,1,2)
\end{aligned}
$$

Facts about cardinality vectores

- $\sum \boldsymbol{k}=\sum_{i=1}^{u} k_{i}=n$
- $\sum \boldsymbol{h}=\sum_{i \leq j} \sum_{l=1}^{b} k_{l}^{i j}=\frac{n(n-1)}{2}$
- $\sum \boldsymbol{h}^{i i}=\sum_{l} h_{l}^{i i}=\frac{k_{i}\left(k_{i}-1\right)}{2}$
- $\sum \boldsymbol{h}^{i j}=\sum_{l} h_{l}^{i j}=k_{i} \cdot k_{j}($ if $i \neq j)$
for every cardinality vector $(\boldsymbol{k}, \boldsymbol{h})$ there are

$$
\binom{n}{\boldsymbol{k}} \prod_{i}\left(\frac{\frac{k_{i}\left(k_{i}-1\right.}{2}}{\boldsymbol{h}^{i i}}\right) \prod_{i<j}\binom{k_{i} k_{j}}{\boldsymbol{h}^{i j}}
$$

distinct interpretations that have the cardinality vector $(\boldsymbol{k}, \boldsymbol{h})$ where for every positive integers a, b_{1}, \ldots, b_{m} with $\sum_{i} b_{i}=a$

$$
\binom{a}{b_{1}, \ldots, b_{m}}=\frac{a!}{b_{1}!\cdot b_{2}!\cdots b_{n}!}
$$

FOMC for pure universal formula in \mathcal{L}^{2}

Definition

a 2-type $i j(x, y)$ is consistent w.r.t. a universal formula ϕ if

$$
\phi(x, x) \wedge \phi(x, y) \wedge \phi(y, x) \wedge \phi(y, y) \wedge i j l(x, y)
$$

is satisfiable. $2 t(\phi)$ denotes The set of 2-types consistent with $\forall x y \phi(x, y)$.

Proposition

A pure universal formula $\forall x \forall y \phi(x, y)$ in the language $F O^{2}$ can be rewritten in the following form:

$$
\begin{equation*}
\forall x \forall y\left(x \neq y \rightarrow \bigvee_{i \leq j} \bigvee_{i j \in 2 t(\phi)} i j l(x, y)\right) \tag{1}
\end{equation*}
$$

The formula (1) is equivalent to the original one on models that contains 2 or more lements.

A simle method for finding $2 t(\phi)$ is to find the truth assignments that satisfies $\phi(x, x) \wedge \phi(x, y) \wedge \phi(y, x) \wedge \phi(y, y)$

Example

$\forall x \forall y(R(x, x) \wedge R(x, y) \rightarrow \neg R(y, x)))$ is equivalent to

$$
\begin{aligned}
\forall x \forall y(x \neq y \rightarrow & \neg R(x, x) \wedge \neg R(y, y) \wedge R(x, y) \wedge R(y, x) \wedge x \neq y \wedge \\
& \neg R(x, x) \wedge \neg R(y, y) \wedge \neg R(x, y) \wedge R(y, x) \wedge x \neq y \wedge \\
& \neg R(x, x) \wedge \neg R(y, y) \wedge R(x, y) \wedge \neg R(y, x) \wedge x \neq y \wedge \\
& \neg R(x, x) \wedge \neg R(y, y) \wedge \neg R(x, y) \wedge \neg R(y, x) \wedge x \neq y
\end{aligned}
$$

Using the notation for 1- and 2-types we have that the initial formula is equivalent to

$$
\forall x \forall y(x \neq y \rightarrow 221(x, y) \vee 222(x, y) \vee 223(x, y) \vee 224(x, y))
$$

Example

$\forall x \forall y(R(x, x) \wedge R(x, y) \rightarrow R(y, y))$ is equivalent to:

$$
\begin{aligned}
\forall x \forall y(x \neq y \rightarrow & 111(x, y) \vee 112(x, y) \vee 113(x, y) \vee 114(x, y) \vee \\
& 123(x, y) \vee 114(x, y) \\
& 221(x, y) \vee 222(x, y) \vee 223(x, y) \vee 224(x, y) \vee
\end{aligned}
$$

