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A BOUNDARY VALUE PROBLEM FOR THE MINIMUM-TIME FUNCTION*
MARTINO BARDI?

Abstract. A natural boundary value problem for the dynamic programming partial differential equation
associated with the minimum time problem is proposed. The minimum time function is shown to be the
unique viscosity solution of this boundary value problem.
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1. Introduction. Given the control system
(1.1) y(5)+b(p(s), 2(5)}=0, 5=0, yeR" zeZcRY,

the minimum time function T(x) associates to a point x € R"™ the infimum of the times
that the trajectories of (1.1) satisfying y(0) = x take to reach the origin. The problem
of determining T and the optimal controls realizing the minimum is one of the most
extensively studied in the control-theoretic literature, especially in the linear case [1],
[5], 61, [8], [15], [16], [20], [22]-[26].

It is well known that Bellman’s Dynamic Programming Principle implies that at
points of differentiability T satisfies the following first-order fully nonlinear partial
differential equation (PDE) of Hamilton-Jacobi type:

(1.2} sup b(x, z) - DT{x)=1.
zed

. It is also known that in general T is not differentiable everywhere, but it satisfies
(1.2) in some generalized sense [8], [24]. In the last five years the new concept of
viscosity solution for Hamilton-Jacobi equations has been introduced by Crandalt and
Lions [11] and the theory of such solutions has developed quickly (see, e.g., [9]-12],
[17],[21] and the references therein) and has been applied to many problems in control
theory and differential games (see, e.g., [3], [4], [7], [13], [21], the survey paper of
Fleming [14], and its long list of references). Following Lions [21] it is not hard to
show that T satisfies (1.2) in the viscosity sense as soon as it is continuous. The goal
of this paper is to complement (1.2) with a natural boundary condition and prove a
uniqueness result for viscosity solutions of such a boundary value probiem (BVP).
Ishii [17] has proved the uniqueness of viscosity solutions of the Dirichlet problem in
a bounded open set for a class of equations that includes (1.2). However the Dirichlet
problem does not seem to be the most natural one for the minimum time function
because in general we do not know a priori the value of T on the boundary of some
given bounded set. Instead we consider {1.2) in the set @\{0} where & is the set of
points x such that there is a trajectory of (1.1) starting at x and reaching the origin in
finite time, i.e., the largest set where T is defined (and finite): we propose the following
boundary condition:

(1.3) T{0)=0 and T(x)>+c uniformlyasx-3R.

In § 2 we will prove that under quite general assumptions T satisfies (1.2) in a\{0}
in the viscosity sense and (1.3). In § 3 we will show that for any open set # having
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zero in its interior there is at most one viscosity solution of (1.2) in #&\{0} satisfying
(1.3} and bounded below.

The main result is the uniqueness theorem in § 3. It presents three difﬁculties with
respect to standard uniqueness results in the Hamilton-Jacobi theory: (i) the Hamil-
tonian depends on the gradient of the unknown function but does not depend explicitly
on the unknown function itself, while it is usually required that it be strictly monotone
in such a variable; (ii) the infinite boundary condition (1.3) if & #R"; and (iii) the
lack of regularity of the solutions to be compared and of the Hamiltonian if b is not
globally bounded and @ is unbounded.

To overcome the first difficulty we introduce a change of the unknown variable

first used for this goal by Kruzkov [18]. It turns out that this transforms the infinite
boundary condition into a finite one, therefore automatically taking care of the second
difficulty.
_ The third difficulty can be solved using the new approach to unigueness presented
in the paper of Crandall, Ishii, and Lions [10]. Indeed our uniqueness theorem has
to be considered as a corollary of the methods developed in [10]. As one of the referees
pointed out to us, this difficulty had already been overcome for different problems in
an earlier paper by Ishii [28], whose methods couid be applied effectively to our
problem as well. .

We remark that the proof of the unigqueness theorem does not make use of the
convexity of the Hamiltonian. Therefore the methods of this paper can be employed
to study the minimum time problem in games of pursuit and evasion (see Bardi and
Soravia [27]).

After the completion of this work we have learned that Kruzkov’s change of
variables has been used recently by Lasry and Lions [19] to study the minimum time
function of a differential game with state constraints in a bounded domain, and by
Barles [2] for unbounded control problems. Moreover, one of the referees pointed out
that a uniqueness theorem for discontinuous solutions of (1.2), (1.3) can be proved
by combining the Kruzkov transform and the results by Barles and Perthame [3],
provided the target to be reached is a smooth set instead of a single point.

