Knowledge Representation and Learning 10. First Order Logic - Herbrand Theorem

Luciano Serafini
Fondazione Bruno Kessler

May 12, 2023

Definition (quantifier-free formula)

A formula ϕ is quantifier-free if ϕ has no occurrence of either of the quantifiers \forall or \exists.

Notice that a quantifier-free formula is the combination of a set of First Order Atoms using the propositional connectives.

Definition (Universal-sentence)

... A universal sentence is a sentence (closed formula of the form

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{n} \cdot \phi\left(x_{1}, \ldots, x_{n}\right)
$$

where $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a quantifier-free formula.

Grounding

Definition (Ground instance)

A ground instance of an universal sentence $\forall x_{1} \ldots \forall x_{n} \cdot \phi\left(x_{1}, \ldots, x_{n}\right)$ is a sentence $\phi\left(t_{1}, \ldots, t_{n}\right)$ obtained by replacing each occurrence of x_{i} with a term t_{i} that does not contain variables.

Notice that a ground instance of a universal sentence is a logical consequence the universal sentence itself. i.e.,

$$
\forall x_{1}, \ldots, x_{n} \cdot \phi\left(x_{1}, \ldots, x_{n}\right) \models \phi\left(t_{1}, \ldots, t_{n}\right)
$$

Therefore if $\phi\left(t_{1}, \ldots, t_{n}\right)$ is not valid, then also $\forall x_{1}, \ldots, x_{n} . \phi\left(x_{1}, \ldots, x_{n}\right)$

Checking validity of universal sentence

- To verify if $\forall x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$ is valid, you can search for an interpretation \mathcal{I} and an n-tuple of terms t_{1}, \ldots, t_{n} such that $\mathcal{I} \not \vDash \phi\left(t_{1}, \ldots, t_{n}\right)$. If you find it, then the universal formula is not valid
- but how can we prove that a formula $\forall x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$ is valid?
- we have to check that for all possible interpretations and all possible assignments to the variables x_{1}, \ldots, x_{n} to the elements of the interpretation domain.

Herbrand Universe

- Jacques Herbrand (1908-1931), proposes the main idea to interpret terms in themselves.
- Herbrand poposed to consider $\Delta^{\mathcal{I}}$ as the set of all ground terms that can be built from the signature Σ.
- Since $\Delta^{\mathcal{I}}$ must contain at least one elment, Herbrand required that Σ contains at least one constant symbol.

Definition (Herbrand Universe)

The Herbrand's universe of a signature Σ that contains at least one constant symbol, is the set, denoted by $\Delta^{\mathcal{H}}$ of ground terms of Σ.

The Herbrand Semantics of Terms

In a Herbrand model, every constant stands for itself. Every function symbol stands for a term-forming operation: f denotes the function that puts ' $f($ (... ')' around n elements of \mathcal{H}.

Herbrand Interpretation

Definition

An herbrand interpretation of a signature Σ is composed by the pair $\left(\Delta_{\Sigma}^{\mathcal{H}}, \mathcal{H}\right)$, where
(1) $\Delta_{\Sigma}^{\mathcal{H}}$ is the Herbrand's universe of Σ;
(2) $\mathcal{H}(c)=c$ for every constant symbol $c \in \Sigma$;
(3) $\mathcal{H}(f): t_{1}, \ldots, t_{n} \mapsto f\left(t_{1}, \ldots, t_{n}\right)$ is the function that maps an n-tuple of terms of $\Delta_{\Sigma}^{\mathcal{H}}$ in a term of Δ_{Σ}^{H}, for every n-ary function symbol f;
(9) $\mathcal{H}(P) \subseteq\left(\Delta_{\Sigma}^{H}\right)^{n}$ is a set of n-tuples of terms in $\Delta_{\Sigma}^{\mathcal{H}}$, for evert n-ary predicate symbol $P \in \Sigma$.

Herbrand interpretationss

Definition (Herbrand base)

The Herbrand base for a signature Σ is the set of ground atomic formulas (i.e., the set of atomic formulas that do not contain individual variables)

$$
\mathcal{H} \mathcal{B}_{\Sigma} \stackrel{\text { def }}{=}\left\{P\left(t_{1}, \ldots, t_{n}\right) \mid t_{1}, \ldots, t_{n} \in \Delta_{\Sigma}^{\mathcal{H}}\right\}
$$

- The Herbrand base can be seen as a (possibily infinite) set of propositional variables,
- an Herbrand interpretation is a truth assignment to them

$$
\mathcal{H}: \mathcal{H} \mathcal{B}_{\Sigma} \rightarrow\{0,1\}
$$

- we are back to propositional logic

Example of an Herbrand Model

$$
\left.\begin{array}{c}
S=\left\{\begin{array}{c}
\text { friend }(x, y) \rightarrow \text { friend }(x, y) \\
\text { friend }(x, y) \rightarrow \text { knows }(x, \text { mother }(y)) \\
\text { friend(Mary, John })
\end{array}\right\} \\
\Sigma=\{\text { Mary, John, mother, friend, knows }\}
\end{array}\right\}
$$