We have that the original formula $\forall x \forall y \phi(x, y)$ is equivalent to

$$
\Phi=\forall x \forall y\left(x \neq y \rightarrow \bigvee_{i \leq j} \bigvee_{i j \in 2 t(\phi)} i j /(x, y)\right)
$$

implies that if $n \geq 2$

$$
\operatorname{Ground}(\Phi,[n]) \leftrightarrow \bigwedge_{c \neq d=1}^{n}\left(\bigvee_{i \leq j} \bigvee_{i j \mid \in 2 t(\phi)} i j l(c, d)\right)
$$

This implies that

$$
\mathcal{I} \models \forall x y \phi(x, y) \text { iff } h_{l}^{i j} \neq 0 \Rightarrow i j l \in 2 t(\phi)
$$

Furthermore the condition " $h_{l}^{i j} \neq 0 \Rightarrow i j l \in 2 t(\phi)$ " can be represented with

$$
\mathbb{1}_{i j l \in 2 t(\phi)}^{h_{j}^{i j}}= \begin{cases}1 & \text { if } h_{l}^{i j}=0 \text { or } n_{i j} \neq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

where $\mathbb{1}_{i j l \in 2 t(\phi)}$ is the indicator function for the set $2 t(\phi)$.

Putting everything together

$$
\begin{aligned}
\operatorname{FOMC}(\forall x, y, \phi(x, y), n) & =\sum_{k, \boldsymbol{h}}\binom{n}{k} \prod_{i \leq j=1}^{u}\binom{k(i, j))}{\boldsymbol{h}^{i j}} \prod_{i} \mathbb{1}_{i j i \in 2 t(\phi)}^{h_{i}^{i}} \\
& =\sum_{k}\binom{n}{k} \prod_{i \leq j=1}^{u} \sum_{k}\binom{k(i, j)}{\boldsymbol{h}^{i j}} \prod_{1} \mathbb{1}_{i j l(2 t(\phi)}^{h_{i}^{i}} \\
& \left.=\sum_{k, \boldsymbol{h}}\binom{n}{k} \prod_{i \leq j=1}^{u}\left(\sum_{i=1}^{b} \mathbb{1}_{j i l \in 2 t(\phi)}\right)\right)^{k(i, j)} \\
& =\sum_{k, \boldsymbol{h}}\binom{n}{k} \prod_{i \leq j=1}^{u} n_{i j}^{k(i, j)}
\end{aligned}
$$

with

$$
n_{i j}=\sum_{l=1}^{b} \mathbb{1}_{i j l \in 2 t(\phi)}
$$

First Order Model Counting in universal fragment of \mathcal{L}^{2}

Theorem

Let $\phi(x, y)$ a quantifier free formula that contains p predicate symbols and the two free variables x and y and no constant and functional symbolss;

$$
\operatorname{FOMC}(\forall x, y \cdot \phi(x, y), n)=\sum_{\boldsymbol{k}}\binom{n}{\boldsymbol{k}} \prod_{1 \leq i \leq u} n_{i j}^{\boldsymbol{k}(i, j)}
$$

- $\boldsymbol{k}=\left(k_{1}, k_{1}, \ldots, k_{u}\right)$, s.t., $\sum_{i=1}^{u} k_{i}=n$;
- $n_{i j}=\# \operatorname{SAT}\left(\operatorname{Ground}\left(\phi_{0}(x, y) \wedge i(x) \wedge j(y),[2]\right)\right.$
- $\boldsymbol{k}(i, j)= \begin{cases}\frac{k_{i} \cdot\left(k_{j}-1\right)}{2} & \text { if } i=j \\ k_{i} \cdot k_{j} & \text { Otherwise }\end{cases}$

Complexity

- Notice that to compute $\sum_{k}\binom{n}{k} \prod_{0 \leq i \leq 2^{p}-1} n_{i j}^{k(i, j)}$ you have to do a number of operations which are exponential in p but polinomial in n, since the only impact of n is in the computation of the binomial coefficient and the summation.
- it is known that computing the binomial coefficient $\binom{n}{k_{1}, \ldots, k_{h}}$ is polinomial in n.

