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CHAPTER 1

Herbrand Theorem and Skolemization

To check satisfiability of a first order sentence φ on the signature Σ we have to
produce an Σ-structure I that satisfies φ, i,e I |= φ. The naive procedure used for
propositional logic, in which we check for all possible interpretations, is not working
for FOL, since there are infinite many interpretations. Indeed we are free to choose
the interpretation domain ∆I with any possibly infinite set, and therefore we have
infinite possibilities to interpret the symbols of Σ.

The question, is whether there is a sistematic method to generate the Σ-
strucutre for φ such that if φ is satisfiable, sooner or later we will encounter an
interpretation that satisfies it.

The Herbrand’s Theorem, called so after Jacques Herbrand (1908-1931), allows
to reduces the problem of checking the satisfiability of a first-orde formula to the
check of satisfiability of a set of propositional formulas. In this chapter we gradually
introduce the theorem.

To keep the treatment simle in this chapter we consider only the case of First
order language without equality.

1. Herbrand interpretation

Herbrand proposes the main idea to interpret terms in themselves. Notice
that the definiton of Σ-structure (∆I , I) ∆I can be any non empty set. Herbrand
poposed to consider ∆I as the set of all ground terms that can be built from the
signature Σ. Since ∆I must contain at least one elment, Herbrand required that Σ
contains at least one constant symbol.

Definition 1.1 (Herbrand Universe). The Herbrand’s universe of a signature
Σ that contains at least one constant symbol, is the set, denoted by ∆H of ground
terms of Σ.

Example 1.1. If Σ contains two constants a and b and no function symbol
then, the Herbrand’s Universe of Σ is {a, b} since a and b are the only ground
terms that one can build in Σ. If, instead Σ contains a binary function symbo f
then the set of ground terms, and therefore the Herbrand’s Univers of Σ contains
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6 1. HERBRAND THEOREM AND SKOLEMIZATION

an infinite set of terms. i.e.,

a b

f(a, a) f(a, b) f(b, a) f(b, b)

f(a, f(a, a)) f(a, f(a, b)) f(a, f(b, a)) f(a, f(b, b))

f(b, f(a, a)) f(b, f(a, b)) f(b, f(b, a)) f(b, f(b, b))

f(f(a, a), a) f(f(a, b), a) f(f(b, a), a) f(f(b, b), a)

f(f(a, a), b) f(f(a, b), b) f(f(b, a), b) f(f(b, b), b)

f(f(a, a), f(a, a)) f(f(a, a), f(a, b)) f(f(a, a), f(b, a)) f(f(a, a), f(b, b))

. . .

One can easily se that with one constant and a function symbol the Herbrand’s
Universe is infinite. Instead if there is no function symbols then the Herbrand
universe has the same size of the number of constants in Σ.

An alternative way to define the Herbrand’s Univers for Σ is by induction
i.e., the herbrand universe ∆HΣ for Σ is the smalles set that satisfies the following
conditions

(1) Every constant of Σ belongs to ∆HΣ
(2) if t1, . . . , tn ∈ ∆HΣ and f is an n-ary function symbol of Σ, then f(t1, . . . , tn) ∈

∆HΣ .

Once we have defined the set ∆H to fully define an interpretation, we have to
specify the interpretation function for the elements of Σ. The obvious way is to
define the interpretation of constants and function symbols so that every terms is
interpreted in itself, and every predicate with arity equal to n as a set of n-tuples
of terms. i.e., in a subset of ∆HΣ .

Definition 1.2. An herbrand interpretation of a signature Σ is composed by
the pair (∆HΣ ,H), where

(1) ∆HΣ is the Herbrand’s universe of Σ;
(2) H(c) = c for every constant symbol c ∈ Σ;
(3) H(f) : t1, . . . , tn 7→ f(t1, . . . , tn) is the function that maps an n-tuple of

terms of ∆HΣ in a term of ∆H
Σ , for every n-ary function symbol f ;

(4) H(P ) ⊆ (∆H
Σ )n is a set of n-tuples of terms in ∆HΣ , for evert n-ary pred-

icate symbol P ∈ Σ.

