Knowledge Representation and Learning

11. Resolution and Unification

Luciano Serafini

Fondazione Bruno Kessler, Trento, Italy

May 22, 2023

The rule of Propositional Resolution

$$
\text { RES } \quad \frac{A \vee C, \quad \neg C \vee B}{A \vee B}
$$

The formula $A \vee B$ is called a resolvent of $A \vee C$ and $B \vee \neg C$, denoted $\operatorname{Res}(A \vee C, B \vee \neg C)$.

Exercise 1:

Show that the Resolution rule is logically sound; i.e., that the conclusion is a logical consequence of the premises. In other words shaow that

$$
A \vee C, B \vee \neg C \models A \vee B
$$

RES allows to infer new (true) clauses from other clauses. To apply RES to a set of formulas we firsty have to transform them in CNF (set of clauses).

Soundness of Propositional Resolution

$$
\text { RES } \quad \frac{A \vee C, \quad \neg C \vee B}{A \vee B}
$$

To prove soundness of the RES rule we show that the following logical consequence holds:

$$
(A \vee C) \wedge(\neg C \vee B) \models A \vee B
$$

i.e., we have to show that, for every interpretation \mathcal{I},

$$
\text { if } \mathcal{I} \models(A \vee C) \wedge(\neg C \vee B) \text {, then } \mathcal{I} \models A \vee B
$$

- Suppose that $\mathcal{I} \models(A \vee C) \wedge(\neg C \vee B)$, then $\mathcal{I} \models(A \vee C)$ and $\mathcal{I} \neg C \vee B)$
- This implies that $\mathcal{I} \models A \vee C$, and therefore that either $\mathcal{I} \models A$ or $\mathcal{I} \vDash C$
- If $\mathcal{I} \models A$, then $\mathcal{I} \models A \vee B$
- If $\mathcal{I} \models C$, then from the fact that $\mathcal{I} \models \neg C \vee B$ we have that $\mathcal{I} \models B$. Which implies that $\mathcal{I} \models A \vee B$.

Generality of Propositional Resolution

The propositional resolution inference rule implements a very general inference pattern, that includes many inference rules of propositional logics once the formulas are transformed in CNF.

Rule Name	Original form	CNF form
Modus Ponens	$\frac{p \quad p \rightarrow q}{q}$	$\frac{\{p\} \quad\{\neg p, q\}}{\{q\}}$
Modus tollens	$\frac{\neg q \quad p \rightarrow q}{\neg p}$	$\frac{\{\neg q\} \quad\{\neg p, q\}}{\{\neg p\}}$
Chaining	$\frac{p \rightarrow q \quad q \rightarrow r}{p \rightarrow r}$	$\frac{\{\neg p, q\} \quad\{\neg q, r\}}{\{\neg p, r\}}$
Reductio ad absurdum	$\frac{p \rightarrow q \quad p \rightarrow \neg q}{\neg p}$	$\frac{\{\neg p, q\} \quad\{\neg p, \neg q\}}{\{\neg p\}}$
Reasoning by case	$\frac{p \vee q \quad p \rightarrow r \quad q \rightarrow r}{r}$	$\frac{\frac{\{p, q\} \quad\{\neg p, r\}}{\{q, r\}} \quad\{\neg q, r\}}{\{r\}}$
Tertium non datur	$\frac{p \quad \neg p}{\perp}$	$\frac{\{p\} \quad\{\neg p\}}{\}}$

Propositional Resolution rule

The Propositional Resolution rule is the general form of the rules presented in the previous slides. Using the setwise notation it can be written as:

$$
\text { RES: } \frac{\left.A_{1}, \ldots, C, \ldots, A_{m}\right\} \quad\left\{B_{1}, \ldots, \neg C, \ldots, B_{n}\right\}}{\left\{A 1, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right\}}
$$

- The clause $\left\{A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right\}$ is called a resolvent of the clauses $\left\{A_{1}, \ldots, C, \ldots, A_{m}\right\}$ and $\left\{B_{1}, \ldots, \neg C, \ldots, B_{n}\right\}$.

Example (Applications of RES rule)

$$
\frac{\{p, q, \neg r\} \quad\{\neg q, \neg r\}}{\{p, \neg r, \neg r\}} \quad \frac{\{\neg p, q, \neg r\} \quad\{r\}}{\{\neg p, q\}} \quad \frac{\{\neg p\} \quad\{p\}}{\}}
$$

Propositinal resolution: Decision Procedure

- Using RES it is possible to build a decision procedure that decides if a set of formulas are satisfiable.
- To check if a set of propositional formulas Γ is satisfiable, you have transform Γ conjunctive normal and apply PropositionalResocution algorithm.

