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Atomic structure
9.2 Atomic orbitals and their energies

(h) d Orbitals

When n =3, can be 0, 1, or 2. As a result, this shell consists of one 3s orbital, three
3p orbitals, and five 3d orbitals. Each value of the quantum number m,; = +2, +1, 0,
—1,—2 corresponds to a different value for the component of the angular momentum
about the z-axis. As for the p orbitals, d orbitals with opposite values of 1, (and hence
opposite senses of motion around the z-axis) may be combined in pairs to give real
standing waves, and the boundary surfaces of the resulting shapes are shown in
Fig. 9.16. The real linear combinations have the following forms:

d,=xyf(r)  d,=yzf(r)  d, =2zxf(r)
dpe 2= 22— f()  dp=(243)322-r)f(r)

x=y T 2
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Atomic structure
9.3 Spectroscopic transitions and selection rules

Le energie degli atomi idrogenoidi sono date dalla seguente equazione:
g
Z*uet
n- 2 232 2
32nehn”

Quando l'elettrone subisce una transizione, un cambiamento di stato, da un
orbitale con numeri quantici n,, I;,, m;; ad un altro orbitale di energia
inferiore con numeri quantici n,, I,, m,, subisce un cambiamento di energia
AE ed elimna I'energia in eccesso sotto forma di un fotone di radiazione

elettro-magnetica con frequenza v data dalla condizione sulla frequenza di
Bohr AE=hv.

Si potrebbe pensare che tutte le possibili transizioni siano consentite e che
lo spettro di emissione nasca dalla transizione di un elettrone da qualsiasi
orbitale iniziale a qualsiasi altro orbitale. Tuttavia non & cosi, perché un
fotone ha un momento angolare di spin intrinseco corrispondente as = 1.
Poiché il momento angolare totale si conserva, la variazione del momento
angolare dell'elettrone deve compensare il momento angolare portato via
dal fotone. 50



Atomic structure
9.3 Spectroscopic transitions and selection rules

Quindi, un elettrone in un orbitale d (I = 2) non puo effettuare una
transizione verso un orbitale s (I = 0) perché il fotone non puo portare via
abbastanza momento angolare. Allo stesso modo, un elettrone s non puo
effettuare una transizione verso un’altro orbitale s, perché non ci sarebbe
alcun cambiamento nel momento angolare dell'elettrone per compensare il
momento angolare portato via dal fotone. Ne consegue che alcune
transizioni spettroscopiche sono PERMESSE, il che significa che possono
verificarsi, mentre altre sono PROIBITE, nel senso che non possono
verificarsi.

Una regola di selezione € una affermazione su quali transizioni sono
PERMESSE. Per gli atomi vengono derivate identificando le transizioni che
conservano il momento angolare quando un fotone viene emesso o
assorbito. Le regole di selezione per gli atomi idrogenoidi sono

Al=+1 Am;=0, £1
The principal guantum number n can change by any amount consistent
with the Al
for the transition, because it does not relate directly to the angular

51
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Atomic structure
9.3 Spectroscopic transitions and selection rules

COME TROVARE LE REGOLE DI SELEZIONE - 1

The underlying classical idea behind a spectroscopic transition is that, for an atom
or molecule to be able to interact with the electromagnetic field and absorb or cre-
ate a photon of frequency V, it must possess, at least transiently, a dipole oscillating
at that frequency. This transient dipole is expressed quantum mechanically in terms
of the transition dipole moment, [, between the initial and final states, where!

M= Jw%’*ﬁ%df (9.25)

and [ is the electric dipole moment operator. For a one-electron atom fI is multi-
plication by —er with components i, = —ex, ii, = —ey, and pi, = —ez. If the transition
dipole moment is zero, then the transition is forbidden; the transition is allowed if
the transition moment is nonzero.

Al=+1  Amy=0, +1
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Atomic structure
9.3 Spectroscopic transitions and selection rules

COME TROVARE LE REGOLE DI SELEZIONE - 2

To evaluate a transition dipole moment, we consider each component in turn.

For example, for the z-component,
Table 8.2 The spherical harmonics

[ —eJ wizy;dt Fom Y, (69)
1 142
To evaluate the integral, we note from Table 8.2 that z= (4TE/3)”21'YLO, SO 0 0 (E]
z 3 142
Wi 12 W, dr 1 0 — | cos@
w1 (27| " ATT > - A 4
yizydr= N R, Iij:,mH o Yo Rni’IiYIi’mLi r=dr sin 6d0d¢

This multiple integral is the product of three factors, an integral over r and two
integrals over the angles, so the factors on the right can be grouped as follows:

112 oo n[2r
4
JW?Z%dT (R} J RnPferni’Iirzer J }‘;,m”YLDYLmMSin 8dode¢

3 0 040

It follows from the properties of the spherical harmonics (Table 8.2) that the integral

m (2
. :
J J ij,m”Y]’mei,mm sin 6dO6d¢
0J0

is zero unless [;=I. + 1 and m, ;= m,, + m. Because m= 0 in the present case, the angu-

lar integral, and hence the z-component of the transition dipole moment, is zero unless

Al=+1and Am;= 0, which is a part of the set of selection rules. The same procedure, 53
but considering the x- and y-components, results in the complete set of rules.



