
Chapter 1
An introduction to Mean Field Game theory

Pierre Cardaliaguet and Alessio Porretta

Abstract These notes are an introduction to Mean Field Game (MFG) theory, which models differential games
involving infinitely many interacting players. We focus here on the Partial Differential Equations (PDE) approach of
MFGs. The two main parts of the text correspond to the two emblematic equations in MFG theory: the first part is
dedicated to the MFG system, while the second part is devoted to the master equation.
The MFG system describes Nash equilibrium configurations in the mean field approach to differential games with
infinitely many players. It consists in the coupling between a backward Hamilton-Jacobi equation (for the value
function of a single player) and a forward Fokker-Planck equation (for the distribution law of the individual states).
We discuss the existence and the uniqueness of the solution to the MFG system in several frameworks, depending on
the presence or not of a diffusion term and on the nature of the interactions between the players (local or nonlocal
coupling). We also explain how these different frameworks are related to each other. As an application, we show how
to use the MFG system to find approximate Nash equilibria in games with a finite number of players and we discuss
the asymptotic behavior of the MFG system.
The master equation is a PDE in infinite space dimension: more precisely it is a kind of transport equation in the space
of measures. The interest of this equation is that it allows to handle more complex MFG problems as, for instance,
MFG problems involving a randomness affecting all the players. To analyse this equation, we first discuss the notion
of derivative of maps defined on the space of measures; then we present the master equation in several frameworks
(classical form, case of finite state space and case with common noise); finally we explain how to use the master
equation to prove the convergence of Nash equilibria of games with finitely many players as the number of players
tends to infinity.
As the works onMFGs are largely inspired by P.L. Lions’ courses held at the Collége de France in the years 2007-2012,
we complete the text with an appendix describing the organization of these courses.
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1.1 Introduction

Mean field game (MFG) theory is devoted to the analysis of optimal control problems with a large number of small
controllers in interaction. As an example, they can model crowdmotions, in which the evolution of a pedestrian depends
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on the crowd which is around. Similar models are also used in economics: there, macroeconomic quantities are derived
from the microeconomic behavior of the agents who interact through aggregate quantities, such as the prices or the
interest rates. In the Mean Field Game formalism, the controllers are assumed to be “rational” (in the sense that they
optimize their behavior by taking into account the behavior of the other controllers), therefore the central concept of
solution is the notion of Nash equilibrium, in which no controller has interest to deviate unilaterally from the planned
control. In general, playing a Nash equilibrium requires for a player to anticipate the other players’s responses to his/her
action. For large population dynamic games, it is unrealistic for a player to collect detailed information about the state
and the strategies of the other players. Fortunately this impossible task is useless: mean field game theory explains that
one just needs to implement strategies based on the distribution of the other players. Such a strong simplification is
well documented in the (static) game community since the seminal works of Aumann [20]. However, for differential
games, this idea has been considered only very recently: the starting point is a series of papers by Lasry and Lions
[143, 144, 145, 150], who introduced the terminology in around 2005. The term mean field comes for an analogy with
the mean field models in mathematical physics, which analyse the behavior of many identical particles in interaction
(see for instance [111, 176, 177]). Here the particles are replaced by agents or players, whence the name of mean field
games. Related ideas have been developed independently, at about the same time, by Caines, Huang and Malhamé
[132, 133, 134, 135], under the name of Nash certainty equivalence principle. In the economic literature, similar models
(often in discrete time) were introduced in the 1990s as “heterogeneous agent models” (see, for instance, the pioneering
works of Aiyagari [13] and Krussell and Smith [138]).

Since these seminal works, the study of mean field games has known a quick growth. There are by now several
textbooks on this topic: the most impressive one is the beautiful monograph by Carmona and Delarue [68], which
exhaustively covers the probability approach of the subject. One can also quote the Paris-Princeton Lectures by Gueant,
Lasry and Lions [128] where the authors introduce the theory with sample of applications, the monograph by Ben-
soussan, Frehse and Yam [31], devoted to both mean field games and mean field control with a special emphasis on
the linear-quadratic problems, and the monograph by Gomes, Pimentel and Voskanyan [119], on the regularity of the
MFG system. Finally, [56] by the first author with Delarue, Lasry and Lions studies the master equation (with common
noise) and the convergence of Nash equilibria as the number of player tends to infinity.

This text is a basic introduction to mean field games, with a special emphasis on the PDE aspects. The central ideas
were largely developed in Pierre-Louis Lions’ series of lectures at the CollÃ¨ge de France [149] during the period
2007-2012. As these courses contain much more material than what is developed here, we added in the appendix some
notes on the organization of these courses in order to help the interested reader.

The main mathematical object of the text is the so-called mean field game system, which takes the form
(i) −∂tu− ν∆u+H(x,Du,m) = 0 in (0, T )× Rd
(ii) ∂tm− ν∆m− div (DpH(x,Du,m)m) = 0 in (0, T )× Rd
(iii) m(0) = m0 , u(x, T ) = G(x,m(T )) in Rd

(1.1)

In the above system, the unknown u and m are scalar and depend on time t ∈ [0, T ] and space x ∈ Rd. The two
equations are of (possibly degenerate) parabolic type (i.e., ν ≥ 0); the first equation is backward in time while the
second one is forward in time. There are two other crucial structure conditions for this system: the first one is the
convexity of H = H(x, p,m) with respect to the second variable. This condition means that the first equation (a
Hamilton-Jacobi equation) is associated with an optimal control problem and is interpreted as the value function
associated with a typical small player. The second structure condition is thatm0 (and thereforem(t, ·)) is (the density
of) a probability measure on Rd. The Hamiltonian H = H(x, p,m), which couples the two equations, depends on
space, on the variable p ∈ Rd and on the probability measurem.

Let us briefly explain the interpretation of this system as a Nash equilibrium problem in a game with infinitely many
small players. An agent (=a player) controls through his/her control α the stochastic differential equation (SDE)

dXs = b(Xs, αs,m(s))ds+
√

2νdBs (1.2)

where (Bt) is a standard Brownian motion. He/She aims at minimizing the quantity
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E

[∫ T

0

L(Xs, αs,m(s))ds+G(XT ,m(T ))

]
,

where the running cost L = L(x, α,m) and the terminal costG = G(x,m) depend on the position x of the player, the
control α and the distributionm of the other players. Note that in this cost the evolution of the measurem(s) enters as
a parameter. To solve this problem one introduces the value function:

u(t, x) = inf
α

E

[∫ T

t

L(Xs,m(s), αs)ds+G(XT ,m(T ))

]
,

where the infimum is taken over admissible controls α and whereX solves the SDE (1.2) with initial conditionXt = x.
The value function u then satisfies the PDE (1.1-(i)) where

H(x, p,m) = sup
α

[−b(x, α,m) · p− L(x,m, α)] .

Given the value function u, it is known that the agent plays in the optimal way by using the feedback control
α∗ = α∗(t, x) such that the drift is of the form b(x, α∗(t, x),m(t)) = −DpH(x,Du(t, x),m(t)). Now, if all agents
argue in this way and if their associated noises are independent, the law of large numbers implies that their distribution
evolves with a velocity which is due, on the one hand, to the diffusion, and, on the other hand, on the drift term
−DpH(x,Du(t, x),m(t)). This leads to the Kolmogorov-Fokker-Planck equation (1.1-(ii)). The fact that system (1.1)
describes a Nash equilibrium can be seen as follows. As the single player is “small” (compared to the collection of
the other agents), his/her deviation does not change the population dynamics. Hence the behavior of the other agents,
and therefore their time dependent distribution m(t), can be taken as given in the individual optimization. This cor-
responds to the concept ofNash equilibriumwhere all players play an optimal strategywhile freezing the others’ choices.

The main part of these notes (Section 1.3) is devoted to the analysis of the mean field game system (1.1): we discuss
the existence and uniqueness of the solution in various settings and the interpretation of the system. This analysis takes
some time since the PDE system behaves in a quite different way according to whether the system is parabolic or not
(i.e., ν is positive or zero) and according to the regularity of H with respect to the measure. These various regimes
correspond to different models: for instance, in many application in finance, the diffusion is nondegenerate (i.e., ν > 0),
while ν often vanishes in macroeconomic models. In most applications in economy the dependence of the Hamiltonian
H = H(x, p,m) with respect to the probability measurem is through some integral form ofm (moments, variance),
but in models of crowd motion it is very often through the value at position x of the density m(x) of m. We will
discuss these different features of the mean field game system, with, hopefully, a few novelties in the treatment of the
equations. To keep these notes as simple as possible, the analysis is done for systems with periodic in space coefficients:
the analysis for other boundary problems follows the same lines, with additional technicalities. We will also mention
other relevant aspects of the MFG systems: their application to differential games with finitely many players, the long
time ergodic behavior, the vanishing viscosity limits,...

The second focus of these notes is a (short and mostly formal) introduction to the “master equation” (Section 1.4).
Indeed, it turns out that, in many applications, the MFG system (1.1) is not enough to describe the MFG equilibria.
On the one hand, the MFG system does not explain how the agents take their decision in function of their current
position and of the current distribution of the players (in “feedback form”). Secondly, it does not explain why one can
expect the system to appear as the limit of games with finitely many players. Lastly, the PDE system does not allow to
take into account problems with common noise, in which the dynamic of the agents is subject to a common source of
randomness. All these issues can be overcome by the introduction of the master equation. This equation (introduced
by Lions in his courses at CollÃ¨ge de France) takes the form of a partial differential equation in the space of measures
which reads as follows (in the simplest setting):
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−∂tU(t, x,m)− ν∆xU(t, x,m) +H(x,DxU(t, x,m),m)− ν

∫
Rd

divyDmU(t, x,m, y) m(dy)

+

∫
Rd
DmU(t, x,m, y) ·DpH(y,DxU(t, y,m),m)m(dy) = 0

in (0, T )× Rd × P2

U(T, x,m) = G(x,m) in Rd × P2

where P2 is the space of probability measures on Rd (with finite second order moment). Here the unknown is the
scalar quantity U = U(t, x,m) depending on time and space and on the measure m (representing the distribution of
the other players). This equation involves the derivative DmU of the unknown with respect to the measure variable
(see Subsection 1.4.2). We will briefly explain how to prove the existence and the uniqueness of a solution to the
master equation and its link with the MFG system. We will also discuss how to extend the equation to problems with
a common noise (a noise which affects all the players). Finally, we will show how to use this master equation to prove
that Nash equilibria in games with finitely many players converge to MFG equilibria.

These notes are organized as follows: in a preliminary part (Section 1.2), we introduce fundamental tools for the
understanding and the analysis of MFG problems: a brief recap of the dynamic programming approach in optimal
control theory, the description of the space of probability measures and some basic aspects of mean field theory. Then
we concentrate on the MFG system (1.1) (Section 1.3). Finally, the analysis on the space of measures and the master
equation are discussed in the last part (Section 1.4). We complete the text by an appendix on the organization of P.L.
Lions’ courses on MFGs at the CollÃ¨ge de France (Section 1.5).

1.2 Preliminaries

In this Section we recall some basic notion on optimal control and dynamic programming, on the space of probability
measures and on mean field limits. As mean field games consist in a combination of these three topics, it is important
to collect some preliminary knowledge of them.

1.2.1 Optimal control

We briefly describe, in a very formal way, the optimal control problems we will meet in these notes. We refer to the
monographs by Fleming and Rischel [106], Fleming and Soner [107], Yong and Zhou [180] for a rigorous treatment
of the subject.

Let us consider a stochastic control problem where the state (Xs) of the system is governed by the stochastic
differential equation (SDE) with values in Rd:

Xα
s = x+

∫ s

t

b(r,Xα
r , αr)dr +

∫ s

t

σ(r,Xα
r , αr)dBr. (1.3)

In the above equation, B = (Bs)s≥0 is a N−dimensional Brownian motion (starting at 0) adapted to a fixed filtration
(Ft)t≥0, b : [0, T ]×Rd ×A→ Rd and σ : [0, T ]×Rd ×A→ Rd×N satisfy some regularity conditions given below
and the process α = (αs) is progressively measurable with values in some set A. We denote by A the set of such
processes. The elements of A are called the control processes.

A generic agent controls the processX through the control α in order to reach some goal: here we consider optimal
control problems, in which the controller aims at minimizing some cost J . We will mostly focus on the finite horizon
problem, where J takes the form:
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J(t, x, α) = E

[∫ T

t

L(s,Xα
s , αs)ds+ g(XT )

]
.

Here T > 0 is the finite horizon of the problem, L : [0, T ]×Rd×A→ R and g : Rd → R are given continuous maps
(again we are more precise in the next section on the assumptions on L and g). The controller minimizes J by using
controls in A. We introduce the value function as the map u : [0, T ]× Rd → R defined by

u(t, x) = inf
α∈A

J(t, x, α) .

Dynamic programming and the verification Theorem.

The main interest of the value function is that it indicates how the controller should choose his/her control in order
to play in an optimal way. We explain the key ideas in a very informal way. A rigorous treatment of the question is
described in the references mentioned above.

Let us start with the dynamic programming principle, which states the following identity: for any t1 ≤ t2,

u(t1, x) = inf
α∈A

E
[∫ t2

t1

L(s,Xα
s , αs)ds+ u(t2, X

α
t2)

]
. (1.4)

The interpretation is that, to play optimally at time t1, the controller does not need to predict in one shot the whole
future strategy provided he/she knows what would be the best reward at some future time t2, in which case it is enough
to focus on the optimization between t1 and t2. So far, the optimization process can be built step by step like in
semigroup theory. This relation has a fundamental consequence: to play in an optimal way the agent only needs to
know the current state and play accordingly (and not the whole filtration at time t).

Fix now t ∈ [0, T ). Choosing t1 = t, t2 = t+h (for h > 0 small) and assuming that u is smooth enough, we obtain
by ItÃ´’s formula and (1.4) that

u(t, x) = inf
α∈A

E
[∫ t+h

t

L(s,Xα
s , αs)ds+ u(t, x) +

∫ t+h

t

(∂tu(s,Xα
s ) +Du(s,Xα

s ) · b(s,Xα
s , αs)

+
1

2
Tr(σσ∗(s,Xα

s , αs)D
2u(s,Xα

s )))ds
]
.

Simplifying by u(t, x), dividing by h and letting h→ 0+ gives (informally) the Hamilton-Jacobi equation

0 = inf
a∈A

[
L(t, x, a) + ∂tu(t, x) +Du(t, x) · b(t, x, a) +

1

2
Tr(σσ∗(t, x, a)D2u(t, x))

]
.

Let us introduce the Hamiltonian H of our problem: for p ∈ Rd andM ∈ Rd×d,

H(t, x, p,M) := sup
a∈A

[
−L(t, x, a)− p · b(t, x, a)− 1

2
Tr(σσ∗(t, x, a)M)

]
.

Then the Hamilton-Jacobi equation can be rewritten as a terminal value problem:{
−∂tu(t, x) +H(t, x,Du(t, x), D2u(t, x)) = 0 in (0, T )× Rd,
u(T, x) = g(x) in Rd.

