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First order logic, as any other logic, can be used as language to specify knowl-
edge about some particular domain. The type of knowledge that can be expressed
in first order logic is that a certain proposiiton that can be specified by a first order
sentence is true in all the possible configurations (worlds) of the domain we are
considering.

In describing a domain we want to impose that (non logical) symbols have a
specific semantics, so they cannot be interpreted deliberately. On the other hand
FOL semantics alone does not impose any specific constraint on the interpretation
of non logical symbol. For instance the constant “red” and “blue” can be interpreted
in the same domain element, with the effect that the formula red = blue is true. To
constraint the semantics of non logical symbols of a signature ¥ we have to limit
the way in which such symbols are interpreted; in other words, we require that %
is interpreted only in a subset of the entire set of ¥-structures. For instance, we
want to consider only the Y-structures in which red and blue are interpreted in
two distinct individuals of the domain. Or equivalently the ¥-structures where the
formula —(red = blue) is true.

Another example is the following: Consider a signature 3 that contains two bi-
nary predicates Ancestor and Parent. We would like that the two relational symbols
are interpreted according to the the usual (english) meaning of the corresponding
words. lL.e., that

a person is an anchestor of another preson if and only if there is
a chain of parents between the two

(1)

Put it formally the relational symbol Parent should be interpreted in the transitive
closure of the relation Parent. While in the previous example we easily come up
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6 1. KNOWLEDGE REPRESENTATION IN FIRST ORDER LOGIC

with a formula that captures the semantic condition, in this example coming up
with a formula that “captures” the constraint expressed in is not easy (actually
it is impossible in FOL).

DEFINITION 1.1. A first order theory on a signature ¥ is a set I' of first order
sentences closed under logical consequence, i.e, if ' = ¢ then ¢ € T. The set of
axioms of a theory I" is a subset A C T such that and A =~ for all v € T. Given
a class S of Y-structures, the first order theory of S is the set of sentences that are
true in all the X-structures of S.

One of the main motivation for the development of first order logic across the
end of the 19th century and the beginning of the 20th century was the so called
foundational crisis of mathemathics, that rises as a consequence of the discovery
of several paradoxes or counter-intuitive results in mathematical theories. In the
early 1920s, the German mathematician David Hilbert (1862-1943) proposed a
research program, called Hilbert’s Programﬂ that has the objective of describing
all of mathematics in axiomatic form, together with a proof that this axiomati-
zation of mathematics is consistent (i.e., not contraddictory). Stimulated by this
ambitious program during the 20th century mathematical logics and in particular
first order logic received a lot of attention from scientists, with the effect of devel-
oping a number of theories for different mathematical structures. These theories
are of particular importance for artificial intelligence, since the formalization of
knowledge about general concepts like time, quantities, space, ...can be mutuated
from axiomatization of mathematial structures such as linar orders, partial orders,
topologies, etc. In this chapter we report some example of axiomatic theories of
the most important mathematical structures.

First order logics has also been used to specify ontological knowledge. An
ontology is a formal, explicit, shared specification of a conceptualization of a domain
Gruber [1993] A conceptualization describes the objects, the concepts, and other
entities that are assumed to exist in some area of interest and the relationships that
hold among them. A conceptualization is an abstract, simplified view of the world
that we wish to represent for some purpose.

First order logical theories have received also a lot of attention since the be-
gining of Artificial Intelligence era. John Mc Carthy, one of the father of Artificial
Intelligence, in the 60’s proposed to use logical language to encode commonsense
knowledge about the world with (first order) logic McCarthy [1959. Since then
one of the most fruitflul field of artificial intelligence unde the label of Knowledge
Representation and Reasoning developed logical theories and reasoning methods
for (a subclass) of first order logical language. The paper E. Davis |2017| provides
a large set of examples of formalizing commonsense knowledge by means of (first
order) logical theores. Commonsense knowledge representation and reasoning is a
central problem in artificial intelligence, if we want to build agents that are capable
to operate in environments where humans can operate. Encoding commonsense
knowledge with a set of (first order) logical formulas is an approach that has been
pursued since the earliest days of the field of Al

1h‘ctps ://plato.stanford.edu/entries/hilbert-program/#4
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1. First order theories for algebraic structures

Some important algebraic structure are very useful to represent the knowledge
and reason about certain phenomena. Having a first order logic axiomatization of
such structures is useful, since one can infer automaticaly facts that are true in the
structures. starting from the set of axioms.

