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1. INTRODUCTION 

GIVEN a function H: R”+ R, we consider the Hamilton-Jacobi equation 

U, + H(Du) = 0 (1.1) 

in R T” = W” x(0, 2). This PDE admits a particularly simple class of solutions, namely the 
linear functions 

cu*x-M(a)+/3 (1.2) 

for fixed CY E W”, /3 E W. Hopf in [g] addresses the possibility of constructing more general 
solution of (1.1) as an envelope of (1.2) as (Y and p vary appropriately. He investigates the 
initial value problem 

Uf + H(Du) = 0 in RI- 9 

u(*,O) =ug(*) on 

where ua: R”-+ R is given, and proposes two formulas 

(i) u(x, t) = inf sup{u0(2) + y * (X - z) - M(y)} 
2 Y 

and 

I W”, 

for the solution: 

(1.3) 

(ii) u(x, t) = sup inf{ua(z) + y . (X - z) - tH(y) }. 
Y I 

(Here and elsewhere unless otherwise noted the “inf” and “sup” are taken over R”.) Notice 
that (i) and (ii) differ only in the interchange of the inf and the sup, and that each expression 
in the braces { } has the form (1.2). Consequently we expect u given by either formula to solve 
(1.1) a.e. and so be a candidate for a weak solution of (1.3). Indeed, under the basic 
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assumptions for (i) that H be conves and for (ii) that I(I) be convex. Hopf demonstrates ;hat 
these formulas do in fact yield in some sense reasonable generalized solutions of (1.3)+. 

What is missing, however, in his analysis is a good notion of a weak solution of (1.3): the 
function u given by (i) or (ii) does indeed solve the PDE a.e. and takes on the proper initial 
values, but there are in general many other functions doing this as well. It is thus not clear 
that (i) or (ii) gives the “correct” generalized solution. In this paper we resolve the difficulty 
by showing-under various hypotheses-that (i) or (ii) gives the unique solution of (1.3) in 
the “viscosity” sense. a concept introduced by Crandall and Lions [3] and reformulated by 
Crandall, Evans and Lions [2]. This has already been carried out for (i) by Lions [12]. whose 
proof we reproduce in Section 2 for the reader’s convenience and motivation for our study 
in Section 3 of formula (ii). Roughly speaking, if we assume H is convex we can analyse (i) 
by control theory methods, whereas to study (ii) when H is not convex we must use game 
theory techniques. These last have been developed by Evans and Souganidis [6] for fairly 
general H and 110, so that the point of Section 3 is the simplification resulting in the formulas 
of [6] when KO is convex. 

Two applications appear in Section 1. Here we show in particular that some expressions for 
solutions recently obtained by Osher [11] (f or what amounts to the Riemann problem for 
(1.3)) are special cases of Hopf’s formula (ii). We demonstrate also in Section 4 that (1.3) 
has a classical solution existing for all t > 0 under the main hypotheses that H and 1~0 are 
convex; this is the Hamilton-Jacobi analogue of the familiar assertion that scalar conservation 
laws in one dimension have classical solutions if the nonlinearity is convex and the initial 
function is nondecreasing. 

Not&ion. Throughout we let a* denote the Legendre transform of @; that is. 

o*(x) = SUP{X ‘y - Q(y)} < 2. (x E KY). 

We refer the reader to Crandall, Evans and Lions [2] for the definition and properties of 
viscosity solutions. 

2. CONVEX HAMILTONIASS: FORMULA (i) 

In this section we extend slightly the analysis of formula (i) in [12, p. 216-219]$. Let us 
assume: 

(a) H : W -+ W is convex; 

u. : 2” ---, R is uniformly Lipschitz. 

THEOREM 2.1. Under these hypotheses 

n(x, t) = inf sup {uo(z) i y . (x - z) - rH(_v)} (t 30, x E 2) (2.1) 
2 Y 

is the unique uniformly continuous viscosity solution of 

uI + H(h) = 0 in X!- ’ 

> 

(2.2) 

4. I 0) = uo( *) on 2’. 

; me analogue of (i) for scalar conservation laws is due to Hopf [7] (for a special case), Lax [II], and Oleinik 
[lj]; formula (i) appears in Kruikov [lo]. See also Conway and Hopf [I]. 

$ Equation (i) is called the “Lax formula” in [12]. 
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The proof of theorem 2.1 follows the lemma below. For each given f > 0 define 

N = P(0, t; 2”). 

L~srsr.~ 2.1. Fix r 3 0. .r E 2. Let 

fi(x. r) = inf 
M 

‘H”(z(s)) d S f ilo(x(r))}. 
i(.)E.V ” 

(2.3) 

where for each z( *) E N we set 

I 

I 
x(r) =x - z(s) ds. (2.4) 

0 

Then ic is the unique uniformly continuous viscosity solution of (2.2). 