Exercizes

Using the previous formula compute $\operatorname{FOMC}(\Phi, n)$ where Φ is the following fomrula:
(1) $\forall x \forall y(R(x, y) \rightarrow R(y, x))$;
(2) $\forall x \forall y(R(x, y) \rightarrow \neg R(y, x))$;
(3) $\forall x \forall y(R(x, y) \rightarrow \neg R(x, x))$;
(9) $\forall x \forall y(R(x, x) \rightarrow(R(x, y) \rightarrow R(y, z)))$;
(0) $\forall x \forall y(S(x) \wedge F(x, y) \rightarrow S(y))$.

Cardinality constraint

A cardinality constraint is an expression that imposes constraints on the cardinality of the interpretation of predicates

Example (Cardinality constraint)

- $|A|=3$ states that $\mathcal{I}(A)$ contains exaclty two elements;
- $|R|=2$ states that $\mathcal{I}(R)$ contains more than 3 pairs of elements;
- $|A|>|R|$ states that $|\mathcal{I}(A)|>|\mathcal{I}(R)|$
- $|A|=2 \rightarrow|B|<|C| \vee|B|<|C|$ states \ldots.

Satisfaction of cardinality constraints

For every predicate P we can compute $|\mathcal{I}(P)|$ from the cardinality vectors $\boldsymbol{k}, \boldsymbol{h}$ of \mathcal{I} as follows:

$$
\begin{array}{rlr}
|\mathcal{I}(A)|=\boldsymbol{k}(A)= & \sum_{i=1}^{u} \mathbb{1}_{A(x) \in i(x)} \cdot k_{i} & A \text { unary predicate } \\
\boldsymbol{k}(R)=\sum_{i=1}^{u} \mathbb{1}_{R(x, x) \in i(x)} \cdot k_{i} & R \text { binary predicate } \\
|\mathcal{I}(R)|=(\boldsymbol{k}, \boldsymbol{h})(R)= & \boldsymbol{k}(R)+\sum_{i \leq j, l} \mathbb{1}_{R(x, y) \in i j(x, y)} \cdot h_{l}^{i j} & \\
& +\sum_{i \leq j, l} \mathbb{1}_{R(y, x) \in i j(x, y)} \cdot h_{l}^{i j} & R \text { binary predicate }
\end{array}
$$

If χ is a cardinality constraint then $(\boldsymbol{k}, \boldsymbol{h}) \models \chi$ holds if the expression obtained replacing $|A|$ with the value of $\boldsymbol{k}(A)$ and $|R|$ with the value of $(\boldsymbol{k}, \boldsymbol{h})(R)$ is true.

Example

1-types

$$
\begin{aligned}
& 1(x) \triangleq R(x, x) \\
& 2(x) \triangleq \neg R(x, x),
\end{aligned}
$$

2-tables

$$
\begin{aligned}
& 1(x, y) \triangleq R(x, y) \wedge R(y, x) \wedge x \neq y \\
& 2(x, y) \triangleq R(x, y) \wedge \neg R(y, x) \wedge x \neq y \\
& 3(x, y) \triangleq \neg R(x, y) \wedge R(y, x) \wedge x \neq y \\
& 4(x, y) \triangleq \neg R(x, y) \wedge \neg R(y, x) \wedge x \neq y \\
\boldsymbol{k}= & (4,3) \quad \boldsymbol{k}(R)=4 \\
& \\
\boldsymbol{h}^{11}= & (0,1,1,4) \quad(\boldsymbol{k}, \boldsymbol{h})(R)=4+4+4=12 \\
\boldsymbol{h}^{12}= & (2,1,0,9) \\
\boldsymbol{h}^{11}= & (0,0,1,2)
\end{aligned}
$$

Dealing with Existential Quantifiers

- how can we count the models for formulas that contains also existential quantifiers and two variables?
- Scott's reduction: Transform it in the form:

$$
\Phi=\forall x \forall y \cdot \phi(x, y) \wedge \bigwedge_{i=1}^{m} \forall x \exists y \cdot \psi_{i}(x, y)
$$

Where $\phi(x, y)$ and $\phi_{i}(x, y)$ do not contain quantifiers.

