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Abstract. An approximation of the Hamilton-Jacobi-Bellman equation con- 
nected with the infinite horizon optimal control problem with discount is 
proposed. The approximate solutions are shown to converge uniformly to the 
viscosity solution, in the sense of Crandall-Lions, of the original problem. 
Moreover, the approximate solutions are interpreted as value functions of 
some discrete time control problem. This allows to construct by dynamic 
programming a minimizing sequence of piecewise constant controls. 

1. Introduction 

The Hamilton-Jacobi equation 

l <~d<<.m i = l g  i ~-~ixi - f d = 0 i n R " ,  (HJ) 

arises (see, for example, Fleming-Rishel [8], Lions [12]) as the optimality condi- 
tion for the infinite horizon discounted optimal control problem 

I n f { f S f ( y x ( s  ) , a ( s ) ) e - x s d s l a : [ O , + ~ [ ' ( 1 , . . . ,  m},ameasurable} ,  

(CP) 
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where yx(S) is defined by the controlled differential equation 

dy = g (y ( s ) , a ( s ) )  
ds 

y(O) = x. (ODE) 

It is well known (see [8]) that the dynamic programming techniques cannot be 
made fully rigorous for the problem at hand, due to the fact that (H J) does not 
have, in general, a C 1 solution. 

A new notion of generalized solution for Hamilton-Jacobi equations has been 
recently introduced by Crandall-Lions [6] (see also Crandall-Evans-Lions [5]). 

Namely, a bounded uniformly continuous function u is called a viscosity 
solution of (HJ) provided for each q5 ~ CL(R n) the following hold: 

( i )  i f  u - q~ attains a local maximum at x 0, then 

Max [ ~tu ~ d OdP } -- gi  ~ --  f d  ~ 0 a t x  0 
I<~d<~m ( i=1 

(ii) if u - ~ attains a local minimum at Xl, then 

Max (~u k dO~p } u x  i -- gi -ffZ-.. _ fd >~ 0 a t x  1. 
l~d~<m ~ i = l  

The above definition, while not requiring u to be differentiable at any point, 
is strong enough, however, to ensure uniqueness of the solution (see [5, 6]). 

On the other hand, a viscosity solution of (H J) can be constructed as the 
uniform limit as e ",~ 0 of the solutions of the second order elliptic problems 

- e A u  ~ + Max )tu ~ - 5" d OU 
l ~ d ~ m  i~=lg i ~xi _ fd = O, 

for which a priori estimates are obtained via the maximum principle, (see [5, 6, 
12]). 

The purpose of this paper is to show how the viscosity solution of (H J) can be 
constructed by means of a completely different approximation procedure, which 
makes no use of PDE methods. 

Namely, we consider the approximate equations 

Max 
l<~d~m 

Xh)u (x + hf (x)) = o, 

x C R n, h > 0 (H J) h 

and show by the contraction mapping theorem that (H J) h has, for sufficiently 
small h, a unique bounded, HOlder continuous solution u h. Uniform a priori 
estimates on u h and their HOlder seminorms allow us then to show that u h 
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converges locally uniformly, as h ",a 0, to a function u, which solves (H J) in the 
viscosity sense (see Sect. 2). 

A final section is devoted to the application of the above result to the optimal 
control problem underlying (H J). More precisely, the functions u h are interpreted 
as values of some discrete time control problems and, by means of rigorous 
dynamic programming techniques (see Bertsekas-Shreve [1]), optimal discrete 
feedback controls are designed. These approximated controls are shown to form a 
minimizing sequence for the original problem. A key role in this is played by the 
remark (see Lions [12]) that the viscosity solution of (HJ) is in fact the value 
function for problem (CP), 

The approximation considered in the present paper has been used in the 
particular case of the optimal stopping time problem by Capuzzo Dolcetta-Matzeu 
[3] (see also Capuzzo Dolcetta-Matzeu-Menaldi [4], Gawronski [9], Goletti [10]). 
The methods of this paper are, however, different and the convergence proof 
simplified, due to the use of the viscosity solution notion. 

2. The Approximate Equations 

We shall assume in the following that 

I g f f (x ) -  g/a(x')l < L I x -  x '  I, Igff(x)l ~< t 

for some constant L > 0, fo ra l lx ,  x '  ~ R ~, 

d ~ (1 . . . . .  m),  i = 1 , . . . , n .  

