
Knowledge Representation and Learning
Theorem Proving and Model Building

Luciano Serafini

Fondazione Bruno Kessler

May 19, 2022

Luciano Serafini Knowledge Representation and Learning



First Order Theorem proving

A first-order theorem prover is a computer program that
proves the validity/unsatisfiability of formulas in first-order
logic.

Since validity in FOL is only semi-decidable, first-order
theorem provers are not guaranteed to terminate

Despite this limitation, many automated theorem provers exist
and are useful: Vampire, SPASS, Prover9, . . .

The basis underlying all theorem provers today is the principle
of first-order resolution

To show that a formula is valid, they attempt to derive the
empty clause by repeated application of first order resolution
to the CNF conversion of the negation of the formula.

Luciano Serafini Knowledge Representation and Learning



First order Model building

A model builder attempts to build a first order model for a set
of formulas and therefore it shows that the set of formulas are
satisfiable.

it is often used in parallel with a theorem prover to build
counter-examples of some not yet proved theorem. E.g., a
model for Γ ∪ {¬φ} proving that φ is not a logical
consequence of Γ.

The result of a model builder is a finite set ∆ and an
interpretation function I for the first order symbols
(constants, funcitons, and predicates) that appear in the set
of formulas.

There are sets of formulas which are satisfiable only by infinite
models (i.e., models in which the domain of interpretation is
infinite). In this case the model builder does not provide any
answer.

Luciano Serafini Knowledge Representation and Learning



The nltk.inference module

The nltk.inference module provies interfaces and base
classes for theorem provers and model builders.

There are currently three theorem provers included with
NLTK: Prover9, TableauProver, and ResolutionProver.
The first is an off-the-shelf prover, while the other two are
written in Python and included in the nltk.inference package.

There is currently a single model builder, which makes use of
the external “Mace4” package.

Luciano Serafini Knowledge Representation and Learning



The ProverCommand

A ProverCommand is a stateful holder for a theorem prover.
The state includes:

the theorem prover instance;
a goal,
a list of assumptions,
the result of the proof,
and a string version of the entire proof.

there are three ProverCommand implementations:
Prover9Command, TableauProverCommand, and
ResolutionProverCommand.

Luciano Serafini Knowledge Representation and Learning



The MaceCommand

A ModelBuilderCommand is a stateful holder for a model
builder. The state includes:

the model builder instance;
a goal (the formula for which we have to build a
counterexample)
a list of assumptions,
the model;
and a string version of the model.

there is only one ModelBuilderCommand which is
MaceCommand

Luciano Serafini Knowledge Representation and Learning



Prover9’s Proof Method

The primary mode of inference used by Prover9 is resolution.
It repeatedly makes resolution inferences with the aim of
detecting inconsistency

Prover9 will first do some preprocessing on the input file to
convert it into the form it uses for inferencing.

1 First it negates the formula given as a goal
2 It then translates all formulae into clausal form.
3 In some cases it will do some further pre-processing (not described

here)

Then it will compute inferences and by default write these
standard output.

If it detects an inconsistency it will stop and print out a proof
consisting of the sequence of resolution rules that generated
the inconsistency.

It will also print out various statistics associated with the
proof.

Luciano Serafini Knowledge Representation and Learning



Prover9’s Proof Method

Mace4 performs the same preprocessing then Prover9

When it is called with a set of assumptions Γ and a goal φ it
tries to “disprove” Γ |= φ. by building a first order model for
Γ ∪ {¬φ}.
It proceeds incrementally on the size of the domain, starting
from domain with two elements.

it is possible to provide an upperbound on the number of
elements of the domain.

Luciano Serafini Knowledge Representation and Learning



Mace4 output format (model)

The output of mace4 is the description of a model (with finite
domain) and it contains the following information:

the number n of elements of the domain. The domain is
assumed to be {0, 1, 2, . . . n − 1}
for every m-aary function f , a tensor F of rank m, i.e., with m
dimensions, where for every 0 ≤ i1, . . . , im ≤ n − 1,
Fi1,...,im ∈ {0, . . . , n − 1}

constants (0-ary functions) → scalar in {0, . . . , n − 1}
unary functions → vectors in {0, . . . , n − 1}n
biary functions → matrices in {0, . . . , n − 1}n×n

For every m-ary predicate p, a tensor P of rank m, with values
in {0, 1}

0-ary predicates, i.e., propositional variables → a value in
{0, 1}
unary predicates → n vectors with values in {0, 1}
binary predicates n × n matrixes with values in {0, 1}.

Luciano Serafini Knowledge Representation and Learning



Prover9 and Mace4 in parallel

Given a set of assumptions Γ and a goal φ if is possible to run
in parallel Prover9 and Mace4, which tries to prove and
disprove respectively the fact that Γ |= φ.

Luciano Serafini Knowledge Representation and Learning