1.1. Ordered sets. A set can be ordered in the sense that some elements
comes before than others. An order on a set can be used to represent many real
world aspects. For instance the answers obtained by a search engine are ordered
by relevance, the the set of sets are ordered by containment relation, the set of cars
can be ordered by price, the set of computer can be ordered according to the price,
the memory size, the cpu size, .... Orders can be total or partial, in the sense
that it is not necessary that for every pairs of elements of an ordered set one comes
before than another. Let us provide the formal definition of ordered set,

DEFINITION 1.2. A partially ordered set (poset) is a pair (S, <), where S is a
non empty set and <XC S x X is a binary relation which is

(1) transitive i.e., for all s,t,u € S s <t and t < u implies s < u;
(2) symmetric i.e., s < s for every s € S, and
(3) antisymmetric i.e., it is not the case that s < s.

where we use the notation s <t for (s,t) €<.

Notice that a poset is characterized by a set and a binary relation. Therefore it
is ¥-structure where ¥ contains only one binary predicate R (i.e., a predicate symbol
with arity equal to 2). For simplicity let us call these structures R-structures.
However notice that not all R-structures are poset. So we have to find a set of
formulas that axiomatize the class of R-structures that are poset. This can be
done by considering the first order theory on the signature { R} that contains three
formulas, corresponding to the first order “translation” of the three conditions of
Definition [[L2l These formulas are

(2) VaVyVz(R(z,y) A R(y, z) — R(x, 2))
(3) Vavy(R(z,y) — ~R(y, )
(4) Ve—-R(z,x)

The above formulas are one to one translation of the conditions on the order relation
of a poset. A poset (S, <) is totally ordered or is a linear order if for eveyr s,t € S
which are different, either s < ¢t or t < s. R-structures that are total ordered can
be axiomatized by adding the axiom

(5) VaVy(R(z,y) V R(y,z) V x = y)

A partially ordered (S, <) set is dense if for every s < ¢ there is a u such that s < u
and u < t. Dense orders can be axiomatized by adding the axiom

(6) Vavy(R(z,y) — 3z(R(z, z) A R(z,y)))
1.2. Equivalence relation. Equivalence relations are very important since

it allows to partition a set of a set of equivalence classes. Therefore, it is a way to
represent clustering of points.
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DEFINITION 1.3. An equivalence relation on a set S is a subset R C S x S that
satisfies the following properties.
(1) Reflexive: (s,s) € R for all s € S;
(2) Symmetric: (s,t) € R implies (t,s) € R;
(3) Transitive (s,t) € R and (t,y) € R implies (s,u) € R

The theory of equivalence relation can be obtained by translating the above
properties in first order logic:

(7) VaR(x,x)
(8) VaVy(R(z,y) — R(y,z))
(9) VaVyVz(R(z,y) A R(y, z) = R(z, 2))

1.3. Peano arithmetic. One of the most important mathematical structure
is the set of natural numbners N = {0, 1,2, ...} with the arithmetic operations for
addition and product and the usual order relation. This is called the standard model
for arithmetic. One important question that have been addressed by mathematical
logicians is whether is is possible to provide a set of axioms A in a signature X
such that every -structure that satisfies A is isomorphic to the standard model of
arithmetic.

A (possible) signature ¥ that allow to describe what is true in this important
structure contains one constant 0 (we use 0 to distinguis this simbol from the natural
number 0), one unary function s (for successor), two binary function + and - (for
sum and product, used with infix notation) and one binary predicate < (for the
ordering, also used with infix notation). This segnature provides terms for every
natural number 0,1,2,..., They are 0, s(0), s(s(0)), . ... Furthermore

It has been shown that there is no set of axioms which are true only in the
Y-structures isormorphic to the standard model of arithmetic. Therefore one could
try to write a set of axioms that capture as much as possible all the formulas that
are true in the standard model of arithmetic. This was provided by the Peano
with the so called Peano Arithmetic which is the set of formulas that are logical
consequence of the following (infinite) set of axioms

(10) Va(=s(z) = 0)

(11) Vavy(s(z) = s(y) = = =y)

(12) Va(z +0=x)

(13) VaVy(z + s(y) = s(z +y))

(14) Va(r-0=0)