Propositional resolution

function PropositionalResolution(Γ :CNF)
while no new clauses are derivable do
$C_{1}, C_{2}, p \leftarrow$ select two clauses and an atom from Γ such that $p \in C_{1}$ and $\neg p \in$ C_{2}, and such that $\left(C_{1}, C_{2}, p\right)$ has not previously selected
$\Gamma \leftarrow \Gamma \cup\left\{\left(C_{1} \cup C_{2}\right) \backslash\{p, \neg p\}\right\}$
if $\} \in \Gamma$ then
return Unsat
end if
end while return Sat
10: end function

- This simple algorithm terminates, since the number of clauses that can be build using the propositional variables occurring in Γ are finite.
- Differently from DPLL this decision procedure, if the set of formulas Γ are satisfiable, does not necessarily provide a model for it. The proceduire provides only yes/no anser.

Propositional Resolution - Examples

Example

Decide if the following set of clauses are satisfiable using PropositionalResolution.

$$
\{\{\neg p, q\},\{\neg q, r\},\{p\},\{\neg r\}\}
$$

Solution

Propositional Resolution - Examples

Example

Show that the following set of formulas are not satisfiable by PropositionalResolution.

$$
\{p \rightarrow q, p \rightarrow \neg q, \neg p \rightarrow r, \neg p \rightarrow \neg r\}
$$

SolutionWe first transform the formulas in clauses obtaining:

$$
\{\neg p, q\},\{\neg p, \neg q\},\{p, r\},\{p, \neg r\}
$$

Some remarks

$$
\frac{\{p, q, \neg r\} \quad\{\neg q, \neg r\}}{\{p, \neg r, \neg r\}} \quad \frac{\{\neg p, q, \neg r\} \quad\{r\}}{\{\neg p, q\}} \quad \frac{\{\neg p\}\{p\}}{\}}
$$

- Note that two clauses can have more than one resolvent, e.g.:

$$
\frac{\{p, \neg q\}\{\neg p, q\}}{\{\neg q, q\}} \quad \frac{\{\neg p, q\} \quad\{p, \neg p\}}{\{\neg p, p\}}
$$

However, it is wrong to apply the Propositional Resolution rule for both pairs of complementary literals simultaneously as follows:

$$
\frac{\{p, \neg q\} \quad\{\neg p, q\}}{\}}
$$

Sometimes, the resolvent can (and should) be simplified, by removing duplicated literals on the fly:

$$
\left\{A_{1}, \ldots, C, C, \ldots, A_{m}\right\} \Rightarrow\left\{A_{1}, \ldots, C, \ldots, A_{m}\right\} .
$$

For instance:

$$
\frac{\{p, \neg q, \neg r\} \quad\{q, \neg r\}}{\{p, \neg r\}} \text { instead of } \quad \frac{\{p, \neg q, \neg r\} \quad\{q, \neg r\}}{\{p, \neg r, \neg r\}}
$$

Deciding Validity and logical consequence with Propositional resolution

- Propositional Resolution, like DPLL, can be used to prove the validity of a formula and the logical consequence of a formula from a set of formulas.
- to check that $=\phi$, (i.e., that ϕ is valid you can check that $\neg \phi$ is not satisfiable by transforming $\neg \phi$ in CNF and apply PropositionalResolution.
- To check if $\phi_{1}, \ldots, \phi_{n} \neq \phi$, you have to check if the set of formulas $\left\{\phi_{1}, \phi_{2} \ldots, \phi_{n}, \neg \phi\right\}$ is not satisfiable by applying Propositionalresolution to the CNF conversion of ϕ_{i} and $\neg \phi$.

Propositional resolution - Exercizes

Exercizes

Check the following facts via propositional resolution
(1) $(\neg p \rightarrow q), \neg r \models p \vee(\neg q \wedge \neg r)$
(2) $p \rightarrow q, q \rightarrow r \models p \rightarrow r$
(3) The set of clauses $\{\{A, B, \neg D\},\{A, B, C, D\},\{\neg B, C\},\{\neg A\},\{\neg C\}\}$ is unsatisfiable

First-order resolution

- The Propositional Resolution rule in clausal form extended to first-order logic:

$$
\frac{\left\{A_{1}, \ldots, Q\left(s_{1}, \ldots, s_{n}\right), \ldots, A_{m}\right\} \quad\left\{B_{1}, \ldots, \neg Q\left(s_{1}, \ldots, s_{n}\right), \ldots, B_{n}\right\}}{\left\{A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right\}}
$$

this rule, however, is not strong enough.