Atomic structure
9.3 Spectroscopic transitions and selection rules

COME TROVARE LE REGOLE DI SELEZIONE - 3

ESERCIZIO 1

® A brief illustration

To identify the orbitals to which a 4d electron may make radiative transitions, we first
identify the value of I and then apply the selection rule for this quantum number.
Because [ = 2, the final orbital must have /=1 or 3. Thus, an electron may make a trans-
ition from a 4d orbital to any np orbital (subject to Am; =0, £1) and to any nf orbital
(subject to the same rule). However, it cannot undergo a transition to any other orbital,
so a transition to any »s orbital or to another nd orbital is forbidden. ®

ESERCIZIO 2

Self-test 9.7 To what orbitals may a 4s electron make electric-dipole allowed radia-
tive transitions? [to np orbitals only]
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Atomic structure
9.3 Spectroscopic transitions and selection rules

Le regole di selezione e i livelli di
energia atomica insieme spiegano
congiuntamentela struttura di un
diagramma di Grotrian (Vedi Figura),

che riassume le energie degli stati

e le transizioni tra di loro. Gli
spessori delle linee di transizione nel
diagramma denotano le loro
intensita relative nello spettro;
vediamo come determinare la
transizione intensita nella sezione
13.2.
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Atomic structure
The structure and spectra of hydrogenic atoms

Lunghezze d’onda, A, in A

. ,_;'V

123638 o (H) «— 23038 e’

Grotrian diagram of Hydrogen
energy levels and spectra

Idrogeno
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Atomic structure
The structures of many-electron atoms

9.4 The orbital approximation

Key points In the orbital approximation, each electron is regarded as occupying its own orbital.
(a) A configuration is a statement of the occupied orbitals. (b) The Pauli exclusion principle, a
special case of the Pauli principle, limits to two the number of electrons that can occupy a given
orbital. (c) In many-electron atoms, s orbitals lie at a lower energy than p orbitals of the same
shell due to the combined effects of penetration and shielding. (d) The building-up principle is
an algorithm for predicting the ground-state electron configuration of an atom. (e) Ionization

energies and electron affinities vary periodically through the periodic table.

The wavefunction of a many-electron atom is a very complicated function of the
coordinates of all the electrons, and we should write it ¥(r,,r,, . . .), where r; is the
vector from the nucleus to electron i (upper-case ¥ is commonly used to denote a
many-electron wavefunction). However, in the orbital approximation we suppose
that a reasonable first approximation to this exact wavefunction is obtained by think-
ing of each electron as occupying its ‘own’ orbital, and write

Orbital

approximation (9.26)

Frpry, ...)=wy(r)y(r,) ...

We can think of the individual orbitals as resembling the hydrogenic orbitals, but
corresponding to nuclear charges modified by the presence of all the other electrons
in the atom. This description is only approximate, as the following Justification reveals,
but it is a useful model for discussing the chemical properties of atoms, and is the
starting point for more sophisticated descriptions of atomic structure.
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Atomic structure
The structures of many-electron atoms

9.4 The orbital approximation

Key points In the orbital approximation, each electron is regarded as occupying its own orbital.
(a) A configuration is a statement of the occupied orbitals. (b) The Pauli exclusion principle, a
special case of the Pauli principle, limits to two the number of electrons that can occupy a given
orbital. (c) In many-electron atoms, s orbitals lie at a lower energy than p orbitals of the same
shell due to the combined effects of penetration and shielding. (d) The building-up principle is
an algorithm for predicting the ground-state electron configuration of an atom. (e) Ionization

energies and electron affinities vary periodically through the periodic table.

The wavefunction of a many-electron atom is a very complicated function of the
coordinates of all the electrons, and we should write it ¥(r,,r,, . . .), where r; is the
vector from the nucleus to electron i (upper-case ¥ is commonly used to denote a
many-electron wavefunction). However, in the orbital approximation we suppose
that a reasonable first approximation to this exact wavefunction is obtained by think-
ing of each electron as occupying its ‘own’ orbital, and write

Orbital

approximation (9.26)

Frpry, ...)=wy(r)y(r,) ...

We can think of the individual orbitals as resembling the hydrogenic orbitals, but
corresponding to nuclear charges modified by the presence of all the other electrons
in the atom. This description is only approximate, as the following Justification reveals,
but it is a useful model for discussing the chemical properties of atoms, and is the
starting point for more sophisticated descriptions of atomic structure.
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Atomic structure
The structures of many-electron atoms

9.4 The orbital approximation

Key points In the orbital approximation, each electron is regarded as occupying its own orbital.
(a) A configuration is a statement of the occupied orbitals. (b) The Pauli exclusion principle, a
special case of the Pauli principle, limits to two the number of electrons that can occupy a given
orbital. (c) In many-electron atoms, s orbitals lie at a lower energy than p orbitals of the same
shell due to the combined effects of penetration and shielding. (d) The building-up principle is
an algorithm for predicting the ground-state electron configuration of an atom. (e) Ionization

energies and electron affinities vary periodically through the periodic table.

APPROSSIMAZIONE
ORBITALICA

V(r,r,...)

Y(r,ry,...)=y(r)y(r,) ...

59



Atomic structure
The structures of many-electron atoms

Justification 9.5 The orbital approximation

The orbital approximation would be exact if there were no interactions between
electrons. To demonstrate the validity of this remark, we need to consider a system
in which the hamiltonian for the energy is the sum of two contributions, one for
electron 1 and the other for electron 2:

H=H,+H,
In an actual atom (such as helium atom), there is an additional term (proportional
to 1/r ,) corresponding to the interaction of the two electrons:
hi? e? I e? e?

H=-—"V2_ L v/ 4
2m 4Te,ry  2m, aneyr, 4mr,

but we are ignoring that term. We shall now show that, if y/(r,) is an eigenfunction
of H, with energy E;, and y(r,) is an eigenfunction of I, with energy E,, then the
product ¥(r,r,) = Y(r,)¥(r,) is an eigenfunction of the combined hamiltonian H.
To do so we write

-

HY¥(r,ry) = (H, + Hy)y(r)y(ry) = Hy(r)y(r,) + y(r)Hy(r,)
=E\y(r)y(ry) + y(r)Ey(r)=(E +E)y(r)y(r,)
=E¥(r,r,)

where E=E| + E,. This is the result we need to prove. However, if the electrons inter-

act (as they do in fact), then the proof fails.
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Atomic structure EL
10
The structures of many-electron atoms

(a) The helium atom

The orbital approximation allows us to express the electronic structure of an atom
by reporting its configuration, a statement of its occupied orbitals (usually, but not
necessarily, in its ground state). Thus, as the ground state of a hydrogenic atom
consists of the single electron in a 1s orbital, we report its configuration as 1s' (read
‘one-ess-one’).