A simpler way to see an Herbrand interpretation is by seeing it as a mapping
from ground atomic formulas to {0, 1}.

H : GroundAtoms(Σ)→ {0, 1}(1)

This definition is very close to the definition of propositional interpretation, where
GroundAtoms(Σ) is the set of proposiional variabels. The set GroundAtoms(Σ) is
called the Herbrand’s base for Σ.

Example 1.2. The following is an example of an Herbrand Interpretation that
satisfies the following set of formulas:

Γ =


¬friend(x, x)

friend(x, y)→ friend(x, y)
friend(x, y)→ knows(x,mother(y))

friend(Mary, John)





2. SATISFIABILITY IN HERBRAND’S INTERPRETATION 7

∆HΓ =


Mary, John,
mother(Mary),mother(John),
mother(mother(Mary)),mother(mother(John))
mother(. . .mother(Mary) . . . ), mother(. . .mother(John) . . . ), . . .


H =


friend(John,Mary), friend(Mary, John),
knows(John,mother(Mary)),
knows(Mary,mother(John)),
knows(mother(Mary),mother(John))


2. Satisfiability in Herbrand’s Interpretation

Satisfiability in Herbrand interpretations is defined as the problem of checking
if a formula φ is satisfiable by an Herbrand’s Interpretation on the signature of
φ. One of the main version of the Herbrand’s theorem states that satisfiability in
general, can be reduced to satisfiability by an Herbrand’s interpretation

Proposition 1.1. If H is an Herbrand interpretation then for every ground
term t H(t) = t.

Proof. By induction on the complexity of t. If t is the constant c then H(c) =
c by definition. If t = f(t1, . . . , tn) then

H(f(t1, . . . , tn)) = H(f)(H(t1), . . . ,H(tn))

= H(f)(t1, . . . , tn) By induction hypothesis

= f(t1, . . . , tn) By definition H(f)

�

Proposition 1.2. H |= φ(x)[ax←t]] iff H |= φ(t)

Proof. By induction on the complexity of φ (exercize) �

Proposition 1.3. H |= ∀xφ(x) if and only if H |= φ(t) for all ground term t.

Proof.

H |= ∀xφ(x) fff H |= φ(x)[ax←t] for all ground terms t

fff H |= φ(t) for all ground terms t

�

Definition 1.3 (quantifier-free formula). A formula φ is quantifier-free if φ
has no occurrence of either of the quantifiers ∀ or ∃.

Notice that a quantifier-free formula is the combination of a set of atoms using
the propositional connectives. Notice that all the individual variables that occours
in a quantifier-free formula are free. Furthermore if a uantified free formula do not
contains individual variables, then it is just a propositional formula.

Example 1.3. The following are examples of quantified free formulas.

P (a) ∨Q(b, x)→ R(x, y, z)

R(a, b, f(c)) ∨R(b, a, g(a, b))
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the second one does not contains individual variables, hence it is a propositional
formula.

If we quantify universally the free variables of a quantified free formula we
obtain a universal sentence.

Definition 1.4 (Universal sentence). A universal sentence is a sentence (closed
formula of the form

∀x1∀x2 . . . ∀xn φ(x1, . . . , xn)

where φ(x1, . . . , xn) is a quantifier-free formula.

In other words universal sentences admit only universal quantifiers at the be-
ginnin of the formula. We will see later that every formula can be transformed in
an equi-satisfiable universal sentence. If we instantiate every variable of a universal
sentence we obtain a propositional formula, that is called a ground ifnstance of the
universal sentence.

Definition 1.5 (Ground instance). A ground instance of an universal sentence
∀x1 . . . ∀xn.φ(x1, . . . , xn) is a sentence φ(t1, . . . , tn) obtained by replacing each oc-
currence of xi with a term ti that does not contain variables.