The first equation is backward in time (the map H being nonincreasing with respect to D2u). The terminal condition
comes just from the definition of u for t = T .
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Let us now introduce α∗(t, x) ∈ A as a maximum point in the definition of H when p = Du(t, x) and M =
D2u(t, x). Namely

H(t, x,Du(t, x), D2u(t, x)) = −L(t, x, α∗(t, x))−Du(t, x) · b(t, x, α∗(t, x))

− 1

2
Tr(σσ∗(t, x, α∗(t, x))D2u(t, x)). (1.5)

We assume that α∗ is sufficiently smooth to justify the computation below. We are going to show that α∗ is the optimal
feedback, namely the optimal strategy to play at time t in the state x. Indeed, one has the following “Verification
Theorem": Let (Xα∗

s ) be the solution of the stochastic differential equation

Xα∗

s = x+

∫ s

t

b(r,Xα∗

r , α∗(r,Xα∗

r ))dr +

∫ s

t

σ(r,Xα∗

r , α∗(r,Xα∗

r ))dBr

and set α∗s = α∗(s,Xα∗

s ). Then
u(t, x) = J(t, x, α∗).

Note that, with a slight abuse of notation, here α∗ = (α∗s) is a control, namely it belongs to A. Strictly speaking, (α∗t )
is the optimal control, α∗(t, x) being the optimal feedback.
Heuristic argument. By ItÃ´’s formula, we have

g(Xα∗

T ) = u(T,Xα∗

T ) = u(t, x) +

∫ T

t

(∂tu(s,Xα∗

s ) +Du(s,Xα∗

s ) · b(s,Xα∗

s , α∗s)

+
1

2
Tr(σσ∗(s,Xα∗

s , α∗s)D
2u(s,Xα∗

s )))ds+

∫ T

t

σ∗(s,Xα∗

s , α∗s)Du(s,Xα∗

s ) · dBs.

Taking expectation, using first the optimality of α∗ in (1.5) and then the Hamilton-Jacobi equation satisfied by u, we
obtain

E
[
g(Xα∗

T )
]

= u(t, x) + E

[∫ T

t

(∂tu(s,Xα∗

s )−H(s,Xα∗

s , Du(s,Xα∗

s ), D2u(s,Xα∗

s ))− L(s,Xα∗

s , α∗s))ds

]

= u(t, x)− E

[∫ T

t

L(s,Xα∗

s , α∗s)ds

]
.

Rearranging terms, we find

u(t, x) = E

[∫ T

t

L(s,Xα∗

s , αα
∗

s )ds+ g(Xα∗

T )

]
,

which shows the optimality of α∗. �

The above arguments, although largely heuristic, can be partially justified. Surprisingly, the dynamic programming
principle is the hardest step to prove, and only holds under strong restrictions on the probability space. In general, the
value function is smooth only under very strong assumptions on the system. However, under milder conditions, it is at
least continuous and then it satisfies the Hamilton-Jacobi equation in the viscosity sense. Besides, the Hamilton-Jacobi
has a unique (viscosity) solution so that it characterizes the value function. If the diffusion is strongly non degenerate
(e.g. ifN = d and σ is invertible with a smooth and bounded inverse) and if the Hamiltonian is smooth, then the value
function is smooth as well. In this setting the above heuristic argument can be justified and the verification Theorem
can be proved to hold.

We finally recall that, whenever α∗ is uniquely defined from (1.5), then the Hamiltonian H is differentiable at
(Du,D2u) and {

Hp(t, x,Du(t, x), D2u(t, x)) = −b(t, x, α∗(t, x)) ,

HM (t, x,Du(t, x), D2u(t, x)) = − 1
2Tr(σσ∗(t, x, a∗(t, x))D2(·))

(1.6)
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This is a consequence of the so-called Envelope Theorem:

Lemma 1 Let A be a compact metric space, O be an open subset of Rd and f : A×O → R be continuous and such
that Dxf is continuous on A×O. Then the marginal map

V (x) = inf
a∈A

f(a, x)

is differentiable at each point x ∈ O such that the infimum in V (x) is a unique point ax ∈ A, and we have

DV (x) = Dxf(ax, x).

Proof. Let x ∈ O be such that the infimum in V (x) is a unique point ax ∈ A. Then an easy compactness argument
shows that, if ay is a minimum point of V (y) for y ∈ O and y → x, then ay → ax.

Fix y ∈ O. Note first that, as ax ∈ A,

V (y) ≤ f(ax, y) = f(ax, x) +Dxf(ax, zy) · (y − x) = V (x) +Dxf(ax, zy) · (y − x),

for some zy ∈ [x, y].
Conversely,

V (x) ≤ f(ay, x) = f(ay, y) +Dxf(ay, z
′
y) · (x− y) = V (y) +Dxf(ay, z

′
y) · (x− y),

for some z′y ∈ [x, y].
By continuity of Dxf and convergence of ay , we infer that

lim
y→x

|V (y)− V (x)−Dxf(ax, x) · (y − x)|
|y − x|

≤ lim inf
y→x

|Dxf(ax, zy)−Dxf(ax, x)|+
∣∣Dxf(ay, z

′
y)−Dxf(ax, x)

∣∣ = 0.

�

Estimates on the SDE.

In the previous introduction, we were very fuzzy about the assumptions and the results. A complete rigorous treatment
of the problem is beyond the aim of these notes. However, we need at least to clarify a bit the setting of our problem. For
this, we assume the maps b and σ to be continuous on : [0, T ]× Rd ×A and Lipschitz continuous in x independently
of t and a: There is a constantK > 0 such that, for any x, y ∈ Rd, t ∈ [0,+∞), a ∈ A,

|b(t, x, a)− b(t, y, a)|+ |σ(t, x, a)− σ(t, y, a)| ≤ K|x− y|.

Under these assumptions, for any bounded control α ∈ A, there exists a unique solution to (1.3). By a solution we
mean a progressively measurable process X such that, for any T > 0,

E

[∫ T

t

|Xα
s |2ds

]
< +∞

and (1.3) holds P−a.s. More precisely, we have:

Lemma 2 Let α be a bounded control inA. Then there exists a unique solutionXα to (1.3) and this solution satisfies,
for any T > 0 and p ∈ [2,+∞),

9



E

[
sup
t∈[t,T ]

|Xα
t |p
]
≤ C(1 + |x|p) + ‖b(·, 0, α·)‖p∞ + ‖σ(·, 0, α·)‖p∞),

where C = C(T, p, d,K).

Remark 1 In view of the above result, the cost J is well-defined provided, for instance, that the maps L : [0, T ]×Rd×
A→ R and g : Rd → R are continuous with at most a polynomial growth.

Proof. The existence can be proved by a fixed point argument, exactly as in the more complicated setting of the
McKean-Vlasov equation (see the proof of Theorem 2 below). Let us show the bound. We setM := ‖b(·, 0, α·)‖∞ +
‖σ(·, 0, α·)‖∞. We have, by Hölder’s inequality

|Xα
s |p ≤ C(p, T, d)

(
|x|p +

∫ s

t

|b(r,Xα
r , αr)|pdr +

∣∣∣∣∫ s

t

σ(r,Xα
r , αr)dBr

∣∣∣∣p)
where the constant C(p, T, d) depends only on p, T and d. Thus

E
[

sup
t≤r≤s

|Xα
r |p
]
≤ C(p, T, d)

(
|x|p +

∫ s

t

E [|b(r,Xα
r , αr)|p] dr + E

[
sup
t≤r≤s

∣∣∣∣∫ r

t

σ(u,Xα
u , αu)dBu

∣∣∣∣p]) .
Note that

|b(s,Xα
s , αs)| ≤ |b(s, 0, αs)|+ L|Xα

s | ≤M + L|Xα
s |

and, in the same way,
|σ(s,Xα

s , αs)| ≤M + L|Xα
s |. (1.7)

So we have ∫ s

t

E [|b(r,Xα
r , αr)|p] dr ≤ 2p−1(Mp(s− t) + Lp

∫ s

t

E [|Xα
r |p] dr).

By the Burkholder-Davis-Gundy inequality (see Theorem IV.4.1 in [172]), we have

E
[

sup
t≤r≤s

∣∣∣∣∫ r

t

σ(u,Xα
u , αu)dBu

∣∣∣∣p] ≤ CpE
[(∫ s

t

Tr(σσ∗(r,Xα
r , αr))dr

)p/2]
,

where the constant Cp depends on p only. Combining Hölder’s inequality (since p/2 ≥ 1) with (1.7), we then obtain

E
[

sup
t≤r≤s

∣∣∣∣∫ r

t

σ(u,Xα
u , αu)dBu

∣∣∣∣p] ≤ Cp(s− t)p/2−12p−1

(
Mp(s− t) + Lp

∫ s

t

E [|Xα
r |p] dr

)
.

Putting together the different estimates we get therefore, for s ∈ [t, T ],

E
[

sup
t≤r≤s

|Xα
r |p
]
≤ C(p, T, d)

(
1 + |x|p +Mp +

∫ s

t

E [|Xα
r |p] dr

)
≤ C(p, T, d)

(
1 + |x|p +Mp +

∫ s

t

E
[

sup
t≤u≤r

|Xα
u |p
]
dr

)
.

We can then conclude by Gronwall’s Lemma. �
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1.2.2 The space of probability measures

In this section we describe the space of probability measures and a notion of distance on this space. Classical references
on the distances over the space of probability measures are the monographs by Ambrosio, Gigli and SavarÃ© [19], by
Rachev and RÃ¼schendorf [171], Santambrogio [174], and Villani [178], [179].

The Monge-Kantorovitch distance.

Let (X, d) be a Polish space (= complete metric space). We have mostly in mind X = Rd endowed with the usual
distance. We denote by P(X) the set of Borel probability measures onX . Let us recall that a sequence (mn) of P(X)
narrowly converges to a measurem ∈ P(X) if, for any test function φ ∈ C0

b (X) (= the set of continuous and bounded
maps on X), we have

lim
n

∫
X

φ(x)mn(dx) =

∫
X

φ(x)m(dx).

Let us recall that the topology associated with the narrow convergence corresponds to the weak-* topology of the dual
of C0

b (X): for this reason we will also call it weak-* convergence. According to Prokhorov compactness criterium, a
subsetK of P(X) is (sequentially) relatively compact for the narrow convergence if and only if it is tight: for any ε > 0
there exists a compact subsetK of X such that

sup
µ∈K

m(X\K) ≤ ε.

In particular, for any µ ∈ P(X) and any ε > 0, there is some Xε compact subset of X with µ(X\Xε) ≤ ε (Ulam’s
Lemma).

We fix from now on a point x0 ∈ X and we denote by P1(X) the set of measuresm ∈ P(X) such that∫
X

d(x, x0)m(dx) < +∞.

By the triangle inequality, it is easy to check that the set P1(X) does not depend on the choice of x0. We endow P1(X)
with the Monge-Kantorovitch distance:

d1(m1,m2) = sup
φ

∫
X

φ(x)(m1 −m2)(dx) ∀m1,m2 ∈ P1(X),

where the supremum is taken over the set of maps φ : X → R such that φ is 1−Lipschitz continuous. Note that such a
map φ is integrable against anym ∈ P1(X) because it has at most a linear growth.

We note for later use that, if φ : X → R is Lip(φ)−Lipschitz continuous, then∫
X

φ(x)(m1 −m2)(dx) ≤ Lip(φ)d1(m1,m2).

Moreover, ifX1 andX2 are random variables on some probability space (Ω,F ,P) such that the law ofXi ismi, then

d1(m1,m2) ≤ E [|X1 −X2|] , (1.8)

because, for any 1−Lipschitz map φ : X → R,∫
X

φ(x)(m1 −m2)(dx) = E [φ(X1)− φ(X2)] ≤ E [|X1 −X2|] .
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Taking the supremum in φ gives the result. Actually one can show that, if the probability space (Ω,F ,P) is “rich
enough" (namely it is a “standard probability space"), then

d1(m1,m2) = inf
X1,X2

E [|X1 −X2|] ,

where the infimum is taken over random variables X1 and X2 such that the law of Xi ismi.

Lemma 3 d1 is a distance over P1(X).

Proof. The reader can easily check the triangle inequality. We now note that d1(m1,m2) = d1(m2,m1) ≥ 0 since
one can always replace φ by −φ in the definition. Let us show that d1(m1,m2) = 0 implies that m1 = m2. Indeed,
if d1(m1,m2) = 0, then, for any 1−Lipschitz continuous map φ, one has

∫
X
φ(x)(m1 −m2)(dx) ≤ 0. Replacing φ

by −φ, one has therefore
∫
X
φ(x)(m1 −m2)(dx) = 0. It remains to show that this equality holds for any continuous,

bounded map φ : X → R. Let φ ∈ C0
b (X). We show in Lemma 4 below that there exists a sequence of maps (φk) such

that φk is k−Lipschitz continuous, with ‖φk‖∞ ≤ ‖φ‖∞, and the sequence (φk) converges locally uniformly to φ. By
Lipschitz continuity ofφk, we have

∫
X
φkd(m1−m2) = 0. Sincewe can apply Lebesgue convergence theorem (because

the φk are uniformly bounded andm1 andm2 are probability measures), we obtain that
∫
X
φ(x)(m1 −m2)(dx) = 0.

This proves thatm1 = m2. �

Lemma 4 Let φ ∈ C0
b (X) and let us define the sequence of maps (φk) by

φk(x) = inf
y∈X

φ(y) + kd(y, x) ∀x ∈ X

Then φk ≤ φ, φk is k−Lipschitz continuous with ‖φk‖∞ ≤ ‖φ‖∞, and the sequence (φk) converges locally uniformly
to φ.

Proof. We have
φk(x) = inf

y∈X
φ(y) + kd(y, x) ≤ φ(x) + kd(x, x) = φ(x),

so that φk ≤ φ. Let us now check that φk is k−Lipschitz continuous. Indeed, let x1, x2 ∈ X , ε > 0 and y1 be
ε−optimal in the definition of φk(x1). Then

φk(x2) ≤ φ(y1) + kd(y1, x2) ≤ φ(y1) + kd(y1, x1) + kd(x1, x2) ≤ φk(x1) + ε+ kd(x1, x2).

As ε is arbitrary, this shows that φk is k−Lipschitz continuous. Note that φk(x) ≥ −‖φ‖∞. As φk ≤ φ, this shows
that ‖φk‖∞ ≤ ‖φ‖∞.

Finally, let xk → x and yk be (1/k)−optimal in the definition of φk(xk). Our aim is to show that (φk(xk)) converges
to φ(x), which will show the local uniform convergence of (φk) to φ. Let us first remark that, by the definition of yk,
we have

kd(yk, xk) ≤ φk(xk)− φ(yk) + 1/k ≤ 2‖φ‖∞ + 1.

Therefore
d(yk, x) ≤ d(yk, xk) + d(xk, x)→ 0 as k → +∞.

This shows that (φ(yk)) converges to φ(x) and thus

lim inf
k

φk(xk) ≥ lim inf
k

φ(yk) + kd(yk, xk)− 1/k ≥ lim inf
k

φ(yk)− 1/k = φ(x).

On the other hand, since φk ≤ φ, we immediately have lim sup
k

φk(xk) ≤ φ(x), from which we conclude the

convergence of (φk(xk)) to φ(x). �

Proposition 1 Let (mn) be a sequence in P1(X) andm ∈ P1(X). There is an equivalence between:
i) d1(mn,m)→ 0,
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ii) (mn) narrowly converges tom and
∫
X

d(x, x0)mn(dx)→
∫
X

d(x, x0)m(dx).

iii) (mn) narrowly converges tom and lim
R→+∞

sup
n

∫
BR(x0)c

d(x, x0)mn(dx) = 0.