A He atom has two electrons. We can imagine forming the atom by adding the
electrons in succession to the orbitals of the bare nucleus (of charge 2¢). The first elec-
tron occupies a 1s hydrogenic orbital, but because Z = 2 that orbital is more compact
than in H itself. The second electron joins the first in the 1s orbital, so the electron
configuration of the ground state of He is 1s2.
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Atomic structure ELIO e LITIO e
The structures of many-electron atoms Principio di
PAULI -1
(b) The Pauli principle

Lithium, with Z = 3, has three electrons. The first two occupy a 1s orbital drawn even
more closely than in He around the more highly charged nucleus. The third electron,
however, does not join the first two in the 1s orbital because that configuration is
forbidden by the Pauli exclusion principle:

No more than two electrons may occupy any given
orbital, and if two do occupy one orbital, then their
spins must be paired.

Pauli exclusion
principle

Electrons with paired spins, denoted Tl, have zero net spin angular momentum
because the spin of one electron is cancelled by the spin of the other. Specifically,
one electron has m_= +%, the other has m_ = —%, and they are orientated on their
respective cones so that the resultant spin is zero (Fig. 9.18). The exclusion principle is
the key to the structure of complex atoms, to chemical periodicity, and to molecular
structure. It was proposed by Wolfgang Pauli in 1924 when he was trying to account
for the absence of some lines in the spectrum of helium. Later he was able to derive a
very general form of the principle from theoretical considerations.
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Atomic structure ELIO e LITIO e
The structures of many-electron atoms ST 1
y Principio di
PAULI - 2
The Pauli exclusion principle in fact applies to any pair of identical fermions
(particles with half integral spin). Thus it applies to protons, neutrons, and °C nuclei
(all of which have spin 1) and to 3*Cl nuclei (which have spin 2). It does not apply to
identical bosons (particles with integral spin), which include photons (spin 1), *C
nuclei (spin 0). Any number of identical bosons may occupy the same state (that is, be
described by the same wavefunction).

PROTONI , NEUTRONI Fermioni
NUCLEI di 13C (spin nucleare [=}5)
NUCLEI di 3°Cl (spin nucleare 1=3/2)
NUCLEI di 23Na (spin nucleare 1=3/2)

FOTONI Bosoni

NUCLEI di 1°C (spin nucleare |=0)
NUCLEI di *N (spin nucleare 1=1)
NUCLEI di %H (spin nucleare 1=1) 63




Atomic structure ELIO e LITIO e
The structures of many-electron atoms Principio di
PAULI - 2
The Pauli exclusion principle in fact applies to any pair of identical fermions
(particles with half integral spin). Thus it applies to protons, neutrons, and °C nuclei
(all of which have spin %) and to *>Cl nuclei (which have spin %). [t does not apply to
identical bosons (particles with integral spin), which include photons (spin 1), *C
nuclei (spin 0). Any number of identical bosons may occupy the same state (that is, be

described by the same wavefunction).
The Pauli exclusion principle is a special case of a general statement called the Pauli

principle:

When the labels of any two identical fermions are exchanged, the total
wavefunction changes sign; when the labels of any two identical bosons
are exchanged, the sign of the total wavefunction remains the same.

Pauli
principle

By ‘total wavefunction’ is meant the entire wavefunction, including the spin of the
particles. To see that the Pauli principle implies the Pauli exclusion principle, we
consider the wavefunction for two electrons y(1,2). The Pauli principle implies that
it is a fact of nature (which has its roots in the theory of relativity) that the wavefunc-
tion must change sign if we interchange the labels 1 and 2 wherever they occur in the
function:

Y(2,1)=-%¥(1,2) (9.27)



Atomic structure ELIO e LITIO e

The structures of many-electron atoms Principio di

PAULI -3

Suppose the two electrons in an atom occupy an orbital v, then in the orbital approx-
imation the overall wavefunction is y(1)y(2). To apply the Pauli principle, we must
deal with the total wavefunction, the wavefunction including spin. There are several

possibilities for two spins: both o, denoted o.(1)c:(2), both B, denoted B(1)B(2), and
one o the other B, denoted either o.(1)[3(2) or a.(2)B(1). Because we cannot tell which
electron is o and which is 3, in the last case it is appropriate to express the spin states
as the (normalized) linear combinations
c,(1,2) = (1/2"%){au(1)B(2) + B(1)o(2)}
6_(1,2) = (1/2"*){a(1)B(2) = B(1)a(2)}
These combinations allow one spin to be oz and the other 3 with equal probability. The

total wavefunction of the system is therefore the product of the orbital part and one of
the four spin states:

y(1)y(2)o(1)o(2) y(1)y(2)B(1)B(2)
y(Dy(2)o,.(1,2) y(1)y(2)o_(1,2)

(9.28)

(9.29)
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Atomic structure ELIO e LITIO e

The structures of many-electron atoms Principio di
The Pauli principle says that, for a wavefunction to be acceptable (for elePAIL 13
must change sign when the electrons are exchanged. In each case, exchanging the
labels 1 and 2 converts the factor y(1)y(2) into y(2)y (1), which is the same, because

the order of multiplying the functions does not change the value of the product. The
same is true of a.(1)o(2) and B(1)B(2). Therefore, the first two overall products are

not allowed, because they do not change sign. The combination o,(1,2) changes to

0,(2,1)= (12" {a(2)B(1) + B(2)au(1)} = 0,(1,2)

because it is simply the original function written in a different order. The third over-
all product is therefore also disallowed. Finally, consider o_(1,2):

o (2,1)= (172" {a(2)B(1) — B(2)a(1)}
=—(1/2"H){o(1)P(2) - B()a(2)} =—0.(1,2)

This combination does change sign (it is ‘antisymmetric’). The product y(1)y(2)o_(1,2)
also changes sign under particle exchange, and therefore it is acceptable.

Now we see that only one of the four possible states is allowed by the Pauli prin-
ciple, and the one that survives has paired o and 3 spins. This is the content of the Pauli
exclusion principle. The exclusion principle is irrelevant when the orbitals occupied
by the electrons are different, and both electrons may then have (but need not have)
the same spin state. Nevertheless, even then the overall wavefunction must still be

. : . . . C . . . 66
antisymmetric overall, and must still satisfy the Pauli principle itself.