In the last decade the use of the theory of subanalytic sets has led to very strong
results on the regularity of the minimum time function and of feedback controls {see
Brunovsky {6] and Sussmann [26] and the references therein). However it is also
known that certain quite smooth systems exhibit very irregular behaviors that fail to
fall within the theory of subanalyticity (see Lojasiewicz and Sussmann [22] or the
classical Fuller's example in [23]). It is our hope that the PDE setting of the minimum
time problem proposed in this paper could be of some help in the study of these
probiems.

2. The BVP of the minimum time function. We begin listing the assumptions to
be used in the following.

(H1)  b:RM x Z->R", where Z<R", is continuous and there exist L, K € R such
that |b(x, 2) = b(y, z)| = L|x—y| and |b(y, 2)|= K (1 +|y]), for all x, yeR",
cand forall ze Z, |

Let ./ be the set of measurable functions z:[0,00) > Z, and let y(s)=y(s; x, z}
“be-the solution of - '

S (20) S _. = y(s)=x—Js b{y(1), z(1)) dt

:'_:_.for s=0,xeR", and ze M. Let T<R" be a given closed set, the terminal set (e.g.,
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ﬁifo_i;mly to 0 as x> 37 and to ¢ as x> 3R, i.e., for every g,
ists >0 such that dist(x,89) <8 implies ju(x)l<e and
implies u(x)> M.

=1 (1+J:L)
=% B\ T min (x, b))

e =1 e - 1),

xziic; (1-:J xi)
=K BT 1

= yp(r—15) leads to

|x,—x|)
rz L gog {14272 0
K Og( 1+

MMA 2. Assume (H1)-(H4) and  bounded. Then T satisfies (BC).
- Proof. Since T is continuous, nuil on 87, and 7 is bounded, the first part of (BC)
s clearIy satisfied. :
' To prove the second part we fix M >0, From Lemma 1 and Remark 1 the existence
of_R >0 such that T(x)> M for |x|> R follows. Now we use (H4) to get a covering
o the compact set 9% M {x: x| = R} made of a finite number of open balls B; centered
on 8% and having small radius so that T(x)>M for x € & N B,. We conclude observing
' at therc exists 6 > 0 such that |x| = R and dist {x, a®) < & imply x € B, for some i.
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We recall that a continuous function u defined in an open set ®< &" is defined
to be a viscosity solution of

H{x,u, Du)=0 in@,
if for every ¢ € C'(@) and x, local maximum point of u— ¢ we have
H{xg, u(xs), Dp(x)) =0,
while for x,, local minimum point of u~ ¢ we have
H{xg, u(xq), Dd(x0)) = 0.
We will now prove that T is a viscosity solution of

(HI) sup b{x,z)- Du—1=0 in&\T.

zeZ
This fact is certainly known to experts, since it follows from arguments of Lions [21,
Chap. 1]. We include a full proof for the sake of completeness.

Define for ze M, xeR", t,(z)=inf{t: y(#; x, z) € I} and denote by y;,«, ) the
function defined on [0, «0) which is one if  <¢.(z) and zero if the opposite inequality
holds.

Lemma 3 (Dynamic Programming Principle). Assume (H1). Then for all xe ®
and =0

T(x) = inf {min (4 £(2) + Xiee o T/ %, 2D}

Proof. Fix x and ¢ and let A be the right-hand side of the above equality. To
prove T(x)= A we fix an arbitrary £> 0 and show that

2.1) T(x)=A-e.
Let z, € #f be such that
(2.2} T(x)z=t(z;)—=

If t=1,(z), then (2.1) holds. Now suppose 1< 1,(z,} and let z,(s) = z;(¢ +5). Then
tx(zl) =t+ ty(l;x,z;)(zz) =t+ T(J’(‘; X, Z])) = As

and so by {2.2) we have (2.1).
Now we want to prove

(2.3) T(x)=A+e,
and for this we choose z; such that
€ .
(2.4) Atz min (1, (20} 4 Xu<nen TG X, 20)).

If tz= t(2,) then (2.3) holds. If t < 1.(z,) let z, € 4 be such that

(2.5) (%, 20) 2 bynen(22) -

Now define the control

z(s) ifs<t,
(s—1t) ifsz=t

z(s) = {
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Clearly
fx(23) =t+ ty(r;x,zl)(zz)s

and therefore we get from (2.4) and (2.5)
SR TO %, )2 () 52 T 5,

which proves (2.3). By the arbitrariness of & the proof is complete. 0

TueoreM 1. Assume (H1)-(H3). Then the minimum time function T is a positive
viscosity solution of (HI). If moreover (H4) holds and the terminal set T is bounded,
then T satisfies the boundary condition (BC) as well.