Sketch of proof. (i) ⇒ (ii). Let us assume that d1(mn,m) → 0. Then, for any Lipschitz continuous map φ,
we have

∫
φmn(dx) →

∫
φm(dx) by definition of d1. In particular, if we chose φ(x) = d(x, x0), we have∫

X

d(x, x0)mn(dx) →
∫
X

d(x, x0)m(dx). We now prove the weak-* convergence of (mn). Let φ : X → R be

continuous and bounded and let (φk) be the sequence defined in Lemma 4. Then∫
φ(mn −m)(dx) =

∫
φk(mn −m)(dx) +

∫
(φ− φk)(mn −m)(dx).

Fix ε > 0. As (
∫
X
d(x, x0)mn(dx)) converges andm ∈ P1(X), we can find R > 0 large such that

sup
n
mn(X\BR(x0)) +m(X\BR(x0)) ≤ ε.

On the other hand, we can find k large enough such that ‖φk − φ‖L∞(BR(x0)) ≤ ε, by local uniform convergence of
(φk). Finally, if n is large enough, we have |

∫
φk(mn −m)(dx)| ≤ ε, by the convergence of (mn) tom in d1. So∣∣∣∣∫ φ(mn −m)(dx)

∣∣∣∣ ≤ ∣∣∣∣∫ φk(mn −m)(dx)

∣∣∣∣+

∣∣∣∣∣
∫
X\BR(x0)

(φ− φk)d(mn −m)

∣∣∣∣∣+

∣∣∣∣∣
∫
BR(x0)

(φ− φk)(mn −m)(dx)

∣∣∣∣∣
≤
∣∣∣∣∫ φk(mn −m)(dx))

∣∣∣∣+ (‖φk‖∞ + ‖φ‖∞)(mn(X\BR(x0)) +m(X\BR(x0)))

+ 2‖φk − φ‖L∞(BR(x0))

≤ ε+ 2‖φ‖∞ε+ 2ε.

This shows the weak-* convergence of (mn) tom.

(ii) ⇒ (iii). Let us assume that (mn) narrowly converges to m and
∫
X

d(x, x0)mn(dx) →
∫
X

d(x, x0)m(dx).

We have to check that lim
R→+∞

sup
n

∫
BR(x0)c

d(x, x0)mn(dx) = 0. For this we argue by contradiction, assuming that

there is ε > 0 and a subsequence still denoted (mn) and Rn → +∞ such that∫
BRn (x0)c

d(x, x0)mn(dx) ≥ ε.

Then, for anyM > 0 and any n large enough so that Rn ≥M ,∫
X

d(x, x0)mn(dx) =

∫
X

(d(x, x0) ∧M)mn(dx) +

∫
BM (x0)c

d(x, x0)mn(dx)−M
∫
BM (x0)c

mn(dx)

≥
∫
X

(d(x, x0) ∧M)mn(dx) + ε−Mmn(BM (x0)c).

We let n → +∞ in the above inequality to get, as (
∫
X
d(x, x0)mn(dx)) converges to

∫
X
d(x, x0)m(dx) and (mn)

converges tom narrowly,∫
X

d(x, x0)m(dx) ≥
∫
X

(d(x, x0) ∧M)m(dx) + ε−Mm(BM (x0)c).
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As
∫
X
d(x, x0)m(dx) is finite, the last term in the right-hand side tends to 0 asM tends to infinity while the first one

tends to
∫
X
d(x, x0)m(dx) by monotone convergence: this leads to a contradiction.

(ii)⇒ (iii). Let us assume that (mn) weakly-* converges tom and that lim
R→+∞

sup
n

∫
BR(x0)c

d(x, x0)mn(dx) = 0.

Fix ε > 0. In view of the last condition, we can find R > 0 large enough such that

sup
n

∫
BR(x0)c

d(x, x0)mn(dx) ≤ ε and

∫
BR(x0)c

d(x, x0)m(dx) ≤ ε.

As the sequence (mn) converges, it is tight by Prokhorov theorem, and we can find a compact subsetK ofX such that

sup
n

∫
Kc

mn(dx) ≤ R−1ε and

∫
Kc

m(dx) ≤ R−1ε.

Let K0 be the set of 1−Lipschitz continuous maps on X which vanish at x0. Note that, for any φ ∈ K0, we have

|φ(x)| = |φ(x)− φ(x0)| ≤ d(x, x0).

Therefore

d1(mn,m) = sup
φ∈K0

∫
X

φ(x)(mn −m)(dx)

≤ sup
φ∈K0

[∫
K

φ(x)(mn −m)(dx) +

∫
BR(x0)\K

d(x, x0)(mn +m)(dx) +

∫
BR(x0)c

d(x, x0)(mn +m)(dx)

]

≤ sup
φ∈K0

[∫
K

φ(x)(mn −m)(dx)

]
+R(mn +mn)(Kc) + 2ε

≤ sup
φ∈K0

[∫
K

φ(x)(mn −m)(dx)

]
+ 4ε.

By Ascoli-ArzelÃ , there exists φn ∈ K0 optimal in the right-hand side. In addition, we can assume that (φn) converges
uniformly, up to a subsequence, to some 1−Lipschitz continuous map φ : K → R. We can extend φn and φ to X by
setting

φ̃n(x) = sup
y∈K

[φn(y)− d(y, x0)], φ̃(x) = sup
y∈K

[φ(y)− d(y, x0)].

Then one easily checks that (φ̃n) converges uniformly to φ̃ in X , so that, by weak-* convergence of (mn) to m we
have:

lim
n

∫
X

φ̃n(x)(mn −m)(dx) = 0.

As the (φ̃n) are 1-Lipschitz continuous and coincide with φn onK, we have, arguing as above,

d1(mn,m) ≤
∫
K

φn(x)(mn −m)(dx) + 4ε ≤
∫
X

φ̃n(x)(mn −m)(dx) + 6ε.

Letting n→ +∞ in this inequality implies d1(mn,m)→ 0. More precisely, we have proved that this holds for at least
a subsequence ofmn. But since this argument applies tomn as well as to any of its subsequences, a standard argument
allows us to conclude the desired result. �

In the case where X = Rd, we repeatedly use the following compactness criterium:

Lemma 5 Let r > 1 and K ⊂ P1(Rd) be such that
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sup
µ∈K

∫
Rd
|x|rµ(dx) < +∞ .

Then K is relatively compact for the d1 distance.

Note that bounded subsets of P1(Rd) are not relatively compact for the d1 distance. For instance, in dimension
d = 1, the sequence of measures µn = n−1

n δ0 + 1
nδn satisfies d2(µn, δ0) = 1 for any n ≥ 1 but µn narrowly converges

to δ0.

Proof of Lemma 5. Let ε > 0 and R > 0 sufficiently large. We have for any µ ∈ K:

µ(Rd\BR(0)) ≤
∫
Rd\BR(0)

|x|r

Rr
µ(dx) ≤ C

Rr
< ε , (1.9)

where C = supµ∈K
∫
Rd |x|

rµ(dx) < +∞. So K is tight.
Let now (µn) be a sequence in K. From the previous step we know that (µn) is tight and therefore there is

a subsequence, again denoted (µn), which narrowly converges to some µ. By (1.9) and (iii) in Proposition 1 the
convergence also holds for the distance d1. �

The d2 distance.

Here we assume for simplicity that X = Rd. Another useful distance on the space of measures is the Wasserstein
distance d2. It is defined on the space P2(Rd) of Borel probability measuresmwith a finite second order moment (i.e.,∫
Rd |x|

2m(dx) < +∞) by

d2(m1,m2) := inf
π

(∫
Rd×Rd

|x− y|2π(x, y)

)1/2

,

where the infimum is taken over the Borel probability measures π on Rd × Rd with first marginal given by m1 and
second marginal bym2:∫

Rd×Rd
φ(x)π(dx, dy) =

∫
Rd
φ(x)m1(dx),

∫
Rd×Rd

φ(y)π(dx, dy) =

∫
Rd
φ(y)m2(dy) ∀φ ∈ C0

b (Rd).

Given a “sufficiently rich" probability space (Ω,F ,P), the distance can be defined equivalently by

d2(m1,m2) = inf
X,Y

(
E
[
|X − Y |2

])1/2
,

where the infimum is taken over random variables X,Y over Ω with lawm1 andm2 respectively.

1.2.3 Mean field limits

We complete this preliminary part by the analysis of large particle systems. Classical references on this topic are the
monographs or texbooks by Sznitman [177], Spohn [176] and Golse [111].

We consider system of N−particles (where N ∈ N∗ is a large number) and we want to understand the behavior of
the system as the number N tends to infinity. We work with the following system: for i = 1, . . . , N ,dXi

t = b(Xi
t ,m

N
Xt)dt+ dBit, mN

Xt :=
1

N

N∑
j=1

δXjt

Xi
0 = Zi

(1.10)
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where the (Bi) are independent Brownian motions, the Zi are i.i.d. random variables inRd which are also independent
of the (Bi). The map b : Rd × P1(Rd) → Rd is assumed to be globally Lipschitz continuous. Note that, under these
assumptions, the solution (Xi) to (1.10) exists and is unique, since this is an ordinary system of SDEs with Lipschitz
continuous drift. A key point is that, because the (Zi) have the same law and the equations satisfied by the Xi are
symmetric, the Xi have the same law (they are actually “exchangeable").

We want to understand the limit of the (Xi) asN → +∞. The heuristic idea is that, asN is large, the (Xi) become
more and more independent, so that they become almost i.i.d. The law of large numbers then implies that

1

N

N∑
j=1

b(Xi
t , X

j
t ) ≈ Ẽ

[
b(Xi

t , X̃
i
t)
]

=

∫
Rd
b(Xi

t , y)PXit (dy),

where X̃i
t is an independent copy of Xi

t and Ẽ is the expectation with respect to this independent copy. Therefore we
expect the Xi to be close to the solution X̄i to the McKean-Vlasov equation{

dX̄i
t = b(X̄i

t ,L(X̄i
t))dt+ dBit,

X̄i
0 = Zi

(1.11)

This is exactly what we are going to show. For doing so, we proceed in 3 steps: firstly, we generalize the law of large
numbers by considering the convergence of empirical measures (the Glivenko-Cantelli law of large numbers), secondly
we prove the existence and the uniqueness of a solution to the McKean-Vlasov equation (1.11) and, thirdly, we establish
the convergence.

The Glivenko-Cantelli law of large numbers.

Herewe consider (Xn) a sequence of i.i.d. randomvariables on afixed probability space (Ω,F ,P), withE[|X1|] < +∞.
We denote bym the law of X1. The law of large numbers states that, a.s. and in L1,

lim
N→+∞

1

N

N∑
n=1

Xn = E[X1].

Our aim is to show that a slightly stronger convergence holds: let

mN
X :=

1

N

N∑
n=1

δXn

Note thatmN
X is a random measure, in the sense thatmN

X is a.s. a measure and that, for any Borel set A ⊂ X ,mN
X(A)

is a random variable. The following result is (sometimes) known as the Glivenko-Cantelli Theorem.

Theorem 1 If E[|X1|] < +∞, then, a.s. and in L1,

lim
N→+∞

d1(mN
X ,m) = 0.

Remark 2 It is often useful to quantify the convergence speed in the law of large numbers. Such results can be found
in the text books [171] or, in a sharper form, in [68, Theorem 5.8], see also the references therein.

Sketch of proof. Let φ ∈ C0
b (X). Then, by the law of large numbers,∫

Rd
φ(x)mN

X(dx) =
1

N

N∑
n=1

φ(Xn) = E[φ(X1)] a.s.
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By a separability argument, it is not difficult to check that the set of zero probability in the above convergence can be
chosen independent of φ. So (mN

X) converge weakly-* tom a.s. Note also that∫
Rd
d(x, x0)mN

X(dx) =
1

N

N∑
n=1

d(Xn, x0)

where the random variables (d(Xn, x0)) are i.i.d. and in L1. By the law of large numbers we have∫
Rd
d(x, x0)mN

X(dx)→
∫
Rd
d(x, x0)m(dx) a.s.

By Proposition 1, (mN
X) converges a.s. in d1 tom. It remains to show that this convergence also holds in expectation.

For this we note that

d1(mN
X ,m) = sup

φ

∫
Rd
φ(mN

X −m)(dx) ≤ sup
φ

1

N

N∑
i=1

φ(Xi)−
∫
Rd
φ(x)m(dx),

where the supremum is taken over the 1−Lipschitz continuous maps φ with φ(0) = 0. So

d1(mN
X ,m) ≤ 1

N

N∑
i=1

|Xi|+
∫
Rd
|x|m(dx).

As the right-hand side converges inL1,d1(mN
X ,m) is uniformly integrablewhich implies its convergence in expectation

to 0. �

The well-posedness of the McKean-Vlasov equation.

Theorem 2 Let us assume that b : Rd × P1(Rd)→ Rd is globally Lipschitz continuous and let Z ∈ L2(Ω). Then the
McKean-Vlasov equation {

dXt = b(Xt,L(Xt))dt+ dBt
X0 = Z

has a unique solution, i.e., a progressively measurable process such that E
[∫ T

0
|Xs|2ds

]
< +∞ for any T > 0.

Remark 3 By ItÃ´’s formula, the law mt of a solution Xt solves in the sense of distributions the McKean-Vlasov
equation {

∂tmt − 1
2∆mt + div(mtb(x,mt)) = 0 in (0, T )× Rd

m0 = L(Z) in Rd.

One can show (and we will admit) that this equation has a unique solution, which proves the uniqueness in law of the
process X .

Proof. Let α > 0 to be chosen later and E be the set of progressively measurable processes (Xt) such that

‖X‖E := E
[∫ ∞

0

e−αt|Xt|dt
]
< +∞.

Then (E, ‖ · ‖E) is a Banach space. On E we define the map Φ by

Φ(X)t = Z +

∫ t

0

b(Xs,L(Xs))ds+Bt, t ≥ 0.
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Let us check that the map Φ is well defined from E to E. Note first that Φ(X) is indeed progressively measurable. By
the L−Lipschitz continuity of b (for some L > 0),

|Φ(X)t| ≤ |Z|+
∫ t

0

|b(Xs,L(Xs))|ds+ |Bt|

≤ |Z|+ t|b(0, δ0)|+ L

∫ t

0

(|Xs|+ d1(L(Xs), δ0))ds+ |Bt|,

where one can easily check that d1(L(Xs), δ0) = E
[∫ t

0

|Xs|ds
]
. So

E
[∫ +∞

0

e−αt|Φ(X)t|dt
]
≤ α−1E[|Z|] + α−2|b(0, δ0)|+ 2LE

[∫ +∞

0

e−αt
∫ t

0

|Xs|dsdt
]

+

∫ +∞

0

e−αtE [|Bt|] dt

= α−1E[|Z|] + α−2|b(0, δ0)|+ 2L

α
E
[∫ +∞

0

e−αs|Xs|ds
]

+ Cd

∫ +∞

0

t1/2e−αtdt,

where Cd depends only on dimension. This proves that Φ(X) belongs to E.
Let us finally check that Φ is a contraction. We have, if X,Y ∈ E,

|Φ(X)t − Φ(Y )t| ≤
∫ t

0

|b(Xs,L(Xs))− b(Ys,L(Ys))| dt

≤ Lip(b)
(∫ t

0

d1(PXs ,PYs)dt+

∫ t

0

|Xs − Ys|dt
)
.