I f d ( x ) -  fa(x')l << D I x -  x'lL Ifd(x)l ~< D 

for some constants D > O, 

for all x 

h > O .  

v e [ 0 , 1 ] ,  x' e R", 

(2.1) 

d ~ (1 . . . . .  m) (2.2) 

A more natural approximation would be 

Max ( X h u h ( x ) - - ( u h ( x ) - - u h ( x + g a ( x ) h ) ) - - h f d ( x ) )  = 0; 
I <~ d ~ rn 

the choice of (H J) h is, however, more convenient since it suggests immediately the 
way of proving the existence of solutions (see Theorem 2.1 below). 

X ~  n . 

(H J) h 

Let h > 0 be parameter and consider the following approximation of (H J): 

Max (uh(x )  - (1 - h h ) u h ( x  + gd (x )h ) - -  h fd (x ) )  = O, 
l <~ d <~ m 

(2.3) 
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We shall denote by X the space of bounded, H61der continuous functions on 
R", normed by 

I v ( x , ) - v ( x 2 ) l  
Ilvllx = s u p l v ( x ) l +  sup , Y ~ [0,1]. (2.4) 

x x,~x2 Ix1 - x21 ~ 

We shall also employ the notation 

Iv(x,)-v(x2)l 
[vl0, v = sup 

x~x2 [ x l - x 2 ]  v 

Theorem 2.1. 
1 

[0, ~ [  . Moreover, the following estimates hold: 

D 
supluh(x)] ~< --~-, 

x 

luh(x , ) -u~(x~) l  D 
sup Ixl - -  X 2 [  Y ~ 7~ -- 3'L" 

X 1 =~ X 2 

I f  X > yL, then (HJ) h has a unique solution uh ~ X for any h 

(2.5) 

(2.6) 

Proof Let us observe that (HJ) h is equivalent to the fixed point equation 

uh(x) = Tuh(z) ,  x ~ n °, (2.7) 

where T is defined by 

Tv(x)  = Min ( ( 1 - X h ) v ( x + g a ( x ) h ) + h f a ( x ) ) ,  x ~ R". (2.8) 
l <~ d <~ m 

Let v, ~ ~ X and choose d, cl (depending on x)  such that the minimum in 
(2.8) is attained. Then 

T v ( x ) -  TOg(x) = ( 1 -  Xh)[v (x  + g a ( x ) h ) - ~ ( x  + gg(x)h)]  

+ 

~< (1 - ~h)  suPl(v - e ) (x) [ ,  
x 

and, symmetrically, 

T ~ ( x ) -  Tv(x)  <~ ( 1 - h h ) s u p [ ( v - ~ ) ( x ) [ .  
x 
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Therefore, 

s u p l T v ( x  ) - TiS(x)l ~< ( 1 -  Xh)supl(v  - i3)(x)l. (2.9) 
X X 

Hence, by the contraction mapping principle there exists a unique bounded 
function u h satisfying (HJ) h. Let us show now that u h belongs in fact to X. Let us 
observe at this purpose that for every v ~ X the following inequality holds: 

T v ( x , ) -  T v ( x 2 )  = ( 1 -  X h ) [ v ( x i  + g d ' ( x l ) h ) - v ( x  2 + g d 2 ( x 2 ) h ) ]  

+ 

(1 -  Xh) [v(x ,  + + 

+ 

(1 - Xh ) l v l o ,~ , (1  + L h  ) ~'lx~ - x21 ~' + h D I x ~  - x21",  

where dl, d 2 are such that the minimum in (2.8) is attained. 
Hence, by symmetry, 

Irvl0,v ~< (1 - Xh)(1 + Lh)~'lvlo,~, + hD. (2.10) 

hD 
Since X > 7L, the number C h = 1 - (1 - Xh)(1 + L h )  ~ is strictly positive and 

it is easy to check that 

ITvlo,  r ~< Ch, (2.11) 

for every v ~ X with Ivlo, v ~< C h. 
Therefore, the iterates T " u  o starting from any u 0 with luol0,v ~< C h converge 

to the unique solution u h ~ X of (HJ) h. 
The right-hand member of (2.11) is a decreasing function of h > 0. Hence, 

hD h lu Io,~ ~ lim 
h-->O + 1 - ( 1 - X h ) ( l + L h )  v 

and (2.6) is proved. 
From the inequality 

IZuh(x)l ~ (1 - X h ) s u p l u h ( x ) l  + hD, 
X 

it follows at once that 

X h s u p l u h ( x ) l  <~ hD, 
X 

and this proves (2.5). 

D 

X - 7L  

[] 
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The next result provides the identification of the limit as h ".~ 0 of u h as the 
viscosity solution of (H J). 