- example: consider the clause set

$$
\{\{p(x)\},\{\neg p(f(y))\}\}
$$

is not satisfiable, as it corresponds to the unsatisfiable formula

$$
\forall x \forall y .(p(x) \wedge \neg p(f(y)))
$$

- however, the resolution rule above cannot derive an empty clause from that clause set, because it cannot unify the two clauses in order to resolve them.
- so, we need a stronger resolution rule, i.e., a rule capable to understand that x and $f(y)$ can be instantiated to the same ground term $f(a)$.

Unification

Finding a common instance of two terms.
Intuition in combination with Resolution

$$
\begin{gathered}
S=\left\{\begin{array}{c}
\text { friend }(x, y) \rightarrow \text { friend }(y, x) \\
\text { friend }(x, y) \rightarrow \text { knows }(x, \text { mother }(y)) \\
\text { friend }(\text { Mary } \operatorname{John}) \\
\neg \text { knows }(\text { John, mother }(\text { Mary }))
\end{array}\right\} \\
\operatorname{cnf}(S)=\left\{\begin{array}{c}
\neg \text { friend }(x, y) \vee \text { friend }(y, x) \\
\neg \text { friend }(x, y) \vee \text { knows }(x, \text { mother }(y)) \\
\text { friend }(\text { Mary, John }) \\
\neg \text { knows }(\text { John, mother }(\text { Mary }))
\end{array}\right\}
\end{gathered}
$$

Is $\operatorname{cnf}(S)$ satisfiable or unsatisfiable?
The key point here is to apply the right substitutions

First order logic Resolution

- Let 「 a set of first order clauses, i.e., formulas of the form

$$
\forall x_{1} \ldots x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)
$$

where $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a disjunction of literals not containing quantifiers.

- let H be Herbrand universe of Г, i.e., the set of ground terms that can be builded with the signature of Γ.
- let Γ_{H} be the set of clauses $\phi\left(t_{1}, \ldots, t_{n}\right)$ obbtained by grounding the clauses in Γ with all the possible n-tuple of terms of the Herbrand universe.
- Γ_{H} can be infinite. but Herbrand theorem guarantees that if Γ is unsat, then there is a funite subset of Γ_{H} that is unsat.
- theoretically, if Γ is unsat, then by applying Propositionalresolution to Γ_{H} we eventually derive the empty clause.

Substitutions: A Mathematical Treatment

A substitution is a finite set of replacements

$$
\sigma=\left[x_{1} / t_{1}, \ldots, x_{k} / k_{k}\right]
$$

where x_{1}, \ldots, x_{k} are distinct variables and $t_{i} \neq x_{i}$.
$t \sigma$ represents the result of the substitution σ applied to t.

$$
c \sigma=c \quad \text { (non) substitution of constants }
$$

$x\left[x_{1} / t_{1}, \ldots x_{n} / t_{n}\right]=t_{i}$ if $x=x_{i}$ for some i substitution of variables

$$
\begin{aligned}
x\left[x_{1} / t_{1}, \ldots x_{n} / t_{n}\right]=x \text { if } x \neq x_{i} \text { for all } i & \text { (non) substitution of variables } \\
f(t, u) \sigma=f(t \sigma, u \sigma) & \text { substitution in terms } \\
P(t, u) \sigma=P(t \sigma, u \sigma) & \ldots \text { in literals } \\
\left\{L_{1}, \ldots, L_{m}\right\} \sigma=\left\{L_{1} \sigma, \ldots, L_{m} \sigma\right\} & \ldots \text { in clauses }
\end{aligned}
$$

Composing Substitutions

Composition of σ and θ written $\sigma \circ \theta$, satisfies for all terms t

$$
t(\sigma \circ \theta)=(t \sigma) \theta
$$

If $\sigma=\left[x_{1} / t_{1}, \ldots x_{n} / t_{n}\right]$ and $\theta=\left[x_{1} / u_{1}, \ldots x_{n} / u_{n}\right]$, then

$$
\sigma \circ \theta=\left[x_{1} / t_{1} \theta, \ldots x_{n} / t_{n} \theta\right]
$$