Recall that d1(PXs ,PYs) ≤ E [|Xs − Ys|] . So multiplying by e−αt and taking expectation, we obtain:

‖Φ(X)− Φ(Y )‖E = E
[∫ +∞

0

e−αt |Φ(X)s − Φ(Y )s| dt
]

≤ 2Lip(b)

∫ +∞

0

e−αt
∫ t

0

E [|Xs − Ys|] dsdt

≤ 2Lip(b)

α
‖X − Y ‖E .

If we choose α > 2Lip(b), then Φ is a contraction in the Banach space E and therefore has a unique fixed point. It is
easy to check that this fixed point is the unique solution to our problem. �

The mean field limit.

Let (Xi) be the solution to the particle system (1.10) and (X̄i) be the solution to (1.11). Let us note that, as the (Bi)
and the (Zi) are independent with the same law, the (X̄i

t) are i.i.d. for any t ≥ 0.

Theorem 3 We have, for any T > 0,

lim
N→+∞

sup
i=1,...,N

E

[
sup
t∈[0,T ]

|Xi
t − X̄i

t |

]
= 0.

Remark: a similar result holds when there is a non constant volatility term σ in front of the Brownian motion. The
proof is then slightly more intricate.

Proof. We consider
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Xi
t − X̄i

t =

∫ t

0

(
b(Xi

t ,m
N
Xt)− b(X̄

i
t ,L(X̄i

t))
)
dt.

By the uniqueness in law of the solution to the McKean-Vlasov equation we can denote by m(t) := L(X̄i
t) (it is

independent of i). Then, settingmN
X̄t

:=
1

N

N∑
j=1

δX̄jt
and using the triangle inequality, we have

|Xi
t − X̄i

t | ≤
∫ t

0

∣∣∣b(Xi
t ,m

N
Xt)− b(X̄

i
s,m

N
X̄s

)
∣∣∣ ds+

∫ t

0

∣∣∣b(X̄i
s,m

N
X̄s

)− b(X̄i
s,m(s))

∣∣∣ ds
≤ Lip(b)

∫ t

0

(|Xi
s − X̄i

s|+ d1(mN
Xt ,m

N
X̄s

))ds+ Lip(b)

∫ t

0

d1(mN
X̄s
,m(s))ds

≤ Lip(b)
∫ t

0

(|Xi
s − X̄i

s|+
1

N

N∑
j=1

|Xj
s − X̄j

s |)ds+ Lip(b)

∫ t

0

d1(mN
X̄s
,m(s))ds, (1.12)

since

d1(mN
Xt ,m

N
X̄s

) ≤ 1

N

N∑
j=1

|Xj
s − X̄j

s |.

Summing over i = 1, . . . , N , we get

1

N

N∑
i=1

|Xi
t − X̄i

t | ≤ 2Lip(b)

∫ t

0

1

N

N∑
j=1

|Xj
s − X̄j

s |ds+ Lip(b)

∫ t

0

d1(mN
X̄s
,m(s))ds.

Using Gronwall Lemma, we find, for any T > 0, and for some constant CT depending on Lip(b),

sup
t∈[0,T ]

1

N

N∑
i=1

|Xi
t − X̄i

t | ≤ CT
∫ T

0

d1(mN
X̄s
,m(s))ds, (1.13)

where CT depends on T and Lip(b) (but not on N ). Then we can come back to (1.12), use first Gronwall Lemma and
then (1.13) to get, for any T > 0, and for some (new) constant CT depending on Lip(b) and which might change from
line to line,

sup
t∈[0,T ]

|Xi
t − X̄i

t | ≤ CT
∫ T

0

(
1

N

N∑
j=1

|Xj
s − X̄j

s |+ d1(mN
X̄s
,m(s)))ds

≤ CT
∫ T

0

d1(mN
X̄s
,m(s))ds.

We now take expectation to obtain

E

[
sup
t∈[0,T ]

|Xi
t − X̄i

t |

]
≤ CT

∫ T

0

E
[
d1(mN

X̄s
,m(s))ds

]
.

One can finally check exactly as in the proof of Theorem 1 that the right-hand side tends to 0. �
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1.3 The mean field game system

In this section, we focus on the mean field game system of PDEs (henceforth, MFG system) introduced by J.-M. Lasry
and P.-L. Lions ([144], [145]). It takes the form of a backward Hamilton-Jacobi equation coupled with a forward
Kolmogorov equation −∂tu− ε∆u+H(x,Du,m) = 0,

∂tm− ε∆m− div(mHp(x,Du,m) = 0,
m(0) = m0, u(T ) = G(x,m(T )).

(1.14)

The Hamilton-Jacobi equation formalizes the individual optimization problem and is solved by the value function of
each agent, while the Kolmogorov equation describes the evolution of the population density.

We will first derive in a heuristic way the MFG system (1.14). Then we will discuss several PDE methods used to
obtain the existence and uniqueness of solutions, in both the diffusive case (ε > 0) and the deterministic case (ε = 0).
In order to give a more clear and complete presentation of the PDE approach, we will mostly focus on the simplest
form of the system (where the cost of control is separate from the mean-field dependent cost):

−∂tu− ε∆u+H(x,Du) = F (x,m)

u(T ) = G(x,m(T ))

∂tm− ε∆m− div(mHp(x,Du)) = 0

m(0) = m0 ,

(1.15)

where we will distinguish two kind of regimes, depending on the case of smoothing couplings F,G (operators on the
space of measures) rather than on the case of local couplings (functions defined on the density of absolutely continuous
measures). Sample results of existence and uniqueness will be given in both cases.

For simplicity, we will restrict the analysis of system (1.15) to the periodic case. This means that x belongs to the
d−dimensional torus Td := Rd/Zd, and all x-dependent functions are Zd−periodic in space. We denote by P(Td)
the set of Borel probability measures on Td, endowed as before with the Monge-Kantorovich distance d1:

d1(m,m′) = sup
φ

∫
Td
φd(m−m′) ∀m,m′ ∈ P(Td),

where the supremum is taken over all 1−Lipschitz continuous maps φ : Td → R. This distance metricizes the narrow
topology on P(Td). Recall that P(Td) is a compact metric space. For T > 0, we set QT := (0, T )× Td.

1.3.1 Heuristic derivation of the MFG system

We describe here the simplest class of mean field games, when the state space is Rd. In this control problem with
infinitely many agents, each small agent controls his/her own dynamics:

Xs = x+

∫ s

t

b(Xr, αr,m(r))dr +

∫ s

t

σ(Xr, αr,m(r))dBr, (1.16)

where X lives in Rd, α is the control (taking its values in a fixed set A) and B is a givenM−dimensional Brownian
motion. The difference with Section 1.2.1 is the dependence of the drift with respect to the distribution (m(t)) of all
the players. This (time dependent) distribution (m(t)) belongs to the set P(Rd) and is, at this stage, supposed to be
given: one should think at (m(t)) as the anticipation made by the agents on their future time dependent distribution.
The coefficients b : Rd × A × P(Rd) → Rd and σ : Rd × A × P(Rd) → Rd×M are assumed to be smooth enough
for the solution (Xt) to exist.

The cost of a small player is given by
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J(t, x, α) = E

[∫ T

t

L(Xs, αs,m(s))ds+G(XT ,m(T ))

]
. (1.17)

Here T > 0 is the finite horizon of the problem, L : Rd × A × P(Rd) → R and G : Rd × P(Rd) → R are given
continuous maps.

If we define the value function u as
u(t, x) = inf

α
J(t, x, α),

then, at least in a formal way, u solves the Hamilton-Jacobi equation{
−∂tu(t, x) +H(x,Du(t, x), D2u(t, x),m(t)) = 0 in (0, T )× Rd
u(T, x) = G(x,m(T )) in Rd

where the Hamiltonian H : Rd × Rd × Rd×d × P(Rd)→ R is defined by

H(x, p,M,m) := sup
a∈A

[
−L(x, a,m)− p · b(x, a,m)− 1

2
Tr(σσ∗(x, a,m)M)

]
.

Let us now introduce α∗(t, x) ∈ A as a maximum point in the definition ofH when p = Du(t, x) andM = D2u(t, x).
Namely

H(x,Du(t, x), D2u(t, x),m(t)) = −L(x, α∗(t, x),m(t))−Du(t, x) · b(x, α∗(t, x),m(t))

− 1

2
Tr(σσ∗(x, α∗(t, x))D2u(t, x),m(t)). (1.18)

Recall from Subsection 1.2.1 that α∗ is the optimal feedback for the problem. However, we stress that here u and α∗
depend on the time-dependent family of measures (m(t)).

We now discuss the evolution of the population density. For this we make the two following assumptions. Firstly
we assume that all the agents control the same system (1.16) (although not necessarily starting from the same initial
position) and minimize the same cost J . As a consequence, the dynamics at optimum of each player is given by

dX∗s = b(X∗s , α
∗(s,X∗s ),m(s))ds+ σ(X∗s , α

∗(s,X∗s ),m(s))dBs.

Secondly, we assume that the initial position of the agents and the noise driving their dynamics are independent: in
particular, there is no “common noise" impacting all the players. The initial distribution of the agents at time t = 0 is
denoted by m̄0 ∈ P(Rd). From the analysis of the mean field limit of Subsection 1.2.3 (in the simple case where the
coefficients do not depend on the other agents) the actual distribution (m̃(s)) of all agents at time s is simply given by
the law of (X∗s ) with L(X∗0 ) = m0.

Let us nowwrite the equation satisfied by (m̃(s)). By ItÃ´’s formula, we have, for any smoothmap φ : [0, T )×Rd →
R with a compact support:

0 = E [φ(T,X∗T )] = E [φ(0, X∗0 )] +

∫ T

0

E
[
∂tφ(s,X∗s ) + b(X∗s , α

∗(s,X∗s ),m(s)) ·Dφ(s,X∗s )

+
1

2
Tr(σσ∗(X∗s , α

∗(s,X∗s ),m(s))D2φ(s,X∗s ))
]
ds

=

∫
Rd
φ(0, x)m0(dx) +

∫ T

0

∫
Rd

[
∂tφ(s, x) + b(x, α∗(s, x),m(s)) ·Dφ(s, x)

+
1

2
Tr(σσ∗(x, α∗(s, x),m(s))D2φ(s, x))

]
m̃(t, dx)ds

After integration by parts, we obtain that (m̃(t)) satisfies, in the sense of distributions,
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∂tm̃−
1

2

∑
ij

D2
ij(m̃(t, x)aij(x, α

∗(t, x),m(t))) + div(m̃(t, x)b(x, α∗(t, x),m(t))) = 0 in (0, T )× Rd,

m̃(0) = m0 in Rd,

where a = σσ∗.
At equilibrium, one expects the anticipation (m(t)) made by the agents to be correct: m̃(t) = m(t). Collecting the

above equations leads to the MFG system:
−∂tu(t, x) +H(x,Du(t, x), D2u(t, x),m(t)) = 0 in (0, T )× Rd,

∂tm−
1

2

∑
ij

D2
ij(m(t, x)aij(x, α

∗(t, x),m(t)) + div(m(t, x)b(x, α∗(t, x),m(s))) = 0 in (0, T )× Rd,

m(0) = m0, u(T, x) = G(x,m(T )) in Rd,

where α∗ is given by (1.18) and a = σσ∗.
In order to simplify a little this system, let us assume thatM = d and σ =

√
2εId (where now ε is a constant). We

set (warning! abuse of notation!)

H(x, p,m) := sup
a∈A

[−L(x, a,m)− p · b(x, a,m)]

and note that, by Lemma 1, under suitable assumptions one has (see (1.6))

Hp(x,Du(t, x),m(t)) = −b(x, α∗(t, x),m(t)).

In this case the MFG system becomes
−∂tu(t, x)− ε∆u(t, x) +H(x,Du(t, x),m(t)) = 0 in (0, T )× Rd,
∂tm− ε∆m(t, x)− div(m(t, x)Hp(x,Du(t, x),m(t)) = 0 in (0, T )× Rd,
m(0) = m0, u(T, x) = G(x,m(T )) in Rd,

This system will be the main object of analysis of this chapter. Note that it is not a standard PDE system, since the first
equation is backward in time, while the second one is forward in time. As this analysis is not too easy, it will be more
convenient to work with periodic boundary condition (namely on the d−dimensional torus Td = Rd/Zd).

1.3.2 Second order MFG system with smoothing couplings

We start with the analysis of the MFG system (1.15). Hereafter, we assume that x belongs to the d−dimensional torus
Td. In this Section we assume that the coupling functions are smoothing operators defined on the setC0([0, T ],P(Td)).
To stress that the couplings are operators, we will write their action as F [m] andG[m], so the system will be written as

−∂tu− ε∆u+H(t, x,Du) = F [m]

u(T ) = G[m(T )]

∂tm− ε∆m− div(mHp(t, x,Du)) = 0

m(0) = m0 .

(1.19)

Definition 1 We say that a pair (u,m) is a classical solution to (1.19) if

(i)m ∈ C0([0, T ],P(Td)) andm(0) = m0; u ∈ C(QT ) and u(T ) = G[m(T )]
(ii) u,m are continuous functions in (0, T ) × Td, of class C2 in space and C1 in time, and the two equations are

satisfied pointwise for x ∈ Td and t ∈ (0, T ).
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Let us stress that the above definition only requires u,m to be smooth for t ∈ (0, T ), which allows m0 to be a
general probability measure. Of course, the smoothness can extend up to t = 0 and/or t = T in case m0 and/or G[·]
are sufficiently smooth. We also notice that the above definition requires Hp(x, p) to be differentiable, in order for m
to be a classical solution. It is often convenient to use a weaker notion as well: we will simply say that (u,m) is a
solution of (1.19) (without using the adjective classical) if (u,m) satisfy point (i) in the above Definition, m and Du
are locally bounded and if both equations are satisfied in the sense of distributions in (0, T ), i.e. against test functions
ϕ ∈ C1((0, T )× Td) with compact support in (0, T ).

The smoothing character of the couplings F,G is assumed in the following conditions:

F : C0([0, T ],P(Td))→ C0(QT ) is continuous with range into a bounded set of L∞(0, T ;W 1,∞(Td)) (1.20)

and similarly

G : P(Td) ∩ L1(Td)→ C0(Td) is continuous with range into a bounded set ofW 1,∞(Td). (1.21)

We notice that functions F (t, x,m) which are (locally) Lipschitz continuous on QT × P(Td) naturally provide with
corresponding operators given by F [m] = F (t, x,m(t)); the above assumption (1.20) is satisfied if, for instance, F is
Lipschitz in x uniformly form ∈ P(Td). Examples of such smoothing operators are easily obtained by convolution.

As is nowwell-known in the theory, a special case occurs if the operators F,G aremonotone. This can be understood
as an extension of the standard monotonicity for L2 operators (indeed, F and G are defined in L2(QT ) and L2(Td)
respectively). For instance, F is said to be monotone if∫ T

0

∫
Td

(F [m1]− F [m2])d(m1 −m2) ≥ 0 ∀m1,m2 ∈ C0([0, T ],P(Td))

and a similar definition applies toG. Let us observe that the monotonicity condition on F,G is satisfied for a restricted
class of convolution operators, but one can take for instance F [m] = f(k ?m)?k, where f is a nondecreasing function
and k ≥ 0 a smooth symmetric kernel.