Proof. The second statement is just Lemma 2. To prove the first statement we
begin by considering X € R\T and ¢ e C'(R\T) such that for all x sufficiently close

to Xo,

(2.6) T(x0) = p(x0) = T(x)— b (x)-

Let z, be any constant control, z,(s)=Z¢€ Z. By Lemma 3 we have forall 0 <s < T(x0)
T(xg) = T(y(s; X0, 21)) =5,

and so by (2.6) we have for sufficiently small positive s,

p{xp) — P {y(s; Xo, ;) < T(x0) — T(y(s; Xo, zy)) =<1.
s 3

Now letting s s 0 and using (2.0), we get
DPé(xg) - b(x,2)=1,
and by the arbitrariness of Z,
sup b{x,, z) - D{xp) —1=0.

zeZ
Let us now consider new x, and ¢ as above but such that

T(x0) — $(x0) = T(x) = &(x)
for all x in a given neighborhood of xo. By Lemma 1 there exists s; such that

B (x0) — d (¥ (53 X0, 2:)) B Tx0) T(y(s; Xg,2)) Ys=s,, Vzedl
Fix £>>0. By Lemma 3 for every s = T(x,) there is z* e A such that
T(xp) = 5+ T(y(s; xp, 2%)) — 5,

and thus for 0<s=3, .

$00) = $ (53 %0, 7)) |
S =1—E&

(27)

Using (2.0) and the expansion
d(x)=p(xo)+ D (xo) * (x—xg)+ m{x)]x —Xxo| with ll_gl m(x)=0,

we can write the left-hand side of (2.7) as follows:

%L D () - b(y(t; xg, 2%), 25(1)) dt = m(y(s; X, Z*))é 1 J b(p(t; x0,2%), 2(1)) .
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The second term in this expression can be made smaller than ¢ for small s by (H1)
and Lemma 1; by using (H1) again, the first term can be written as
1/5 5 Dd(xo) - b(xq, 2*(2)) dt plus a correction term smaller than & for small 5. Then

by (2.7},
1 5
sup De(x) + b(xq, 2) = J D (xo) - b(xq, 2%(1)) dt 21— 3¢,
zeZ 0
which provides the desired inequality by the arbitrariness of e. 0

3. Uniqueness. In this section we will prove the following theorem.

THEOREM 2. Assume (H1), let & be an open subset of RY, and let TS R be a
closed set. If u,, us€ C(R\T) are viscosity solutions of (HI)} satisfying (BC) and bounded
Jrom below, then u, = u,.

The main tool of the proof is a lemma of Crandall, Ishii, and Lions [10, Lemma
1], which we report below in a version simplified for the present purpose. We say that
H:R"xR" >R satisfies condition (H} if the following holds:

(H) H is continuous; there exist a Lipschitz continuous, everywhere differentiable
function p :R" [0, 00) and a continuous, nondecreasing function o : [0, ) »
[0, o) satisfying o(0) =0, such that H(x, p)— H(x, p+ADu(x)) = (), for
all x, peR”, A €[0,1] and limy.,0 p(x) = +c0.

Lemma 4. Let H satisfy condition (H} and let ) be an open subset of R". Let
ze C(Q) be a viscosity solution of z+ H(x, Dz)=0 in Q, and let we C'(Q)) satisfy

w(x)+H(x, Dw(x))=Z0 and |Dw(x)|=C Vxe(.
Assume that
sup (z—w)<sup {z—w) <.
[:i¢3 N
Then z=w in (.
Proof. See [10] for the proof of this lemma. 0
The other key tool in the proof of Theorem 2 is a change of the unknown variable
in (HJ). For this we need a slight extension of Corollary .8 in [11].
LeEmMA 5. Let u be a viscosity solufion of H(x, u, Du) =0 in 0, open subset of R";

let ®e C'(R), ®'(r) >0 for all r;, and let ¥ : O(R) - R be the inverse function of ®. Then
v=1P oy is a viscosity solution of

H(x, %(0), ¥(v)Dp)=0 in 0.
Proof. Let xoe @ and ¢ € C'(0) be such that v~ has a local maximum in x,.
Define &(x)=7(x)—{(x,)+ vi{x,). We have

D¢ =D, §(xp) = v(x0) = P(u(xp)),
v(x)=£(x) inaneighborhood of x,.

Since ®(R) is open, ¥ ¢ is defined in a neighborhood of x, and we extend it to
n € C'(0). By the monotonicity of ¥ we have

u(xg} =n(xp), u(x}=n(x) inaneighborhood of x,.
Then
H(xﬂa u(x())o D’?(xo)) éo: :




M. BARDI

H (%0, ¥(v(xp)), ‘F’(u(xo))D_Z,’(xo)) =0

yoint we get the desired mequahty in the same way. [
2. Define &(t)= l—e™ vyi=Douy, ty=®ouy, O=R\T. By
e.viscosity solutions of

pibixz)- (-—~———Du)}—1:0 in O,

+sup {b(x, z} - Du} 1=0 in O,

zeZ

5=0 onad, =1 onad, i=1,2.

