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The rule of Propositional Resolution

RES
A ∨ C , ¬C ∨ B

A ∨ B

The formula A ∨ B is called a resolvent of A ∨ C and B ∨ ¬C , denoted
Res(A ∨ C ,B ∨ ¬C ).

Exercise 1:

Show that the Resolution rule is logically sound; i.e., that the conclusion is
a logical consequence of the premises. In other words shaow that

A ∨ C ,B ∨ ¬C |= A ∨ B

RES allows to infer new (true) clauses from other clauses. To apply RES
to a set of formulas we firsty have to transform them in CNF (set of
clauses).
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Soundness of Propositional Resolution

RES
A ∨ C , ¬C ∨ B

A ∨ B
To prove soundness of the RES rule we show that the following logical
consequence holds:

(A ∨ C ) ∧ (¬C ∨ B) |= A ∨ B

i.e., we have to show that, for every interpretation I,

if I |= (A ∨ C ) ∧ (¬C ∨ B), then I |= A ∨ B

Suppose that I |= (A ∨ C ) ∧ (¬C ∨ B), then I |= (A ∨ C ) and
I¬C ∨ B)
This implies that I |= A ∨ C , and therefore that either I |= A or
I |= C

If I |= A, then I |= A ∨ B
If I |= C , then from the fact that I |= ¬C ∨ B we have that I |= B.
Which implies that I |= A ∨ B.
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Generality of Propositional Resolution

The propositional resolution inference rule implements a very general
inference pattern, that includes many inference rules of propositional logics
once the formulas are transformed in CNF.

Rule Name Original form CNF form

Modus Ponens
p p → q

q

{p} {¬p, q}
{q}

Modus tollens
¬q p → q

¬p
{¬q} {¬p, q}

{¬p}

Chaining
p → q q → r

p → r

{¬p, q} {¬q, r}
{¬p, r}

Reductio ad absurdum
p → q p → ¬q

¬p
{¬p, q} {¬p,¬q}

{¬p}

Reasoning by case
p ∨ q p → r q → r

r

{p, q} {¬p, r}
{q, r} {¬q, r}

{r}

Tertium non datur
p ¬p
⊥

{p} {¬p}
{}

Luciano Serafini (Fondazione Bruno Kessler, Trento, Italy)Knowledge Representation and Learning May 22, 2023 4 / 43



Propositional Resolution rule

The Propositional Resolution rule is the general form of the rules presented
in the previous slides. Using the setwise notation it can be written as:

RES:
A1, . . . ,C , . . . ,Am} {B1, . . . ,¬C , . . . ,Bn}

{A1, . . . ,Am,B1, . . . ,Bn}

The clause {A1, . . . ,Am,B1, . . . ,Bn} is called a resolvent of the
clauses {A1, . . . ,C , . . . ,Am} and {B1, . . . ,¬C , . . . ,Bn}.

Example (Applications of RES rule)

{p, q,¬r} {¬q,¬r}
{p,¬r ,¬r}

{¬p, q,¬r} {r}
{¬p, q}

{¬p} {p}
{}
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Propositinal resolution: Decision Procedure

Using RES it is possible to build a decision procedure that decides if a set of formulas are
satisfiable.

To check if a set of propositional formulas Γ is satisfiable, you have transform Γ
conjunctive normal and apply PropositionalResocution algorithm.

Propositional resolution
1: function PropositionalResolution(Γ:CNF)
2: while no new clauses are derivable do
3: C1,C2, p ← select two clauses and an atom from Γ such that p ∈ C1 and ¬p ∈

C2, and such that (C1,C2, p) has not previously selected
4: Γ← Γ ∪ {(C1 ∪ C2) \ {p,¬p}}
5: if {} ∈ Γ then
6: return Unsat
7: end if
8: end while
9: return Sat

10: end function

This simple algorithm terminates, since the number of clauses that can be build using the
propositional variables occurring in Γ are finite.