We start by giving one of the early results by J.-M. Lasry and P.-L. Lions.

Theorem 4 ([144],[145]) Let F,G satisfy conditions (1.20), (1.21). Assume that H ∈ C1(QT × Rd) is convex with
respect to p and satisfies at least one of the two following assumptions:

∃ c0 > 0 : |Hp(t, x, p)| ≤ c0(1 + |p|) ∀(t, x, p) ∈ QT × Rd (1.22)

∃ c1 > 0 : Hx(t, x, p) · p ≥ −c1(1 + |p|2) ∀(t, x, p) ∈ QT × Rd (1.23)

Then, for everym0 ∈ P(Td), there exist u ∈ L∞(0, T ;W 1,∞(Td)) ∩ C0(QT ) andm ∈ C0([0, T ],P(Td)) such that
(u,m) is a solution to (1.19).

In addition, let F,G be monotone operators. If one of the two following conditions hold:
∫ T

0

∫
Td(F [m1]− F [m2])d(m1 −m2) = 0⇒ F [m1] = F [m2]∫

Td(G[m1]−G[m2])d(m1 −m2) = 0⇒ G[m1] = G[m2]
(1.24)

H(t, x, p1)−H(t, x, p2)−Hp(t, x, p2)(p1 − p2) = 0⇒ Hp(t, x, p1) = Hp(t, x, p2) ∀p1, p2 ∈ Rd (1.25)

then (u,m) is unique in the above class.
Finally, if in addition Hp ∈ C1(QT × Rd) and F is a bounded map in the space of Hölder continuous functions,

then (u,m) is a classical solution.

Proof. We start by assuming thatm0 is Hölder continuous in Td. We set

X := {m ∈ C0([0, T ], L1(Td)) : m ≥ 0 ,

∫
Td
m(t) = 1 ∀t ∈ [0, T ]} ,
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and we define the following operator: for µ ∈ X , if uµ denotes the unique solution to{
−∂tuµ − ε∆uµ +H(t, x,Duµ) = F [µ]

uµ(T ) = G[µ(T )] ,

then we setm := Φ(µ) as the solution to{
∂tm− ε∆m− div(mHp(t, x,Duµ)) = 0 ,

m(0) = m0 .

We observe that, for given µ ∈ X , F [µ] belongs to L∞(0, T ;W 1,∞(Td)) and G[µ] is Lipschitz as well. If condition
(1.22) is satisfied, then H has at most natural quadratic growth since |H(t, x, p)| ≤ c(1 + |p|2) for some constant
c > 0. Hence the classical parabolic theory applies (see [142, Chapter V, Thm 3.1]); there exists a constantK > 0 and
α ∈ (0, 1) such that Duµ ∈ Cα(QT ) and

‖Duµ‖∞ ≤ K . (1.26)

More precisely, the constantK is independent of µ due to the assumptions on the range of F,G in (1.20)–(1.21).
By contrast, if condition (1.23) holds true, then H has not necessarily natural growth; however, a gradient estimate

follows by using the classical Bernstein’s method. This means that we look at the equation satisfied by w := |Du|2.
Assuming u to be smooth, a direct computation gives

∂tw − ε∆w = −2|D2u|2 − 2Du ·D (H(t, x,Du)− F [m])

≤ −Hp ·Dw − 2Hx(t, x,Du) ·Du+ 2DuDF [m]

≤ −Hp ·Dw + 2c1(1 + |Du|2) + |Du|2 + ‖F [m]‖2W 1,∞

where we used both assumptions (1.20) and (1.23). Since ‖F [m]‖W 1,∞ is bounded uniformly with respect to m, we
conclude that there exists C > 0 such that

∂tw − ε∆w +Hp ·Dw ≤ C(1 + w) .

At time t = T we have ‖w(T )‖∞ ≤ ‖DG[m]‖2∞ ≤ C, so we deduce, by maximum principle, that

‖Du‖2∞ = ‖w‖∞ ≤ CT (1.27)

for some constant CT depending on T, c1, F,G. Therefore, (1.26) holds true under condition (1.23) as well.
Eventually, we conclude that Hp(t, x,Duµ) is uniformly bounded for µ ∈ X . By parabolic regularity (see e.g.

[142, Chapter V, Thms 1.1 and 2.1]), this implies that m is uniformly bounded in Cα(QT ), for some α ∈ (0, 1). In
particular, the operator Φ has bounded range in Cα(QT ), so the range of Φ is a compact subset ofX . The continuity of
Φ is straightforward: if µn → µ, we have F [µn] → F [µ] in C(QT ), so un converges uniformly to the corresponding
solution uµ, whileDun converges a.e. toDuµ, henceHp(x,Dun)→ Hp(x,Duµ) in Lp(QT ) for every p > 1, which
entails the convergence ofmn towardsm = Φ(µ). By Schauder’s fixed point theorem (see e.g. [110]) applied to Φ, we
deduce the existence ofm such thatm = Φ(m), which means a solution (u,m) of (1.19).

For generalm0 ∈ P(Td), we can proceed by approximation. Given a sequence of smooth functionsm0n converging
to m0 in P(Td), the corresponding solutions un will satisfy (1.26) uniformly thanks to (1.20)-(1.21). Using as
before the parabolic regularity one gets that Dun is relatively compact in C0([a, b] × Td) for all compact subsets
[a, b] ⊂ (0, T ). Hence Hp(t, x,Dun) converges in Lp(QT ) for every p < ∞. By standard stability of Fokker-Planck
equations, this implies the compactness of mn in C0([0, T ];P(Td)). In particular, we deduce both the initial and the
terminal condition (due to the continuity of G). Finally, the limit couple (u,m) satisfies u ∈ L∞(0, T ;W 1,∞(Td)),
m ∈ C0([0, T ];P(Td)) and is a solution of (1.19). In fact, by the parabolic regularity recalled before, this solution
satisfies m,Du ∈ Cα(QT ) for some α ∈ (0, 1). If F is a bounded map in the space of Hölder continuous functions,
then we bootstrap the regularity once more. We have that F [m] is Hölder continuous, so is H(t, x,Du) and therefore
by Schauder regularity (see e.g. [142, Chapter IV]) u belongs to C1+α

2 ,2+α(QT ) for some α ∈ (0, 1). If Hp is C1,
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this implies that div(Hp(t, x,Du)) is Hölder continuous as well, and we conclude that m is also a classical solution
in (0, T ).

Uniqueness: Let (u1,m1) and (u2,m2) be solutions of (1.19) such that ui ∈ L∞(0, T ;W 1,∞(Td)) ∩ C(QT ) and
mi ∈ C0([0, T ];P(Td)). As we already used above, the mi are locally bounded and Hölder continuous; therefore,
m1 −m2 can be justified as test function in the equation of u1 − u2 (and viceversa) in any interval (a, b) compactly
contained in (0, T ). It follows that

− d

dt

∫
Td

(u1 − u2)(m1 −m2) =

∫
Td

(F [m1]− F [m2])(m1 −m2)

+

∫
Td
m1 {H(t, x,Du2)−H(t, x,Du1)−Hp(t, x,Du1)(Du2 −Du1)}

+

∫
Td
m2 {H(t, x,Du1)−H(t, x,Du2)−Hp(t, x,Du2)(Du1 −Du2)}

(1.28)

where the equality is meant in the weak sense in (0, T ). By convexity of H and monotonicity of F , it follows that∫
Td(u1−u2)(m1−m2) is non increasing in time. Moreover, this quantity is continuous in [0, T ] because ui ∈ C(QT )

andmi ∈ C0([0, T ];P(Td)). Bymonotonicity ofG, this quantity is nonnegative at t = T , however it vanishes for t = 0.
We deduce that it vanishes for all t ∈ [0, T ]. In particular, the previous equality implies that all terms in the right-hand
side are equal to zero. If condition (1.24) holds true, this implies that F [m1] = F [m2] and G[m1(T )] = G[m2(T )];
hence, by uniqueness of the parabolic equation (namely, by maximum principle), we deduce that u1 = u2. This implies
Hp(t, x,Du1) = Hp(t, x,Du2), and for the Fokker-Planck equation this implies that m1 = m2. Indeed, given a
bounded drift b ∈ L∞(QT ), one can easily verify with a duality argument that if µ ∈ C0([0, T ];P(Td)) is a weak
solution of the equation ∂tµ−∆µ− div(b µ) = 0 and µ(0) = 0, then µ ≡ 0. Alternatively, if (1.25) holds true, then
we first obtain that Hp(t, x,Du1) = Hp(t, x,Du2), hence we deduce that m1 = m2 and we conclude by uniqueness
of u. �

Remark 4 Uniqueness of the solution of (1.19) is not expected in general if Lasry-Lions’ monotonicity condition fails.
This lack of uniqueness is well-documented in the literature: see for instance [25, 40, 68, 149]. By contrast, it is
relatively easy to check that uniqueness holds if the horizon is “short” or if the functionsH and G do not “depend too
much” onm, see e.g. [25].

The existence part of the above result can easily be extended tomore generalMFG systems, in which the Hamiltonian
has no separate structure:

−∂tu− ε∆u+H(t, x,Du,m(t)) = 0 in (0, T )× Td
∂tm− ε∆m− div (mHp(t, x,Du,m(t))) = 0 in (0, T )× Td
m(0) = m0 , u(T, x) = G[m(T )] in Td

(1.29)

The notion of classical solution is given as before. A general existence result in this direction sounds as follows.

Theorem 5 Assume that H : QT × Rd × P(Td) → R is a continuous function, differentiable with respect to p, and
such that both H and Hp are C1 continuous on QT × Rd × P(Td), and in addition H satisfies the growth condition

Hx(t, x, p,m) · p ≥ −C0(1 + |p|2) ∀(t, x, p,m) ∈ QT × Rd × P(Td) (1.30)

for some constant C0 > 0. Assume that G satisfies (1.21) and that m0 ∈ P(Td). Then there is at least one classical
solution to (1.29).

Remark 5 Of course, the solution found in the above Theorem is smooth up to t = 0 (respectively t = T ) if, for some
β ∈ (0, 1),m0 ∈ C2+β(Td) (respectively, G[m] is bounded in C2+β(Td) uniformly with respect tom ∈ P(Td)).

The proof is relatively easy and relies on gradient estimates for Hamilton-Jacobi equations (as already used in
Theorem 4 above) and on the following estimate on the McKean-Vlasov equation
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{
∂tm− ε∆m− div (m b(t, x,m(t))) = 0 in (0, T )× Td
m(0) = m0

(1.31)

To this purpose, it is convenient to introduce the following stochastic differential equation (SDE){
dXt = b(t,Xt,L(Xt))dt+

√
2ε dBt, t ∈ [0, T ]

X0 = Z0
(1.32)

where (Bt) is a standard d−dimensional Brownian motion over some probability space (Ω,A,P) and where the initial
condition Z0 ∈ L1(Ω) is random and independent of (Bt).

We assume that the vector field b : [0, T ] × Td × P(Td) → Rd is continuous in time and Lipschitz continuous
in (x,m) uniformly in t. Under the above condition on b, we have proved in Subsection 1.2.3 that there is a unique
solution to (1.32). This solution is closely related to equation (1.31).

Lemma 6 Under the above condition on b, if L(Z0) = m0, then m(t) := L(Xt) is a weak solution of (1.31) and
satisfies

d1(m(t),m(s)) ≤ c0(1 + ‖b‖∞)|t− s| 12 ∀s, t ∈ [0, T ] (1.33)

for some constant c0 = c0(T ) independent of ε ∈ (0, 1].

Proof. The fact thatm(t) := L(Xt) is a weak solution of (1.31) is a straightforward consequence of ItÃ´’s formula: if
ϕ : QT → R is smooth, then

ϕ(t,Xt) = ϕ(0, Z0) +

∫ t

0

[ϕt(s,Xs) +Dϕ(s,Xs) · b(s,Xs,m(s)) + ε∆ϕ(s,Xs)] ds+

∫ t

0

Dϕ(s,Xs) · dBs.

Taking the expectation on both sides of the equality, we have, since E
[∫ t

0

Dϕ(s,Xs) · dBs
]

= 0 ,

E [ϕ(t,Xt)] = E
[
ϕ(0, Z0) +

∫ t

0

[ϕt(s,Xs) +Dϕ(s,Xs) · b(s,Xs,m(s)) + ε∆ϕ(s,Xs)] ds

]
.

So by definition ofm(t), we get∫
Rd
ϕ(t, x)m(t, dx) =

∫
Rd
ϕ(0, x)m0(dx) +

∫ t

0

∫
Rd

[ϕt(s, x) +Dϕ(s, x) · b(s, x,m(s)) + ε∆ϕ(s, x)]m(s, dx) ds

hence m is a weak solution to (1.31), provided we check that m is continuous in time. This is the aim of the next
estimate. Let φ : Td → R be 1-Lipschitz continuous and take, for instance, s < t. Then, using (1.8), we have

d1(m(t),m(s)) ≤ E [|Xt −Xs|] ≤ E
[∫ t

s

|b(τ,Xτ ,m(τ))| dτ +
√

2ε |Bt −Bs|
]
≤ ‖b‖∞(t− s) +

√
2ε(t− s)

(1.34)
which yields (1.33). �

Remark 6 Observe that not only the estimate (1.33) is independent of the diffusion coefficient ε, but actually the precise
form (1.34) shows that, when ε→ 0, the mapm(t) becomes Lipschitz in the time variable.

We further notice that an estimate also follows, similarly as in (1.34), for the Wasserstein distance. Indeed, recalling
that d2(m1,m2) = infX,Y

(
E
[
|X − Y |2

])1/2, proceeding similarly as in (1.34) yields

26



d2(m(t),m(s)) ≤
√
|t− s|E

[∫ t

s

|b(τ,Xτ ,m(τ))|2 dτ
] 1

2

+ o(1) as ε→ 0

≤
√
|t− s|

(∫ T

0

∫
Td
|b|2mdxdt

) 1
2

+ o(1) as ε→ 0.

We prove now Theorem 5.

Proof of Theorem 5.
For a large constant C1 to be chosen below, let C be the set of maps µ ∈ C0([0, T ],P(Td)) such that

sup
s 6=t

d1(µ(s), µ(t))

|t− s| 12
≤ C1. (1.35)

Then C is a closed convex subset of C0([0, T ],P(Td)). It is actually compact thanks to Ascoli’s Theorem and the
compactness of the set P(Td). To any µ ∈ C we associatem = Ψ(µ) ∈ C in the following way. Let u be the solution to{

−∂tu− ε∆u+H(t, x,Du, µ(t)) = 0 in (0, T )× Td
u(T ) = G[µ(T )] in Td (1.36)

Then we definem = Ψ(µ) as the solution of the Fokker-Planck equation{
∂tm− ε∆m− div (mHp(t, x,Du, µ(t))) = 0 in (0, T )× Td
m(0) = m0 in Td . (1.37)

Let us check that Ψ is well-defined and continuous. We start by assuming thatH is globally Lipschitz continuous. Then,
by standard parabolic theory (see e.g. [142, Chapter V, Thm 6.1]), equation (1.36) has a unique classical solution u.
Moreover, u is of class C1+α/2,2+α(QT ) where the constant α do not depend on µ. In addition, the Bernstein gradient
estimate (1.27) holds exactly as in Theorem 4, which means that

‖Du‖∞ ≤ K

for some constant K only depending on T, ‖DG[µ]‖∞ and on the constant C0 in (1.30). Due to (1.21), the constant
K is therefore independent of µ. We see now that the global Lipschitz condition on H can be dropped: indeed, it is
enough to replace H(t, x, p,m) with H̃(t, x, p,m) = ζ(p)H(t, x, p,m) + (1 − ζ(p))|p| where ζ : Rd → [0, 1] is a
smooth function such that ζ(p) ≡ 1 for |p| ≤ 2K and ζ(p) ≡ 0 for |p| > 2K + 1. Thanks to the gradient estimate,
solving the problem for H̃ is the same as for H .