Scott's Normal reduction

To transform a formula ϕ is Scott's normal form you have to apply the following transformations until ϕ does not contain subformulas of the form $Q y . \alpha(x, y), Q \in\{\forall, \exists\}$

- Replace $Q y . \alpha(x, y)$ with a new predicate $A(x)$ and define $A(x)$ as Qy. $\alpha(x, y)$

$$
\phi \Longrightarrow \phi[Q y \cdot \alpha(x, y) / A(x)] \wedge \forall x \cdot(A(x) \leftrightarrow Q y \cdot \alpha(x, y))
$$

- Transform $\forall x .(A(x) \leftrightarrow Q y . \alpha(x, y))$ in the $\forall x \forall y \ldots$ or $\forall x \exists y \ldots$ form

$$
\begin{aligned}
\forall x(A(x) \leftrightarrow Q y \cdot \alpha(x, y)) \Longrightarrow & \forall x(A(x) \rightarrow Q y \cdot \alpha(x, y)) \wedge \\
& \forall x(\neg A(x) \rightarrow \bar{Q} y \cdot \neg \alpha(x, y)) \\
\forall x \cdot(A(x) \rightarrow \forall y \cdot \alpha(x, y)) \Longrightarrow & \forall x, y \cdot(A(x) \rightarrow \alpha(x, y)) \\
\forall x \cdot(\neg A(x) \rightarrow \exists y \cdot \neg \alpha(x, y)) \Longrightarrow & \forall x \exists y \cdot(\neg A(x) \rightarrow \neg \alpha(x, y)) \\
\forall x \cdot(A(x) \rightarrow \exists y \cdot \alpha(x, y)) \Longrightarrow & \forall x \exists y(A(x) \rightarrow \alpha(x, y)) \\
\forall x \cdot(\neg A(x) \rightarrow \forall y \cdot \neg \alpha(x, y)) \Longrightarrow & \forall x \forall y(\neg A(x) \rightarrow \neg \alpha(x, y))
\end{aligned}
$$

Fomc of formulas with Existential Quantifiers

$$
\Phi=\forall x \forall y \cdot \phi(x, y) \wedge \bigwedge_{i=1}^{m} \forall x \exists y \cdot \psi_{i}(x, y)
$$

Fomc of formulas with Existential Quantifiers

Let us consider the simple case with $m=1$

$$
\Phi=\forall x \forall y \cdot \phi(x, y) \wedge \forall x \exists y \cdot \psi(x, y)
$$

- Introduce a new predicate $P(x)$ and the additional formula;

$$
\phi_{P}=\forall x \forall y .(P(x) \rightarrow \neg \psi(x, y))
$$

- ϕ_{P} implies that for each element a if $P(a)$ is true, then $\forall y . \neg \psi(a, y)$ is also true.
- Therefore is $|P|=k$ then there are at least k elements a_{1}, \ldots, a_{k} for which $\forall x . \neg \psi\left(a_{i}, x\right)$
- Let M_{i} be the set of models of $\phi \wedge \phi_{P}$ such that there are exactly i elements that satisfies $\forall y \neg \psi(x, y)$
- Let $M_{i j}$ the subset of M_{i} such that $|P|=j$. Clearly $M_{i j}$ if $j>i M_{i j}$ is empty;
- Therefore $M_{i}=\cup_{0 \leq j \leq i} M_{i j}$
- we have that:

$$
\begin{aligned}
\operatorname{FOMC}(\Phi, n) & =\left|M_{0}\right|=\left|M_{00}\right| \\
& =\operatorname{FOMC}\left(\forall x \forall y \phi(x, y) \wedge \phi_{p}(x, y)\right)-\left|\bigcup_{1 \leq j \leq i=1}^{n} M_{i j}\right|
\end{aligned}
$$