(15) Vavy(z - s(y) = (z - y) + )

(16) ¢(0) AVa(d(x) = d(s(x))) = Vad(z)

does not express a single formula but an infinite set of formulas for every in-
stantiation of ¢ with a formula with the free variable . All the logical consequence
of the above axioms is called the Peano Arithmetic. The standard model of arith-
metic is a model of the Peano Arithmetic but there are X-structures that satisfies
Peano’s axioms but are not isomorphic to the standard model of arithmetic. The
reason why this is the case, and what is a formal proof of this fact is out of the
scope of this lecture notes. It is the subject of a proper course in mathematical
logic. Here it is enough to be aware that even with realitively simple structures
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like the standard model of arithmetic we cannot devise a set of formula that fully
characterize it.

However, everything that one can infer from the set of Peano’s Axioms will be
true in the standard model of arithmetic.

2. First Order Theories for Labelled Graphs

A broad class of data, ranging from similarity networks, workflow networks
to protein networks, can be modeled as graphs with data values as vertex labels.
A graph is a mathematical structure which is whidely used to represent a set of
objects which are connected one another in some way. Many data comes in the
form of graphs, and therefore being able to represent knowledge about graphs in
first order logic is important.

DEFINITION 1.4. A graph is a pair G = (V, E) where V is the set of vertices
and E is the set of edges. An edge is a pair (v,v') of vertices with v # v'. A
graph is directed if the edge (v,v") is considered different from the edge (v',v) and
undirected if (v,v") and (v',v) are the same edge.

To axiomatize graphs in first order logic we need only one binary predicate E.
Directed graphs can be axiomatized by the only axioms

(17) Vae—-FE(x,x)

For undirected graphs we have to add also the fact that E is symmetric i.e. the
axiom

(18) Vavy(E(z,y) — E(y,x))

There are additional properties on graphs that can be axiomatized in terms of first
order logic. Unfortunately the most important properties on graph structures, such
as k-colorability, or connectivity cannot be axiomatized in First Order Logic. For
these property one has to adopt an extension of FOL called monadic second order
logic Gurevich [1985. Nevertheless, FOL formulas can be used to formalize proper-
ties on possible labelling of nodes and vertices of a graph. Let us first introduce
the notion of labelled graph.

DEFINITION 1.5.

In the above definition we consider the integers from 1 to n as possible labels
from vertexes and nodes, however, any other set could be chosen. Notice that a
graph labelled with a set of labels {1,...,n} is isomorphic to a X-structure {A,Z}
where A = V| ¥ contains a unary predicate for p; for every i € {1,...,n} and a
binary predicate r; for every i € {1,...,n}. The formula p;(z) means that x is
labelled with ¢ and the formula r;(z,y) means that there is an edge from = to y
and it is labelled with q.

To axiomatize the labelled graphs we have to add the following axioms that
states that every node and edge has exactly one lable.

n

(19) Vo (\/ pl($)> AVzVy /\ —(pi(z) Apj(x))

i<j=1

n

(20) vavy | N\ (i, y) Ari(a,y))

i<j=1
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FIGURE 1. The graph on the left specifies the constraints that
a labelling with a, b, ¢, d should satisfy. It is a graph whose nodes
are the labels, and arcs represents admitted labelling of adjacent
nodes. In the center, we show a graph on 5 nodes which are labelled
with a, b, ¢, and d. This labelling, however, does not satisfy the
constraints since the labelling of nodesl 1 and 4, which are adjacent,
violates the constraint since (b, d) is not an arc in the constraints
graph on the left. Instead, the labelling shown on the right respect
all the constraints specified by the constraints graph.

Axiom states that every vertex shuld be labelled with at least one lable. In-
stead, axiom states that between every pair of nodes either there is no arc, if
—r;(x,y) is false for all 4, or there is one arc labelled with ¢, in case r;(z,y) is true.
This axiom guarantees tha r;(x,y) is true for at most one 7. Often graph labelling
involves only vertexes. In this case we have only one binary relation r, where r(z, y)
means that there is an edge between x and y, and axiom is vacuously true.