Identity substitution

$$
\begin{aligned}
{\left[x / x, x_{1} / t_{1}, \ldots x_{n} / t_{n}\right] } & =\left[x_{1} / t_{1}, \ldots x_{n} / t_{n}\right] \\
\sigma \circ[] & =\sigma
\end{aligned}
$$

Associativity

$$
\sigma \circ(\theta \circ \phi)=(\sigma \circ \theta) \circ \phi=\sigma \circ \theta \circ \phi=
$$

Non commutativity, in general we have that

$$
\sigma \circ \theta \neq \theta \circ \sigma
$$

Composition of substitutions - examples

$$
\begin{array}{r}
f(g(x), f(y, x))[x / f(x, y)][x / g(a), y / x]= \\
f(g(f(x, y)), f(y, f(x, y)))[x / g(a), y / x]= \\
f(g(f(g(a), x)), f(x, f(g(a), x)))
\end{array}
$$

$$
\begin{aligned}
f(g(x), f(y, x))[x / g(a), y / x][x / f(x, y)] & = \\
f(g(g(a)), f(x, g(a)))[x / f(x, y)] & = \\
f(g(g(a)), f(f(x, y), g(a))) &
\end{aligned}
$$

Computing the composition of substitutions

The composition of two substitutions $\tau=\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]$ and σ
(1) Extend the replaced variables of τ with the variables that are replaced in σ but not in τ with the identity substitution x / x
(2) Apply the substitution σ simultaneously to all terms $\left[t_{1}, \ldots, t_{k}\right]$ to obtaining the substitution $\left[x_{1} / t_{1} \sigma, \ldots, x_{k} / t_{k} \sigma /\right]$.
(3) Remove from the result all cases x_{i} / x_{i}, if any.

Example

$$
\begin{aligned}
{[x / f(x, y), y / x][x / y, y / a, z / g(y)] } & = \\
{[x / f(x, y), y / x, z / z][x / y, y / a, z / g(y)] } & = \\
{[x / f(y, a), y / y, z / g(y)] } & = \\
{[x / f(y, a), z / g(y)] } &
\end{aligned}
$$

Unifiers and Most General Unifiers

σ is a unifier of terms t and u if $t \sigma=u \sigma$.
For instance

- the substitution $[f(y) / x]$ unifies the terms x and $f(y)$
- the substitution $[f(c) / x, c / y, c / z]$ unifies the terms $g(x, f(f(z)))$ and $g(f(y), f(x))$
- There is no unifier for the pair of terms $f(x)$ and $g(y)$, nor for the pair of terms $f(x)$ and x.
σ is more general than θ if $\theta=\sigma \circ \phi$ for some substitution ϕ.
σ is a most general unifier for two terms t and u if it a unifier for t and u and it is more general of all the unifiers of t and u.
If σ unifies t and u then so does $\sigma \circ \theta$ for any θ.
A most general unifier of $f(a, x)$ and $f(y, g(z))$ is $\sigma=[a / y, g(z) / x]$. The common instance is

$$
f(a, x) \sigma=f(a, g(z))=f(y, g(z)) \sigma
$$

Unifier

Example

- The substitution $[x / 3, y / g(3)]$ unifies the terms $g(g(x))$ and $g(y)$. The common instance is $\mathrm{g}(\mathrm{g}(3))$.
- This is not the most general unifier
- Indeed, these terms have many other unifiers, including the following:

unifying substitution common instance

$$
\begin{array}{ll}
{[x / f(u), y / g(f(u))]} & g(g(f(u))) \\
{[x / z, y / g(z)]} & g(g(z)) \\
{[y / g(x)]} & g(g(x))
\end{array}
$$

- The one marked in red are MGU
- Exercize: Show that the first substitution can be obtained by composing a MGU with another substitution

Examples of most general unifier

Notation: $x, y, z \ldots$ are variables, a, b, c, \ldots are constants f, g, h, \ldots are functions p, q, r, \ldots are predicates.

terms	MGU	result of the substitution
$p(a, b, c)$ $p(x, y, z)$	$[x / a, y / b, z / c]$	$p(a, b, c)$
$p(x, x)$ $p(a, b)$	None	
$p(f(g(x, a), x)$ $p(z, b)$	$[x / b, z / f(g(b, a))]$	$p(f(g(b, a), b)$
$p(f(x, y), z)$ $p(z, f(a, y))$	$[z / f(a, y), x / a]$	$p(f(a, y), f(a, y))$

Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it can easily be adapted to work with formulas and terms.
Sub expressions Let L be a literal. We refer to formulas and terms appearing within L as the subexpressions of L. If there is a subexpression in L starting at position i we call it $L^{(i)}$ (otherwise $L^{(i)}$ is undefined.
Disagreement pairs. Let L_{1} and L_{2} be literals with $L_{1} \neq L_{2}$. The disagreement pair of L_{1} and L_{2} is the pair $\left(L_{1}^{(i)}, L_{2}^{(i)}\right)$ of subexpressions of L_{1} and L_{2} respectively, where i is the smallest number such that $\left.L_{1}^{(i)} \neq L_{2}^{(i)}\right)$.
Example The disagreement pair of

$$
\begin{aligned}
& P(g(c), f(a, g(x), h(a, g(b)))) \\
& P(g(c), f(a, g(x), h(k(x, y), z)))
\end{aligned}
$$

is $(a, k(x, y))$

Robinson's Unification Algorithm

Input: a set of terms Δ
Output: $\sigma=\operatorname{MGU}(\Delta$ or Undefined!
$\sigma:=[]$
while $|\Delta \sigma|>1$ do
pick a disagreement pair p in $\Delta \sigma^{\prime}$
if no variable in p then
return 'not unifiable';
else

$$
\begin{aligned}
& \text { let } p=(x, t) \text { with } x \text { being a variable; } \\
& \text { if } x \text { occurs in } t \text { then } \\
& \quad \text { return 'not unifiable'; } \\
& \text { else } \sigma:=\sigma \circ[x / t] \text {; }
\end{aligned}
$$

return σ

Substitution

Exercise 2:

Let $\sigma=[x / a, y / f(b), z / c]$ and $\theta=[v / f(f(a)), z / x, x / g(y)]$

- compute $\sigma \circ \theta$ and $\theta \circ \sigma$
- For every of the following formulæ, compute (i) $\phi \sigma$; (ii) $\phi \theta$; (iii) $\phi \sigma \circ \theta$; and (iv) $\phi \theta \circ \sigma$
(1) $\phi=p(x, y, z)$
(2) $\phi=p(h(v)) \vee \neg q(z, x)$
(3) $\phi=q(x, z, v) \vee \neg q(g(y), x, f(f(a)))$
- are σ and θ and their compositions idempotent?

Definition

A function $f: X \longrightarrow X$ on a set X is idempotent if and only if $f(x)=f(f(x))$

An example of idempotent function are round $(\cdot): \mathbb{R} \longrightarrow \mathbb{R}$, that returns the closer integer round (x) to a real number x.

Unification

Exercise 3:

For every C_{1}, C_{2} and σ, decide whether (i) σ is a unifier of C_{1} and C_{2}; and (ii) σ is the MGU of C_{1} and C_{2}

C_{1}	C_{2}	σ
$P(a, f(y), z)$	$Q(x, f(f(v)), b)$	$[x / a, y / f(b), z / b]$
$Q(x, h(a, z), f(x))$	$Q(g(g(v)), y, f(w))$	$[x / g(g(v)), y / h(a, z), w / x]$
$Q(x, h(a, z), f(x))$	$Q(g(g(v)), y, f(w))$	$[x / g(g(v)), y / h(a, z), w / g(g(v))]$
$R(f(x), g(y))$	$R(z, g(v))$	$[x / a, z / f(a), y / v]$

Unification

Exercise 4:

Consider the signature $\Sigma=\langle a, b, f(\cdot, \cdot), g(\cdot, \cdot), P(\cdot, \cdot, \cdot)\rangle$ Use the algorithm from the previous lecture to decide whether the following clauses are unifiable.
(1) $\{P(f(x, a), g(y, y), z), P(f(g(a, b), z), x, a)\}$
(2) $\{P(x, x, z), P(f(a, a), y, y)\}$
(3) $\{P(x, f(y, z), b), P(g(a, y), f(z, g(a, x)), b)\}$
(1) $\{P(a, y, U), P(x, f(x, U), g(z, b))\}$