Next we turn to the Fokker-Planck equation (1.37). Since the drift b(t, x) := −Hp(t, x,Du(x), µ(t)) belongs to
L∞(QT ), there is a unique solutionm ∈ C0([0, T ];P(Td)); moreover, since b is bounded independently of µ, say by
a constant C2, from Lemma 6 we have the following estimates onm:

d1(m(t),m(s)) ≤ c0(1 + ‖Hp(·, Du, µ)‖∞)|t− s| 12 ≤ c0(1 + C2)|t− s| 12 ∀s, t ∈ [0, T ] .

So if we choose C1 so large that C1 ≥ c0(1 +C2), thenm belongs to C. Moreover, if we write the equation in the form

∂tm− ε∆m−Dm ·Hp(t, x,Du, µ(t))−m divHp(t, x,Du, µ(t)) = 0

then we observe that m is a classical solution in (0, T ). Indeed, since u ∈ C1+α/2,2+α(QT ) and t → µ(t) is Holder
continuous, the maps (t, x)→ Hp(t, x,Du, µ(t)) and (t, x)→ divHp(t, x,Du, µ(t)) belong to Cα(QT ), so that the
solutionm belongs to C1+α/2,2+α(QT ) ([142, Chapter IV, Thm 10.1]).

We have just proved that the mapping Ψ : µ → m = Ψ(µ) is well-defined from C into itself. The continuity of
Ψ can be proved exactly as in Theorem 4. We conclude by Schauder fixed point Theorem that the continuous map
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µ → m = Ψ(µ) has a fixed point µ̄ in C. Let ū be associated to µ̄ as above. Then (ū, µ̄) is a solution of our system
(1.29). In addition (ū, µ̄) is a classical solution in view of the above estimates. �

Let us mention that there are no general criteria for the uniqueness of solutions to (1.29) in arbitrary time horizon
T , except for the Lasry-Lions’ monotonicity condition (1.24) for the case of separate Hamiltonian treated in Theorem
4. In case of local dependence of H(t, x, p,m) with respect to the densitym of the measure, a structure condition on
H ensuring the uniqueness was given by P.-L. Lions in [149] (Lessons 5-12/11 2010) and will be discussed later in
Theorem 13, in the subsection devoted to local couplings.

Otherwise, the uniqueness of solutions to (1.29) can be proved for short time horizon, e.g. using directly the Banach
fixed point theorem for contraction mappings, in order to produce both existence and uniqueness of solutions (as in
the papers by Caines, Huang and MalhamÃ© [132], under a smallness assumption on the coefficients or on the time
interval).

1.3.3 Application to games with finitely many players

In this subsection, we show how to apply the previous results on the MFG system to study a N−player differential
game in which the number N of players is “large”.

The N−player game

The dynamic of player i (where i ∈ {1, . . . , N}) is given by

dXi
t = bi(X1

t , . . . , X
N
t , α

1
t , . . . , α

N
t )dt+

√
2dBit, Xi

0 = Zi,

where (Bit) is a d−dimensional Brownian motion1. The initial condition Xi
0 for this system is also random and has

for law m̃0 ∈ P1(Rd), and we assume that all Zi and all the Brownian motions (Bit) (i = 1, . . . , N ) are independent.
Player i can choose his bounded control αi with values in Rd and adapted to the filtration (Ft = σ{Xj

0 , B
j
s , s ≤

t, j = 1, . . . , N}). We make the structure assumption that the drift bi of player i depends only on his/her own control
and position and on the distribution of the other players. Namely:

bi(x1, . . . , xN , α1, . . . , αN ) = b(xi, αi, π]mN,i
x ), where x = (x1, . . . , xN ) ∈ (Rd)N and mN,i

x =
∑
j 6=i

δxj ,

where b : Td × Rd × P(Td) → Rd is a globally Lipschitz continuous map. We have denoted by π : Rd → Td the
canonical projection and by π]m̃0 the image of the measure m̃0 by the map π. The fact that the players interact through
the projection over Td of the empirical measuremN,i

x is only a simplifying assumption related to the fact that we have
so far led our analysis of the MFG system on the torus. Indeed, here we systematically see maps defined on Td as
Zd−periodic maps on Rd.

The cost of player i is then given by

JNi (α1, . . . , αN ) = JNi (αi, (αj)j 6=i) = E

[∫ T

0

Li(X1
t , . . . , X

N
t , α

1
t , . . . , α

N
t )dt+Gi(X1

T , . . . , X
N
T )

]
.

Here again we make the structure assumption that the running cost Li of player i depends only on his/her own control
and position and on the distribution of the other players’ positions, while the terminal cost depends only on his/her
position and on the distribution of the other players’ positions:

1 In order to avoid the (possible but) cumbersome definition of stochastic processes on the torus but, at the same time, be able to use the
results of the previous parts, we work here with diffusions in Rd with periodic coefficients and assume that the mean field dependence of
the data is always through the projection of the measures over the torus.
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Li(x1, . . . , xN , α1, . . . , αN ) = L(xi, αi, π]mN,i
x ), Gi(x1, . . . , xN ) = G(xi, π]mN,i

x ),

where L : Td × Rd × P(Td)→ R and G : Td × P(Td)→ R are continuous maps, with

|L(x, α,m)− L(x′, α,m′)|+ |G(x,m)−G(x′,m′)| ≤ K(|x− x′|+ d1(m,m′)),

the constantK being independent of α. In addition, we need a coercivity assumption on L with respect to α:

L(x, α,m) ≥ C−1|α| − C, (1.38)

where C is independent of (x,m) ∈ Td × P(Td). These assumptions are a little strong in practice, but allow us to
avoid several (very) technical points in the proofs.

In that setting, a natural notion of equilibrium is the following.

Definition 2 We say that a family (ᾱ1, . . . , ᾱN ) of bounded open-loop controls is an ε−Nash equilibrium of the
N−player game (where ε > 0) if, for any i ∈ {1, . . . , N} and any bounded open-loop control αi,

JNi (ᾱi, (ᾱj)j 6=i) ≤ JNi (αi, (ᾱj)j 6=i) + ε.

The MFG system and the N−player game.

Our aim is to understand to what extent the MFG system can provide an ε−Nash equilibrium of the N−player game,
at least if N is large enough. For this, we set

H(x, p,m) = sup
α∈Rd
{−b(x, α,m) · p− L(x, α,m)}

and we assume that H , G andm0 := π]m̃0 satisfy the assumptions of Theorem 5.
Hereafter, we fix (u,m) a classical solution to (1.29) (here with ε = 1). Following the arguments of Subsection

1.3.1, we recall the interpretation of the MFG system. In the mean-field approach, a generic player controls the solution
to the SDE

Xt = X0 +

∫ t

0

b(Xs, αs,m(s))ds+
√

2Bs,

and faces the minimization problem

inf
α
J (α) where J (α) = E

[∫ T

0

L(Xs, αs,m(s)) ds+G (XT ,m(T ))

]
.

In the above dynamics we assume that X0 is a fixed random initial condition with lawm0 ∈ P(Td) and the control α
is adapted to some filtration (Ft). We also assume that (Bt) is a d−dimensional Brownian motion adapted to (Ft) and
that X0 and (Bt) are independent.

Then, given a solution (u,m) of (1.29), u(0) is the optimal value and the feedback strategy α∗ such that
b(x, α∗(t, x),m(t)) := −Hp(x,Du(t, x),m(t)) is optimal for the single player. Namely:

Lemma 7 Let (X̄t) be the solution of the stochastic differential equation{
dX̄t = b(X̄t, α

∗(t, X̄t),m(t))dt+
√

2dBt
X̄0 = X0

and set ᾱt = α∗(t, X̄t). Then

inf
α
J (α) = J (ᾱ) =

∫
Td
u(0, x) m0(dx) .
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Our goal now is to show that the strategy given by the mean field game is almost optimal for theN−player problem.
We assume that the feedback α∗(t, x) defined above is continuous in (t, x) and globally Lipschitz continuous in x
uniformly in t. With the feedback strategy α∗ one can associate the open-loop control ᾱi obtained by solving the system
of SDEs:

dX̄i
t = b(X̄i

t , α
∗(t, X̄i

t),m
N,i
Xt

)dt+
√

2dBit, X
i
0 = Zi (where Xt = (X1

t , . . . , X
N
t )), (1.39)

and setting ᾱit = α∗(t, X̄i
t). We are going to show that the controls ᾱi realize an approximate Nash equilibrium for the

N -player game.

Theorem 6 Assume that (Zi) are i.i.d. random variables onRd such that E[|Z1|q] < +∞ for some q > 4. There exists
a constant C > 0 such that, for any N ∈ N∗, the symmetric strategy (ᾱ1, . . . , ᾱN ) is a CεN−Nash equilibrium in the
game JN1 , . . . ,JNN where

εN :=


N−1/2 if d < 4
N−1/2 ln(N) if d = 4
N−2/d if d > 4

Namely, for any i ∈ {1, . . . , N} and for any control αi adapted to the filtration (Ft),

JNi (ᾱi, (ᾱj)j 6=i) ≤ JNi (αi, (ᾱj)j 6=i) + CεN .

The Lipschitz continuity assumption on H and G with respect tom allows us to quantify the error. If H and G are
just continuous with respect tom, one can only say that, for any ε > 0, there existsN0 such that the symmetric strategy
(ᾱ1, . . . , ᾱN ) is an ε−Nash equilibrium in the game JN1 , . . . ,JNN for any N ≥ N0.

Before starting the proof, we need the following result on product measures which can be found in [68] (Theorem
5.8. See also the references therein):

Lemma 8 Assume that (Zi) are i.i.d. random variables on Rd of law µ such that E[|Z0|q] < +∞ for some q > 4.
Then there is a constant C, depending only on d, q and E[|Z0|q], such that

E
[
d2(mN

Z , µ)
]
≤


CN−1/2 if d < 4
CN−1/2 ln(N) if d = 4
CN−2/d if d > 4

Proof of Theorem 6. From the symmetry of the problem, it is enough to show that

JN1 (ᾱ1, (ᾱj)j≥2) ≤ JN1 (α1, (ᾱj)j 6=2) + CεN (1.40)

for any control α, as soon as N is large enough. We note for this that the map b̃(t, x,m) := b(x, α∗(t, x), π]m) is
globally Lipschitz continuous in (x,m) uniformly in t thanks to our assumptions on b and α∗. Following the proof of
Theorem 3 in Subsection 1.2.3, we have therefore that

E

[
sup
t∈[0,T ]

1

N

N∑
i=1

|Xi
t − X̄i

t |

]
+ E

[
sup
t∈[0,T ]

|Xi
t − X̄i

t |

]
≤ CT

∫ T

0

E
[
d1(mN

X̄s
,m(s))ds

]
, (1.41)

where X̄t = (X̄1, . . . , X̄N ) solves

dX̄i
t = b(X̄i

t , α
∗(t, X̄i

t), π]L(X̄i
t))dt+

√
2dBit, X̄i

0 = Zi.

By uniqueness in law of the solution of the McKean-Vlasov equation, we have that the X̄i
s are i.i.d. with a law m̃(s),

where m̃(s) solves
∂tm̃−∆m̃− div(m̃b(x, α∗(t, x), π]m̃(t)) = 0, m̃(0) = m̃0.

In view of the assumption on b, it is easy to check that
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E[ sup
t∈[0,T ]

|X̄1
t |q] ≤ C(1 + E[|Z1|q]) < +∞.

Therefore using Lemma 8, we have

E

[
sup
t∈[0,T ]

d1(mN,1
X̄t

, m̃(t))

]
≤ E

[
sup
t∈[0,T ]

d2(mN,1
X̄t

, m̃(t))

]
≤ CεN .

Note also that, by the uniqueness of the solution of the McKean-Vlasov equation (this time in Td), we have that
π]m̃ = m since both flows solve the same equation. Hence

E

[
sup
t∈[0,T ]

d1(π]mN,1

X̄t
,m(t))

]
≤ E

[
sup
t∈[0,T ]

d1(mN,1

X̄t
, m̃(t))

]
≤ CεN .

Using (1.41) we obtain therefore

E

[
sup
t∈[0,T ]

1

N

N∑
i=1

|Xi
t − X̄i

t |

]
+ E

[
sup
t∈[0,T ]

|Xi
t − X̄i

t |

]
≤ CεN .

In particular, by Lemma 7 and the local Lipschitz continuity of L and G, we get

JN1 (ᾱ1, (ᾱj)j≥2) = E

[∫ T

0

L(X1
s , ᾱ

1
s, π]m

N,i
Xs

) ds+G(X1
T , π]m

N,i
XT

)

]

≤ E

[∫ T

0

L(X̄1
s , ᾱ

1
s,m(s)) ds+G(X̄1

T ,m(T ))

]
+ CεN

≤
∫
Td
u(0, x)m0(dx)dx+ CεN . (1.42)

Let now α1 be a bounded control adapted to the filtration (Ft) and (Y it ) be the solution to

dY 1
t = b(Y 1

t , α
1
t ,m

N,1
Yt

)dt+
√

2dB1
t , Y

1
0 = Z1,

and
dY it = b(Y it , ᾱ

i
t,m

N,i
Yt

)dt+
√

2dBit, Y
i
0 = Zi.

We first note that we can restrict our analysis to the case where E[
∫ T

0
|α1
s|ds] ≤ A, for A large enough. Indeed, if

E[
∫ T

0
|α1
s|ds] > A, we have by assumption (1.38) and inequality (1.42), as soon as A is large enough (independent of

N ) and N is large enough:

JN1 (α1, (ᾱj)j≥2) ≥ C−1E

[∫ T

0

|α1
s|ds

]
− CT ≥ C−1A− CT

≥
∫
Td
u(0, x)m0(dx)dx+ 1 ≥ JN1 (ᾱ1, (ᾱj)j≥2) + 1− CεN

≥ JN1 (ᾱ1, (ᾱj)j≥2)− (C/2)εN .

From now on we assume that
∫ T

0

|α1
s|ds ≤ A. Let us first estimate d1(mN,1

Ys
,mN,1

Xs
)). Note that we have, by Lipschitz

continuity of b,
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|Y 1
t −X1

t | ≤ C
∫ t

0

(|Y 1
s −X1

s |+ |α1
s − ᾱ1

s|+ d1(mN,1
Ys

,mN,1
Xs

))ds

≤ C
∫ t

0

(|Y 1
s −X1

s |+ |α1
s − ᾱ1

s|+
1

N − 1

N∑
j=2

|Y js −Xj
s |)ds

while for i ∈ {2, . . . , N} we have, arguing in the same way,

|Y it −Xi
t | ≤ C

∫ t

0

(|Y is −Xi
s|+

1

N − 1

N∑
j 6=i

|Y js −Xj
s |)ds.