Differently from DPLL this decision procedure, if the set of formulas Γ are satisfiable, does
not necessarily provide a model for it. The proceduire provides only yes/no anser.
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Propositional Resolution - Examples

Example

Decide if the following set of clauses are satisfiable using
PropositionalResolution.

{{¬p, q}, {¬q, r}, {p}, {¬r}}

Solution
{}

{r}

{¬p, r}

{¬p, q}{¬q, r}

{p}

{¬r}

�
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Propositional Resolution - Examples

Example

Show that the following set of formulas are not satisfiable by
PropositionalResolution.

{p → q, p → ¬q,¬p → r ,¬p → ¬r}

SolutionWe first transform the formulas in clauses obtaining:

{¬p, q}, {¬p, ¬q}, {p, r}, {p,¬r}

{}

{p}

{p, r}{p,¬r}

{¬p}

{¬p, q}{¬p,¬q}

�
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Some remarks

{p, q,¬r} {¬q,¬r}
{p,¬r ,¬r}

{¬p, q,¬r} {r}
{¬p, q}

{¬p} {p}
{}

Note that two clauses can have more than one resolvent, e.g.:

{p,¬q} {¬p, q}
{¬q, q}

{¬p, q} {p,¬p}
{¬p, p}

However, it is wrong to apply the Propositional Resolution rule for both pairs of
complementary literals simultaneously as follows:

{p,¬q} {¬p, q}
{}

Sometimes, the resolvent can (and should) be simplified, by removing duplicated literals
on the fly:

{A1, . . . ,C ,C , . . . ,Am} ⇒ {A1, . . . ,C , . . . ,Am}.
For instance:

{p,¬q,¬r} {q,¬r}
{p,¬r} instead of

{p,¬q,¬r} {q,¬r}
{p,¬r ,¬r}
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Deciding Validity and logical consequence with
Propositional resolution

Propositional Resolution, like DPLL,can be used to prove the validity
of a formula and the logical consequence of a formula from a set of
formulas.

to check that |= φ, (i.e., that φ is valid you can check that ¬φ is not
satisfiable by transforming ¬φ in CNF and apply
PropositionalResolution.

To check if φ1, . . . , φn |= φ, you have to check if the set of formulas
{φ1, φ2 . . . , φn,¬φ} is not satisfiable by applying
Propositionalresolution to the CNF conversion of φi and ¬φ.
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Propositional resolution - Exercizes

Exercizes

Check the following facts via propositional resolution

1 (¬p → q),¬r |= p ∨ (¬q ∧ ¬r)

2 p → q, q → r |= p → r

3 The set of clauses {{A,B,¬D}, {A,B,C ,D}, {¬B,C}, {¬A}, {¬C}}
is unsatisfiable
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First-order resolution

The Propositional Resolution rule in clausal form extended to first-order logic:

{A1, . . . ,Q(s1, . . . , sn), . . . ,Am} {B1, . . . ,¬Q(s1, . . . , sn), . . . ,Bn}
{A1, . . . ,Am,B1, . . . ,Bn}

this rule, however, is not strong enough.

example: consider the clause set

{{p(x)}, {¬p(f (y))}}

is not satisfiable, as it corresponds to the unsatisfiable formula

∀x∀y .(p(x) ∧ ¬p(f (y)))

however, the resolution rule above cannot derive an empty clause from that clause
set, because it cannot unify the two clauses in order to resolve them.

so, we need a stronger resolution rule, i.e., a rule capable to understand that x and
f (y) can be instantiated to the same ground term f (a).
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Unification

Finding a common instance of two terms.