<le y|lp|+KQ+|yDlp—ql+e

e  H&P)-HO = Lx-ylipl+ KA+ DI -4l
S : whlch unphes the ‘continuity of H. Now let he C(R) be such that A{0)=h'(0)=0,
L _h(e_)—el_ h'(e)=1/e, and define

C(n(xD) ifld<e,
(x)'_{log(lxl) if|xlze.

: Clearly, wec (RN j and it is Lipschitz contmuous since D,u(x) (1/]x[*}x for |x|z e.
‘Moreover; by {3.1),

H(x,p)—H(x,p+x\Du(x))éK(1+le)XIDu(x)Iéf\C=: a(A)

for A >0, where C=max (2K, K(1+e).su.p |h'|}, which proves the claim.
Next we deﬁne followmg Crandall, Ishii, and Lions [10},

H(x,y,p,9)=Hxp)-H(y, -
z(x, y}=v,(x) —0a(y),
and note that z is a viscosity solution of
. . z+I:I(x,y,sz,D},z)=0 infxa@

Our goal is to prove that z(x, x) =0, because by interchanging the roles of v, and v,
we get v, = v, and then u, = u,. To reach our goal we are going to apply Lemma 4 to
z defined above, ):i=AN (0 x 0) where

A={(x,y)eR*"

Hx—yl<1},
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and w=w, for suitable & where
we(x, y) = (e +|x — Py .

We have to show that there exists £,>> 0 such that for.all 0<e =gy, w, satisfies the
hypotheses of Lemma 4. Once this is done we have z(x, x) = w.(x, x} = ¢, and letting
£ 0 we conclude.

Since

i -
Dowe(,y) =— (84 [x =y 297 (x = y) = =Dy (x,7),

w, is Lipschitz continuous in A and, moreover, by (3.1),
w,(x, )+ H(x, y, Dawe, Dw,) 2w, — Lx—y(e* +]x — y) /297 L
— K(1+|y|)| Dow, + D,w,|

zw.—w.=0

Since u; and u, are bounded from below, v, and v, are bounded, and

(3.2) a,=sup(z—w,)S A< foralle>0.
Q =

we immediately obtain z(x, x}=0. Thus it remains to prove that o, Zo >0 and
0<e=¢gy imply

sup (z—w,}<a,=sup(z—w,).
an T

Suppose that (X, ) € aQ} is such that

(33) z(x_aﬁ)"wc(f,y_);

t liminf @, =0,
: : exD

Fix 0 < 8 <1 such that x4@ and |x — y| < & implies [v:(x) —;(¥)| < /2, i=1, 2. This
can be done because v, and v, take up their boundary vaiues uniformly as a consequence
“of (BC). Suppose first that |% ~ | < 8 so that either X or 7, say &, belongs to 80. Then
z(%, £)=0and w, =0 imply

- - - _ _ - _ o
2(%, 7) = we (% FYE0i(X) — 0a(F) — 0a () + 0o x) <7,
a contradiction to (3.3). On the other hand, if |x—F|= §, (3.2) and (3.3) imply
o 2(%, 7) = (% F)Zsup (z—w,) —a, Z 2(%, %) —w.(% ) - A,
. o
 from which we obtain
e 02 ®) = 0P Z We (%, )~ e~ A,
The right-hand side of the last inequality can be made arbitrarily large choosing =
small because '
- Iim inf {w. (x, y): [x — y|Z 8} = +oo,

and we get a contradiction Because the left-hand side is bounded. 0




M. BARDI

eni 'Under the stronger assumption that |b(y, z)| = K forall ye B\F, ze Z
h exclude: the: linear case if & is unbounded), and strengthening the boundary
conditions, we can glve a weaker uniqueness theorem with a much shorter proof based
e ‘earliest un ueness result for viscosity solutions, that is, Theorem II.1 of

[l and Lions [11]: In fact, under such an assumption on b, (3.1) implies that
amlltoman H(x, p)is uniformly continuous in R™ x{p: |p|=R} for all R>0.
dary condltlon is

lim u(x) = +00,

ixjso0

& hypotheses of Theorem IIi.l(n) in [11], which implies v, = v,.
ounded, u, and u, satisfy (ABC), they are zero on 99, and
€ a7, then the hypotheses of Theorem 2 are satisfied. In fact,

‘drop the assumption that u, and u, are bounded below, then
e theorem is false. In fact, if we take b{(x, z) =z, Z the unit ball

|Du|-1=0 inR™M\{0},
u{0)=0,

which_has .the.”cl&ssicai'solﬁtions u,(x)=|x} and uy(x) = —{x|.
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