Theorem 2.2. As h ",~ 0, u h ~ u locally uniformly in ~n  where u is the viscosity 
solution of (H J). 

Proof In view of Thm. 2.1 and the Ascoli-Arzelh compactness criterion, there 
exists a subsequence hp ",~ 0 as p ~ + o¢ and a function u ~ X such that 

uh~ ~ U a s p  ~ + oo, locally uniformly in R n. (2.12) 

We shall prove now that u solves (H J) in the viscosity sense according to the 
definition of Sect. 1. To see this, let us take q, c CI(R n) and assume x 0 is a local 
maximum for u - q~. 

We may assume (see [2]) that there exists a closed ball B centered at x o such 
that 

( u - q ~ ) ( X o )  > ( u - q ) ( x ) ,  f o r a l l x  ~ B. (2.13) 

Let now x0h~ be a maximum point for uh, -- q~ over B; from (2.12) and (2.13) it 
follows that 

x0h" ~ X0, a s p  ~ +o0.  (2.14) 

Then, by (2.1) and (2.14), for any d ~ (1 . . . . .  m) the point x~, + gd(x~p)hp is 
in B, provided p is large enough, and therefore 

d ~ ( 1 , . . . , m ) .  (2.15) 

Now (2.15) and (HJ)hp yield 

0 =  Max ( u h P ( X h o , ) - - ( 1 - - X h p ) u h , ( x ~ P + g d ( x ~ p ) h p ) - - h p f a ( x ~ , ) )  
l <~ d <~ m 

>~1 <~MdaXrn( (p( X~P)--q~(Xhop 4- gd(x~p)hp  ) 

4- )khplghp(xhOP 4- gd(xhoP)hp)-- hpfd(xhOP)). (2.16) 

Since q~ ~ Ct(R") ,  from (2.16) it follows that 

0 >  
l <~ d <~ rn i = 1 0 x i \  

+ Xuh (x p + (2.17) 
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for some flpa ~ [0, 1]. Using (2.12) and (2.14), we can pass to the limit in (2.17) as 
p ~ + oo. This shows that part (i) of the definition of viscosity solution is satisfied 
by u. 

The same argument applies with obvious modification to case (ii). 
Since the viscosity solution of (H J) is unique (see [5, 6]) we have also that 

U h ~ U as h "~ O, and the proof is complete. [] 

Remark 2.1. If (2.2) holds with ~, = 1 and X > L, then u = lim u h is Lipschitz 
h ~ 0  

continuous. Hence, by Rademacher's Theorem, u solves (H J) almost everywhere 
(see [6]). 

Remark 2.2. The above results apply to the optimal stopping time problem. To 
see this it is enough to augment (H J) by setting 

g m + l ( X ) = 0  x ~ R "  

ira+ l(x) = ~p(x) 

where the stopping cost + is a given function satisfying (2.2). This problem has 
been studied by Menaldi [13] (see also [3]) in the case where the control does not 
affect the dynamics (i.e., gd(x) = g(x),  d = 1 . . . .  , m). 

3. Interpretation of the Approximate Solutions 

In this section we interpret the previous results in terms of the optimal control 
problem (CP). 

Let us associate to every control ~x(-) a vector Yk = y~(kh) by the recursive 
formula 

Yk+l = Yk + gdk(yk)h,  k = 0 ,1 ,2 . . .  

Y0 = x, (ODE) h 

where 

d k = a (kh ) ,  k = 0 ,1 ,2 . . .  (3.1) 

and a cost 

Jxh(a(.)) = h ~_~ fdk ( y~ ) (1 - -~h )  ~ (3.2) 
k = 0  

Define also a function d~' : R" --* (1, . . . ,  m} by setting 

d~(x)  = Min(a  ~ (1, . . . ,  m)luh(x)  = ( 1 -  Xh)uh (x  + g d ( x ) h ) + h f d ( x ) )  

(3.3) 
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° and denote by a h ( ) the control 

a~(s) = dZ(yk),  s ~ [ k h , ( k + l ) h ) ,  k = 0 ,1 ,2 . . .  (3.4) 

Proposition 3.1, The solution u h of (HJ) h satisfies 

(i) uh(x)  <~ J h ( a ( ' ) ) ,  VX ~ R", Va(-)  

(ii) uh(x)  = J~(a'~(.)), Vx ~ R n. 

