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Model Counting in First Order Logic

Is it possible to count the model of a first order formula?

Without further specifications the answer is: a formula has 0 models,
if it is not satisfiable, and it has an infinite number of models, it is
satisfiable;

indeed if a formula has one model with domain ∆I then it has an
infinite set of models with domains isomorphic to ∆I .

What if we change our question in:

is it possible to count the models of a first order formula, on a
domain of a given finite, or countable cardinality?

This question makes more sense and can be answered.

We consider the special case in which the cardinality of the domain is
finite, i.e., a natural number n.
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First order model counting

Definition (First order model counting)

The problem of first order model counting is the problem of computing the
number of Σ-interpretations that satisfies a first order sentence φ on a
given finite domain of n > 0 elements. The problem is denoted as

fomc(φ, n)

Luciano Serafini (Fondazione Bruno Kessler) Knowledge Representation and Learning May 25, 2023 3 / 45



Counting problems in FOL

the number of undirected graphs with n nodes fomc(UG , n)

UG , ∀x∀y(¬R(x , x) ∧ (R(x , y)↔ R(y , x)))

the number of 3-colored undirected graphs with n nodes
fomc(UG ∧ 3C , n)

3C , ∀xy((C1(c) Y C2(x) Y C3(x)) ∧ R(x , y)→
3∧

i=1

(¬Ci (x) ∧ Ci (y)))

the number of graphs with n vertexes every pair of nodes are
connected with a path with length ≤ k. fomc(UG ∧ R≤k , n)

R≤k , ∀x∀y((
k∨

i=1

Rk(x , y)) ∧ (R1(x , y)↔ R(x , y))∧

k−1∧
i=1

(Ri+1(x , y)↔ ∃z(Ri (x , z) ∧ R(z , y))))

Ri (x , y), x is connected with y with a path of lenght i
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Formulating counting problems in FOL

Example

Count the possible configuraiton of a group of n people composed of Ph.D
students and professor knowling that every student has a supervisor, every
professor supervises at leas one student.

fomc(SP, n)

SP =


Prof (x) Y Stud(x)
super(x , y)→ Stud(x) ∧ Prof (y)
Stud(x)→ ∃y(Prof (y) ∧ super(x , y))
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First order model counting

Example

Consider the definition of partial order. A binary relation, R, on a set A is
a strict partial order if

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

if (a, b) ∈ R then (b, a) 6∈ R

To determine how many partial orders can be defined on a set of n
elements we can solve the problem:

fomc

(
∀x , y , z .(R(x , y) ∧ R(y , z)→ R(x , z))
∧∀x , y .(R(x , y)→ ¬R(y , x))

, n

)

a

b
c

a

b
c

a

b
c

a

b
c

a

b
c

a

b
c
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Number of partial orders on a set of n elements

n Number of partial orders on a set of n elements
0 1
1 1
2 4
3 29
4 355
5 6942
6 209527
7 9535241
8 642779354
9 63260289423
10 8977053873043
11 1816846038736192
12 519355571065774021
13 207881393656668953041
14 115617051977054267807460
15 88736269118586244492485121
16 93411113411710039565210494095
17 134137950093337880672321868725846
18 261492535743634374805066126901117203

Taken from The On-Line Encyclopedia of Integer Sequences (OEIS)
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Example

The number of total relations on a set of n elements can be computed by
a formula:

fomc(∀x∃y .R(x , y), n) = (2n − 1)n

Proof.

For every node x we can select a non empty subset S of {1, . . . , n}
such that R(x , y) is true if y ∈ S .

the number of non empty subsets of n elements are 2n − 1.

since there are n nodes. we have (2n − 1)n possibilities.
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First order model counting - systematic solution

in all the previous example we use different methodologies to count
the models;

the strategies that we as humans use cannot be easily implemented in
a algorithms;

the question is: is there a systematic way to compute fomc(φ, n)
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First order model counting via grounding

Since we are dealing which finite domains we can reduce first order
formulas to equivalent propositional formulas by grounding quantifiers:

Grounding

Ground(φ,C ) for every formula φ and set of constants C is defined as
follows:

Ground(φ,C ) = φ if φ does not contain quantifiers;

Ground(∀x .φ(x),C ) =
∧

c∈C Ground(φ(c),C )

Ground(∃x .φ(x),C ) =
∨

c∈C Ground(φ(c),C )

Ground(φ ◦ ψ,C ) = Ground(φ,C ) ◦ Ground(φ,C ) for every
connective ◦
Ground((¬φ,C ) = ¬Ground(φ,C )
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First order model counting via grounding

Example

Ground(∀x(A(x)→ ∃y(R(x , y) ∧ B(y))), {a, b})

A(a)→ (R(a, a) ∧ B(a)) ∨ (R(a, b) ∧ B(b)) ∧
A(b)→ (R(b, a) ∧ B(a)) ∨ (R(b, b) ∧ B(b))

Example

Ground(∀x , y .(R(x , y)→ R(y , x)),C ) =∧
c∈C

∧
c ′∈C

R(c , c ′)→ R(c ′, c)
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First order model counting via grounding

Proposition

If φ is a first order sentence with no constant and function symbols

fomc(φ, n) = #sat(ground(φ, {c1, . . . , cn}))

Proof Outline.

For every model I of φ on the domian of {1, . . . , n} We define the
following bijection:

IFOL |= p(x1, dots, xn)[ax1←d1,...,xn←dn ] iff IPROP(p(cd1 , . . . , cdn)) = 1

One can easily show that this mapping is an isomorphism between the set
fo FOL interrpetatins on {1, . . . , n} and the propositional assignment
IPROP and thast IFOL |= φ if and only if
IPROP |= ground(φ, {c1 . . . , cn})
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Size of Ground(φ,C )

If φ contains an n ary predicate R(x1, . . . , xk) then Ground(φ,C )
contains |C |k propositional variables.

For instance Ground(∀x(A(x)→ ∃y .(R(x , y) ∧ B(y))),C ) contains
2|C |+ |C |2 propositional variables.

|C | variables of the form A(c);
|C | variables of the form B(c);
|C |2 variables of the form R(c , c ′).

with 10 constant whe have 120 variables, i.e., 2120 models.

fomc via grounding

fomc(φ, n) = #sat(Ground(φ, {1, . . . , n}))

The complexity of fomc(φ, n) grows exponential w.r.t, the size of the
domain n. In practice it is hard to go beyond 10 objects even with simple
formulas.
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Lifrability

is there a method to compute fomc(φ, n) such that the complexity is
not explonential in n?

if such a method exists we will say that the problem of fomc(φ, n)
for φ is liftable.

A method to achieve liftability is to exploit symmetries of First Order
Formula.
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The language L2

Definition

For every k ≥ 1 the language Lk contains all the first order formulas that
can be build using only k individual variables.

Example

The following are formulas of L2;

∀x∃y(R(x , y) ∧ A(x) ∧ B(y) ∧ ¬x = y)

∃x(A(x) ∧ ∀y(R(x , y)→ ∃xR(y , x) ∧ B(x))

Example

∀x , y , z .R(x , y)∧R(y , z)→ R(x , z) is a formula in L3, that formalizes the
fact that R is a transitive relation. Such a condition cannot be expressed
in L2.

The above example shows that L2 is less expressive thatn L3.
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Definition (1-type)

Given a FOL signature Σ a 1-type is a conjunction of maximally consistent
set of literals containing exactly one variable and no constants.

Example (1-type)

Let Σ = {A/1,R/2,S/3} (the notation X/n means that X is a predicate
with arity equal to n)

A(x) ∧ R(x , x) ∧ S(x , x , x) A(x) ∧ R(x , x) ∧ ¬S(x , x , x)

A(x) ∧ ¬R(x , x) ∧ S(x , x , x) A(x) ∧ ¬R(x , x) ∧ ¬S(x , x , x)

¬A(x) ∧ R(x , x) ∧ S(x , x , x) ¬A(x) ∧ R(x , x) ∧ ¬S(x , x , x)

¬A(x) ∧ ¬R(x , x) ∧ S(x , x , x) ¬A(x) ∧ ¬R(x , x) ∧ ¬S(x , x , x)

Proposition

If Σ contains n predicates there are 2n 1-types.