Additional logical formulas can be used to axiomatize other constrains on the
labels of the graph. Consider the following example:

EXAMPLE 1.1. A neighborhood constraintSong et al. |201/] specifies label pairs
that are allowed to appear on adjacent vertexes in the graph. A constraint graph
S = (L,C) is an undirected graph, where L is a finite set of labels and C is a set
of edges on L. For every graph G = (V, E), A labelling £ : V — L of G with labels
L satisfies the constrains specified in S if the following condition holds:

(21) (v,0") € V implies (£(v),£(v")) € C
The constraint can be easily expressed in first order logic.

(22) Vavy | r(zy) =\ i(@) Api(y) V pi(z) Api(y))

(i,5)eC
Therefore the class of graphs that satisfies are the labelled graphs which respects
the constraint expressed by the constraint labelling graph S = (L,C).

3. First order theories for ontologies

An ontology is a formal, explicit, shared specification of a conceptualization of a
domain Gruber|[1993l A conceptualization is a formal description of the objects, the
concepts, and the relations that are assumed to exist in some domain of knowledge.
There are many example of ontologies that ranges from very general ontologies
(called top-level or upper ontologies) to domain specific ontologies. Three well
known and used examples of upper ontologies are Basic Formal Ontology (BFO)
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FIGURE 2. An excerpt of the concept hierarchy of DOLCE.
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FIGURE 3.  An excerpt of one of the concept hierarchies of
SNOMED CT.

Arp, Smith, and Spear [2015| Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) Borgo and Masolo 2009, and Unified Foundational Ontology
(UFO) Guizzardi [2015. In upper level ontologies concept like “state”, “event”,
“process”, are organized in a hiararchical structure and they high level relations
like “being part of”, “having a quality” are used to related these concepts. An
exceprt of the concept hierarchy of DOLCE is shown in Figure

Domain specific ontologies are ontologies which are specific for one particular
domain. They have an important role in integration of heterogenous data Lenzerini
2002 and as a semantic interface for querying and accessing data Xiao et al. [2018|
Large and important ontologies has been developed for instance in the domain of
of medicine. For instance the SNOMED CT ontology is a systematically organized
collection of medical terms. SNOMED CT concepts are organised into 19 distinct
hierarchies, each of which cover different aspects of healthcare. An excerpt of one
of the hierarchies of SNOMED CT is shown in Figure



12 1. KNOWLEDGE REPRESENTATION IN FIRST ORDER LOGIC
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FIGURE 4. A visualization of the FOL semantics of the exceprt
of SNOMED CT of Figure [3]

There are three main relationships that are formalized in an ontology. The
concept hierarchy (also called is-a herarchy) the parthood-hierarchy (also called
mereology) and the attributes properties. Let us see how they are usually formalized
in first order logic.

3.1. Taxonomies in FOL. A taxonomy T is a DAG (directed acyclic graph)
T = (C,H) where C is the set of concepts and H (the hierarchy) are the edges
between concepts that form a DAG on E. The arc (¢,d) € H states the fact that
the concept d is a specification of ¢. For instance in Figure [3|the arc from “Coccus”
to “Gram negative Coccus”, states that the concept of “gram negative coccus” is
a specification of “coccus”.

One possible way to formalize a taxonomy T' = (C, H) in FOL is to associate to
every concept ¢ € C' a unary predicate ¢(z), For instance in formalizing SNOMED
CD in FOL we introduce the predicate Bacterium, where the formula Bacterium(z)
formalizes the fact that the object x is a bacterium, and the unary predicate Coccus,
where Coccus(z) means that x is a coccus. First order semantics associates to
every unary predicate a subset of the domain element. Therefore, in the FOL
formalization of a taxonomy, concepts are seen as sets of objects. We say that this
is an extensional semantics for concepts.

To formalize the information contained in the hyerarchical part H of a taxon-
omy, we consider the fact that if a condept d is a specification of a concept ¢, then
everyt instance of d must also be an instance of c¢. Therefore, we tranform the fact
that (¢,d) € H in the proposition “every element of the domain that is ¢ must be
also d” that in forst order logic can be rendered as:

(23) Va(e(z) — d(x))

Consequently the FOL semantic of a Taxonomy 7' = (C, H) is given in terms of
set conainment. For instance the semantics of the part of the Snomer hierarchy
shown in Figure [3] is shown in Figure {4] For every taxonomy T = (C, H) let T'r
the the theory obtained translatinc H in first order axioms according to As
a consequence of this modelling we obtain the intuitive fact that when (¢,d) € H
and (d,e) € H. we have tha formula . As a consequence we have that if there
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is a path ¢y, cs,...,c, that connects ¢; to ¢,, we have that
(24) I'r EVz(en(z) = c1(2))
In the SNOMED example we have that if l'syomep-cT is the axiomaticazion of the
SNOMED-CT hierarchies in FOL, then
FsnomEep.-ct = Vo (GramNegativeCoccus(z) — Bacterium(z))