Intuition in combination with Resolution

S =


friend(x , y)→ friend(y , x)

friend(x , y)→ knows(x ,mother(y))
friend(Mary , John)

¬knows(John,mother(Mary))



cnf (S) =


¬friend(x , y) ∨ friend(y , x)

¬friend(x , y) ∨ knows(x ,mother(y))
friend(Mary , John)

¬knows(John,mother(Mary))


Is cnf (S) satisfiable or unsatisfiable?
The key point here is to apply the right substitutions
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First order logic Resolution

Let Γ a set of first order clauses, i.e., formulas of the form

∀x1 . . . xnφ(x1, . . . , xn)

where φ(x1, . . . , xn) is a disjunction of literals not containing
quantifiers.

let H be Herbrand universe of Γ, i.e., the set of ground terms that can
be builded with the signature of Γ.

let ΓH be the set of clauses φ(t1, . . . , tn) obbtained by grounding the
clauses in Γ with all the possible n-tuple of terms of the Herbrand
universe.

ΓH can be infinite. but Herbrand theorem guarantees that if Γ is
unsat, then there is a funite subset of ΓH that is unsat.

theoretically, if Γ is unsat, then by applying
Propositionalresolution to ΓH we eventually derive the empty
clause.
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Substitutions: A Mathematical Treatment

A substitution is a finite set of replacements

σ = [x1/t1, . . . , xk/kk ]

where x1, . . . , xk are distinct variables and ti 6= xi .

tσ represents the result of the substitution σ applied to t.

cσ = c (non) substitution of constants
x [x1/t1, . . . xn/tn] = ti if x = xi for some i substitution of variables

x [x1/t1, . . . xn/tn] = x if x 6= xi for all i (non) substitution of variables
f (t, u)σ = f (tσ, uσ) substitution in terms

P(t, u)σ = P(tσ, uσ) . . . in literals
{L1, . . . , Lm}σ = {L1σ, . . . , Lmσ} . . . in clauses
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Composing Substitutions

Composition of σ and θ written σ ◦ θ, satisfies for all terms t

t(σ ◦ θ) = (tσ)θ

If σ = [x1/t1, . . . xn/tn] and θ = [x1/u1, . . . xn/un], then

σ ◦ θ = [x1/t1θ, . . . xn/tnθ]

Identity substitution

[x/x , x1/t1, . . . xn/tn] = [x1/t1, . . . xn/tn]

σ ◦ [] = σ

Associativity
σ ◦ (θ ◦ φ) = (σ ◦ θ) ◦ φ = σ ◦ θ ◦ φ =

Non commutativity, in general we have that

σ ◦ θ 6= θ ◦ σ
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Composition of substitutions - examples

f (g(x), f (y , x))[x/f (x , y)][x/g(a), y/x ] =

f (g(f (x , y)), f (y , f (x , y)))[x/g(a), y/x ] =

f (g(f (g(a), x)), f (x , f (g(a), x)))

f (g(x), f (y , x))[x/g(a), y/x ][x/f (x , y)] =

f (g(g(a)), f (x , g(a)))[x/f (x , y)] =

f (g(g(a)), f (f (x , y), g(a)))
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Computing the composition of substitutions

The composition of two substitutions τ = [t1/x1, . . . , tk/xk ] and σ

1 Extend the replaced variables of τ with the variables that are replaced
in σ but not in τ with the identity substitution x/x

2 Apply the substitution σ simultaneously to all terms [t1, . . . , tk ] to
obtaining the substitution [x1/t1σ, . . . , xk/tkσ/].

3 Remove from the result all cases xi/xi , if any.

Example

[x/f (x , y), y/x ][x/y , y/a, z/g(y)] =

[x/f (x , y), y/x , z/z ][x/y , y/a, z/g(y)] =

[x/f (y , a), y/y , z/g(y)] =

[x/f (y , a), z/g(y)]
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Unifiers and Most General Unifiers

σ is a unifier of terms t and u if tσ = uσ.
For instance

the substitution [f (y)/x ] unifies the terms x and f (y)

the substitution [f (c)/x , c/y , c/z] unifies the terms g(x , f (f (z))) and
g(f (y), f (x))

There is no unifier for the pair of terms f (x) and g(y), nor for the pair of terms
f (x) and x .

σ is more general than θ if θ = σ ◦ φ for some substitution φ.