We use natural number 1(x), 2(x), . . . , 2n(x) to denote the 1-types.
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Definition (2-table)

Given a FOL signature Σ a 2-table is the conjunction of a maximally
consistent set of literals containing exactly two distinct variables x , y and
no constants and the literal x 6= y .

Example (2-table)

Let Σ = {A/1,R/2}

R(x , y) ∧ R(y , x) ∧ x 6= y R(x , y) ∧ ¬R(y , x) ∧ x 6= y

¬R(x , y) ∧ R(y , x) ∧ x 6= y ¬R(x , y) ∧ ¬R(y , x) ∧ x 6= y

Proposition

if Σ contains ni predicates with arity equal to i , then there are 2
∑

i ni (2i−2)

We use 1(x , y), 2(x , y), . . . to denote 2-table.
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Definition (2-type)

Given a FOL signature Σ a 2-type is the conjunction of a maximally
consistent set of literals containing at most two distinct variables x , y and
no constants and the literal x 6= y .

Proposition

A 2-type is the conjuction of two 1-types i(x) and j(y) and a 2-table
l(x , y).

Example

Σ = {R/2}

R(x , , x) ∧ R(y , y) ∧ R(x , y) ∧ R(y , x) ∧ x 6= y

¬R(x , , x) ∧ R(y , y) ∧ R(x , y) ∧ R(y , x) ∧ x 6= y

R(x , , x) ∧ R(y , y) ∧ ¬R(x , y) ∧ R(y , x) ∧ x 6= y

. . .

The two type i(x) ∧ j(y) ∧ l(x , y) is denoted by ijl(x , y).
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Realization of types and tables

Given a Σ structure, we say that

a constant c realizes a 1-type i if I |= i(c)

a pair of constants (c , d) realizes a 2-table l(x , y) if I |= l(a, b)

a pair of constants (c , d) realizes a 2-type ijl(x , y) if I |= ijl(x , y).

Proposition

1 Every constant realizes a single 1-type;

2 Every pair of constants realizes a single 2-table;

3 Every pair of constants realizes a single 2-type
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Example

1-types

1(x) , R(x , x),

2(x) , ¬R(x , x),

2-tables

1(x , y) , R(x , y) ∧ R(y , x) ∧ x 6= y

2(x , y) , R(x , y) ∧ ¬R(y , x) ∧ x 6= y

3(x , y) , ¬R(x , y) ∧ R(y , x) ∧ x 6= y

4(x , y) , ¬R(x , y) ∧ ¬R(y , x) ∧ x 6= y

1

2

3

45

6

7

1

2

3

45

6

7
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Proposition

Let Σ = {R1, . . . ,Rk) be a FOL signature containing only relational
symbols. Every Σ-interpretation on the domain [n] is uniquely described by

1 partition [n] in u-sets N1, . . . ,Nu one for each one type;

2 assign a two table to every ordered pair c < d ∈ Ni ;

3 assign a two table to every ordered pair c ∈ Ni and d ∈ Nj with i < j .

Cardinality vectors (k ,h)

for every interpretation I we define the vector k = (k1, . . . , ku) such
that ki is the number of elements of I that realizes the i-th 1-type.

for every i ≤ j we define the vector of integers hij = (hij1 , . . . , h
ij
b ),

such that hijl contains a pair that realizes the 2-type ijl .
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Example

1-types

1(x) , R(x , x),

2(x) , ¬R(x , x),

2-tables

1(x , y) , R(x , y) ∧ R(y , x) ∧ x 6= y

2(x , y) , R(x , y) ∧ ¬R(y , x) ∧ x 6= y

3(x , y) , ¬R(x , y) ∧ R(y , x) ∧ x 6= y

4(x , y) , ¬R(x , y) ∧ ¬R(y , x) ∧ x 6= y

1

2

3

45

6

7
k = (4, 3)

h11 = (0, 1, 1, 4)

h12 = (2, 1, 0, 9)

h11 = (0, 0, 1, 2)
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Facts about cardinality vectores∑
k =