Formalizing a taxonomy T = (C,H) in a first order theory allows to infer new
specialization relations that are not explicitly stated in H which are the result of
the transitive closure of H. These new specialization are shown in dashed lines in
Figure [2] and [3

A second aspect of a taxonimi that can be formalized in FOL is the relation
between syblings. Usually, but not necessarily, the childrens of a concepts are
disjoint concepts, I.e., concepts for which the concept obtained by the conjunction
of two siblings is empty. This constraint can be explicitly formalized in FOL with
the axiom:

(25) Y /\ —(d(z) Ae(z))

(c,d),(dc,e)GH
For instance in the DOLCE taxonomy, we can add the axiom

Vz—(agentivePhysicalObject(z) A nonAgentivePhysicalObject(x))

The last important aspect of a Taxonomy concern the fact that the children concepts
dy,...,d, cover the parent concept c¢. More precisely that every instance of the
parent concept c is an instance of at least one child concept ¢;. This can be easily
modeledd in FOL with the axioms

(26) Vo | e(z) — \/ d(z)

(c,d)eH
For example in the SNOMED-CT taxonomy we can formalize the fact that a coccus
is either gram positive, or gram negative, or gram variable, by the axiom
Vx (Coccus(x) — GramNegativeCoccus(z) V GramPositiveCoccus(z) V GramVariableCoccus(z))
3.2. Axiomatizing concept relations. A second iportant conponent of an
ontologies is consituite by the set of relations that connects concepts. For instance
kThe most important ontological restrictions on relations concerns the domain and

the range that states that a certain relations connects two concepts. To state that
the domain of a relation r is the concept ¢, in FOL we can use the axioms

(27) Vavy(r(z, y) = c(z))

(28) Va(e(z) = Jyr(z,y))

To state that the range of a relation r is the concept d, in FOL we can use the
axioms

(29) Vavy(r(z,y) — d(y))

(30) Va(d(y) — Jzr(z,y))

It is also often the case that in ontology we have constraints that involves both
the domian and the range of a relation. For instnce one can state that the engine
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of an electric car is electring and the engine of a non electic care is a fossile fuel
engine. This can be done with axioms of the form
(31) Va(c(x) = Vy(r(z,y) — d(y)))
In the car example this become:
Vx(ElectricCar(z) — Vy(hasEngine(z, y) — electricEngine(y)))
Va(car(z) A —ElectricCar(xz) — Vy(hasEngine(z, y) — carbonFuelEngine(y)))

3.3. Cardinality constraints on relations. In ontologies we often need to
state that a concept instance is related with a (more than, less then or exactly a)
number of instances with another concept. For example we want to state that a
car has exactly four wheels, that a group has at least two members and that a car
cannot have more than 7 seats. This can be done with the following FOL axiom

At least n

n

i—1
(32) Vo |c(@)— Jyi...Tyn /\ r(@,yi) A d(y;) A /\ T; # T
j=1

i=1
At most n

n n

(33) Vo [ e(x) = Vy1 ... Vynt /\ (r(x,y;) Nd(y:)) — \/ T = Tyt

i=1 =1

3.4. Concept definition in FOL. As a final aspect of ontologies we consider
the notion of defined concepts. In an ontology one can distinguish between primitive
concepts and primitive relations and defined concepts and defined relations.

For primitive concepts we don’t need to provide a definition in terms of other
concepts. For instance the concept of electic car can be defined as a car with one
electic engine, hybrid car is a car that has one electric and one carbon fuel engine.
As follows

Vx(electricCar(x) +» car(z) A Vy(hasEngine(y) — electricEngine(y))

Va(hybridCar(x) < car(z) A Jy(hasEngine(y) A electricEngine(y)) A
Ty (hasEngine(y) A carbonFuelEngine(y)))

Va(carbonCar(z) - car(z) A Vy(hasEngine(y) — carbonFuelEngine(y))

We also need to add the axiom that states that a car has at least one engine.
otherwise a car without engine will be both an electic and a carbon car.