So
1

N

N∑
i=1

|Y it −Xi
t | ≤ C

∫ t

0

(
1

N
|α1
s − ᾱ1

s|+
1

N

N∑
i=1

|Y is −Xi
s|)ds.

By Gronwall lemma we obtain therefore

1

N

N∑
i=1

|Y it −Xi
t | ≤

C

N

∫ t

0

|α1
s − ᾱ1

s|ds.

So

sup
t∈[0,T ]

d1(mN,1
Ys

,mN,1
Xs

)) ≤ sup
t∈[0,T ]

1

N − 1

N∑
i=2

|Y it −Xi
t |

≤ sup
t∈[0,T ]

1

N − 1

N∑
i=1

|Y it −Xi
t | ≤

C

N

∫ T

0

|α1
s − ᾱ1

s|ds.

As E[
∫ T

0
|α1
s − ᾱ1

s|ds] ≤ A, this shows that

E

[
sup
t∈[0,T ]

d1(π]mN,1
Ys

,m(s))

]
≤ E

[
sup
t∈[0,T ]

d1(mN,1
Ys

,mN,1
Xs

)

]
+

[
sup
t∈[0,T ]

d1(π]mN,1
Xs

,m(s))

]

≤ CA

N
+ CεN ≤ CAεN ,

where CA depends also on A. Therefore, using again the Lipschitz continuity of L and G with respect tom, we get

JN1 (α1, (ᾱj)j 6=2) = E

[∫ T

0

L(Y 1
s , α

1
s, π]m

N,i
Ys

) ds+G(Y 1
T , π]m

N,i
YT

)

]

≥ E

[∫ T

0

L(Y 1
s , α

1
s,m(s)) ds+G(X1

T ,m(T ))

]
− CAεN

≥
∫
Td u(0, x)m0(dx)− CAεN ,

where the last inequality comes from the optimality of ᾱ in Lemma 7. Recalling (1.42) proves the result. �

We conclude this subsection by recalling that the use of the MFG system to obtain ε−Nash equilibria (Theorem
6) has been initiated—in a slightly different framework—in a series of papers due to Caines, Huang and MalhamÃ©:
see in particular [131] (for linear dynamics) and [132] (for nonlinear dynamics). In these papers, the dependence with
respect of the empirical measure of dynamics and payoff occurs through an average, so that the CTL implies that the
error term is of order N−1/2. The genuinely non linear version of the result given above is a variation on a result by
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Carmona and Delarue [67] (see also [68], Section 6 in Vol. II). Many variations and extensions of these results have
followed since then: we refer to [68] and the references therein.

We discuss below, in Section 1.4.4, the reverse statement: to what extent the MFG system pops up as the limit of
Nash equilibria. Let us just underline at this stage that this latter problem is much more challenging.

1.3.4 The vanishing viscosity limit and the first order system with smoothing couplings.

We now analyze the vanishing viscosity limit for system (1.19) and the corresponding existence and uniqueness of
solutions for the deterministic problem 

−∂tu+H(t, x,Du) = F [m]

u(T ) = G[m(T )]

∂tm− div(mHp(t, x,Du)) = 0

m(0) = m0 .

(1.43)

To this purpose we strengthen the assumptions on F,G,H . Namely, we assume that

F : C0([0, T ];P(Td))→ C0(QT ) is continuous with range into a bounded set of L∞(0, T ;W 2,∞(Td))
and F is a bounded map from Cα([0, T ];P(Td)) into Cα(QT ), for any α ∈ (0, 1).

(1.44)

Similarly, we assume that

G : P(Td)→ C0(Td) is continuous with range into a bounded set ofW 2,∞(Td). (1.45)

Moreover we assume that H ∈ C2(QT × Rd) and satisfies

∃ c0 > 0 : c−1
0 Id ≤ Hpp(t, x, p) ≤ c0 Id ∀(t, x, p) ∈ QT × Rd (1.46)

and one between (1.23) or the following condition:

∃ c1 > 0 : |Hxx(t, x, p)| ≤ c1(1 + |p|2) , |Hxp(t, x, p)| ≤ c1(1 + |p|) ∀(t, x, p) ∈ QT × Rd (1.47)

Under the above smoothing conditions on the couplings F,G, it will be possible to consider u as a viscosity solution of
the Hamilton-Jacobi equation and to make use of several regularity results already known from the standard viscosity
solutions’ theory. Hence, the notion of solution which is the most suitable here is the following one.

Definition 3 A couple (u,m) is a solution to (1.43) if u ∈ C0(QT )∩L∞(0, T,W 1,∞(Td)),m ∈ C0([0, T ];P(Td)),
u is a viscosity solution of the Hamilton-Jacobi equation, with u(T ) = G[m(T )], andm is a distributional solution of
the continuity equation such thatm(0) = m0.

Assumptions (1.44) and (1.45), together with the uniform convexity of the Hamiltonian ((1.46)), are crucial here in
order to guarantee an estimate of semiconcavity for the function u. This is usually a fundamental regularity property
of solutions of first order equations, but this is most relevant here because of the properties inherited by the drift term
Hp(t, x,Du) in the continuity equation. Let us recall the definition and some properties of semi-concavity. Proofs and
references can be found, for instance, in the monograph [50].

Definition 4 A map w : Rd → R is semi-concave if there is some C > 0 such that one of the following equivalent
conditions is satisfied:

1. the map x→ w(x)− C
2 |x|

2 is concave in Rd,
2. w(λx+ (1− λ)y) ≥ λw(x) + (1− λ)w(y)− Cλ(1− λ)|x− y|2 for any x, y ∈ Rd, λ ∈ [0, 1],
3. D2w ≤ C Id in the sense of distributions,
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4. (p − q) · (x − y) ≤ C|x − y|2 for any x, y ∈ Rd, p ∈ D+w(x) and q ∈ D+w(y), where D+w denotes the
super-differential of w, namely

D+w(x) =

{
p ∈ Rd ; lim sup

y→x

w(y)− w(x)− (p, y − x)

|y − x|
≤ 0

}
.

We will use later the following main consequences of semi-concavity (see e.g. [50]).

Lemma 9 Let w : Rd → R be semi-concave. Then w is locally Lipschitz continuous in Rd, and it is differentiable at x
if and only if D+w(x) is a singleton.

Moreover D+w(x) is the closed convex hull of the set D∗w(x) of reachable gradients defined by

D∗w(x) =
{
p ∈ Rd , ∃xn → x such that Dw(xn) exists and converges to p

}
.

In particular, for any x ∈ Rd, D+w(x) is a compact, convex and non empty subset of Rd.
Finally, if (wn) is a sequence of uniformly semi-concave maps on Rd which pointwisely converges to a map

w : Rd → R, then the convergence is locally uniform, Dwn(x) converges to Dw(x) for a.e. x ∈ Rd and w is
semi-concave. Moreover, for any xn → x and any pn ∈ D+wn(xn), the set of cluster points of (pn) is contained in
D+w(x).

The following theorem is given in [145], and some details also appeared in [59]. Here we give a slightly more
general version of the result.

Theorem 7 Let m0 ∈ L∞(Td). Assume (1.44)-(1.46) and that at least one between the conditions (1.23) and (1.47)
holds true. Let (uε,mε) be a solution of (1.19). Then there exists a subsequence, not relabeled, and a couple
(u,m) ∈W 1,∞(QT )× L∞(QT ) such that

uε → u in C(QT ), mε → m in L∞(QT )− weak∗,

and (u,m) is a solution of (1.43) in the sense of Definition 3.

Proof.
Step 1. (bounds for uε,mε) Let us recall that, by Theorem 4, uε andmε are classical solutions in (0, T ). First of all,

by maximum principle and (1.44)-(1.45), it follows that uε is uniformly bounded inQT . The next key point consists in
proving a semi concavity estimate for uε. To this purpose, let ξ be a direction in Rd. We drop the index ε for simplicity
and we set uξξ(t, x) = D2u(t, x)ξ · ξ. Then we look at the equation satisfied by w := uξξ + λ(u+M)2 where λ,M
are positive constants to be fixed later. Straightforward computations give the following:

−∂tw − ε∆w +Hp(t, x,Du) ·Dw +Hξξ(t, x,Du) + 2Hξp(t, x,Du) ·Duξ +Hpp(t, x,Du)Duξ ·Duξ
= (F [m])ξξ − 2λ(u+M) (H(t, x,Du)− F [m])− 2λε|Du|2 .

We chooseM = ‖u‖∞ + 1, and we use the coercivity of H which satisfies, from (1.46), H(t, x, p) ≥ 1
2c
−1
0 |p|2 − c

for some constant c > 0. Therefore we estimate

−∂tw − ε∆w+Hp(t, x,Du) ·Dw +Hξξ(t, x,Du) + 2Hξp(t, x,Du) ·Duξ +Hpp(t, x,Du)Duξ ·Duξ
≤ (F [m])ξξ − λ c−1

0 |Du|2 + c λ (1 + ‖u‖∞)(1 + ‖F [m]‖∞) .

Now we estimate the terms with the second derivatives ofH , using condition (1.46) and one between (1.23) and (1.47).
To this purpose, we notice that, if (1.23) holds true, then we already know that Duε is uniformly bounded in QT , see
(1.27) in Theorem 4. Then the bounds assumed in (1.47) come for free becauseH is a C2 function and the arguments
(t, x,Du) live in compact sets. Therefore, we can proceed using (1.47) in both cases. Thanks to Young’s inequality,
we estimate

Hξξ(t, x,Du) + 2Hξp(t, x,Du) ·Duξ +Hpp(t, x,Du)Duξ ·Duξ ≥
1

2
c−1
0 |Duξ|2 − c(1 + |Du|2)
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hence we deduce that

−∂tw−ε∆w+Hp(t, x,Du)·Dw+
1

2
c−1
0 |Duξ|2 ≤ c(1+|Du|2)+‖D2

xxF [m]‖∞−λ c−1
0 |Du|2+c λ (1+‖F [m]‖∞)

wherewe used that ‖u‖∞ is bounded andwe denote by c any generic constant independent of ε. The terms given byF [m]
are uniformly bounded due to (1.44). Thus, by choosing λ sufficiently large we deduce that, at an internal maximum
point (t, x) of w, we have |Duξ|2 ≤ C for a constant C independent of ε. Since |Duξ| ≥ |uξξ| ≥ |w| − c‖u‖2∞, this
gives an upper bound at the maximum point of w(t, x), whenever it is attained for t < T . By the way, if the maximum
of w is reached at T , then maxw ≤ ‖G[m]‖W 2,∞ + c ‖u‖2∞. We conclude an estimate for maxw, and therefore an
upper bound for uξξ. The bound being independent of ξ, we have obtained so far that

D2uε(t, x) ≤ C ∀(t, x) ∈ QT

for a constant C independent of ε. Since uε is Zd-periodic, this also implies a uniform bound for ‖Duε‖∞.
At this stage, let us observe that the above estimate has been obtained as if uξξ was a smooth function, but this is a

minor point: indeed, since u ∈ C1,2(QT ) and H ∈ C2, we have w ∈ C0(QT ) and the above computation shows that
−∂tw− ε∆w+Hp(x,Du) ·Dw is itself a continuous function; so the estimate for w follows applying the maximum
principle for continuous solutions.

Now we easily deduce an upper bound onmε as well. Indeed,mε satisfies, for some constantK > 0

∂tm− ε∆m−Dm ·Hp(t, x,Du) = mTr
(
Hpp(t, x,Du)D2u

)
≤ Km

thanks to the semi concavity estimate and the upper bound of Hpp given in (1.46). We deduce thatmε satisfies

‖mε‖∞ ≤ eKt ‖m0‖∞ . (1.48)

Step 2. (compactness) From the previous step we know that Duε is uniformly bounded. Lemma 6 then implies
that the map t→ mε(t) is Hölder continuous in P(Td), uniformly in ε. This implies that mε is relatively compact in
C0([0, T ],P(Td)). Moreover, from the uniform bound (1.48), mε is also relatively compact in the weak−∗ topology
of L∞(QT ). Therefore, up to subsequences mε converges in L∞−weak* and in C0([0, T ], P (Td)) towards some
m ∈ L∞(QT ) ∩ C0([0, T ], P (Td)). In particular, m(0) = m0. In order to pass to the limit in the equation of mε,
we observe that the uniform semi concavity bound implies that, up to subsequences,Hp(t, x,Du

ε) almost everywhere
converges towardsHp(t, x,Du) (see Lemma 9), and then it converges strongly in L1(QT ) by Lebesgue theorem. This
allows us to pass to the limit in the product mεHp(t, x,Du

ε) and deduce that m is a distributional solution of the
continuity equation.

We conclude nowwith the compactness ofuε. SinceDuε is bounded, we only need to check the uniform continuity of
uε in time, which is done with a standard time-translation argument. First we observe that, asG[mε(T )] ∈W 2,∞(Td),
the maps w+(x, t) = G[mε(T )] + C1(T − t) and w−(x, t) = G[mε(T )] − C1(T − t) are, respectively, a super and
sub solution of the equation of uε, for C1 sufficiently large (but not depending of ε). Hence, by comparison principle

‖uε(t)−G[mε(T )]‖∞ ≤ C1(T − t) . (1.49)

For h > 0, we consider uεh(x, t) = uε(x, t− h) in (h, T ), which satisfies

−∂tuεh − ε∆uεh +H(t− h, x,Duεh) = F [mε](t− h) .

Because of the uniform Hölder regularity of the map t → mε(t) in P (Td) and the assumption (1.44) (with α = 1
2 ),

we have
sup

t∈[h,T ]

‖F [mε](t− h)− F [mε](t)‖∞ ≤ C
√
h

and since H is locally Lipschitz and Duε is uniformly bounded we also have
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sup
t∈[h,T ]

|H(t− h, x,Duεh)−H(t, x,Duεh)| ≤ C h .

For the terminal condition we also have, using (1.49),

‖uεh(T )− uε(T )‖∞ = ‖uε(T − h)−G[mε(T )]‖∞ ≤ C1 h .

By the L∞ stability (say, the comparison principle) we deduce that

‖uε(t− h)− uε(t)‖∞ ≤ C(T − t)
√
h+ C1h.

This proves the equi-continuity of uε in time, and so we conclude that uε is relatively compact in C0(QT ).
By continuity assumptions on F and G, we know that G[mε(T )] converges to G[m(T )] in C0(Td), and F [mε]

converges to F [m] in C0(QT ). It is now possible to apply the classical stability results for viscosity solutions and we
deduce, as ε→ 0, that u is a viscosity solution of the HJ equation−∂tu+H(t, x,Du) = F [m], with u(T ) = G[m(T )].
Note that, as H(t, x,Du) and F [m] are bounded, by standard results in viscosity solutions’ theory it turns out that u
is Lipschitz continuous in time as well. �

Let us now turn to the question of uniqueness of solutions to (1.43). On one hand, the uniqueness will again rely
on the monotonicity argument introduced by Lasry and Lions; on another hand, the new difficulty lies in showing the
uniqueness ofm from the continuity equation; this step is highly non trivial and we will detail it later.