∑u
i=1 ki = n∑

h =
∑

i≤j
∑b

l=1 k
ij
l = n(n−1)

2∑
hii =

∑
l h

ii
l = ki (ki−1)

2∑
hij =

∑
l h

ij
l = ki · kj (if i 6= j)

for every cardinality vector (k ,h) there are(
n

k

)∏
i

(ki (ki−1
2

hii

)∏
i<j

(
kikj
hij

)

distinct interpretations that have the cardinality vector (k ,h) where for
every positive integers a, b1, . . . , bm with

∑
i bi = a(

a

b1, . . . , bm

)
=

a!

b1! · b2! · · · bn!

Luciano Serafini (Fondazione Bruno Kessler) Knowledge Representation and Learning May 25, 2023 23 / 45



fomc for pure universal formula in L2

Definition

a 2-type ijl(x , y) is consistent w.r.t. a universal formula φ if

φ(x , x) ∧ φ(x , y) ∧ φ(y , x) ∧ φ(y , y) ∧ ijl(x , y)

is satisfiable. 2t(φ) denotes The set of 2-types consistent with ∀xyφ(x , y).

Proposition

A pure universal formula ∀x∀y φ(x , y) in the language FO2 can be
rewritten in the following form:

∀x∀y

x 6= y →
∨
i≤j

∨
iji∈2t(φ)

ijl(x , y)

 (1)

The formula (1) is equivalent to the original one on models that contains
2 or more lements.

Luciano Serafini (Fondazione Bruno Kessler) Knowledge Representation and Learning May 25, 2023 24 / 45



A simle method for finding 2t(φ) is to find the truth assignments that
satisfies φ(x , x) ∧ φ(x , y) ∧ φ(y , x) ∧ φ(y , y)

Example

∀x∀y(R(x , x) ∧ R(x , y)→ ¬R(y , x))) is equivalent to

∀x∀y(x 6= y → ¬R(x , x) ∧ ¬R(y , y) ∧ R(x , y) ∧ R(y , x) ∧ x 6= y ∧
¬R(x , x) ∧ ¬R(y , y) ∧ ¬R(x , y) ∧ R(y , x) ∧ x 6= y ∧
¬R(x , x) ∧ ¬R(y , y) ∧ R(x , y) ∧ ¬R(y , x) ∧ x 6= y ∧
¬R(x , x) ∧ ¬R(y , y) ∧ ¬R(x , y) ∧ ¬R(y , x) ∧ x 6= y

Using the notation for 1- and 2-types we have that the initial formula is
equivalent to

∀x∀y(x 6= y → 221(x , y) ∨ 222(x , y) ∨ 223(x , y) ∨ 224(x , y))
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Example

∀x∀y(R(x , x) ∧ R(x , y)→ R(y , y)) is equivalent to:

∀x∀y (x 6= y → 111(x , y) ∨ 112(x , y) ∨ 113(x , y) ∨ 114(x , y)∨
123(x , y) ∨ 114(x , y)

221(x , y) ∨ 222(x , y) ∨ 223(x , y) ∨ 224(x , y)∨
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We have that the original formula ∀x∀yφ(x , y) is equivalent to

Φ = ∀x∀y

x 6= y →
∨
i≤j

∨
ijl∈2t(φ)

ijl(x , y)


implies that if n ≥ 2

Ground(Φ, [n])↔
n∧

c 6=d=1

∨
i≤j

∨
ijl∈2t(φ)

ijl(c , d)


This implies that

I |= ∀xyφ(x , y) iff hijl 6= 0⇒ ijl ∈ 2t(φ)

Furthermore the condition “hijl 6= 0⇒ ijl ∈ 2t(φ)” can be represented with

1
hijl
ijl∈2t(φ) =

{
1 if hijl = 0 or nij 6= 0

0 Otherwise

where 1ijl∈2t(φ) is the indicator function for the set 2t(φ).
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Putting everything together

fomc(∀x , y .φ(x , y), n) =
∑
k,h

(
n

k

) u∏
i≤j=1

(
k(i , j))

hij

)∏
l

1
hijl
ijl∈2t(φ)