Proof. It is not particularly difficult to check that C is finite and uniformly Lipschitz in 
WI-‘. Furthermore, arguing as in [12]. we see that li is a viscosity solution of the dynamic 
programming equation 

6, + sup{z . Dri - H*(z)} = 0 in al-‘. 

However 

sup{z * Dli - H*(z)} = H(Dti) 

and thus li is a viscosity solution of (2.2). Uniqueness is a consequence of Ishii [9. theorem 
2.11. n 

Proof of theorem 2.1. Select t > 0, x E KY. 
We may rewrite (2.1) to read 

. 

Now recall formula (2.3) and define 

I 

I 
z=x(t) =x- z(s) ds 

0 

for each z( .) E N. Then Jensen’s inequality gives 

6(x, t) 3 ,li:,f,[fH*(fjoizW dr) + uoW} 

= iqf [fH*r+) + 1(0(z)} 

= u(x, t). 

On the other hand specializing to constant controls z( .) of the form 

(2.5) 
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we obtain 

Remark. See [5, theorem 6.21 for a direct proof of theorem 2.1 that does not use control 
theory. 

3, CONVEX I.SITIAL CONDITIONS: FORMULA (ii) 

For this section we assume 

(HZ) [ 
(a) H : R”+ R is continuous: 

(b) uo : R” + W is uniformly Lipschitz and convex. 

THEOREM 3.1. Under these hypotheses 

u(x, t) = sup inf{uo(z) + y * (x - z) - rff(y)} (t >o, x E 7) (3.1) 
Y : 

is the unique uniformly continuous viscosity solution of 

1(, + H(Du) = 0 in X!+* 

u( -, 0) = uo( .) on 2”. 
(3.2) 

The proof of theorem 3.1 follows the lemmas below. 
Let us temporarily suppose in addition to (HZ) that 

If : W” ---, A is uniformly Lipschitz. (3.3) 

We may as well assume L, the Lipschitz constant for H, exceeds K, the Lipschitz constant 
for ug. 

For each fixed t > 0 define 

M = L” (0, t; B(K)), N=L”(o,t;B(L)j, 

and let A denote the collection of all mappings 

/3:M+h 

with the property that for each 0 < s G t 

1 

Y(T) = r^(t) for a.e. 0 C t C s implies 

NY](r) = P]El(r) for a.e. 0 s t< s. 

Such a p is called a strategy (cf. Elliot and Kalton [-I]). 

LEMMA 3.2. Fix t 2 0, x E W”. Let 

fi(x, t) = inf sup [/‘Y(S) .P[Yl(S) -NY(S)) ds +~o(~~(~))}. 
BEA y(.)E.Lf 0 

(3.4) 
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where for each /3 E A, y( .) E iv we set 

x(t) =x - jy](s) ds. 
I 

Then fi is the unique uniformly continuous viscosity solution of (3.2). 

Proof. It is easy to verify that fi is uniformly Lipschitz on W”,’ 1 with 

IID&-( itDuoli~=can, = K. 

Furthermore ii is a viscosity solution of the dynamic programming PDE 

for 

ti(*,O) =ug(.) inR”. 

Y = B(K), Z = B(L); 

(3.5) 

(3.6) 

(3.7) 

a proof of this assertion may be found in [6]. However if jpl s K, 

nln;y-=.y{z.p+H(y) -z 'y}=H(p); 

and thus (3.6) and (3.7) imply Li is a viscosity solution of (3.2). Uniqueness follows from Ishii 

191. 1 

LEMMA 3.3. Assume A : Y x Z- R is Lipschitz. Then for each t > 0 

m;; mi.; I\(y) z) = mf sup ;EavoEvfjbA(~(~), P[rl(s)) ds. 

Proof. Set 

Choose y* E Y such that 

Then 

A = yzi; rnn; A(y, z). 

A = yj; A(y*, 2). 
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On the other hand as in the proof of lemma 4.3 in [6] there exists for each E > 0 a measurable. 
finite valued mapping Q? : Y-, Z such that 

A(y, q(y)) C min A(y, 2) f E o? E n 
IEZ 

Define /3* E A by P*[y](s) = q(y(s)). Then 

(3.8) 

Proof of theorem 3.1. Select f > 0, x E R”. We may rewrite (3.1) to read 

U(X, t) = sup (-uo*(y) + y ‘X - H(y)t}. 
I‘ 

= ml;{-uo*(y) +y ‘X - H(y)t}, 

where 

uE{y E W”]uo*(y) < 2) 

is bounded and nonempty. Since for each y E I! the mapping w(x, t) = -rlj (y) + y. x - 
H(y)r is a C’ solution of 

w, + H(Dw) = 0 in X:-i, 

u is therefore a viscosity subsolution (see Crandall, Evans and Lions [2, proposition 1.41). 
Hence using the methods of Ishii [9] we see 

USli in Rti’. 

