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A SIMPLE, DIRECT PROOF OF UNIQUENESS
FOR SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS

OF EIKONAL TYPE

HITOSHI ISHII

ABSTRACT. We present a new, direct proof of the uniqueness theorem for a

class of Hamilton-Jacobi equations including the eikonal equation in geometric

optics.

0. Introduction. This paper is devoted to the study of Hamilton-Jacobi equa-

tions of the form

(0.1) H{x,u,Du)=0   infî,

where 0 is an open subset of RN, H: fixRxR^ —> R, u G C{Q), and Du denotes

the gradient of u. In the case where the Hamiltonian H{x, u, p) is strictly increasing

in u, the theory of uniqueness of a generalized solution of the Dirichlet problem

for equation (0.1) has been well developed since the introduction of the notion of

viscosity solution by M. G. Crandall and P. L. Lions [2]. We refer the reader to

M. G. Crandall and P. L. Lions [2, 3] and H. Ishii [5, 6] for this development.

A typical example of Hamilton-Jacobi equations is the eikonal equation in geo-

metric optics

(0.2) \Du\ = n{x),

where n G C{Q) and n{x) > 0 on fl. Here the Hamiltonian H{x,u,p) = \p\ — n{x)

is independent of u, and so the uniqueness of a viscosity solution of the Dirichlet

problem for (0.2) is not a direct consequence of the uniqueness theory mentioned

above. It is usually deduced from the uniqueness theory after converting equation

(0.2) into equation (0.1) with a strictly increasing Hamiltonian H{x,u,p) in u via

a transformation of the unknown (a device of S. N. Kruzkov [9]). Indeed, if u is

a viscosity solution of (0.2), then the function v = —e~u is a viscosity solution of

n{x)v + \Dv\ — 0. We refer the interested reader to Kruzkov [9], and P. L. Lions

[10] and [2] for the details of this approach.

The main purpose here is to present a new, direct proof of the uniqueness theorem

for a class of Hamilton-Jacobi equations including (0.2) as a special case in the

framework of viscosity solutions. §1 contains comparison results which yield the

desired uniqueness theorem. An example of application of our comparison theorem

is presented in §2. Our techniques are also useful in proving the rate of convergence

of the vanishing viscosity method. This subject will be discussed in [7].
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We do not recall here the definition and basic properties of viscosity solutions

and instead refer the reader to M. G. Crandall, L. C. Evans, and P. L. Lions [1]

and [2].

1. A comparison theorem. We call a function m: [0, oo) —> [0, oo) a modulus

if it is continuous, nondecreasing, and satisfies m(0) = 0.

The following hypotheses on H will be used.

(HI) The function: u —* H{x,u,p) is nondecreasing on R for each {x,p) G

ílxRN.

(H2) There is a modulus m such that

H{y, u, \{x - y)) - H{x, u, \{x - y)) < m{X\x - y\2 + \x - y\)

for A > 0 and x,y GÜ.

LEMMA 1. Let U be a bounded open subset of£LN and f G C(fi) satisfy f{x) < 0

for x Gil. Assume (HI) and (H2) hold. Let u,v G G(Q) satisfy

(1.1) H{x,u,Du)< f{x)    and    H{x,v,Dv)>0    in Q

in the viscosity sense. If u < v on dfl, then u < v on Q.

REMARK 1. It is possible to weaken condition (H2) in Lemma 1. Indeed, it is

enough to assume the following (H2)' instead of (H2).

(H2)' For each R > 0 there is a modulus mj¡ such that

H{y, u, \{x - y)) - H{x, u, \{x - y)) < mR{X\x - y\2 + \x - y\)

for A > 0, x, y G fi, and it G R with |u| < R.
A more important remark is this: If in addition it is assumed in Theorem 1.1

that u G W1'°°{Q) or u G W1,00(fi), then assumption (H2) can be replaced by the

following (H2)".

(H2)" For each R > 0 there is a modulus ma such that

H{y, u, \{x - y)) - H{x, u, \{x - y)) <mR{\x-y\)

for A > 0, x, y G Vl, and u G R with \\x — y\ < R and \u\ < R.

PROOF. If supn(tt - v) > 0, then we get a contradiction by following, e.g., the

proof of [1, Theorem 2.1 or 3, Theorem 2] because / < 0 in fî.    Q.E.D.

To continue, we need the following assumptions.

(H3) There is a function tp G C1^) D G(H) such that

sup{H{x,u, Dip{x))\x G oj,u G R} < 0    for all w CC fi.

(H4) The function p —> H{x,u,p) is convex on RN for each {x,u) G Cl X R.

THEOREM 1.   Assume (HI) - (H4). Let u,v G G(H) satisfy

(1.2) H{x, u, Du) < 0    and    H{x,v,Dv)>0    in fl

in the viscosity sense. Assume also u < v on dfi.  Then u < v on U.