=
∑
k

(
n

k

) u∏
i≤j=1

∑
k

(
k(i , j)

hij

)∏
l

1
hijl
ijl∈2t(φ)

=
∑
k,h

(
n

k

) u∏
i≤j=1

(
b∑

l=1

1ijl∈2t(φ)

)k(i ,j)

=
∑
k,h

(
n

k

) u∏
i≤j=1

n
k(i ,j)
ij

with

nij =
b∑

l=1

1ijl∈2t(φ)
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First Order Model Counting in universal fragment of L2

Theorem

Let φ(x , y) a quantifier free formula that contains p predicate symbols and
the two free variables x and y and no constant and functional symbolss;

fomc(∀x , y .φ(x , y), n) =
∑
k

(
n

k

) ∏
1≤i≤u

n
k(i ,j)
ij

k = (k1, k1, . . . , ku), s.t.,
∑u

i=1 ki = n;

nij = #sat(Ground(φ0(x , y) ∧ i(x) ∧ j(y), [2])

k(i , j) =

{
ki ·(kj−1)

2 if i = j

ki · kj Otherwise
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Complexity

Notice that to compute
∑

k
(n
k
)∏

0≤i≤2p−1 n
k(i ,j)
ij you have to do a

number of operations which are exponential in p but polinomial in n,
since the only impact of n is in the computation of the binomial
coefficient and the summation.

it is known that computing the binomial coefficient
( n
k1,...,kh

)
is

polinomial in n.
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Exercizes

Using the previous formula compute fomc(Φ, n) where Φ is the following
fomrula:

1 ∀x∀y(R(x , y)→ R(y , x));

2 ∀x∀y(R(x , y)→ ¬R(y , x));

3 ∀x∀y(R(x , y)→ ¬R(x , x));

4 ∀x∀y(R(x , x)→ (R(x , y)→ R(y , z)));

5 ∀x∀y(S(x) ∧ F (x , y)→ S(y)).
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Cardinality constraint

A cardinality constraint is an expression that imposes constraints on the
cardinality of the interpretation of predicates

Example (Cardinality constraint)

|A| = 3 states that I(A) contains exaclty two elements;

|R| = 2 states that I(R) contains more than 3 pairs of elements;

|A| > |R| states that |I(A)| > |I(R)|
|A| = 2→ |B| < |C | ∨ |B| < |C | states . . . .
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Satisfaction of cardinality constraints

For every predicate P we can compute |I(P)| from the cardinality vectors
k ,h of I as follows:

|I(A)| = k(A) =
u∑

i=1

1A(x)∈i(x) · ki A unary predicate

k(R) =
u∑

i=1

1R(x ,x)∈i(x) · ki R binary predicate

|I(R)| = (k ,h)(R) = k(R) +
∑
i≤j ,l

1R(x ,y)∈ijl(x ,y) · h
ij
l

+
∑
i≤j ,l

1R(y ,x)∈ijl(x ,y) · h
ij
l R binary predicate

If χ is a cardinality constraint then (k ,h) |= χ holds if the expression
obtained replacing |A| with the value of k(A) and |R| with the value of
(k ,h)(R) is true.

(2)
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Example

1-types

1(x) , R(x , x),

2(x) , ¬R(x , x),

2-tables

1(x , y) , R(x , y) ∧ R(y , x) ∧ x 6= y

2(x , y) , R(x , y) ∧ ¬R(y , x) ∧ x 6= y

3(x , y) , ¬R(x , y) ∧ R(y , x) ∧ x 6= y

4(x , y) , ¬R(x , y) ∧ ¬R(y , x) ∧ x 6= y

1

2

3

45

6

7

k = (4, 3)

h11 = (0, 1, 1, 4)

h12 = (2, 1, 0, 9)

h11 = (0, 0, 1, 2)

k(R) = 4

(k ,h)(R) = 4 + 4 + 4 = 12
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Dealing with Existential Quantifiers

how can we count the models for formulas that contains also
existential quantifiers and two variables?