σ is a most general unifier for two terms t and u if it a unifier for t and u
and it is more general of all the unifiers of t and u.

If σ unifies t and u then so does σ ◦ θ for any θ.

A most general unifier of f (a, x) and f (y , g(z)) is σ = [a/y , g(z)/x ]. The
common instance is

f (a, x)σ = f (a, g(z)) = f (y , g(z))σ
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Unifier

Example

The substitution [x/3, y/g(3)] unifies the terms g(g(x)) and g(y).
The common instance is g(g(3)).

This is not the most general unifier

Indeed, these terms have many other unifiers, including the following:

unifying substitution common instance
[x/f (u), y/g(f (u))] g(g(f (u)))
[x/z , y/g(z)] g(g(z))
[y/g(x)] g(g(x))

The one marked in red are MGU

Exercize: Show that the first substitution can be obtained by
composing a MGU with another substitution
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Examples of most general unifier

Notation: x , y , z . . . are variables, a, b, c, . . . are constants f , g , h, . . . are
functions p, q, r , . . . are predicates.

terms MGU result of the substitution

p(a, b, c)
p(x , y , z)

[x/a, y/b, z/c] p(a, b, c)

p(x , x)
p(a, b)

None

p(f (g(x , a), x)
p(z , b)

[x/b, z/f (g(b, a))] p(f (g(b, a), b)

p(f (x , y), z)
p(z , f (a, y))

[z/f (a, y), x/a] p(f (a, y), f (a, y))
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Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it can easily
be adapted to work with formulas and terms.

Sub expressions Let L be a literal. We refer to formulas and terms
appearing within L as the subexpressions of L. If there is a subexpression
in L starting at position i we call it L(i) (otherwise L(i) is undefined.

Disagreement pairs. Let L1 and L2 be literals with L1 6= L2. The

disagreement pair of L1 and L2 is the pair (L
(i)
1 , L

(i)
2 ) of subexpressions of

L1 and L2 respectively, where i is the smallest number such that

L
(i)
1 6= L

(i)
2 ).

Example The disagreement pair of

P(g(c), f (a, g(x), h(a, g(b))))
P(g(c), f (a, g(x), h(k(x , y), z)))

↑

is (a, k(x , y))
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Robinson’s Unification Algorithm

Input: a set of terms ∆
Output: σ = MGU(∆ or Undefined!

σ := []
while |∆σ| > 1 do

pick a disagreement pair p in ∆σ’
if no variable in p then

return ‘not unifiable’;
else

let p = (x , t) with x being a variable;
if x occurs in t then

return ‘not unifiable’;
else σ := σ ◦ [x/t];

return σ
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Substitution

Exercise 2:

Let σ = [x/a, y/f (b), z/c] and θ = [v/f (f (a)), z/x , x/g(y)]

compute σ ◦ θ and θ ◦ σ
For every of the following formulæ, compute (i) φσ; (ii) φθ; (iii)
φσ ◦ θ; and (iv) φθ ◦ σ

1 φ = p(x , y , z)
2 φ = p(h(v)) ∨ ¬q(z , x)
3 φ = q(x , z , v) ∨ ¬q(g(y), x , f (f (a)))

are σ and θ and their compositions idempotent?

Definition

A function f : X −→ X on a set X is idempotent if and only if
f (x) = f (f (x))

An example of idempotent function are round(·) : R −→ R, that returns
the closer integer round(x) to a real number x .
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Unification

Exercise 3:

For every C1, C2 and σ, decide whether (i) σ is a unifier of C1 and C2; and
(ii) σ is the MGU of C1 and C2

C1 C2 σ

P(a, f (y), z) Q(x , f (f (v)), b) [x/a, y/f (b), z/b]
Q(x , h(a, z), f (x)) Q(g(g(v)), y , f (w)) [x/g(g(v)), y/h(a, z),w/x ]
Q(x , h(a, z), f (x)) Q(g(g(v)), y , f (w)) [x/g(g(v)), y/h(a, z),w/g(g(v))]
R(f (x), g(y)) R(z , g(v)) [x/a, z/f (a), y/v ]
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Unification

Exercise 4:

Consider the signature Σ = 〈a, b, f (·, ·), g(·, ·),P(·, ·, ·)〉 Use the algorithm
from the previous lecture to decide whether the following clauses are
unifiable.