REMARK 2. This is a viscosity solution version of the uniqueness theorem of

S. N. Kruzkov [9] and is essentially due to S. N. Kruzkov (see also [2, 10]). Our

proof is, however, simple, direct, and different from that of [2, 9, 10]. An example

of application of Theorem 1 with <p{x) ̂  0 is presented in §2.
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REMARK 3. It is enough to assume the following (H3)' in place of (H3) in

Theorem 1 as the proof below shows.

(H3)' For any R G R there isa^G G*(fi) n G(fi) such that

sup{if(z, R,DipR{x))\x G w} < 0   for all u> CC Q.

If the function {u,p) —> H{x,u,p) is convex, then (H3) can be replaced in Theorem

lby
(H3)" There is a function <p G G1 (il) n C(fi) such that

sup{ü(x, ip{x), Dip{x))\x £w}<0    for all w CC 0.

REMARK 4. It is possible to replace the convexity assumption (H4) by the next

(H4)' in Theorem 1.

(H4)' There are functions a and ß on (0,1) satisfying a{6) > 0 and ß{6) > 0 for

0 < 6 < 1 such that

H{x,u,6p+{l- 6)D<p{x)) < a{6)H{x,u,p) + ß{6)H{x,u,D<p{x))

for x G fi, u G R, 9 G (0,1), and p G RN, where <p is from (H3).

For instance, consider the Hamiltonian H{x,u,p) — h{p) — n{x), where h G

C{RN) and n G G(fi). Clearly (HI) and (H2) are satisfied. Assume n{x) > 0 for

x G fî and that h is positively homogeneous of degree m > 0, i.e., h{Xp) — Xmh{p)

for A > 0 and pGRN. Then (H3) and (H4)' are satisfied with <p{x) = 0, a{6) = 6m,
and ß{6) = l-ôm.

REMARK 5. Remarks analogous to Remark 1 are valid to Theorem 1.

PROOF. Let 0 G (0,1), and set

ug{x) = 0u{x) + (1 -9)<p{x)    for z GO.

In view of (H3) we can choose / G G(fi) such that H{x,r,D<p{x)) < f{x) < 0 for

x G fi and r G R. Replacing p by <p — M with M > 0 if necessary, we may assume

<p < u on fi. Then we see that ug < u on fi and ug G G(fi). A formal calculation

reveals that

H{x, ug, Dug) < 0H{x, ue, Du) + (1 - 6)H{x, ue, D<p)

< 6H{x,u,Du) + {1~ 6)f{x) < (1 - e)f{x).

Here we have used (H4), (HI) and (1.2). Indeed, it is not hard to see that

H{x,ug,Dug) < (1 — 0)f{x) in fi in the viscosity sense. Now Lemma 1 guarantees

that u$ < v on fî for 0 < 9 < 1. Thus we conclude that u < v on fi.    Q.E.D.

2. An application. The Dirichlet problem

,     s j a{x)Du ■ Du — b{x) ■ Du = 0   in fi,

*■ ' ' y u{x) = g{x) on <9fi

arises, e.g. in the study of large deviations or elliptic singular perturbation problems

(see L. C. Evans and H. Ishii [4], S. Kamin [8] and references therein). Here fi is an

open bounded subset of RN, a G G(fi; MNxN), where MNxN denotes the space of

NxN matrices, the dot "•" stands for the Euclidean inner product, b G C(fi;RN),

and g G C{dVl).
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We make the following assumptions:

(Al) There is a constant 6 > 0 such that

a{x)t-t:> |£|2    for x G fi and £ G Rw.

(A2) There is a function ip G C^fi) such that

b{x) ■ Dtp{x) > 1    for x G fi.

Observe that if u G G(fi) is a viscosity subsolution of (2.1) and (Al) holds, then

u satisfies

(2.2) \Du\2 <C   in fi

in the viscosity sense for some positive constant G (see [2, Theorem 1.14]).

THEOREM 2. Under the assumptions above, problem (2.1) has at most one

viscosity solution in the class G(fi).

REMARK 6. An assumption like (A2) appears in [8]. The above uniqueness

assertion has been proved via the representation formula for the viscosity solution

of (2.1) under somewhat stronger regularity assumptions in [4]. In [4] the following

assumption is used instead of (A2).

(A2)' If x{-) G H{oc{[0, oo); RN) and x{t) G fi for all t > 0, then

|2

dt — oo.
/Jo

ft{t)-b{x{t))

Note that (A2)' is equivalent to (A2). For the proof of this equivalence we refer

the reader to [7].

Proof. Set

H{x,u,p) = a{x)p-p - b{x) ■ p   for {x,u,p) G fi x R x RN.

Clearly H satisfies (HI), (H2)", and (H4).  Moreover, if e > 0 is chosen so small

that ea{x)Dyj{x) ■ D%[>{x) < ^ for all a; G fi, then we have

H{x,u,eDvb{x)) = e{ea{x)Dip{x) ■ Dyb{x) - b{x) ■ Dyj{x))

< -e/2   for x G fi by (A2).

Therefore (H3) holds for <p = evb with e > 0 sufficiently small. Taking account of

Remark 4, we apply Theorem 1.2 to get the conclusion.    Q.E.D.
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