Theorem 1.1 (Herbrand’s Theorem). A universal formula Φ = ∀x1, . . . ,∀xnφ(x1, . . . , xn)
is satisfiable if and only if it is true in an Herbrand interpretation in the signature
of φ (if φ does not contain any constant we extend the signature with a constant a)

Proof (sketch). If Φ is satisfiable by an Herbrand interpretation then it is
satisfiable. Let us proove the contrary. Suppose that Φ is satisfied by the interpre-
tation I. Starting from I we can build the following herbrand interpretation H, on
the domain of ground terms ∆HΣ where Σ is the signature of Φ possibly extended
with a constant a if Φ does not contain constant symbols. For every n-ary predicate
p we define H(p)

H(p) = {(t1, . . . , tn) ∈ ∆HΣ | I |= p(t1, . . . , tn)}

For every formula φ(x1, . . . , xn) we can prove by induction that the formula ∀x1, . . . , xnφ(x1, . . . , xn)→
φ(t1, . . . , tn) is valid for every n-tuple of ground terms. This implies that

I |= φ(t1, . . . , tn)(2)

and therefore that H |= φ(t1, . . . , tn). This implies that

H |= φ(x1, . . . , xn)[ax1←t1,...,xn←tn ]

and therefore that H |= Φ. �

The immediate consequence of the Herbrand’s theorem is that, to check if
Φ = ∀x1, . . . , xn φ(x1, . . . , xn) is satisfiable we can check if it is satisfiable only in
the herbrand interpretations. If there is no herbrand interpretations that satisfies
Φ then the formula is surely unsatisfiable.

A second, and related consequence, is that if Φ is unsatisfiable, then also the
set

Ground(Φ) = {φ(t1, . . . , tn) | ti ∈ ∆HΣ }

is not sartistiable. But one can notice that Ground(Φ) is a set of propositional for-
mula, and therefore we can apply the main results of satisfiability in proposiitional
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formula. In particulare, we use the compactenss theorem (Theorem ??) that states
that an infinite set of proposiitonal formula Γ is not satisfiable if and only if there
is a finite subset Γ0 of Γ that is not satisfiable. We can therefore conclude that
Φ is unsatisfiable there is a finite set G ⊂ Ground(Φ) of groundings of Φ that is
unsatisfiable.

If we find a way to enumerate G0, G1, G2, . . . (i.e., generate an infinite se-
quence) of all the finite subsets, of Ground(Φ) such that for every finite subset
G ⊂ Ground(Φ) there is an i such that Ci = C we could check at every iteration
if Gi is satisfiable, and if Ground(Φ) is not satisfiable we enventuall find an i such
that Gi is not satisfiable. This very naive idea is implemented in Algorithm 1. If

Algorithm 1 First Order Satisfiability,

Require: A universal formula Φ = ∀x1, . . . ,∀xn φ(x1, . . . , xn)
1: Σ← the signature of Φ
2: if Constants(Σ) = ∅ then
3: Σ← Σ ∪ {a}
4: end if
5: ∆← Constants(Σ)
6: while True do
7: G← Ground(Φ,∆)
8: if PropositionalSat(G)=Unnsat then
9: return Unsat

10: end if
11: ∆← ∆ ∪ {f(t1, . . . , tn) | f ∈ n-ary-Funct(Σ), ti ∈ ∆}
12: end while

Φ is unsat, then by the Herbrand theorem we have that there is a finite subset of
Grounding(Φ) that is unsat let k be the masimum dephth of the terms that appear
in G, then at the k-th iteration the set G will be a subset of Grounding(Φ,∆)
which sill be inconsistent, and therefore the algorithm terms returning Unsat

3. Prenex normal form

In the previous section we only consider universally quantified formulas. In this
section we show how to extend this result to the entire set of first order formulas,
that inculdes also existential quantified formulas.

Definition 1.6. A formula is in prenex normal form if it is in the form of

Q1x1 . . . , Qnxn φ(x1, . . . , xn)(3)

where each Qi is either ∃ or ∀ and φ(x1, . . . , xn) is a quantified free first order
formula.