1 {P(f (x , a), g(y , y), z),P(f (g(a, b), z), x , a)}
2 {P(x , x , z),P(f (a, a), y , y)}
3 {P(x , f (y , z), b),P(g(a, y), f (z , g(a, x)), b)}
4 {P(a, y ,U),P(x , f (x ,U), g(z , b))}

Luciano Serafini (Fondazione Bruno Kessler, Trento, Italy)Knowledge Representation and Learning May 22, 2023 26 / 43



Unification of P(f (x , a), g(y , y), z), P(f (g(a, b), z), x , a)

{P(f (x , a), g(y , y),Z),P(f (g(a, b), z), x , a)}
σ = [x/g(a, b)]

{P(f (x , a), g(y , y),Z),P(f (g(a, b), z), x , a)}σ =
{P(f (g(a, b), a), g(y , y), z),P(f (g(a, b), z), g(a, b), a)}.

{P(f (g(a, b), a), g(y , y), z),P(f (g(a, b), z), g(a, b), a)}.

σ = [x/g(a, b), z/a]

{P(f (g(a, b), a), g(y , y), z),P(f (g(a, b), z), g(a, b), a)}σ =
{P(f (g(a, b), a), g(y , y), a),P(f (g(a, b), a), g(a, b), a)}
{P(f (g(a, b), a), g(y , y), a),P(f (g(a, b), a), g(a, b), a)}
σ = [x/g(a, b), z/, y/a]

{P(f (g(a, b), a), g(y , y), a),P(f (g(a, b), a), g(a, b), a)}σ =
{P(f (g(a, b), a), g(a, a), a),P(f (g(a, b), a), g(a, b), a)}
{P(f (g(a, b), a), g(a, a), a),P(f (g(a, b), a), g(a, b), a)}
a and b are two constants and they are not unificable. So the algorithm returns
that the set of clauses are not unifiable.
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Unification of {P(x , x , z),P(f (a, a), y , y)}
{P(x , x , z),P(f (a, a), y , y)}
σ = [x/f (a, a)]

{P(x , x , z),P(f (a, a), y , y)}σ =
{P(f (a, a), f (a, a), z),P(f (a, a), y , y)}
{P(f (a, a), f (a, a), z),P(f (a, a), y , y)}
σ = [x/f (a, a), y/f (a, a)]

{P(f (a, a), f (a, a), z),P(f (a, a), y , y)}σ =
{P(f (a, a), f (a, a), z),P(f (a, a), f (a, a), f (a, a))}
{P(f (a, a), f (a, a), z),P(f (a, a), f (a, a), f (a, a))}
σ = [x/f (a, a), y/f (a, a), z/f (a, a)]

{P(f (a, a), f (a, a), z),P(f (a, a), f (a, a), f (a, a))}σ =
{P(f (a, a), f (a, a), f (a, a)),P(f (a, a), f (a, a), f (a, a))}
the two terms are equal, so the initial terms are unifiable with the
mgu equal to σ = [x/f (a, a), y/f (a, a), z/f (a, a)]
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Unification

Exercise 5:

Find, when possible, the MGU of the following pairs of clauses.