Struttura Atomica Atomi a 2 o piu elettroni
Frw — | equazione di Schrodinger

Ogni elettrone 1-esimo di massa m :

- ¢ soggetto all’energia potenziale V.(r,)=k Ze?/r; (k<0) .
di attrazione da parte del nucleo.

i-esimoe

<
-€ rp € -€

- 1noltre possiede energia cinetica

L’operatore H ¢ ’eq. di Schrodinger contengono i termini

corrispondenti di energia potenziale e cinetica
2
—h—vqu +V(r)¥Y =EY
2m

L’equazione di Schrédinger non si puo risolvere in modo esatto. *’



Struttura Atomica Atomi a 2 o piu elettroni
HY = EW | equazione di Schrodinger

Non ¢ possibile trovare delle soluzioni analitiche dell’eq.di
Schrodinger.

S1 usano delle soluzioni approssimate (ad esempio ottenute con peletodi

numerici) e che vengono chiamate ancora --e .
ORBITALI ATOMICI &
- caratterizzati ancora dai tre numeri quantici n, £, m, -e e

- ognuno degli elettroni ha ancoras ='2edm,=-2, 2

[’ espressione per 1’energia
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Struttura Atomica Atomi a 2 o piu elettroni
HY = EW | equazione di Schrodinger

Effetto della repulsione elettrostatica sull’elettrone 1-esimo da parte di
ogni altro elettrone j-esimo
Esempio: 1’atomo di Boro (Z=5) ; config. elettronica 1s? 2s? 2p!

IE
+ }Differenza di
- N 2p energia AE
2s 2p g
Atomi
idrogenoidi %s
Atomo a

2 o piu elettroni 69



Struttura Atomica Atomi a 2 o piu elettroni
HY = EW | equazione di Schrodinger

Effetto della repulsione elettrostatica sull’elettrone 1-esimo da parte di
ogni altro elettrone j-esimo
Esempio: I’atomo di Boro (Z=5) ; config. elettronica

to | AMBIGPA —

S —
_ N L <

2p 28
Atomi % S T
idrogenoidi M —
Atomo a 6 stati elettronici

2 o piu elettroni  differenti 70
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Esempio: I’atomo di Sodio — Na (Z=11)

Una config.
elettronica
eccitata:

152 282 2p° 4s!

configuraz.
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Atomic structure ELIO e LITIO e

The structures of many-electron atoms Principio di
The Pauli principle says that, for a wavefunction to be acceptable (for elePAIL 13
must change sign when the electrons are exchanged. In each case, exchanging the
labels 1 and 2 converts the factor y(1)y(2) into y(2)y (1), which is the same, because

the order of multiplying the functions does not change the value of the product. The
same is true of a.(1)o(2) and B(1)B(2). Therefore, the first two overall products are

not allowed, because they do not change sign. The combination o,(1,2) changes to

0,(2,1)= (12" {a(2)B(1) + B(2)au(1)} = 0,(1,2)

because it is simply the original function written in a different order. The third over-
all product is therefore also disallowed. Finally, consider o_(1,2):

o (2,1)= (172" {a(2)B(1) — B(2)a(1)}
=—(1/2"H){o(1)P(2) - B()a(2)} =—0.(1,2)

This combination does change sign (it is ‘antisymmetric’). The product y(1)y(2)o_(1,2)
also changes sign under particle exchange, and therefore it is acceptable.

Now we see that only one of the four possible states is allowed by the Pauli prin-
ciple, and the one that survives has paired o and 3 spins. This is the content of the Pauli
exclusion principle. The exclusion principle is irrelevant when the orbitals occupied
by the electrons are different, and both electrons may then have (but need not have)
the same spin state. Nevertheless, even then the overall wavefunction must still be

. : . -~ C . . 74
antisymmetric overall, and must still satisfy the Pauli principle itself.



Atomic structure ELIO e LITIO e
The structures of many-electron atoms Principio di
PAULI - 3

A final point in this connection is that the acceptable product wavefunction
w(1)y(2)o (1,2) can be expressed as a determinant:

1 1ol 2)0u(2 1
Sin E;El%Bf(l}} EEE;B(EJ} =ﬁﬁw[l}a{1jw(2)ﬁf2}—uf{z}a(z)t,r/{l)ﬁ(l}}

=y (1)y(2)o_(1,2)

Any acceptable wavefunction for a closed-shell species can be expressed as a Slater
determinant, as such determinants are known. In general, for N electrons in orbitals

Vo Wi - -

va(Do(l)  y,(2)0(2)  y,(3)a3) ... Y(N)o(N)
v (DB(1)  w,(2)B(2) v, (3)B(3) ... W, (N)B(N)
¥(1,2,...,N)= L ly(ho) v,2)a2) wB3)eG) ... yN)aN)

wv(DB(1)  w(2)B(2) v, (3)B3) ... w(N)B(N)
[9.30a]

| DETERMINANTE DI SLATER -




Atomic structure ELIO e LITIO e
The structures of many-electron atoms Principio di

PAULI -3
Ogni riga
contiene la Ogni colonna
stessa contiene lo
elettrone

Y. (1)o(l) 2)[1(2 W (3)oi( } coo W (N)O(N)

l)ﬁ(l 2)'3 'qu(%)l?) e Wﬂ(l\F)B(N)
¥(1,2,...,N)= b“}ﬂ(l) %(2)[1(2} y(3)ou3) ... Y (N)o(N)

(N2

r—Mfsz(l) v.(2)B2)  w,3)BB) ... W(N)BNN)
[9.30a]

| DETERMINANTE DI SLATER -




Atomic structure ELIO e LITIO e
The structures of many-electron atoms Principio di

PAULI -3

Writing a many-electron wavefunction in this way ensures that it is antisymmetric
under the interchange of any pair of electrons, as is explored in Problem 9.25.Because
a Slater determinant takes up a lot of space, it is normally reported by writing only its
diagonal elements, as in

1\ Notation for
Y(1,2,...,N) = [—] det| X (1)wP2)w¥(3) - wB(N)|  |aSater [9.30b]
N! determinant

Now we can return to lithium. In Li (Z = 3), the third electron cannot enter the
1s orbital because that orbital is already full: we say the K shell is complete and that
the two electrons form a closed shell. Because a similar closed shell is characteristic of
the He atom, we denote it [He]. The third electron is excluded from the K shell and
must occupy the next available orbital, which is one with n =2 and hence belonging to
the L shell. However, we now have to decide whether the next available orbital is the
2s orbital or a 2p orbital, and therefore whether the lowest energy configuration of
the atom is [He]2s' or [He]2p'.
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The structures of many-electron atoms Principio di
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9.25 The wavefunction of a many-electron closed-shell atom can be expressed
as a Slater determinant (Section 9.4b). A useful property of determinants is
that interchanging any two rows or columns changes their sign and therefore,
if any two rows or columns are identical, then the determinant vanishes.