Every formula can be reduced in prenex normal form by using the following
rewriting rules:

• rewrite the → and ↔ in terms of ¬ and ∨ and ∧;
• switch the ¬ and the quantifiers with the rule:

¬∀xφ =⇒ ∃x¬φ
¬∃xφ =⇒ ∀x¬φ
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• switch the binary connectives ∧ and ∨ and the quantifier with the rules
under the hypothesis that x does not

∀xφ(x) ∧ ψ =⇒ ∀x(φ(x) ∧ ψ)

∀xφ(x) ∨ ψ =⇒ ∀x(φ(x) ∨ ψ)

∃xφ(x) ∧ ψ =⇒ ∃x(φ(x) ∧ ψ)

∃xφ(x) ∨ ψ =⇒ ∃x(φ(x) ∨ ψ)

If x appears free in ψ we can rewrite Qxφ(x) into the equivalent formula
Qy φ(y) for some new variable y before applying the rules.

• the following rules can also be used but not strictly necessary

∃xφ(x) ∨ ∃xψ(x) =⇒ ∃x(φ(x) ∨ ψ(x))

∀xφ(x) ∧ ∀xψ(x) =⇒ ∀x(φ(x) ∧ ψ(x))

• finally it is possible to switch the existential and universal quantifier with
the following rule

∀x∃y(φ(x) ◦ ψ(y)) =⇒ ∃y∀x(φ(x) ◦ ψ(y))

if x is not free in ψ(y) and y is not free in φ(x). As it will be clearer
later, moving the existential quantifier out of the scope of an universal
quantifier can be convenient.

Let us see an example about how to rewrite a formula in prenex normal form

Example 1.4. Consider the formula

(∀x∃yP (x, y)→ ∃xQ(x)) ∨ ∀xQ(x)

We first rewrite the →

(¬∀x∃yP (x, y) ∨ ∃xQ(x)) ∨ ∀xQ(x)

Then we push the ¬ in front of atoms

(∃x∀y¬P (x, y) ∨ ∃xQ(x)) ∨ ∀xQ(x)

Then we can apply the rule that commutes ∃x and ∨ on the first disjunct

∃x(∀y¬P (x, y) ∨Q(x)) ∨ ∀xQ(x)

and push out the ∀x quantifier

∃x∀y(¬P (x, y) ∨Q(x)) ∨ ∀xQ(x)

We can also push out the first existential quantifier since x is not free in ∀xQ(x)

∃x∀y(¬P (x, y) ∨Q(x) ∨ ∀xQ(x))

Now if we want to push out the quantifier |forallx since x is free in ¬P (x, y)∨Q(x)
we have to rename the variablel obtaining

∃x∀y(¬P (x, y) ∨Q(x) ∨ ∀zQ(z))

now we can apply the rule to obtain

∃x∀y∀z(¬P (x, y) ∨Q(x) ∨Q(z))

which is in prenex normal form.
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4. Skolemization

Skolem normal form is named after the late Norwegian mathematician Thoralf
Skolem.(1887–1963). Skolemization is the operator of replacing existential quanti-
fiers either with constants (0-ary functions) or with functions, obtaining an equi-
satisfiable formula.

Before providing the general definition let us consider the following siple ex-
ample of proposition in FOL. Consider the proposition “Every preogrammer has
written at least one computer program”, In FOL this can be formalized as

∀x(Programmer(x)→ ∃y(Program(y) ∧ Author(x, y))

If it is the case that for every programmer we can find a program written by
him/her, there exists a function from programmers to programs that selects one
program for every programmer, and such that the author of the program selected
by this function for some programmer x is x him/herself. Notice that there might
be more than one program written by the same programmer, however f will pik
one of them. To formalize this line of reasoning, we can extend the signature with
a new symbol f that intuitively represent the funciton that select one program for
every programmer, and we use f in place of the existential quantifier, by rewriting
the original formula in

∀x(Programmer(x)→ Program(f(x)) ∧ Author(x, f(x)))

The previous example can be generalized by rewriting any formula of tghe
form ∀x∃yφ(x, y) in ∀xφ(x, f(x)) for some new function symbol f . This is also
possible when there is no universal quantifier in front of ∃. I.e., The formula
∃xφ(x) can be rewritten in φ(a) for some new constant a. Generalizing even more
the formula ∀x∀y∃zφ(x, y, z) can be rewritten in ∀x∀yφ(x, y, f(x, y)) for some new
binary function symbol f . Let us make this process fully general.