1 {q(a), q(b)}
2 {q(a, x), q(a, a)}
3 {q(a, x , f (x)), q(a, y , y , )}
4 {q(x , y , z), q(u, h(v , v), u)}

5

{
p(x1, g(x1), x2, h(x1, x2), x3, k(x1, x2, x3)),
p(y1, y2, e(y2), y3, f (y2, y3), y4)

}
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Theorem-Proving Example

(∃y∀xR(x , y))→ (∀x∃yR(x , y))

Negate ¬((∃y∀xR(x , y))→ (∀x∃yR(x , y)))

NNF ∃y∀xR(x , y), ∃x∀y¬R(x , y)

Skolemize R(x , b), ¬R(a, y)

Unify MGU(R(x , b),R(a, y)) = [x/a, y/b]

Contrad.: We have the contradiction R(b, a),¬R(b, a), so the formula
is valid
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Theorem-Proving Example

(∀x∃yR(x , y))→ (∃y∀xR(x , y))

Negate ¬((∀x∃yR(x , y))→ (∃y∀xR(x , y)))

NNF ∀x∃yR(x , y), ∀y∃x¬R(x , y)

Skolemize R(x , f (x)), ¬R(g(y), y)

Unify MGU(R(x , f (x)), R(g(y), y)) = Undefined

Contrad.: We do not have the contradiction, so the formula is not valid.
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Resolution for first order logic

The resolution rule for Propositional logic is

{l1, . . . , ln, p} {¬p, ln+1, . . . , lm}
{l1, . . . lm}
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The binary resolution rule

In first order logic each li and p are formulas of the form P(t1, . . . , tn) or
¬P(t1, . . . , tn).

When two opposite literals of the form P(t1, . . . , tn) and P(u1, . . . , un)
occur in the clauses C1 and C2 respectively, we have to find a way to
partially instantiate them, by a substitution σ, in such a way the resolution
rule can be applied, to to C1σ and C2σ, i.e., such that
P(t1, . . . , tn)σ = P(u1, . . . , un)σ.

{l1, . . . , ln,P(t1, . . . , tn)}{¬P(u1, . . . , un), ln+1, . . . , lm}
{l1, . . . lm}σ

where σ is the MGU(P(t1, . . . , tn),P(u1, . . . , un)).
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The factoring rule

{l1, . . . , ln, ln+1, . . . , lm}
{l1, ln+1, . . . lm}σ

If l1σ = · · · = lnσ

Example

Prove ∀x∃y¬(P(y , x) ≡ ¬P(y , y))

Clausal form {¬P(y , a), ¬P(y , y)}, {P(y , y), P(y , a)}
Factoring yields {¬P(a, a)}, {P(a, a)}
By resolution rule we obtain the empty clauses �
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A Non-Trivial Proof

∃x [P → Q(x)] ∧ ∃x [Q(x)→ P]→ ∃x [P ≡ Q(x)]

Clauses are {P,¬Q(b)}, {P,Q(x)}, {¬P,¬Q(x)}, {¬P,Q(a)}
Apply resolution

{}

{P}

{P,¬Q(b)}{P,Q(x)}

{¬P}

{¬P,¬Q(x)}{¬P,Q(a)}
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Example

Assumptions:

∀x(P(x) → P(f (x)))

∀x , y(Q(a, y) ∧ R(y , x) → P(x))

∀zR(b, g(a, z))

Q(a, b)

Goal = P(f (g(a, c)))

1 clausify the assumptions

2 negate and clausify the goal

3 mgu(Q(a, y),Q(a, b)) = [y/b]

4 mgu(R(b, g(a, z)),R(b, x)) = [x/g(a, z)]

5 mgu(P(x),P(g(a, z)) = [x/g(a, z)]

6 mgu(P(f (g(a, z))),P(f (g(a, c)))) = [z/c]

Inference

1. ¬P(x),P(f (x))
2. ¬Q(a, y),¬R(y , x),P(x)
3. R(b, g(a, z))
4. Q(a, b)
5. ¬P(f (g(a, c)))
6. ¬R(b, x),P(x)
7. P(g(a, z))
8. P(f (g(a, z)))
9. ⊥
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Equality

In theory, it’s enough to add the equality axioms:

The reflexive, symmetric and transitive laws
{x = x}, {x 6= y , y = x}, {x 6= y , y 6= z , x = z}.
Substitution laws like
{x1 6= y1, . . . , xn 6= yn, f (x1, . . . , xn) = f (y1, . . . , yn)} for each f with
arity equal to n

Substitution laws like
{x1 6= y1, . . . , xn 6= yn,¬P(x1, . . . , xn), P(y1, . . . , yn)} for each P with
arity equal to n

In practice, we need something special: the paramodulation rule

{P(t), l1, . . . ln} {u = v , ln+1, . . . , lm}
P(v), l1, . . . , lm}σ

provides that tσ = uσ
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Resolution

Exercise 6:

Find the possible resolvents of the following pairs of clauses.