On the other hand recall that uo is convex; hence (3.4) and Jensen’s inequality 

2(x, t) C inf sup [+(Y(+ P[yl(s)) ds}, 
/3EA,v(.)E.M t o 

for 

A(y, 2) = ty * z - tH(y) + 1(0(X - tz). 

Using now lemma 3.3 we obtain 

ri(x, t) < max min {UO(X - tz) + fy . z - M(y) }. 
yEY ZEZ 

(3.9) 

imply 

= max min {uo( w) f y * (X - LV) - &r(y)}, 
.‘EY WEW 

where 

w = x - tz. 
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This holds with 2 = B(L) for all sufficiently large L and so 

fi(x,r) ~;~~inf{ua(w) +y *(x -w> -tH(y)} 
w 

G syp inf {uo(w) + y . (x - w) - [H(y)} 
w 

= u(x, t). 

This and (3.9) complete the proof, should H satisfy (3.3). In the general case we approximate 
H by a sequence of smooth functions IF’, H”’ ---, H uniformly on compact subsets of W”. Set 

um(x, t) = sup inf {Q(Z) + y . (x - z) - tH”(y)) 
Y 2 

= ys#uo’(y) + Y .x - tH”(y)l. 

Then 

i 

UT + H”‘(Dum) = 0 in Gal’ ’ 

u”(.,O) =ulJ(*) on W” 

in the viscosity sense, and 

]tDnmlI~=(a,l+~) = K. 

Thus 

u(x, t) = lim um(x, t) 
m-x 

=;~~I-u~~(Y)+Y*x-WY)} 

= sup inf {ug(z) + y * (x - z) - rH(y)} 
Y 2 

is a viscosity solution of (3.2): see [2, theorem 1.41. Once again we refer to Ishii [9] for 
uniqueness. W 

Remark. Note that in view of (3.8) u defined by (3.1) is convex as a function of x and t. 

4. APPLICATIONS 

(a) Osher’s formulas 
Choose (Y, p E R”, ( (~1 = 1, and then define 

ifx.crGO 

ifx . a3 0, 

where uL, uR E R. Assuming 

u‘ G LP, (4.1) 
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we see that uo is convex and uniformly Lipschitz on W. Hence for any continuous H : W”- 
63 the viscosity solution of 

is 

A calculation shows 

where 

Thus 

Similarly 

if uR G uL. 

( Uf f H(h) = 0 in WI-’ 

u(.,O) = uo(.) on W 

u(x, 1) = sup inf {uo(z) + y .(x -z) - t/f(y)} 

Y .- 

=sup{-uo*(y)+y.x-M(y)}. 
Y 

( 
+x 

uo*(r) = 
ify$ lJ 

o 
ify E U, 

U={AcY+p~uL~A=aR}. 

4x7 r> = ;s[, b . x - fH(Y 1 I 

= /3. x ,Ly;~uR {ICY ’ x - tH(Aa + 0)). (3.2) 

u(x, f) = p.x +- min {;la.x - rH(Acu+ /3)} 
URSA<& 

(1.3) 

Formulas (4.2) and (4.3) are essentially those derived by different methods in Osher [11]. 

(b) Classical solutions of Hamilton-Jacobi equations 
Next we make an extremely strong assumption on H and UC,: 

043) ( 
(a) (HI) and (Hz) hold 

(b) /D’uol EL”(W) 

PROPOSITION 4.1. Assume (H3). Then 

u(x, t) = inf sup {UO(Z) + y . (x - z) - tH(y)} 
2 Y 

= sup inf {ug(z) + y * (x - z) - rH(y)} 
Y 2 

is a classical solution of 

I 

UC + H(h) = 0 in R1’ ’ 

4.9 0) = uoc.1 on W”. 
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In addition D’u, Du, and u, are bounded in WI”. 

Proof. Since 

u(x, t) = sup {-uo*(y) + y ‘X - H(y)r}, 

u is convex. On the other hand since 

u(x, t) = inf ug(z) + tH* - :I X-Z ( ii t ’ 

we have for each unit vector e and h > 0 

u(x + he, t) - 2u(x, t) + u(x -he, t) 

sup {u,,(z - he) - 2~42) + ug(z - he)}. 
z 

Thus 

/ D*ul s C a.e. 

But also 

ut + H(Du) = 0 a.e. in WT’ ’ . 

Since H is locally Lipschitz and 1 Dul is bounded, (4.4) implies 

I Du,I s C a.e. 

But then we can use (4.5) once more to conclude 

Iu,I s C a.e. n 

(4.4) 

(4.5) 

1. 

2. 

3. 

1. 
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