Definition 1.7 (Skolemization). Let Φ be a formula in prenex normal form
that start with m universal quantifiers followed by an existential quantifier. I.e., Φ
is in the form:

∀x1∀x2 . . . ∀xm∃xm+1Qm+1xm+2 . . . Qnxnφ(x1, . . . , xn)

a formula in prenex normal form the Skolemization if the operation of introducing
a new n-ary function symbol f and replace xm+1 with f(x1, . . . , xm), and remove
the existential quantifier. I.e., transforming the formula in

∀x1∀x2 . . . ∀xmQm+2xm+2 . . . Qnxnφ(x1, . . . , xm, f(x1, . . . , xm), xm+2, . . . , xn)

Proposition 1.4. Let Ψ be the Skolemization of a forula Φ Every model that
satisfies Φ can be extended to an interpretation I by providing the interpretation of
the skolem function f that satisfies Ψ.

Proof. We prove the property for the special case where Φ is ∀x∃yR(x, y),
The general proof looks the same. In this special case Ψ, the skolemization of Φ is
∀xR(x, f(x)). Let us show that Φ is satisfiable iff Ψ is satisfiable

(=⇒) If ∀x∃yR(x, y) is satisfiable, then there is an interpretation I, such that
I |= ∀x∃y R(x, y). This implies that, for every element d ∈ ∆I , there is an elmenet
d′ ∈ ∆I such that (d, d′) ∈ I(R). Let I ′ be the interpretation on the same domain
of I with I(R) = I ′(R) and I ′(f) is a function that maps d into a d′ such that
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(d, d′) ∈ I(R). This implies that for every d ∈ ∆I
′
, I ′ |= R(x, f(x))[x ← d]; and

therefore that I ′ |= ∀xR(x, f(x)).
(⇐=) If ∀xR(x, f(x)) is satisfiable, there is an interpretation I of R and f such

that for every d ∈ ∆I , (d, I(f)(d)) ∈ I(R) and therefore for every d ∈ ∆I there is
a d′ (which is I(f)(d)) such that (d, d′) ∈ I. This implies that I |= ∀x∃yR(x, y). If
we consider I ′ the restriction of I to the signature that contains only R, we have
that I ′ |= ∀x∃yR(x, y)) and therefore that ∀x∃y R(x, y) is satisfiable. �



Bibliography

Arp, Robert, Barry Smith, and Andrew D Spear (2015). Building ontologies with
basic formal ontology. Mit Press.

Badreddine, Samy et al. (2022). “Logic tensor networks”. In: Artificial Intelligence
303, p. 103649.

Baumgartner, Peter et al. (2009). “Computing finite models by reduction to function-
free clause logic”. In: Journal of Applied Logic 7.1, pp. 58–74.

Birnbaum, Elazar and Eliezer L Lozinskii (1999). “The good old Davis-Putnam pro-
cedure helps counting models”. In: Journal of Artificial Intelligence Research
10, pp. 457–477.

Borgo, Stefano and Claudio Masolo (2009). “Foundational choices in DOLCE”. In:
Handbook on ontologies. Springer, pp. 361–381.

Boros, Endre and Peter L Hammer (2002). “Pseudo-boolean optimization”. In:
Discrete applied mathematics 123.1-3, pp. 155–225.

Brewka, Gerhard (1989). “Nonmonotonic Logics–A Brief Overview”. In: AI Com-
munications 2.2, pp. 88–97.