Use this property to show that (a) the wavefunction is antisymmetric under
particle exchange, (b) no two electrons can occupy the same orbital with

the same spin.
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ESERCIZIO 9.25

9.25 The wavefunction of a many-electron closed-shell atom can be expressed
as a Slater determinant (Section 9.4b). A useful property of determinants is
that interchanging any two rows or columns changes their sign and therefore,
if any two rows or columns are identical, then the determinant vanishes.

Use this property to show that (a) the wavefunction is antisymmetric under

particle exchange, (b) no two electrons can occupy the same orbital with
the same spin.

1 0 5
2/3 2 1 = 1x[(2x3)-(3x1)] + (0)x[(2/3x3)-(1x1)] + 5x[(2/3x3)-(1x2)]
1 3 3
= 1x3 + 0 + 0 =3
5 0 1
1 2 2/3 = 5x[(2x1)(3x2/3)] + (-0)x[(1x1)-(3x2/3)] + 1x[(1x3)(3x2)]
3 3 1

= 5x(0) + 0 + 1x(-3) =-3 79
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Unlike in hydrogenic atoms, the 2s and 2p orbitals (and, in general, all subshells of
a given shell) are not degenerate in many-electron atoms. An electron in a many-
electron atom experiences a Coulombic repulsion from all the other electrons present.
[fitis at a distance r from the nucleus, it experiences an average repulsion that can be
represented by a point negative charge located at the nucleus and equal in magnitude
to the total charge of the electrons within a sphere of radius r (Fig. 9.19). The etfect
of this point negative charge, when averaged over all the locations of the electron, is
to reduce the full charge of the nucleus from Ze to Z e, the effective nuclear charge.
In everyday parlance, Z_gitself is commonly referred to as the “effective nuclear charge’.
We say that the electron experiences a shielded nuclear charge, and the difference
between Zand Z s called the shielding constant, ¢

Effective

nuclear charge [9.31]

‘ZEff: Z— o]

The electrons do not actually “block’ the full Coulombic attraction of the nucleus: the
shielding constant is simply a way of expressing the net outcome of the nuclear
attraction and the electronic repulsions in terms of a single equivalent charge at the

centre of the atom.
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The shielding constant is different for s and p electrons e
because they have different radial distributions (see the Figure). \
An s electron has a greater penetration through inner shells N
than a p electron, in the sense that it is more likely to be found

close to the nucleus than a p electron of the same shell (the
wave-function of a p orbital, remember, is zero at the nucleus).
Because only electrons inside the sphere defined by the loca-
tion of the electron contribute to shielding, an s electron
experiences less shielding than a p electron. Consequently, by
the combined effects of penetration and shielding, an s A/
electron is more tightly bound than a p electron of the same ATEERNG

shell. Similarly, a d electron penetrates less than a p electronof ° % & 1216 20

. . . Radius, Zr/a
the same shell (recall that the wavefunction of a d orbital varies e ’
Table 9.2* Effective nuclear charge,

[ W

3p ., '
[ [3s

Radial distribution function, P
-‘"’d{-"'.

as r? close to the nucleus, whereas a p orbital varies as r), and Zo=Z-0C
therefore experiences more shielding. Hement  z  omial  Z,
Shielding constants for different types of electrons in atoms

. . . He 2 Is 1.6875
have been calculated from their wavefunctions obtained by c . N 727
numerical solution of the Schrodinger equation for the atom 2s 3.2166
(see the Table). We see that, in general, valence-shell s 2p 3.1358
electrons do experience higher effective nuclear charges than p ]1

electrons, although there are some discrepancies.



Atomic structure
Penetration and shielding

The consequence of penetration and shielding is that the
energies of subshells of a shell in a many-electron atom (those
with the same values of n but different values of /) in general lie
in the order s < p < d < f. The individual orbitals of a given
subshell (those with the same value of / but different values of
ml) remain degenerate because they all have the same radial
characteristics and so experience the same effective nuclear
charge.

We can now complete the Li story. Because the shell with n =
2 consists of two nondegenerate subshells, with the 2s orbital
lower in energy than the three 2p orbitals, the third electron
occupies the 2s orbital. This occupation results in the ground-
state configuration 1s?2s?!, with the central nucleus surrounded
by a complete helium-like shell of two 1s electrons, and around
that a more diffuse 2s electron. The electrons in the outermost
shell of an atom in its ground state are called the valence
electrons because they are largely responsible for the chemical
bonds that the atom forms. Thus, the valence electron in Li is a
2s electron and its other two electrons belong to its core.

Radial distribution function, P

ATOMI A MOLTI

ELETTRONI

X

-\‘\
A
b

7 \ l-h'\

\ LY
W

3p .,
[ [3s

[ W

1
Al

0 4 8 12 16 20
Radius, Zr/a,

Table 9.2* Effective nuclear charge,

Zeft': Z-0

Element Z Orbital Z g

He 2 Is 1.6875

C 6 Is 5.6727
2s 3.2166
2p 3.1358
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The extension of this argument is called the building-up principle,
or the Aufbau principle, from the German word for building up, which
will be familiar from introductory courses. In brief, we imagine the
bare nucleus of atomic number Z, and then feed into the orbitals Z
electrons in succession. The order of occupation is
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 65
and each orbital may accommodate up to two electrons. As an
example, consider the carbon atom, for which Z= 6 and there are six
electrons to accommodate. Two electrons enter and fill the 1s orbital,
two enter and fill the 2s orbital, leaving two electrons to occupy the
orbitals of the 2p subshell. Hence the ground-state configuration of C
is 1s22s22p?, or more succinctly [He]2s%2p?, with [He] the helium-like
1s? core.