Va(car(xz) — Jy(hasEngine(y) A carbonFuelEngine(y) V electicEngine(y)))
3.5. Reasoning with FOL ontologies. to be finished

4. First order theories for commonsense

to be finished see https://cs.nyu.edu/~davise/guide.html| Guide to Ax-
iomatizing Domains in First-Order Logic


https://cs.nyu.edu/~davise/guide.html

Bibliography

Arp, Robert, Barry Smith, and Andrew D Spear (2015). Building ontologies with
basic formal ontology. Mit Press.

Badreddine, Samy et al. (2022). “Logic tensor networks”. In: Artificial Intelligence
303, p. 103649.

Birnbaum, Elazar and Eliezer L Lozinskii (1999). “The good old Davis-Putnam pro-
cedure helps counting models”. In: Journal of Artificial Intelligence Research
10, pp. 457-477.

Borgo, Stefano and Claudio Masolo (2009). “Foundational choices in DOLCE”. In:
Handbook on ontologies. Springer, pp. 361-381.

Boros, Endre and Peter L Hammer (2002). “Pseudo-boolean optimization”. In:
Discrete applied mathematics 123.1-3, pp. 155-225.

Brewka, Gerhard (1989). “Nonmonotonic Logics—A Brief Overview”. In: AI Com-
munications 2.2, pp. 88-97.

Chakraborty, Supratik et al. (2015). “From weighted to unweighted model count-
ing”. In: Twenty-Fourth International Joint Conference on Artificial Intelli-
gence.

Chavira, Mark and Adnan Darwiche (2008a). “On probabilistic inference by weighted
model counting”. In: Artificial Intelligence 172.6-7, pp. 772-799.

— (2008b). “On probabilistic inference by weighted model counting”. In: Artificial
Intelligence 172.6, pp. 772-799. 1sSN: 0004-3702. DOI: https://doi.org/10.
1016/ j .artint . 2007 .11.002. URL: https://www.sciencedirect . com/
science/article/pii/S0004370207001889.

Daniele, Alessandro and Luciano Serafini (2019). “Knowledge enhanced neural net-
works”. In: PRICAI 2019: Trends in Artificial Intelligence: 16th Pacific Rim
International Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji,
August 26-30, 2019, Proceedings, Part I 16. Springer, pp. 542-554.

Darwiche, Adnan (2020). “Three modern roles for logic in AI”. In: Proceedings of
the 89th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 229-243.

Davis, Ernest (2017). “Logical formalizations of commonsense reasoning: a survey”.
In: Journal of Artificial Intelligence Research 59, pp. 651-723.

Davis, Martin, George Logemann, and Donald Loveland (1962). “A machine pro-
gram for theorem proving”. In: Communications of the ACM 5.7, pp. 394-397.

Davis, Martin and Hillary Putnam (1960). “A computing procedure for quantifica-
tion theory”. In: Journal of ACM 7, pp. 201-215.

De Raedt, Luc et al. (2020). “From statistical relational to neuro-symbolic artificial
intelligence”. In: arXiv preprint arXiv:2003.08316.

15


https://doi.org/https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/https://doi.org/10.1016/j.artint.2007.11.002
https://www.sciencedirect.com/science/article/pii/S0004370207001889
https://www.sciencedirect.com/science/article/pii/S0004370207001889

16 BIBLIOGRAPHY

Franco, John and Marvin Paull (1983). “Probabilistic analysis of the Davis Putnam
procedure for solving the satisfiability problem”. In: Discrete Applied Mathe-
matics 5.1, pp. 77-87.

Fu, Zhaohui and Sharad Malik (2006). “On solving the partial MAX-SAT prob-
lem”. In: International Conference on Theory and Applications of Satisfiability
Testing. Springer, pp. 252-265.

Gomes, Carla P., Ashish Sabharwal, and Bart Selman (2009). “Model Counting”.
In: Handbook of Satisfiability, pp. 633—654.

Gruber, Thomas R (1993). “A translation approach to portable ontology specifica-
tions”. In: Knowledge acquisition 5.2, pp. 199-220.

Guizzardi, RS (2015). “Towards ontological foundations for conceptual modeling:
the unified foundational ontology (UFO) story Appl”. In: Ontol 10, pp. 3-4.