Chakraborty, Supratik et al. (2015). “From weighted to unweighted model count-
ing”. In: Twenty-Fourth International Joint Conference on Artificial Intelli-
gence.

Chavira, Mark and Adnan Darwiche (2008a). “On probabilistic inference by weighted
model counting”. In: Artificial Intelligence 172.6-7, pp. 772–799.

— (2008b). “On probabilistic inference by weighted model counting”. In: Artificial
Intelligence 172.6, pp. 772–799. issn: 0004-3702. doi: https://doi.org/10.
1016/j.artint.2007.11.002. url: https://www.sciencedirect.com/
science/article/pii/S0004370207001889.

Daniele, Alessandro and Luciano Serafini (2019). “Knowledge enhanced neural net-
works”. In: PRICAI 2019: Trends in Artificial Intelligence: 16th Pacific Rim
International Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji,
August 26–30, 2019, Proceedings, Part I 16. Springer, pp. 542–554.

Darwiche, Adnan (2020). “Three modern roles for logic in AI”. In: Proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 229–243.

Davis, Ernest (2017). “Logical formalizations of commonsense reasoning: a survey”.
In: Journal of Artificial Intelligence Research 59, pp. 651–723.

Davis, Martin, George Logemann, and Donald Loveland (1962). “A machine pro-
gram for theorem proving”. In: Communications of the ACM 5.7, pp. 394–397.

Davis, Martin and Hillary Putnam (1960). “A computing procedure for quantifica-
tion theory”. In: Journal of ACM 7, pp. 201–215.

De Raedt, Luc et al. (2020). “From statistical relational to neuro-symbolic artificial
intelligence”. In: arXiv preprint arXiv:2003.08316.

13

https://doi.org/https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/https://doi.org/10.1016/j.artint.2007.11.002
https://www.sciencedirect.com/science/article/pii/S0004370207001889
https://www.sciencedirect.com/science/article/pii/S0004370207001889


14 BIBLIOGRAPHY

Franco, John and Marvin Paull (1983). “Probabilistic analysis of the Davis Putnam
procedure for solving the satisfiability problem”. In: Discrete Applied Mathe-
matics 5.1, pp. 77–87.

Fu, Zhaohui and Sharad Malik (2006). “On solving the partial MAX-SAT prob-
lem”. In: International Conference on Theory and Applications of Satisfiability
Testing. Springer, pp. 252–265.

Gomes, Carla P., Ashish Sabharwal, and Bart Selman (2009). “Model Counting”.
In: Handbook of Satisfiability, pp. 633–654.

Gruber, Thomas R (1993). “A translation approach to portable ontology specifica-
tions”. In: Knowledge acquisition 5.2, pp. 199–220.

Guizzardi, RS (2015). “Towards ontological foundations for conceptual modeling:
the unified foundational ontology (UFO) story Appl”. In: Ontol 10, pp. 3–4.

Gurevich, Yuri (1985). “Chapter XIII: Monadic second-order theories”. In: Model-
theoretic logics 8, pp. 479–506.

Gutmann, Bernd, Ingo Thon, and Luc De Raedt (2011). “Learning the parameters
of probabilistic logic programs from interpretations”. In: Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011. Proceedings, Part I 11. Springer, pp. 581–
596.

Holtzen, Steven, Guy Van den Broeck, and Todd Millstein (2020). “Scaling exact
inference for discrete probabilistic programs”. In: Proceedings of the ACM on
Programming Languages 4.OOPSLA, pp. 1–31.

Jaeger, Manfred and Guy Van den Broeck (2012). “Liftability of probabilistic in-
ference: Upper and lower bounds”. In: Proceedings of the 2nd international
workshop on statistical relational AI.

Kimmig, Angelika et al. (2011). “On the implementation of the probabilistic logic
programming language ProbLog”. In: Theory and Practice of Logic Program-
ming 11.2-3, pp. 235–262.

Kuusisto, Antti and Carsten Lutz (2018). “Weighted model counting beyond two-
variable logic”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by
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