Example of an Herbrand Model (cont'd

$\mathcal{H B}_{\Sigma}=\left\{\begin{array}{l}\text { friend(John, Mary), friend(Mary, John), } \\ \text { friend(John, John), friend(Mary, Mary), } \\ \text { knows(John, Mary), knows(Mary, John), } \\ \text { knows(John, John), friend(Mary, Mary), } \\ \text { friend(mother(John), Mary), friend(Mary, mother(John)), } \\ \text { friend(mother(John), mother(John)), } \\ \text { knows(mother(John), Mary), knows(Mary, mother(John)), } \\ \text { knows(mother(John), mother(John)), } \\ \ldots\end{array}\right\}$

Herbrand's Theorem

Theorem (Herbrand's Theorem)
 A universal formula $\forall x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable if it is satisfied by an Herbrand interpretation on the signature Σ that appear in ϕ. If ϕ does not contain constant symbol we extend Σ with a constant symbol a.

Using Herbrand's Theorem for Sat

- to check if $\Phi=\forall x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$ is unsatisfiable we can check if it is false in all the herbrand interpretations.
- Ψ is true in an Herband interpretation \mathcal{H} iff $\mathcal{H} \models \operatorname{Ground}(\Phi)$

$$
\operatorname{Ground}(\Phi)=\left\{\phi\left(t_{1}, \ldots, t_{n}\right) \mid t_{i} \in \Delta_{\Sigma}^{\mathcal{H}}\right\}
$$

- Φ is unsat iff $\operatorname{Ground}(\Phi)$ is unsat
- By compactness theorem $\operatorname{Ground}(\Phi)$ is unsat if a finite subset $G \subset \operatorname{Ground}(\Phi)$ is unsat.
- we can enumerate all the finite subsets, $G_{0}, G_{1}, G_{2}, \ldots$ of $\operatorname{Ground}(\Phi)$ and check for propositional satisfiability
- If Φ is unsat then we eventually discover it
- otherwise we can go on infinitely.

Skolemization

Suppose that in a formula the most internal existential quantifire falls in the scope of k universal quantifiers.

$$
\forall x_{1} \ldots \forall x_{2} \ldots \forall x_{k} \ldots \exists y \phi(y)
$$

Choose a fresh k-place function symbol, say f, and replace y by $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$.
We get

$$
\forall x_{1} \ldots \forall x_{2} \ldots \forall x_{k} \ldots \exists y \phi\left(f\left(x_{1}, \ldots, s_{n}\right)\right.
$$

Repeat this replacement for all existential quantifiers

Skolemn's Theorem

Example (Skolemization)

Suppose that we want to check the satisfiability of the Σ-formula $\exists x F(x)^{a}$

- We have to find an interpretation (Σ-structure) \mathcal{I}, such that

$$
\mathcal{I} \models \exists x . F(x)
$$

- i.e., we have to exhibit an element $d \in \Delta_{\mathcal{I}}$ such that

$$
\mathcal{I} \models F(x)\left[a_{x \mapsto d}\right] .
$$

- This is equivalent to find an interpretation \mathcal{I}^{\prime} of the signature Σ^{\prime} obtained by extending Σ with a new constant c, i.e. a constant that does not appear in Σ such that

$$
\mathcal{I}^{\prime} \models F(c)
$$

- \mathcal{I}^{\prime} is the same as \mathcal{I} with the additional interpretation $\mathcal{I}^{\prime}(c)=d$;
- c is called Skolem constant.
- the transformation of $\exists x . F(x)$ into $F(c)$ is called Scolemization.

[^0]
Skolemn's Theorem

Example (Skolemization)

Suppose that we want to check the satisfiability of the Σ-formula $\forall x, \exists x F(x, y)$

- We have to find an interpretation \mathcal{I}, such that $\mathcal{I} \models \forall x \exists y \cdot F(x, y)$;
- which implies that for all $d \in \Delta_{\mathcal{I}}$

$$
\begin{equation*}
\mathcal{I} \models \exists y . F(x, y)\left[a_{x \mapsto d}\right] ; \tag{1}
\end{equation*}
$$

- to satisfy (1), for every $d \in \Delta_{\mathcal{I}}$ we have to exhibit a $d^{\prime} \in \Delta_{\mathcal{I}}$ such that

$$
\mathcal{I} \models F(x, y)\left[\begin{array}{c}
a \rightarrow d \\
y \mapsto d^{\prime}
\end{array}\right]
$$

- This is equivalent to find an interpretation \mathcal{I}^{\prime} of the signature Σ^{\prime} obtained by extending Σ with a new unary functional symbol $f_{\text {sk }}$, such that

$$
\mathcal{I}^{\prime} \models \forall x . F\left(x, f_{s k}(x)\right)
$$

- \mathcal{I}^{\prime} is the same as \mathcal{I} with the additional interpretation $\mathcal{I}^{\prime}\left(f_{\text {sk }}\right)$ equal to the function that maps every d into the d^{\prime} that satisfies condition (1);
- $f_{s k}$ is called Skolem function;
- the transformation of $\forall x \exists y \cdot F(x, y)$ into $\forall x \cdot F\left(x, f_{s k}(x)\right)$ is called Scolemization.