- We apply the inclusion exclusion principle that states:

$$
\begin{equation*}
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n}(-1)^{k+1}\left|A_{j_{1}} \cap A_{j_{2}} \cdots \cap A_{j_{k}}\right| \tag{IEP}
\end{equation*}
$$

- obtaining

$$
\left|\bigcup_{1 \leq j \leq i=1}^{n} M_{i j}\right|=\left|\bigcup_{i=1}^{n}\left(\bigcup_{j=i}^{n} M_{i j}\right)\right| \stackrel{\text { IEP }}{=} \sum_{j=1}^{n}(-1)^{j}\left|\bigcup_{j=i}^{n} M_{i j}\right|
$$

First order model counting in \mathcal{L}^{2}

$$
\begin{aligned}
& \operatorname{FOMC}(\forall x, y \cdot \phi(x, y) \wedge \forall x \exists y \psi(x, y), n)= \\
& \qquad \sum_{k}\binom{n}{\boldsymbol{k}}(-1)^{\boldsymbol{k}(P)} \prod_{0 \leq i \leq j \leq 2^{p+1}-1} n_{i j}^{k(i, j)}
\end{aligned}
$$

where $\boldsymbol{k}(P)=\sum_{i=1, i_{b}=1}^{2^{p+1}-1} k_{i}$ where b is the index of the predicate P. Generalizing to m existentially quantifiers, we introduce a predicate P_{i} for every formula $\forall x \exists y \psi_{i}(x, y)$ and the corresponding formula $\phi_{P_{i}}$.

$$
\begin{aligned}
\operatorname{FOMC}(\forall x, y \cdot \phi(x, y) \wedge & \left.\bigwedge_{i=1}^{m} \forall x \exists y \psi_{i}(x, y), n\right)= \\
& \sum_{\boldsymbol{k}}\binom{n}{\boldsymbol{k}}(-1)^{\sum_{i=1}^{m} \boldsymbol{k}\left(P_{i}\right)} \prod_{0 \leq i \leq j \leq 2^{p+m}-1} n_{i j}^{k(i, j)}
\end{aligned}
$$

Exercizes

Using the previous formula compute $\operatorname{FOMC}(\Phi, n)$ where Φ is the following fomrula:

- $\forall x . \exists y . R(x . y)$
- $\forall x . \exists y .(R(x, y) \vee R(y, x))$
- $\forall x, y .(R(x, y) \rightarrow R(y, x)) \wedge \forall x \neg R(x, x) \wedge \forall x . \exists y . R(x . y)$

Solution of the first exercize

$$
\begin{aligned}
& \forall x, y P(x) \rightarrow \neg R(x, y) \\
& \sum_{k_{0}, k_{1}, k_{2}}\binom{n}{k_{0}, k_{1}, k_{2}}(-1)^{k_{2}} n_{00}^{\frac{k_{0}\left(k_{0}-1\right)}{2}} n_{01}^{k_{0} k_{1}} n_{02}^{k_{0} k_{2}} n_{11}^{\frac{k_{1}\left(k_{1}-1\right)}{2}} n_{12}^{k_{1} k_{2}} n_{22}^{\frac{k_{2}\left(k_{2}-1\right)}{2}} \\
& =\sum_{k_{0}, k_{1}, k_{2}}\binom{n}{k_{0}, k_{1}, k_{2}}(-1)^{k_{2}} 4^{\frac{k_{0}\left(k_{0}-1\right)}{2}} 4^{k_{0} k_{1}} 2^{k_{0} k_{2}} 4^{\frac{k_{1}\left(k_{1}-1\right)}{2}} 2^{k_{1} k_{2}} 1^{\frac{k_{2}\left(k_{2}-1\right)}{2}} \\
& =\sum_{k_{0}, k_{1}, k_{2}}\binom{n}{k_{0}, k_{1}, k_{2}}(-1)^{k_{2}} 2^{k_{0}\left(k_{0}-1\right)+2 k_{0} k_{1}+k_{0} k_{2}+k_{1}\left(k_{1}-1\right)+k_{1} k_{2}} \\
& =\sum_{k_{0}, k_{1}, k_{2}}\binom{n}{k_{0}, k_{1}, k_{2}}(-1)^{k_{2}} 2^{\left(k_{0}+k_{1}\right)(n-1)} \sum_{k_{2}}\binom{n}{k_{2}}(-1)^{k_{2}} \sum_{k_{0}, k_{1}}\binom{n-k_{2}}{k_{0}, k_{1}} 2^{\left(k_{0}+k_{1}\right)(n-1)} \\
& =\sum_{k_{2}}\binom{n}{k_{2}}(-1)^{k_{2}}\left(2^{n}\right)^{n-k_{2}}=\left(2^{n}-1\right)^{n}
\end{aligned}
$$