However, we can be more precise: we can expect the last two
electrons to occupy different 2p orbitals because they will then be
further apart on average and repel each other less than if they were
in the same orbital. Thus, one electron can be thought of as
occupying the 2p, orbital and the other the 2p  orbital (the x, y, z
designation is arbitrary, and it would be equally valid to use the
complex forms of these orbitals), and the lowest energy configuration

of the atom is [He]2s?2p* 2pt,. 83
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The same rule applies whenever degenerate orbitals of a subshell are av-ailable for
occupation. Thus, another rule of the building-up principle is:

Electrons occupy different orbitals of a given subshell before doubly occupying any one
of them.

For instance, nitrogen (Z = 7) has the configuration [He]2s*2p*, 2p' 2p’, and only when
we get to oxygen (Z= 8) is a 2p orbital doubly occupied, giving [He]2s*2p?,2p*, 2p?,.
When electrons occupy orbitals singly, we invoke Hund’s maximum multiplicity rule:

An atom in its ground state adopts a configuration with the greatest number of
unpaired electrons.

The explanation of Hund'’s rule is subtle, but it reflects the quantum mechanical
property of spin correlation, that, as we demonstrate in the following Justification,
electrons with parallel spins behave as if they have a tendency to stay well apart, and
hence repel each other less. In essence, the effect of spin correlation is to allow the
atom to shrink slightly, so the electron—nucleus interaction is improved when the spins
are parallel. We can now conclude that, in the ground state of the carbon atom, the two
2p electrons have the same spin, that all three 2p electrons in the N atoms have the
same spin (that is, they are parallel), and that the two 2p electrons in different orbitals
in the O atom have the same spin (the two in the 2p, orbital are necessarily paired).84
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Justification 9.6 Spin correlation

Suppose electron 1 is described by a wavefunction y_(r,) and electron 2 is described
by a wavefunction y,(r,); then, in the orbital approximation, the joint wavefunc-
tion of the electrons is the product ¥'= v, (r,)y,(r,). However, this wavefunction is
not acceptable, because it suggests that we know which electron is in which orbital,
whereas we cannot keep track of electrons. According to quantum mechanics, the
correct description is either of the two following wavefunctions:

Y, = (12" {y, (r)w,(ry) £y (r)y(r,)}

According to the Pauli principle, because ‘¥, is symmetrical under particle inter-
change, it must be multiplied by an antisymmetric spin function (the one denoted
G_). That combination corresponds to a spin-paired state. Conversely, ¥_is anti-
symmetric, so it must be multiplied by one of the three symmetric spin states. These
three symmetric states correspond to electrons with parallel spins (see Section 9.8
for an explanation).

Now consider the values of the two combinations when one electron approaches
another, and r; = r,. We see that ¥_ vanishes, which means that there is zero pro-
bability of finding the two electrons at the same point in space when they have
parallel spins. The other combination does not vanish when the two electrons are
at the same point in space. Because the two electrons have different relative spatial
distributions depending on whether their spins are parallel or not, it follows that
their Coulombic interaction is different, and hence that the two states have different

. 85
energies.
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Esame relativamente dettagliato della configurazione
elettronica degli elementi fino a Kr e di alcuni ioni di metalli
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The minimum energy necessary to remove an electron from a many-electron atom in
the gas phase is the first ionization energy, I, of the element. The second ionization
energy, I,, is the minimum energy needed to remove a second electron (from the
singly charged cation). The variation of the first ionization energy through the peri-
odic table is shown in Fig. 9.22 and some numerical values are given in Table 9.3.
In thermodynamic calculations we often need the standard enthalpy of ionization,
A, H*. As shown in the following Justification, the two are related by

Aion H¥(T) =1, +3RT

Element I,/(k] mol™") I,/(k] mol™)
H 1312

He 2372 5251

Mg 738 1451

Na 496 4562

lonization energy, l/leV

30

20

10

Atomic number, Z

(9.32)
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At 298 K, the difference between the ionization enthalpy and the corresponding
ionization energy is 6.20 kJ mol ™",

Justification 9.7 The ionization enthalpy and the ionization energy

[t follows from Kirchhotf’s law (Section 2.9 and eqn 2.36) that the reaction enthalpy
for

M(g) —» M™(g) +e(g)

at a temperature T is related to the value at T=0 by

T
AH*(T)=A,H*®0)+ J A, CpdT
0
The molar constant-pressure heat capacity of each species in the reaction is %R,
so ACT = +%R. The integral in this expression therefore evaluates to +§R T. The
reaction enthalpy at T'= 0 is the same as the (molar) ionization energy, I,. Equation
9.32 then follows. The same expression applies to each successive ionization step, so
the overall ionization enthalpy for the formation of M** is

AH*T)=1I,+1,+5RT
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The electron affinity, E_,, is the energy released when an electron attaches to a
gas-phase atom (Table 9.4). In a common, logical (given its name), but not universal
convention (which we adopt), the electron affinity is positive if energy is released
when the electron attaches to the atom (that is, E,, > 0 implies that electron attachment
is exothermic). It follows from a similar argument to that given in the Justification
above that the standard enthalpy of electron gain, A, H ¢ atatemperature T'is related
to the electron affinity by

A H(T)=—E,—3RT (9.33)

Note the change of sign. In typical thermodynamic cycles the %RT that appears in
eqn 9.32 cancels that in eqn 9.33, so ionization energies and electron affinities can be
used directly. A final preliminary point is that the electron-gain enthalpy of a species
X is the negative of the ionization enthalpy of its negative ion:

ﬁegHﬁ(X) =—Aion H*(X") Table 9.4* Electron affinities, (9.34)
E /(K] mol™)

Cl 349
E 322
H 73

0 141 O 844 90
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As ionization energy is often easier to measure than electron affinity; this relation can
be used to determine numerical values of the latter.