Unification of $P(f(x, a), g(y, y), z), P(f(g(a, b), z), x, a)$

- $\{P(f(x, a), g(y, y), Z), P(f(g(a, b), z), x, a)\}$
- $\sigma=[x / g(a, b)]$
- $\{P(f(x, a), g(y, y), Z), P(f(g(a, b), z), x, a)\} \sigma=$ $\{P(f(g(a, b), a), g(y, y), z), P(f(g(a, b), z), g(a, b), a)\}$.
- $\{P(f(g(a, b), a), g(y, y), z), P(f(g(a, b), z), g(a, b), a)\}$.
- $\sigma=[x / g(a, b), z / a]$
- $\{P(f(g(a, b), a), g(y, y), z), P(f(g(a, b), z), g(a, b), a)\} \sigma=$ $\{P(f(g(a, b), a), g(y, y), a), P(f(g(a, b), a), g(a, b), a)\}$
- $\{P(f(g(a, b), a), g(y, y), a), P(f(g(a, b), a), g(a, b), a)\}$
- $\sigma=[x / g(a, b), z /, y / a]$
- $\{P(f(g(a, b), a), g(y, y), a), P(f(g(a, b), a), g(a, b), a)\} \sigma=$ $\{P(f(g(a, b), a), g(a, a), a), P(f(g(a, b), a), g(a, b), a)\}$
- $\{P(f(g(a, b), a), g(a, a), a), P(f(g(a, b), a), g(a, b), a)\}$
- a and b are two constants and they are not unificable. So the algorithm returns that the set of clauses are not unifiable.

Unification of $\{P(x, x, z), P(f(a, a), y, y)\}$

- $\{P(x, x, z), P(f(a, a), y, y)\}$
- $\sigma=[x / f(a, a)]$
- $\{P(x, x, z), P(f(a, a), y, y)\} \sigma=$ $\{P(f(a, a), f(a, a), z), P(f(a, a), y, y)\}$
- $\{P(f(a, a), f(a, a), z), P(f(a, a), y, y)\}$
- $\sigma=[x / f(a, a), y / f(a, a)]$
- $\{P(f(a, a), f(a, a), z), P(f(a, a), y, y)\} \sigma=$ $\{P(f(a, a), f(a, a), z), P(f(a, a), f(a, a), f(a, a))\}$
- $\{P(f(a, a), f(a, a), z), P(f(a, a), f(a, a), f(a, a))\}$
$\sigma=[x / f(a, a), y / f(a, a), z / f(a, a)]$
- $\{P(f(a, a), f(a, a), z), P(f(a, a), f(a, a), f(a, a))\} \sigma=$ $\{P(f(a, a), f(a, a), f(a, a)), P(f(a, a), f(a, a), f(a, a))\}$
- the two terms are equal, so the initial terms are unifiable with the mgu equal to $\sigma=[x / f(a, a), y / f(a, a), z / f(a, a)]$

Unification

Exercise 5:

Find, when possible, the MGU of the following pairs of clauses.
(1) $\{q(a), q(b)\}$
(2) $\{q(a, x), q(a, a)\}$
(3) $\{q(a, x, f(x)), q(a, y, y)$,
(9) $\{q(x, y, z), q(u, h(v, v), u)\}$
© $\left\{\begin{array}{l}p\left(x_{1}, g\left(x_{1}\right), x_{2}, h\left(x_{1}, x_{2}\right), x_{3}, k\left(x_{1}, x_{2}, x_{3}\right)\right), \\ p\left(y_{1}, y_{2}, e\left(y_{2}\right), y_{3}, f\left(y_{2}, y_{3}\right), y_{4}\right)\end{array}\right\}$

Theorem-Proving Example

$$
(\exists y \forall x R(x, y)) \rightarrow(\forall x \exists y R(x, y))
$$

Negate $\neg((\exists y \forall x R(x, y)) \rightarrow(\forall x \exists y R(x, y)))$

$$
\text { NNF } \exists y \forall x R(x, y), \quad \exists x \forall y \neg R(x, y)
$$

Skolemize $R(x, b), \neg R(a, y)$
Unify $\operatorname{MGU}(R(x, b), R(a, y))=[x / a, y / b]$
Contrad.: We have the contradiction $R(b, a), \neg R(b, a)$, so the formula is valid

Theorem-Proving Example

$$
(\forall x \exists y R(x, y)) \rightarrow(\exists y \forall x R(x, y))
$$

Negate $\neg((\forall x \exists y R(x, y)) \rightarrow(\exists y \forall x R(x, y)))$ NNF $\forall x \exists y R(x, y), \quad \forall y \exists x \neg R(x, y)$
Skolemize $R(x, f(x)), \neg R(g(y), y)$
Unify $\operatorname{MGU}(R(x, f(x)), \quad R(g(y), y))=$ Undefined
Contrad.: We do not have the contradiction, so the formula is not valid.