C D

¬p(x) ∨ q(x , b) p(a) ∨ q(a, b)
¬p(x) ∨ q(x , x) ¬q(a, f (a))
¬p(x , y , u) ∨ ¬p(y , z , v) ∨ ¬p(x , v ,w) ∨ p(u, z ,w) p(g(x , y), x , y)
¬p(v , z , v) ∨ p(w , z ,w) p(w , h(x , x),w)

Solution

C D σ
¬p(x) ∨ q(x , b) p(a) ∨ q(a, b) [x/a]
¬p(x) ∨ q(x , x) ¬q(a, f (a)) NO
¬p(x , y , u) ∨ ¬p(y , z, v) ∨ ¬p(x , v ,w) ∨ p(u, z,w) p(g(x ′, y ′), x ′, y ′)
¬p(x , y , u) ∨ ¬p(y , z, v) ∨ ¬p(x , v ,w) ∨ p(u, z,w) p(g(x ′, y ′), x ′, y ′)
¬p(x , y , u) ∨ ¬p(y , z, v) ∨ ¬p(x , v ,w) ∨ p(u, z,w) p(g(x ′, y ′), x ′, y ′)
¬p(v , z, v) ∨ p(w , z,w) p(w ′, h(x ′, x ′),w ′)
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resolution

Exercise 7:

Apply resolution (with refutation) to prove that the following formula

φ5 m(5, f (7, f (5, f (1, 0))))

is a consequence of the set

φ1 ¬m(x , 0)
φ2 ¬i(x , y , z) ∨m(x , z)
φ3 ¬m(x , z) ∨ ¬i(v , z , y) ∨m(x , y)
φ4 i(x , y , f (x , y))
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resolution

Solution

{}

m(x , f (x , y))

¬i(x , y , z) ∨m(x , z)i(x , y , f (x , y))

¬m(5, f (5, f (1, 0)))

¬m(x , y) ∨m(x , f (z , y))

i(x , y , f (x , y))¬m(x , y) ∨ ¬i(z , y , u) ∨m(x , u)

¬m(5, f (7, f (5, f (1, 0))))

Notice that variables in clauses can be renamed in any way to facilitate unification. So
for instance in φ3 we rename variables in order to unify with φ4.
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Resolution and Unification - Exercize

Exercise

Show that the following set of formulas are not satisfiable:

1 ∀x(P(x) ∧ ¬Q(x)→ ∃y(R(x , y) ∧ S(y)))

2 ∃x(P(x) ∧ T (x))

3 ∀x(∃yR(y , x)→ T (x))

4 ∀x(T (x)→ ¬(Q(x) ∨ S(x)))

Luciano Serafini (Fondazione Bruno Kessler, Trento, Italy)Knowledge Representation and Learning May 22, 2023 41 / 43



Resolution and Unification - Exercize

Solution we first transform the formula in first order clausal form, and
rename variables.

{¬P(x),Q(x),R(x , f (x))} (from formula 1. we introduce the skolem
function f )

{¬P(y),Q(y), S(f (xy))} (from formula 1.)

{T (a)} (from formula 2.we introduce the Skolem constant a)

{P(a)} (from formula 2.we introduce the Skolem constant a)

{¬R(z ,w),T (z)} (from formula 3.)

{¬T (v),¬Q(v)} (from formula 4.)

{¬T (u),¬S(u)} (from formula 4.)

�
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