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Definition (quantifier-free formula)

A formula ¢ is quantifier-free if ¢ has no occurrence of either of the
quantifiers V or 3.

Notice that a quantifier-free formula is the combination of a set of First
Order Atoms using the propositional connectives.

Definition (Universal-sentence)

... A universal sentence is a sentence (closed formula of the form
Vx1Vxa ... Vxp. (X1, . . .y Xn)

where ¢(x1,...,xn) is a quantifier-free formula.
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Definition (Ground instance)

A ground instance of an universal sentence Vx; ... Vxp.¢(x1,...,%s) is a
sentence ¢(ty, ..., t,) obtained by replacing each occurrence of x; with a
term t; that does not contain variables.

Notice that a ground instance of a universal sentence is a logical
consequence the universal sentence itself. i.e.,

VX1, ooy XnO(X1, - -y Xn) E (1, - -, th)

Therefore if ¢(t1,...,t,) is not valid, then also Vxi, ..., xp.0(x1,...,Xn)
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Checking validity of universal sentence

e To verify if Vxi,...,x,0(x1, ..., X,) is valid, you can search for an
interpretation Z and an n-tuple of terms tq,..., t, such that
T W= ¢(t1,...,tn). If you find it, then the universal formula is not
valid

@ but how can we prove that a formula Vxi, ..., xp¢(x1, ..., Xp) is valid?

@ we have to check that for all possible interpretations and all possible
assignments to the variables xi, ..., x, to the elements of the
interpretation domain.
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Herbrand Universe

@ Jacques Herbrand (1908-1931), proposes the main idea to interpret
terms in themselves.

@ Herbrand poposed to consider AZ as the set of all ground terms that
can be built from the signature ¥.

@ Since AZ must contain at least one elment, Herbrand required that
contains at least one constant symbol.

Definition (Herbrand Universe)

The Herbrand's universe of a signature X that contains at least one
constant symbol, is the set, denoted by A* of ground terms of ¥.
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The Herbrand Semantics of Terms

In a Herbrand model, every constant stands for itself.
Every function symbol stands for a term-forming operation: f denotes the
function that puts 'f(" ... ")’ around n elements of H.
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Herbrand Interpretation

An herbrand interpretation of a signature ¥ is composed by the pair
(AE, 1), where
(1] A% is the Herbrand’s universe of X;
@ H(c) = c for every constant symbol ¢ € ¥;
Q@ H(f):t1,...,tn+—> f(t1,...,ts) is the function that maps an n-tuple
of terms of A;‘ in a term of Ag, for every n-ary function symbol f;

@ H(P) C (AY)" is a set of n-tuples of terms in A¥, for evert n-ary
predicate symbol P € ¥.
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Herbrand interpretationss

Definition (Herbrand base)

The Herbrand base for a signature ¥ is the set of ground atomic formulas
(i.e., the set of atomic formulas that do not contain individual variables)

HBZ déf {P(th "7tn)’t17" L th € AG‘Z{}

@ The Herbrand base can be seen as a (possibily infinite) set of
propositional variables,

@ an Herbrand interpretation is a truth assignment to them
H:HBy — {0, 1}

@ we are back to propositional logic

Luciano Serafini (Fondazione Bruno Kessler) Knowledge Representation and Learning May 12, 2023 8/23



Example of an Herbrand Model

friend(x,y) — friend(x, y)
S =1 friend(x,y) — knows(x, mother(y))
friend(Mary, John)

¥ = {Mary, John, mother, friend, knows}

Mary, John, mother(Mary), mother(John),
mother(mother(Mary)), mother(mother(John))

AY = { mother(... mother(Mary)...),
mother(. .. mother(John)...),
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Example of an Herbrand Model (cont’d

( friend(John, Mary), friend(Mary, John), )
friend(John, John), friend(Mary, Mary),
knows(John, Mary), knows(Mary, John),
knows(John, John), friend(Mary, Mary),
HBy =  friend(mother(John), Mary), friend(Mary, mother(John)),
friend(mother(John), mother(John)),
knows(mother(John), Mary), knows(Mary, mother(John)),
knows(mother(John), mother(John)),
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Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

A universal formula Vxy, ..., %, ¢(x1,...,xn) is satisfiable if it is satisfied
by an Herbrand interpretation on the signature . that appear in ¢. If ¢
does not contain constant symbol we extend ¥ with a constant symbol a.
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Using Herbrand’'s Theorem for Sat

@ to check if ® =Vxy,...,x,0(xi1,...,xp) is unsatisfiable we can check
if it is false in all the herbrand interpretations.

@ W is true in an Herband interpretation H iff H = Ground(®)
Ground(®) = {p(t1,...,ta) | t; € AH}

e & is unsat iff Ground(®) is unsat

@ By compactness theorem Ground(®) is unsat if a finite subset
G C Ground(®) is unsat.