Resolution for first order logic

The resolution rule for Propositional logic is

$$
\frac{\left\{I_{1}, \ldots, I_{n}, p\right\} \quad\left\{\neg p, I_{n+1}, \ldots, I_{m}\right\}}{\left\{I_{1}, \ldots I_{m}\right\}}
$$

The binary resolution rule

In first order logic each I_{i} and p are formulas of the form $P\left(t_{1}, \ldots, t_{n}\right)$ or $\neg P\left(t_{1}, \ldots, t_{n}\right)$.

When two opposite literals of the form $P\left(t_{1}, \ldots, t_{n}\right)$ and $P\left(u_{1}, \ldots, u_{n}\right)$ occur in the clauses C_{1} and C_{2} respectively, we have to find a way to partially instantiate them, by a substitution σ, in such a way the resolution rule can be applied, to to $C_{1} \sigma$ and $C_{2} \sigma$, i.e., such that $P\left(t_{1}, \ldots, t_{n}\right) \sigma=P\left(u_{1}, \ldots, u_{n}\right) \sigma$.

$$
\frac{\left\{I_{1}, \ldots, I_{n}, P\left(t_{1}, \ldots, t_{n}\right)\right\}\left\{\neg P\left(u_{1}, \ldots, u_{n}\right), I_{n+1}, \ldots, I_{m}\right\}}{\left\{I_{1}, \ldots I_{m}\right\} \sigma}
$$

where σ is the $\operatorname{MGU}\left(P\left(t_{1}, \ldots, t_{n}\right), P\left(u_{1}, \ldots, u_{n}\right)\right)$.

The factoring rule

$$
\frac{\left\{I_{1}, \ldots, I_{n}, I_{n+1}, \ldots, I_{m}\right\}}{\left\{I_{1}, I_{n+1}, \ldots I_{m}\right\} \sigma} \text { If } I_{1} \sigma=\cdots=I_{n} \sigma
$$

Example

Prove $\forall x \exists y \neg(P(y, x) \equiv \neg P(y, y))$
Clausal form $\{\neg P(y, a), \neg P(y, y)\},\{P(y, y), P(y, a)\}$
Factoring yields $\{\neg P(a, a)\},\{P(a, a)\}$
By resolution rule we obtain the empty clauses \square

A Non-Trivial Proof

$$
\exists x[P \rightarrow Q(x)] \wedge \exists x[Q(x) \rightarrow P] \rightarrow \exists x[P \equiv Q(x)]
$$

Clauses are $\{P, \neg Q(b)\},\{P, Q(x)\},\{\neg P, \neg Q(x)\},\{\neg P, Q(a)\}$ Apply resolution

Example

Assumptions:

- $\forall x(P(x) \rightarrow P(f(x)))$
- $\forall x, y(Q(a, y) \wedge R(y, x) \rightarrow P(x))$
- $\forall z R(b, g(a, z))$
- $Q(a, b)$

Goal $=P(f(g(a, c)))$
(1) clausify the assumptions
(2) negate and clausify the goal
(3) $\operatorname{mgu}(Q(a, y), Q(a, b))=[y / b]$
(4) $m g u(R(b, g(a, z)), R(b, x))=[x / g(a, z)]$
(5) $m g u(P(x), P(g(a, z))=[x / g(a, z)]$
(6) $\operatorname{mgu}(P(f(g(a, z))), P(f(g(a, c))))=[z / c]$

Inference

1. $\neg P(x), P(f(x))$
2. $\neg Q(a, y), \neg R(y, x), P(x)$
3. $R(b, g(a, z))$
4. $Q(a, b)$
5. $\neg P(f(g(a, c)))$
6. $\neg R(b, x), P(x)$
7. $P(g(a, z))$
8. $P(f(g(a, z)))$
9. \perp

Equality

In theory, it's enough to add the equality axioms:

- The reflexive, symmetric and transitive laws

$$
\{x=x\},\{x \neq y, y=x\},\{x \neq y, y \neq z, x=z\}
$$

- Substitution laws like $\left\{x_{1} \neq y_{1}, \ldots, x_{n} \neq y_{n}, f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right\}$ for each f with arity equal to n
- Substitution laws like $\left\{x_{1} \neq y_{1}, \ldots, x_{n} \neq y_{n}, \neg P\left(x_{1}, \ldots, x_{n}\right), P\left(y_{1}, \ldots, y_{n}\right)\right\}$ for each P with arity equal to n

In practice, we need something special: the paramodulation rule

$$
\frac{\left\{P(t), I_{1}, \ldots I_{n}\right\} \quad\left\{u=v, I_{n+1}, \ldots, I_{m}\right\}}{\left.P(v), I_{1}, \ldots, I_{m}\right\} \sigma} \quad \text { provides that } t \sigma=u \sigma
$$

Resolution

Exercise 6:

Find the possible resolvents of the following pairs of clauses.