Scott’s reduction: Transform it in the form:

Φ = ∀x∀y .φ(x , y) ∧
m∧
i=1

∀x∃y .ψi (x , y)

Where φ(x , y) and φi (x , y) do not contain quantifiers.
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Scott’s Normal reduction

To transform a formula φ is Scott’s normal form you have to apply the
following transformations until φ does not contain subformulas of the form
Qy .α(x , y), Q ∈ {∀,∃}

Replace Qy .α(x , y) with a new predicate A(x) and define A(x) as
Qy .α(x , y)

φ =⇒ φ[Qy .α(x , y)/A(x)] ∧ ∀x .(A(x)↔ Qy .α(x , y))

Transform ∀x .(A(x)↔ Qy .α(x , y)) in the ∀x∀y . . . or ∀x∃y . . . form

∀x(A(x)↔ Qy .α(x , y)) =⇒ ∀x(A(x)→ Qy .α(x , y)) ∧
∀x(¬A(x)→ Q̄y .¬α(x , y))

∀x .(A(x)→ ∀y .α(x , y)) =⇒ ∀x , y .(A(x)→ α(x , y))

∀x .(¬A(x)→ ∃y .¬α(x , y)) =⇒ ∀x∃y .(¬A(x)→ ¬α(x , y))

∀x .(A(x)→ ∃y .α(x , y)) =⇒ ∀x∃y(A(x)→ α(x , y))

∀x .(¬A(x)→ ∀y .¬α(x , y)) =⇒ ∀x∀y(¬A(x)→ ¬α(x , y))

Luciano Serafini (Fondazione Bruno Kessler) Knowledge Representation and Learning May 25, 2023 36 / 45



Fomc of formulas with Existential Quantifiers

Φ = ∀x∀y .φ(x , y) ∧
m∧
i=1

∀x∃y .ψi (x , y)
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Fomc of formulas with Existential Quantifiers

Let us consider the simple case with m = 1

Φ = ∀x∀y .φ(x , y) ∧ ∀x∃y .ψ(x , y)

Introduce a new predicate P(x) and the additional formula;

φP = ∀x∀y . (P(x)→ ¬ψ(x , y))

φP implies that for each element a if P(a) is true, then ∀y .¬ψ(a, y) is
also true.

Therefore is |P| = k then there are at least k elements a1, . . . , ak for
which ∀x .¬ψ(ai , x)
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Let Mi be the set of models of φ ∧ φP such that there are exactly i elements that
satisfies ∀y¬ψ(x , y)

Let Mij the subset of Mi such that |P| = j . Clearly Mij if j > i Mij is empty;

Therefore Mi = ∪0≤j≤iMij

we have that:

fomc(Φ, n) = |M0| = |M00|

= fomc(∀x∀yφ(x , y) ∧ φp(x , y))−

∣∣∣∣∣∣
n⋃

1≤j≤i=1

Mij

∣∣∣∣∣∣
We apply the inclusion exclusion principle that states:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

1≤j1<···<jk≤n

(−1)k+1 |Aj1 ∩ Aj2 · · · ∩ Ajk | (IEP)

obtaining ∣∣∣∣∣∣
n⋃

1≤j≤i=1

Mij

∣∣∣∣∣∣ =

∣∣∣∣∣
n⋃

i=1

(
n⋃
j=i

Mij

)∣∣∣∣∣ IEP
=

n∑
j=1

(−1)j

∣∣∣∣∣
n⋃
j=i

Mij

∣∣∣∣∣
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First order model counting in L2

fomc (∀x , y .φ(x , y) ∧ ∀x∃yψ(x , y), n) =∑
k

(
n

k

)
(−1)k(P)

∏
0≤i≤j≤2p+1−1

n
k(i ,j)
ij

where k(P) =
∑2p+1−1

i=1,ib=1 ki where b is the index of the predicate P.