As will be familiar from introductory chemistry, ionization energies and electron
affinities show periodicities. The former is more regular and we concentrate on it.
Lithium has a low first ionization energy because its outermost electron is well
shielded from the nucleus by the core (Z 4= 1.3, compared with Z= 3). The ionization
energy of beryllium (Z=4) is greater but that of boron is lower than that of beryllium
because in the latter the outermost electron occupies a 2p orbital and is less strongly
bound thanifit had been a 2s electron. The ionization energy increases from boron to
nitrogen on account of the increasing nuclear charge. However, the ionization energy
of oxygen is less than would be expected by simple extrapolation. The explanation is
that at oxygen a 2p orbital must become doubly occupied, and the electron—electron
repulsions are increased above what would be expected by simple extrapolation along
the row. In addition, the loss of a 2p electron results in a configuration with a half-filled
subshell (like that of N), which is an arrangement of low energy, so the energy of O* + ¢~
is lower than might be expected, and the ionization energy is correspondingly low
too. (The kink is less pronounced in the next row, between phosphorus and sulfur,
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because their orbitals are more diffuse.) The values for oxygen, fluorine, and neon fall
roughly on the same line, the increase of their ionization energies reflecting the
increasing attraction of the more highly charged nuclei for the outermost electrons.

The outermost electron in sodium (Z=11) is 3s. It is far from the nucleus, and the
latter’s charge is shielded by the compact, complete neon-like core, with the result that
Zs= 2.5. As a result, the ionization energy of sodium is substantially lower than that
of neon (Z=10, Z,4 = 5.8). The periodic cycle starts again along this row, and the vari-
ation of the ionization energy can be traced to similar reasons.

Electron affinities are greatest close to fluorine, for the incoming electron enters
a vacancy in a compact valence shell and can interact strongly with the nucleus. The
attachment of an electron to an anion (as in the formation of O*™ from O") is invari-
ably endothermic, so E,, is negative. The incoming electron is repelled by the charge
already present. Electron affinities are also small, and may be negative, when an elec-
tron enters an orbital that is far from the nucleus (as in the heavier alkali metal atoms)

or is forced by the Pauli principle to occupy a new shell (as in the noble gas atoms).
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The Schrodinger equation for many-electron atoms is solved
numerically and iteratively until the solutions are self-consistent.

The central difficulty of the Schrodinger equation is the presence of the electron—
electron interaction terms. The pDTential energy of the electrons is

V=- z 2;

The prime on the second sum indicates that  # j, and the factor of one-half prevents
double-counting of electron pair repulsions (1 interacting with 2 is the same as 2
interacting with 1). The first term is the total attractive interaction between the elec-
trons and the nucleus. The second term is the total repulsive interaction between the
electrons; r; is the distance between electrons 7 and j. It is hopeless to expect to find
analytical solutions of a Schrodinger equation with such a complicated potential
energy term, but computational techniques are available that give very detailed and
reliable numerical solutions for the wavefunctions and energies. The techniques were
originally introduced by D.R. Hartree (before computers were available) and then
modified by V. Fock to take into account the Pauli principle correctly. In broad out-
line, the Hartree—Fock self-consistent field (HF-SCF) procedure is as follows.

(9.35)

r:IJrI:ED ; amer;;
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The Schrodinger equation for many-electron atoms is solved
numerically and iteratively until the solutions are self-consistent.

Imagine that we have a rough idea of the structure of the atom. In the Ne atom, for
instance, the orbital approximation suggests the configuration 1s*2s*2p® with the
orbitals approximated by hydrogenic atomic orbitals. Now consider one of the 2p
electrons. A Schrodinger equation can be written for this electron by ascribing to it
a potential energy due to the nuclear attraction and the repulsion from the other
electrons. This equation has the form

H(1)y,,(1) + V(other electrons) y, (1)
— V(exchange correction) '#fzp(l )= E2IJ %P(l ) (9.36)

Although the equation is for the 2p orbital in neon, it depends on the wavetunctions
of all the other occupied orbitals in the atom. A similar equation can be written for the
1s and 2s orbitals in the atom. The various terms are as follows:

* The first term on the left is the contribution of the Kinetic energy and the attrac-
tion of the electron to the nucleus, just as in a hydrogenic atom.

* The second term takes into account the potential energy of the electron of
interest due to the electrons in the other occupied orbitals.

* The third term is an exchange correction that takes into account the spin correla-
tion effects discussed earlier.
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The Schrodinger equation for many-electron atoms is solved
numerically and iteratively until the solutions are self-consistent.

H(1)yy,(1) + V(other electrons) y, (1)
— V(exchange correction) y;,(1) = E; y5, (1) (9.36)

There is no hope of solving eqn 9.36 analytically. However, it can be solved numeric-
ally if we guess an approximate form of the wavefunctions of all the orbitals except 2p.
The procedure is then repeated for the other orbitals in the atom, the 1s and 2s
orbitals. This sequence of calculations gives the form of the 2p, 2s, and 1s orbitals, and
in general they will differ from the set used initially to start the calculation. These
improved orbitals can be used in another cycle of calculation, and a second improved
set of orbitals is obtained. The recycling continues until the orbitals and energies
obtained are insignificantly different from those used at the start of the current cycle.
The solutions are then selt-consistent and accepted as solutions of the problem.

Figure 9.23 shows plots of some of the HF-SCF radial distribution functions for
sodium. They show the grouping of electron density into shells, as was anticipated by
the early chemists, and the differences of penetration as discussed above. These SCF
calculations therefore support the qualitative discussions that are used to explain
chemical periodicity. They also considerably extend that discussion by providing

detailed wavefunctions and precise energies.
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The Schrodinger equation for many-electron atoms is solved
numerically and iteratively until the solutions are self-consistent.

Figure 9.23 shows plots of some of the HF-SCF radial distribution functions for
sodium. They show the grouping of electron density into shells, as was anticipated by
the early chemists, and the differences of penetration as discussed above. These SCF
calculations therefore support the qualitative discussions that are used to explain
chemical periodicity. They also considerably extend that discussion by providing
detailed wavefunctions and precise energies.
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Radial distribution function, P
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Studiamo solo lo schema di accoppiamento di Russel-Saunders.

COSA GLI STUDENTI DEVONO ESSERE IN GRADO DI FARE CON |
TERMINI SPETTROSCOPICI

* Saper contare il numero di microstate rappresentati da una
certa CONFIGURAZIONE ELETTRONICA.