C	D
$\neg p(x) \vee q(x, b)$	$p(a) \vee q(a, b)$
$\neg p(x) \vee q(x, x)$	$\neg q(a, f(a))$
$\neg p(x, y, u) \vee \neg p(y, z, v) \vee \neg p(x, v, w) \vee p(u, z, w)$	$p(g(x, y), x, y)$
$\neg p(v, z, v) \vee p(w, z, w)$	$p(w, h(x, x), w)$

Solution

C	D	σ
$\neg p(x) \vee q(x, b)$	$p(a) \vee q(a, b)$	$[x / a]$
$\neg p(x) \vee q(x, x)$	$\neg q(a, f(a))$	$N O$
$\neg p(x, y, u) \vee \neg p(y, z, v) \vee \neg p(x, v, w) \vee p(u, z, w)$	$p\left(g\left(x^{\prime}, y^{\prime}\right), x^{\prime}, y^{\prime}\right)$	
$\neg p(x, y, u) \vee \neg p(y, z, v) \vee \neg p(x, v, w) \vee p(u, z, w)$	$p\left(g\left(x^{\prime}, y^{\prime}\right), x^{\prime}, y^{\prime}\right)$	
$\neg p(x, y, u) \vee \neg p(y, z, v) \vee \neg p(x, v, w) \vee p(u, z, w)$	$p\left(g\left(x^{\prime}, y^{\prime}\right), x^{\prime}, y^{\prime}\right)$	
$\neg p(v, z, v) \vee p(w, z, w)$	$p\left(w^{\prime}, h\left(x^{\prime}, x^{\prime}\right), w^{\prime}\right)$	

resolution

Exercise 7:

Apply resolution (with refutation) to prove that the following formula

$$
\phi_{5} \quad m(5, f(7, f(5, f(1,0))))
$$

is a consequence of the set

$$
\begin{array}{ll}
\phi_{1} & \neg m(x, 0) \\
\phi_{2} & \neg i(x, y, z) \vee m(x, z) \\
\phi_{3} & \neg m(x, z) \vee \neg i(v, z, y) \vee m(x, y) \\
\phi_{4} & i(x, y, f(x, y))
\end{array}
$$

resolution

Solution

$$
\neg m(x, y) \vee \neg i(z, y, u) \vee m(x, u) \quad i(x, y, f(x, y))
$$

$$
\neg m(5, f(7, f(5, f(1,0)))) \quad \neg m(x, y) \vee m(x, f(z, y))
$$

Notice that variables in clauses can be renamed in any way to facilitate unification. So for instance in ϕ_{3} we rename variables in order to unify with ϕ_{4}.

Resolution and Unification - Exercize

Exercise

Show that the following set of formulas are not satisfiable:
(1) $\forall x(P(x) \wedge \neg Q(x) \rightarrow \exists y(R(x, y) \wedge S(y)))$
(2) $\exists x(P(x) \wedge T(x))$
(3) $\forall x(\exists y R(y, x) \rightarrow T(x))$
(9) $\forall x(T(x) \rightarrow \neg(Q(x) \vee S(x)))$

Resolution and Unification - Exercize

Solution we first transform the formula in first order clausal form, and rename variables.

- $\{\neg P(x), Q(x), R(x, f(x))\}$ (from formula 1. we introduce the skolem function f)
- $\{\neg P(y), Q(y), S(f(x y))\}$ (from formula 1.)
- $\{T(a)\}$ (from formula 2.we introduce the Skolem constant a)
- $\{P(a)\}$ (from formula 2.we introduce the Skolem constant a)
- $\{\neg R(z, w), T(z)\}$ (from formula 3.)
- $\{\neg T(v), \neg Q(v)\}$ (from formula 4.)
- $\{\neg T(u), \neg S(u)\}$ (from formula 4.)