@ we can enumerate all the finite subsets, Gy, G1, Gy, ... of Ground(®)
and check for propositional satisfiability

@ If ® is unsat then we eventually discover it

@ otherwise we can go on infinitely.
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Skolemization

Suppose that in a formula the most internal existential quantifire falls in
the scope of k universal quantifiers.

Vxi...Vxo. .. Vxk ... 3yd(y)
Choose a fresh k-place function symbol, say f, and replace y by

f(Xl,XQ, N ,Xk).
We get

Vx1...Vxo...Vxk...3yé(F(x, ..., 5n)

Repeat this replacement for all existential quantifiers
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Skolemn’s Theorem

Example (Skolemization)

Suppose that we want to check the satisfiability of the ¥-formula 3xF(x)?
@ We have to find an interpretation (X-structure) Z, such that

7 = Ix.F(x)
@ i.e., we have to exhibit an element d € Az such that
7T = F(x)[axsd]-

@ This is equivalent to find an interpretation Z’ of the signature ¥’ obtained by
extending ¥ with a new constant c, i.e. a constant that does not appear in X such
that

I' | F(c)
@ 7' is the same as Z with the additional interpretation Z'(c) = d;
@ c is called Skolem constant.

@ the transformation of 3x.F(x) into F(c) is called Scolemization.

A T-formula is a formula in the signature *
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Skolemn’s Theorem

Example (Skolemization)

Suppose that we want to check the satisfiability of the X-formula Vx, 3xF(x, y)
@ We have to find an interpretation Z, such that Z = Vx3y.F(x, y);
@ which implies that for all d € Az

Z = 3y.F(x, y)[axdl; (1)

@ to satisfy (1), for every d € Az we have to exhibit a d’ € Az such that
IEF(xy)axql
y—d’

@ This is equivalent to find an interpretation Z’ of the signature ¥’ obtained by extending &
with a new unary functional symbol fy, such that

T’ = Vx.F(x, fu(x))

@ 7' is the same as Z with the additional interpretation Z’(fs) equal to the function that
maps every d into the d’ that satisfies condition (1);

@ fy is called Skolem function;

@ the transformation of Vx3y.F(x,y) into Vx.F(x, fy(x)) is called Scolemization.
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Clause Form

Clause: a disjunction of literals
KV V=KV L V--VL,

Set notation: {—Ki,...,=Km,L1,...,Ln}

Kowalski notation: Ki,...,Kp, — L1,...,L,
Li,....Lp+— Ki,...,Knp'

O is the Empty clause:

Empty clause is equivalent to false , meaning Contradiction
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Quantifier Equivalences

o If x is not free in B.

(3xA) A B <> 3x(A A B)
(3xA) V B > Ix(AV B)
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Outline of Clause Form Methods

To prove A, obtain a contradiction from —A
@ Translate =A into CNF as A1 A--- A Ap,
@ This is the set of clauses A; ..., An
© Transform the clause set, preserving consistency

Deducing the empty clause (OJ) refutes —A. This is like in propositional
resolution
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Prenex Normal Form

Rename quantified variable, so that each quantifier Vx and Jx is defined
on a separated variable

VxP(x) A IxP(x) = ¥x1P(x1) A IxP(x2)

Convert to Negation Normal Form using the propositional rewriting rules
plus the additional rules

—(VxA) = 3x-A
—(3IxA) = Vx—-A

Move quantifiers to the front using (provided x is not free in B)

(VxA)AB = Vx(AAB)
(VxA)V B = Vx(AV B)

and the similar rules for 3
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Example of Conversion to Clauses

For proving
Ax(P(x) — VxP(x))

Ax(P(x) — VyP(y)) rename variables
—[3x[P(x) — VyP(y)]] negated goal
Vx[P(x) A Jy—P(y)] conversion to NNF
Vx3y[P(x) A =P(y)] pulling 3 out
Vx[P(x) A =P(f(x))] Skolem term f(x)
{P(x)},{=P(f(x))} Final clauses
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Correctness of Skolemization

The formula ¥x3yA is consistent

= it holds in some interpretation (A, /)

= for all x € A there is some y € A such that A holds

= some function F : D — D yields suitable values of y given x

= A[f(x)/y] holds in some (A, ") extending (A, ) so that I'(f) = F.
= the formula VxA[f(x)/y] is consistent.
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Simplifying the Search for Models

S is satisfiable if even one model makes all of its clauses true.

Differently from propositional logic, There are infinitely many models to
consider!

Also many duplicates : "states of the USA” and "the integers 1 to 50"
Fortunately, nice models exist.

@ They have a uniform structure based on the language's syntax.

@ They satisfy the clauses if any model does.
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