Proof It is convenient to use the equivalent formulation (2.8) of (H J) h. Choose 
any a( . )  and set d~ = a(kh). From (2.8) it easily follows that 

p - I  

Uh(X) ~ ( 1 - ? t h ) e u h ( y p ) + h  ~_, fdk (y~) (1 - -? th )k ,p  = 1,2, . . . ,  (3.5) 
k=O 

where Ye is given by (ODE) h. 
Since u h is bounded and 0 < 1 -  ~h < 1, (i) follows from (3.5) by letting 

p --9 + oo. 
To prove (ii) it is enough to observe that the particular choice (3.3), (3.4) 

yields equality in (3.5) for every p. [] 

Remark 3.1. If f d >1 O, (d = 1 . . . . .  m), the iteration 

U l(X) =- o 

u ~ + , ( x ) =  Min ( ( 1 - 2 ~ h ) u ~ ( x + g a ( x ) h ) + k f a ( x ) )  
I <~ d <~ m 

converge monotonically increasing as p ---, + oo to the solution u h of (H J) h. 
h are the The same argument of the proof of Prop. 3.1 shows that the iterates Up 

value functions for the truncated costs 

p - I  

= h E fdk(Yk)(1--Xh) k, 
k = 0  

p = 1,2 . . . . .  

As a consequence of the above proposition and Thin. 2.2, we have that 
Jxh(a~(.)) converges locally uniformly, as h ",~ 0, to the viscosity solution u of (HJ) 
which, in the present setting, is the value function of problem (CP), (see [2, 12]). 
We have therefore proved the following 

Proposition 3.2. Let a~(. ) be the control deft'ned by (3.3), (3.4). Then, as h ",~ O, 

fx,(a,~(.)) ~ in.~j:,(o~(.)) locallyuniformlyinR n, (3.6) 
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where 

Jx(a( - ) )  = fo°~f(yx(s),a(s))e-XSds. (3.7) 

It turns out that a~(. ) is in fact a minimizing sequence for the cost functional 
(3.7). 

Theorem 3.1. Let ~( . )  be the control defined by (3.3), (3.4). Then, 

J~(a~ ( ' ) )  ~ I n f J x ( a ( . ) ) ,  ash ",~ O. (3.8) 
,~(.) 

Proof. For every T > 0 and h > 0 we have 

~ h [ T / h ] - I  f o T f  E fdZ ( y k ) ( l _ X h ) k _  (y~(s),a~(s)e-X, ds 
k = O  

+ h +~ f-° e-XSds E fd~(Yk)(1--Xh)kl+l f(Yx(S),a~(S)) 
aT k = [T/h]  

(3.9) 

where [T/hi denotes the largest integer less or equal than T/h. 
Hence, for every e > 0  

I J 2 ( a ~ ( . ) ) - J x ( a ~ ( - ) ) l  ~< E(h,T)+2e, (3.10) 

for T large enough, where 

= h Ir /h l - l  ) k f r  ~ ds E(h , r )  y" faZ (yk)(l_Xh _ f(yx(s) ,a~(s))e- 
J0 k = 0  

(3.11) 

From (3.4) it follows that 

T/• 
m 

[ I f ( k  + E( h,T) = bh[ fd~ ( yk)(1-- hh ) k -  fd~ (y~(s))e- Xs] ds 
k = 0 ¢kh 

(3.12) 

T 

- "[fT/hlhf(Y~(S)' c~(s))e -X*ds. 
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Hence,  taking (2.1) and  (2.2) in to  account ,  

[ T / h i -  1 [Jyk-yx(s)l ( 1 -  xh) k 
k = 0  " k h  

+ [ ( 1 -  )~h) ~ - e-XSl] ds + D ( T - [ T / h ] h ) .  

I t  is wel l -known (see Henr ic i  [11]), that  

[ Y k -  Yx(S)[ ~< Crh 

[ ( 1 - ) ~ h )  k -  e - a S  I ~< Crh, 
# 
,J 

for some posi t ive  cons tan t  C T. 
Therefore,  (3.13) and  (3.14) yield 

E ( h , T )  <~ DCr[T /h]h (hr+h)+  D ( T - [ T / h ] h )  

which implies,  since [T/h]h --, T as h ",~ 0, that  

E ( h , T )  ~ 0 a s h  ",~ 0. 

Hence,  by  (3.10), 

Jtx'(a~(.))-J~(aZ(-)) --, 0 a s h  "~ 0 

and  the s ta tement  is proved,  taking Propos i t ion  3.2 in to  account .  

I. Capuzzo Dolcetta 

(3.13) 

s ~ [ k h , ( k + l ) h ] , k  = 0,1 . . . .  , [ T / h ] - I  

(3.14) 

[] 
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