* Conoscere il significato della notazione (del tipo *P;/,) e saper
associare i corretti valori dei numeri quantici L, S, J ai termini
spettroscopici.

* Saper prevedere il termine spettroscopico per configurazioni
elettroniche semplici in cui non ci sono TERMINI eliminate
dal principio di esclusione di Pauli.

 Conoscere le regole di selezione per atomi a molti elettroni:
. . oo 98
quali sono e che cosa significano.
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The structures of many-electron atoms

15 1P 1D 1F I 35 HF E-D :JF

Energy/eV

20

-24.67

i 7
: Aélﬁ

1083 He :

Stato fondamentale 1s?
Uno degli stati eccitati 7s' 2s?

Part of the Grotrian diagram for

a helium atom. Note that there are no
transitions between the singlet and
triplet levels.
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Singlet and triplet states

La combinazione degli spin di due elettroni avviene secondo le regole
della meccanica quantistica (1 simboli in grassetto indicano vettori )

S
S| S %0 SMSZ S=0
3
In ogni caso valgono le relazioni S=s, *s,

SZ — Szl + Sz2

Le funzioni di spin per due elettroni sono autofunzioni degli operatori
dello spin totale S? e S, definiti come segue

( +8,)7 =82 +8,7+28,§,
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triplet state

When two electrons have parallel spins, they
have a nonzero total spin angular momentum.
There are three ways of achieving this resultant,
which are shown by these vector
representations.

Note that, although we cannot know the
orientation of the spin vectors on the cones, the
angle between the vectors is the same in all
three cases, for all three arrangements have the
same total spin angular momentum (that is, the
resultant of the two vectors has the same length
in each case, but points in different directions).
Compare this diagram with Fig. 9.18, which
shows the antiparallel case. Note that, whereas
two paired spins are precisely antiparallel, two

‘parallel’ spins are not strictly parallel. 02
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Singlet state

Electrons with paired spins have zero
resultant spin angular momentum.

They can be represented by two vectors
that lie at an indeterminate position on the
cones shown here, but, wherever one lies
on its cone, the other points in the opposite
direction; their resultant is zero.

103



Atomic structure The structures of many-electron atoms

Spin-orbit coupling :

p=218

Angular momentum gives rise to

a magnetic moment (). For an
electron, the magnetic moment is
antiparallel to the orbital angular
momentum, but proportional to it.
For spin angular momentum, there
is a factor 2, which increases the
magnetic moment to twice its
expected value.

Low
(b) energy | =

Spin-orbit coupling is a magnetic
interaction between spin and orbital
magnetic moments. When the angular
momenta are parallel, as in (a), the
magnetic moments are aligned
unfavourably; when they are opposed, as
in (b), the interaction is favourable. This
magnetic coupling is the cause of the
splitting of a configuration into levels.
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Spin-orbit coupling

The coupling of the spin and

orbital angular momenta of a d electron
(/= 2) gives two possible values of j
depending on the relative orientations
of the spin and orbital angular momenta
of the electron.
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Spin-orbit coupling

Metallo alcalino (Li, Na, K, ...):

Stato fondamentale [g.n.] ns’
Uno degli stati eccitati [g.n.] np?

++hcA
2p'

>
\‘J

= YoheA{jG + 1) -I( + 1) - s(s + 1)}

L,s,j

Energy

—lhcﬂi-'-‘-x —]HE—%K }_—.in,il.

J'_
—hcA

The levels of a 2P term arising
from spin-orbit coupling. Note
that the low-j level lies below
the high-j level in energy.
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Struttura Atomica Atomi a 2 o piu elettroni

Momento angolare orbitale TOTALE [, per atomi a 2 o piu elettroni

Diversi possibili modi di sommarsi di 2 momenti angolari con numeri quantici fl=2 e £ 5 =1
per dare il momento angolare totale con numero quantico L =3, 2, 1.

L=1L+1L,1,+,-1,...,];-1,|] METODO GENERALE

Il numero quantico L puo avere solo valori interi >0 108



Struttura Atomica Atomi a 2 o piu elettroni

Momento angolare orbitale TOTALE L per atomi a 2 o piu elettroni

L:0 1 2 3 4 5 6
S P D F G H 1
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Struttura Atomica Atomi a 2 o piu elettroni

Momento angolare di spin TOTALE S per atomi a 2 o piu elettroni
$=Y'5 S.=Ys.,=Mgh=) mh

12

5| =

-

numero quantico S del vettore somma S

S=8,+8,,8,+ts,-1,...,]|8,-5,| METODO GENERALE
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Atomi a 2 o piu elettroni

Struttura Atomica

Momento angolare orbitale TOTALE L L =2

o)
Il
~

Momento angolare di spin TOTALE §

Gl stati possibili vengono raggruppati in modo da avere lo
stesso valore

del numero quantico S,

del numero quantico L

¢ del numero quantico J

Termini spettroscopici 2S5+1 TJ
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Termini spettroscopici 2S+1 TJ

2S+1 = molteplicita di spin
T puoessere S,P,D,F, ......
J ¢ 1l numero quantico del momento angolare totale (moto orbitale + spin)

J=L+S, L+S-1, L+S-2, ..., |L-S|
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Struttura Atomica

S=1/2 L=0 2
J=1/2

S=1/2 L=1 | 2
1=3/2

S=12 L=1 | 2
I=1/2 P

S=1/2 L=2
1=5/2 ¢ 32 2D5/2 2D3/2

S=1/2 L=3
=712 e 5/2 2F7/2 2F5/2

E L1000 20




Struttura Atomica Selection rules

U ¢ =—eJ Viey. dt

For a one-electron atom u is multi-
plication by -er with components x4, =-ex, |AL=0, £ 1
K, =-ey,and yu, = - ez. If the transition Al =+1
dipole moment is zero, the transition is
forbidden; the transition is allowed if the AS=0
transition moment is non-zero. Al=0,x1

ma J=0 <> J=0 ¢ proibita

H, g = _BJ Wizy, dT

And similar expressions for x4, and 4,
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