Gurevich, Yuri (1985). “Chapter XIII: Monadic second-order theories”. In: Model-
theoretic logics 8, pp. 479-506.

Gutmann, Bernd, Ingo Thon, and Luc De Raedt (2011). “Learning the parameters
of probabilistic logic programs from interpretations”. In: Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011. Proceedings, Part I 11. Springer, pp. 581—
596.

Holtzen, Steven, Guy Van den Broeck, and Todd Millstein (2020). “Scaling exact
inference for discrete probabilistic programs”. In: Proceedings of the ACM on
Programming Languages 4.00PSLA, pp. 1-31.

Kimmig, Angelika et al. (2011). “On the implementation of the probabilistic logic
programming language ProbLog”. In: Theory and Practice of Logic Program-
ming 11.2-3, pp. 235-262.

Lenzerini, Maurizio (2002). “Data integration: A theoretical perspective”. In: Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 233-246.

Lifschitz, Vladimir, Bruce Porter, and Frank Van Harmelen (2008). Handbook of
Knowledge Representation. Elsevier.

Lowd, Daniel and Pedro Domingos (2007). “Efficient weight learning for Markov
logic networks”. In: Knowledge Discovery in Databases: PKDD 2007: 11th
FEuropean Conference on Principles and Practice of Knowledge Discovery in
Databases, Warsaw, Poland, September 17-21, 2007. Proceedings 11. Springer,
pp. 200-211.

Lukasiewicz, Thomas (1998). “Probabilistic Logic Programming.” In: ECAT, pp. 388—
392.

Maathuis, Marloes et al. (2018). Handbook of graphical models. CRC Press.

Manhaeve, Robin et al. (2018). “Deepproblog: Neural probabilistic logic program-
ming”. In: advances in neural information processing systems 31.

Mangquinho, Vasco, Joao Marques-Silva, and Jordi Planes (2009). “Algorithms for
weighted boolean optimization”. In: International conference on theory and
applications of satisfiability testing. Springer, pp. 495-508.

McCarthy, John (1959). “Programs with Common Sense”. In: pp. 77-84.

Minker, Jack (2012). Logic-based artificial intelligence. Vol. 597. Springer Science
& Business Media.



BIBLIOGRAPHY 17

Mohamedou, Nouredine Ould and Jordi Planes (2009). “Solver MaxSatz in Max-
SAT Evaluation 2009”. In: SAT 2009 competitive events booklet: preliminary
version, p. 155.

Richardson, Matthew and Pedro Domingos (2006). “Markov logic networks”. In:
Machine learning 62, pp. 107-136.

Russell, Stuart and Peter Norvig (2010). Artificial Intelligence: A Modern Approach.
3rd ed. Prentice Hall.

Sang, Tian, Paul Beame, and Henry Kautz (2005). “Solving Bayesian networks by
weighted model counting”. In: Proc. AAAI-05. Vol. 1, pp. 475-482.

Saveri, Gaia and Luca Bortolussi (2022). “Graph Neural Networks for Propositional
Model Counting”. In: arXiv preprint arXiv:2205.04423.

Selman, Bart, Henry A Kautz, Bram Cohen, et al. (1993). “Local search strategies
for satisfiability testing.” In: Cliques, coloring, and satisfiability 26, pp. 521—
532.

Song, Shaoxu et al. (2014). “Repairing vertex labels under neighborhood con-
straints”. In: Proceedings of the VLDB Endowment 7.11, pp. 987-998.

Tseytin, Grigori (1966). On the complexity of derivation in propositional calculus.
Presented at the Leningrad Seminar on Mathematical Logic. URL: http://
www.decision-procedures.org/handouts/Tseitin70.pdf.

Wei, Wei and Bart Selman (2005). “A new approach to model counting”. In: In-
ternational Conference on Theory and Applications of Satisfiability Testing.
Springer, pp. 324-339.

Xiao, Guohui et al. (2018). “Ontology-based data access: A survey”. In: Interna-
tional Joint Conferences on Artificial Intelligence.


http://www.decision-procedures.org/handouts/Tseitin70.pdf
http://www.decision-procedures.org/handouts/Tseitin70.pdf

	Chapter 1. Knowledge Representation in First Order Logic
	1. First order theories for algebraic structures
	2. First Order Theories for Labelled Graphs
	3. First order theories for ontologies
	4. First order theories for commonsense

	Bibliography