Clause Form

Clause: a disjunction of literals

$$
\neg K_{1} \vee \cdots \vee \neg K_{m} \vee L_{1} \vee \cdots \vee L_{n}
$$

Set notation: $\left\{\neg K_{1}, \ldots, \neg K_{m}, L_{1}, \ldots, L_{n}\right\}$
Kowalski notation: $K_{1}, \ldots, K_{m} \rightarrow L_{1}, \ldots, L_{n}$

$$
L_{1}, \ldots, L_{n} \leftarrow K_{1}, \ldots, K_{m}{ }^{\prime}
$$

\square is the Empty clause:
Empty clause is equivalent to false, meaning Contradiction

Quantifier Equivalences

- If x is not free in B.

$$
\begin{aligned}
& (\exists x A) \wedge B \leftrightarrow \exists x(A \wedge B) \\
& (\exists x A) \vee B \leftrightarrow \exists x(A \vee B)
\end{aligned}
$$

Outline of Clause Form Methods

To prove A, obtain a contradiction from $\neg A$
(1) Translate $\neg A$ into CNF as $A_{1} \wedge \cdots \wedge A_{m}$
(2) This is the set of clauses $A_{1} \ldots, A_{m}$
(3) Transform the clause set, preserving consistency

Deducing the empty clause (\square) refutes $\neg A$. This is like in propositional resolution

Prenex Normal Form

Rename quantified variable, so that each quantifier $\forall x$ and $\exists x$ is defined on a separated variable

$$
\forall x P(x) \wedge \exists x P(x) \quad \Longrightarrow \quad \forall x_{1} P\left(x_{1}\right) \wedge \exists x_{2} P\left(x_{2}\right)
$$

Convert to Negation Normal Form using the propositional rewriting rules plus the additional rules

$$
\begin{aligned}
& \neg(\forall x A) \Longrightarrow \exists x \neg A \\
& \neg(\exists x A) \Longrightarrow \forall x \neg A
\end{aligned}
$$

Move quantifiers to the front using (provided x is not free in B)

$$
\begin{aligned}
(\forall x A) \wedge B & \equiv \forall x(A \wedge B) \\
(\forall x A) \vee B & \equiv \forall x(A \vee B)
\end{aligned}
$$

and the similar rules for \exists

Example of Conversion to Clauses

For proving

$$
\exists x(P(x) \rightarrow \forall x P(x))
$$

$\exists x(P(x) \rightarrow \forall y P(y)) \quad$ rename variables
$\neg[\exists x[P(x) \rightarrow \forall y P(y)]] \quad$ negated goal
$\forall x[P(x) \wedge \exists y \neg P(y)] \quad$ conversion to NNF
$\forall x \exists y[P(x) \wedge \neg P(y)] \quad$ pulling \exists out
$\forall x[P(x) \wedge \neg P(f(x))] \quad$ Skolem term $f(x)$
$\{P(x)\},\{\neg P(f(x))\} \quad$ Final clauses

Correctness of Skolemization

The formula $\forall x \exists y A$ is consistent
\Longrightarrow it holds in some interpretation (Δ, I)
\Longrightarrow for all $x \in \Delta$ there is some $y \in \Delta$ such that A holds
\Longrightarrow some function $F: D \rightarrow D$ yields suitable values of y given x $\Longrightarrow A[f(x) / y]$ holds in some $\left(\Delta, I^{\prime}\right)$ extending (Δ, I) so that $I^{\prime}(f)=F$. \Longrightarrow the formula $\forall x A[f(x) / y]$ is consistent.

Simplifying the Search for Models

S is satisfiable if even one model makes all of its clauses true.
Differently from propositional logic, There are infinitely many models to consider!
Also many duplicates : "states of the USA" and "the integers 1 to 50 " Fortunately, nice models exist.

- They have a uniform structure based on the language's syntax.
- They satisfy the clauses if any model does.

bibliography

Ansótegui, Carlos, Maria Luisa Bonet, and Jordi Levy (2013). "SAT-based MaxSAT algorithms". In: Artificial Intelligence 196, pp. 77-105.
Chakraborty, Supratik, Dror Fried, et al. (2015). "From weighted to unweighted model counting". In: Twenty-Fourth International Joint Conference on Artificial Intelligence.
Chakraborty, Supratik, Kuldeep S Meel, and Moshe Y Vardi (2021). "Approximate model counting". In: Handbook of Satisfiability. IOS Press, pp. 1015-1045.
Colnet, Alexis de and Kuldeep S Meel (2019). "Dual hashing-based algorithms for discrete integration". In: International Conference on Principles and Practice of Constraint Programming. Springer, pp. 161-176.
Ermon, Stefano et al. (2013). "Taming the curse of dimensionality: Discrete integration by hashing and optimization". In: International Conference on Machine Learning. PMLR, pp. 334-342.
Fu, Zhaohui and Sharad Malik (2006). "On solving the partial MAX-SAT problem". In: International Conference on Theory and Applications三ofのac

[^0]: ${ }^{a} \mathrm{~A} \sum$-formula is a formula in the signature Σ