First order weighted model counting

- as in propositional logic interpretations are associated to a weight;
- In propositinal logic each proposition is associated with a weight;
- In First Order Logic weights are associated to predicates;
- This type of weight function is called symmetric weight functions;
- it is not the most general, but in this class we will limit to symmetric weight.

Symmetric weight function

Definition

A symmetric weight function for a first order language with signature Σ is specified by a pair of functions w and \bar{v} that associate a real number $w(P)$ and $\bar{w}(P)$ to every n-ary predicate $P \in \Sigma$.

$$
\begin{array}{r}
w\left(P\left(a_{1}\right)\right)=w\left(P\left(a_{2}\right)\right)=\cdots=w\left(P\left(a_{n}\right)\right)=w(P) \\
w\left(\neg P\left(a_{1}\right)\right)=w\left(\neg P\left(a_{2}\right)\right)=\cdots=w\left(\neg P\left(a_{n}\right)\right)=\bar{w}(P)
\end{array}
$$

For every interpretation \mathcal{I} on a finite domain $\Delta_{\mathcal{I}}$

$$
\begin{gathered}
W(\mathcal{I})=\prod_{P \in \Sigma} w(P)^{|P|_{\mathcal{I}}} \cdot \bar{w}(P)^{\left|\Delta_{\mathcal{I}}\right|^{\mid x i t y}(P)-|P|_{\mathcal{I}}} \\
\operatorname{WFOMC}(\phi, w, \bar{w}, n)=\sum_{\substack{\mathcal{I} \models \phi \\
\Delta_{\mathcal{I}}\{1, \ldots, n\}}} W(\mathcal{I})
\end{gathered}
$$

First order weighted model counting in \mathcal{L}^{2}

plem: Is it possible to adapt the formula for $\operatorname{FOMC} \phi, n$ for ϕ in \mathcal{L}^{2} to compute $\operatorname{WFOMC}(\phi, w, \bar{w}, n)$?
nswer: Yes! Replace $n_{i j}$ with $w_{i j}$

$$
\begin{gathered}
w_{i j}=\operatorname{WMC}\left(\operatorname{Ground}\left(\phi_{0}(x, y) \wedge \alpha_{i}(x) \wedge \alpha_{j}(y),\{a, b\}\right)\right) \\
\alpha_{i}(x)=\bigwedge_{\substack{b=1 \\
i_{b}=0}}^{p} \neg A_{b}(x) \wedge \bigwedge_{\substack{b=1 \\
i_{b}=1}}^{p} A_{b}(x)
\end{gathered}
$$

$$
\mathrm{WFOMC}\left(\forall x, y \cdot \phi_{0}(x, y), w, \bar{w}, n\right)=\sum_{k}\binom{n}{\boldsymbol{k}} \prod_{0 \leq i \leq 2^{p}-1} w_{i j}^{k(i, j)}
$$