Generalizing to m existentially quantifiers, we introduce a predicate Pi for
every formula ∀x∃yψi (x , y) and the corresponding formula φPi

.

fomc

(
∀x , y .φ(x , y) ∧

m∧
i=1

∀x∃yψi (x , y), n

)
=

∑
k

(
n

k

)
(−1)

∑m
i=1 k(Pi )

∏
0≤i≤j≤2p+m−1

n
k(i ,j)
ij
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Exercizes

Using the previous formula compute fomc(Φ, n) where Φ is the following
fomrula:

∀x .∃y .R(x .y)

∀x .∃y .(R(x , y) ∨ R(y , x))

∀x , y .(R(x , y)→ R(y , x)) ∧ ∀x¬R(x , x) ∧ ∀x .∃y .R(x .y)
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Solution of the first exercize

∀x, yP(x)→ ¬R(x, y)

P(a) R(a, a) P(b) R(b, b) nij
1 1 1 1 n11,11 = n3,3 = 0
1 0 1 1 n10,11 = n2,3 = 0
1 0 1 0 n10,10 = n2,2 = 1
0 1 1 1 n01,11 = n1,3 = 0
0 1 1 0 n01,10 = n1,2 = 2
0 1 0 1 n01,01 = n1,1 = 4
0 0 1 1 n00,11 = n0,3 = 0
0 0 1 0 n00,10 = n0,2 = 2
0 0 0 1 n00,01 = n0,1 = 4
0 0 0 0 n00,00 = n0,0 = 4

∑
k0,k1,k2

(
n

k0, k1, k2

)
(−1)k2 n

k0(k0−1)
2

00 n
k0k1
01 n

k0k2
02 n

k1(k1−1)
2

11 n
k1k2
12 n

k2(k2−1)
2

22

=
∑

k0,k1,k2

(
n

k0, k1, k2

)
(−1)k2 4

k0(k0−1)
2 4k0k1 2k0k2 4

k1(k1−1)
2 2k1k2 1

k2(k2−1)
2

=
∑

k0,k1,k2

(
n

k0, k1, k2

)
(−1)k2 2k0(k0−1)+2k0k1+k0k2+k1(k1−1)+k1k2

=
∑

k0,k1,k2

(
n

k0, k1, k2

)
(−1)k2 2(k0+k1)(n−1)

∑
k2

(
n

k2

)
(−1)k2

∑
k0,k1

(
n − k2

k0, k1

)
2(k0+k1)(n−1)

=
∑
k2

(
n

k2

)
(−1)k2

(
2n
)n−k2 = (2n − 1)n
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First order weighted model counting

as in propositional logic interpretations are associated to a weight;

In propositinal logic each proposition is associated with a weight;

In First Order Logic weights are associated to predicates;

This type of weight function is called symmetric weight functions;

it is not the most general, but in this class we will limit to symmetric
weight.
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Symmetric weight function

Definition

A symmetric weight function for a first order language with signature Σ is
specified by a pair of functions w and v̄ that associate a real number
w(P) and w̄(P) to every n-ary predicate P ∈ Σ.

w(P(a1)) = w(P(a2)) = · · · = w(P(an)) = w(P)

w(¬P(a1)) = w(¬P(a2)) = · · · = w(¬P(an)) = w̄(P)

For every interpretation I on a finite domain ∆I

W (I) =
∏
P∈Σ

w(P)|P|I · w̄(P)|∆I |
arity(P)−|P|I

wfomc(φ,w , w̄ , n) =
∑
I|=φ

∆I={1,...,n}

W (I)
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First order weighted model counting in L2

Problem: Is it possible to adapt the formula for fomcφ, n for φ in L2 to
compute wfomc(φ,w , w̄ , n)?

Answer: Yes! Replace nij with wij

wij = wmc(Ground(φ0(x , y) ∧ αi (x) ∧ αj(y), {a, b}))

αi (x) =

p∧
b=1
ib=0

¬Ab(x) ∧
p∧

b=1
ib=1

Ab(x)

wfomc(∀x , y .φ0(x , y),w , w̄ , n) =
∑
k

(
n

k

) ∏
0≤i≤2p−1

w
k(i ,j)
ij
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