Theorem 8 Let m0 ∈ L∞(Td), and let H and F satisfy the conditions of Theorem 7. In addition, assume that F,G
are monotone (nondecreasing) operators, i.e.∫ T

0

∫
Td

(F [m1]− F [m2])d(m1 −m2) ≥ 0 ∀m1,m2 ∈ C0([0, T ],P(Td))

and ∫
Td

(G[m1]−G[m2])d(m1 −m2) ≥ 0 ∀m1,m2 ∈ P(Td) .

Then (1.43) admits a unique solution (in the sense of Definition 3) (u,m) such thatm ∈ L∞(QT ).

Proof. We first observe that the Lasry-Lions monotonicity argument works perfectly in the setting of solutions given
above. Indeed, let (u1,m1) and (u2,m2) be two solutions of (1.43) in the sense of Definition 3, with the additional
property thatm1,m2 ∈ L∞(QT ). We recall that form = mi, we have the weak formulation∫ T

0

∫
Td

(−m∂tϕ+mHp(t, x,Du) ·Dϕ) = 0 ∀ϕ ∈ C1
c ((0, T )× Td) . (1.50)

Since m ∈ L∞(QT ), by an approximation argument it is easy to extend this formulation to hold for every ϕ ∈
W 1,∞(QT ) with compact support in (0, T ). We recall here that u = ui belongs to L∞(0, T,W 1,∞(T)) by definition
and then, by properties of viscosity solutions, it is also Lipschitz in time. Hence u ∈ W 1,∞(QT ). In particular, u is
almost everywhere differentiable in QT and, by definition of viscosity solutions, it satisfies

− ∂tu+H(t, x,Du) = F [m] a.e. in QT . (1.51)

Let here ξ = ξ(t) be a function inW 1,∞(0, T ) with compact support. Using (1.50) with m = mi and ϕ = uj ξ and
(1.51) for uj , i, j = 1, 2, we obtain the usual equality (1.28) in the weak form
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∫ T

0

∫
Td

(u1 − u2)(m1 −m2)∂tξ =

∫ T

0

∫
Td
ξ (F [m1]− F [m2])(m1 −m2)

+

∫ T

0

∫
Td
ξ m1 {H(t, x,Du2)−H(t, x,Du1)−Hp(t, x,Du1)(Du2 −Du1)}

+

∫ T

0

∫
Td
ξ m2 {H(t, x,Du1)−H(t, x,Du2)−Hp(t, x,Du2)(Du1 −Du2)} .

(1.52)

Now we take ξ = ξε(t) such that ξ is supported in (ε, T − ε), ξ ≡ 1 for t ∈ (2ε, T − 2ε) and ξ is linear in (ε, 2ε) and
in (T − 2ε, T − ε). Of course we have ξε → 1 and all integrals in the right-hand side of (1.52) converge by Lebesgue
theorem. The boundary layers terms give∫ T

0

∫
Td

(u1 − u2)(m1 −m2)∂tξε =
1

ε

∫ 2ε

ε

∫
Td

(u1 − u2)(m1 −m2)− 1

ε

∫ T−ε

T−2ε

∫
Td

(u1 − u2)(m1 −m2)

where we can pass to the limit because mi ∈ C0([0, T ],P(Td)) and ui ∈ C(QT ). Therefore letting ε → 0 in (1.52),
and using the same initial condition form1,m2 we conclude that∫

(G[m1(T )]−G[m2(T )]) d(m1(T )−m2(T )) +

∫ T

0

∫
Td

(F [m1]− F [m2])(m1 −m2)

+

∫ T

0

∫
Td
m1 {H(t, x,Du2)−H(t, x,Du1)−Hp(t, x,Du1)(Du2 −Du1)}

+

∫ T

0

∫
Td
m2 {H(t, x,Du1)−H(t, x,Du2)−Hp(t, x,Du2)(Du1 −Du2)} = 0 .

Thanks to the monotonicity condition on F,G, and to the strict convexity of H , given by (1.46), this implies that
Du1 = Du2 a.e. in {m1 > 0} ∪ {m2 > 0}. In particular, m1 and m2 solve the same Kolmogorov equation: m1 and
m2 are both solutions to

∂tm− div(mDpH(t, x,Du1(t, x))) = 0, m(0) = m0.

We admit for a while the (difficult) fact that this entails the equalitym1 = m2 (see Lemma 10 below). Then u1 and u2

are two viscosity solutions of the same equation with the same terminal condition; by comparison, they are therefore
equal. �

In order to complete the above proof, we are left with the main task, which is the content of the following result.

Lemma 10 Assume that u ∈ C(QT ) is a viscosity solution to

− ∂tu+H(t, x,Du) = F (t, x), u(T, x) = uT (x), (1.53)

where H : [0, T ] × Td × Rd → R satisfies the conditions of Theorem 7 and F ∈ C(QT ) ∩ L∞(0, T ;W 2,∞(Td)),
uT ∈W 2,∞(Td).

Then, for anym0 ∈ L∞(Td), the transport equation

∂tm− div (mHp(t, x,Du)) = 0, m(0, x) = m0(x) (1.54)

possesses at most one weak solution in L∞.

The proof of the Lemma is delicate and is the aim of the rest of the section. The difficulty comes from the fact that
the vector fieldHp(t, x,Du) is not smooth: it is actually discontinuous in general. The analysis of transport equations
with non smooth vector fields has attracted a lot of attention since the Di Perna-Lions seminal paper [98]. We rely
here on Ambrosio’s approach [16, 17], in particular for the “superposition principle” (see Theorem 9 below). A key
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point will be played by the semi concavity property of u. In particular, this implies that Hp(t, x,Du) has bounded
variation; nevertheless, this does not seem to be enough to apply previous results on the continuity equation, where the
vector field is usually supposed to have a non singular divergence. We will overcome this problem by using the optimal
control representation of Hp(t, x,Du) and the related properties of the characteristic curves.

Let us first point out some basic properties of the solution u of (1.53). Henceforth, for simplicity (and without loss
of generality) we assume that F = 0 in (1.53), which is always possible up to defining a new Hamiltonian H̃ = H−F .

We already know that u is unique and Lipschitz continuous, and it is obtained by viscous approximation. Therefore,
one can check (exactly as in Theorem 7) that u is semiconcave in space for any t, with a modulus bounded independently
of t. Moreover, we will extensively use the fact that u can be represented as the value function of a problem of calculus
of variations:

u(t, x) = inf
γ: γ(t)=x

∫ T

t

L(s, γ(s), γ̇(s))ds+ uT (γ(T )) (1.55)

where L(t, x, ξ) = supp∈Rd [−ξ · p −H(t, x, p)] and where γ ∈ AC([0, T ];Td) are absolutely continuous curves in
[0, T ]. For (t, x) ∈ [0, T ) × Td we denote by A(t, x) the set of optimal trajectories for the control problem (1.55).
One easily checks that, under the above assumptions on H , such set is nonempty, and that, if (tn, xn) → (t, x) and
γn ∈ A(tn, xn), then, up to some subsequence, γn weakly converges in H1 to some γ ∈ A(t, x).

We need to analyze precisely the connection between the differentiability of u with respect to the x variable and the
uniqueness of the minimizer in (1.55). The following properties are well-known in the theory of optimal control and
Hamilton-Jacobi equations (see e.g. [50, Chapter 6]), but we will give the proofs for the reader’s convenience.

Lemma 11 (Regularity of u along optimal solutions) Let (t, x) ∈ [0, T ]× Td and γ ∈ A(t, x). Then

1. (Uniqueness of the optimal control along optimal trajectories) for any s ∈ (t, T ], the restriction of γ to [s, T ] is the
unique element of A(s, γ(s)).

2. (Uniqueness of the optimal trajectories)Du(t, x) exists if and only ifA(t, x) is reduced to a singleton. In this case,
γ̇(t) = −Hp(t, x,Du(t, x)) where A(t, x) = {γ}.

Remark 7 In particular, if we combine the above statements, we see that, for any γ ∈ A(t, x), u(s, ·) is always
differentiable at γ(s) for s ∈ (t, T ), with γ̇(s) = −Hp(s, γ(s), Du(s, γ(s))).

Proof.We recall that, sinceH is C2 and strictly convex in p, then L is also C2 and strictly convex in ξ, which ensures
the regularity of the minimizers. So if γ ∈ A(t, x), then γ is of class C2 on [t, T ] and satisfies the Euler-Lagrange
equation

d

dt
Lξ(s, γ(s), γ̇(s)) = Lx(s, γ(s), γ̇(s)) ∀s ∈ [t, T ] (1.56)

with the trasversality condition
DuT (γ(T )) = −Lξ(T, γ(T ), γ̇(T )). (1.57)

Let γ1 ∈ A(s, γ(s)). For any h > 0 small we build some γh ∈ A(t, x) in the following way:

γh(τ) =


γ(τ) if τ ∈ [t, s− h)

γ(s− h) + (τ − (s− h))
γ1(s+ h)− γ(s− h)

2h
if τ ∈ [s− h, s+ h)

γ1(τ) if τ ∈ [s+ h, T ]

Since γ|[s,T ]
and γ1 are optimal for u(s, γ(s)), the concatenation γ0 of γ|[t,s] and γ1 is also optimal for u(t, x). So,

comparing the payoff for γ0 (which is optimal) and the payoff for γh we have∫ s

s−h
L(τ, γ(τ), γ̇(τ))dτ +

∫ s+h

s

L(τ, γ1(τ), γ̇1(τ))dτ −
∫ s+h

s−h
L(τ, γh(τ),

γ1(s+ h)− γ(s− h)

2h
)dτ ≤ 0 .

We divide this inequality by h and let h→ 0+ to get
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L(s, γ(s), γ̇(s)) + L(s, γ(s), γ̇1(s))− 2L(s, γ(s),
1

2
(γ̇(s) + γ̇1(s))) ≤ 0

since limh→0, s∈[s−h,s+h] γh(s) = γ(s) = γ1(s). By strict convexity ofLwith respect to the last variable, we conclude
that γ̇(s) = γ̇1(s). Since we also have γ(s) = γ1(s), and since both γ(·) and γ1(·) satisfy on the time interval [s, T ]
the second order equation (1.56), we conclude that γ(τ) = γ1(τ) on [s, T ]. This means that the optimal solution for
u(s, γ(s)) is unique.

Next we show that, if Du(t, x) exists, then A(t, x) is a reduced to a singleton and γ̇(t) = −Hp(t, x,Du(t, x))
where A(t, x) = {γ}. Indeed, let γ ∈ A(t, x). Then, for any v ∈ Rd,

u(t, x+ v) ≤
∫ T

t

L(s, γ(s) + v, γ̇(s))ds+ uT (γ(T ) + v) .

Since equality holds for v = 0 and since left- and right-hand sides are differentiable with respect to v at v = 0 we get
by (1.56)-(1.57):

Du(t, x) =

∫ T

t

Lx(s, γ(s), γ̇(s))ds+DuT (γ(T ))

=

∫ T

t

d

dt
Lξ(s, γ(s), γ̇(s)) +DuT (γ(T )) = −Lξ(t, x, γ̇(t)) .

By definition of L, this means that γ̇(t) = −Hp(t, x,Du(t, x)) and therefore γ(·) is the unique solution of the
Euler-Lagrange equation with initial conditions γ(t) = x and γ̇(t) = −Hp(t, x,Du(t, x)). This shows the claim.

Conversely, let us prove that, if A(t, x) is a singleton, then u(t, ·) is differentiable at x. For this we note that, if
p belongs to D∗u(t, x) (the set of reachable gradients of the map u(t, ·)), then the solution to (1.56), with initial
conditions γ(t) = x, γ̇(t) = −Hp(t, x, p), is optimal. Indeed, by definition of p, there is a sequence xn → x such that
u(t, ·) is differentiable at xn and Du(t, xn) → p. Now, since u(t, ·) is differentiable at xn, we know by what proved
before that the unique solution γn(·) to (1.56) with initial conditions γn(t) = xn, γ̇n(t) = −Hp(t, xn, Du(t, xn)),
is optimal. Passing to the limit as n → +∞ implies (by the stability of optimal trajectories), that γ(·), which is the
uniform limit of the γn(·), is also optimal.

Now, from our assumptions, there is a unique optimal curve in A(t, x). Therefore D∗u(t, x) has to be reduced to a
singleton, which implies, since u(t, ·) is semi-concave, that u(t, ·) is differentiable at x (Lemma 9). �

We now turn the attention to the solutions of the differential equation{
γ̇(s) = −Hp(s, γ(s), Du(s, γ(s))) a.e. in [t, T ]
γ(t) = x .

(1.58)

Here we fix a Borel representative of Du(t, x) (e.g. a measurable selection of D+u(t, x)), so that the vector field
Hp(t, x,Du(t, x)) is defined everywhere in QT . In what follows, we say that γ is a solution to (1.58) if γ ∈
AC([0, T ];Td), if u(s, ·) is differentiable at γ(s) for a.e. s ∈ (t, T ) and if

γ(s) = x−
∫ s

t

Hp(τ, γ(τ), Du(τ, γ(τ)))dτ ∀s ∈ [t, T ] .

We already know (see Remark 7) that, if γ ∈ A(t, x), then γ is a solution to (1.58); now we show that the converse is
also true.

Lemma 12 (Optimal synthesis) Let (t, x) ∈ [0, T ) × Td and γ(·) be a solution to (1.58). Then the trajectory γ is
optimal for u(t, x).

In particular, if u(t, ·) is differentiable at x, then equation (1.58) has a unique solution, corresponding to the optimal
trajectory.

Proof.We first note that γ(·) is Lipschitz continuous because so is u. Let s ∈ (t, T ) be such that equation (1.58) holds
(in particular u(s, ·) is differentiable at γ(s)) and the Lipschitz continuous map s → u(s, γ(s)) has a derivative at s.
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Since u is Lipschitz continuous, Lebourg’s mean value Theorem [94, Th. 2.3.7] states that, for any h > 0 small, there
is some (sh, yh) ∈ [(s, γ(s)), (s+ h, γ(s+ h))] and some (ξht , ξ

h
x) ∈ CoD∗t,xu(sh, yh) with

u(s+ h, γ(s+ h))− u(s, γ(s)) = ξht h+ ξhx · (γ(s+ h)− γ(s)) , (1.59)

(where CoD∗t,xu(s, y) stands for the closure of the convex hull of the set of reachable gradients D∗t,xu(s, y)). From
CarathÃ©odory Theorem, there are (λh,i, ξh,it , ξh,ix )i=1,...,d+2 such that λh,i ≥ 0,

∑
i λ

h,i = 1, with (ξh,it , ξh,ix ) ∈
D∗t,xu(sh, yh) and

(ξht , ξ
h
x) =

∑
i

λh,i(ξh,it , ξh,ix ) .

Note that the ξh,ix converge toDu(s, γ(s)) as h→ 0 because, from Lemma 9, any cluster point of the ξh,ix must belong
toD+u(s, γ(s)), which is reduced toDu(s, γ(s)) since u(s, ·) is differentiable at γ(s). In particular, ξhx =

∑
i λ

h,iξh,ix
converges to Du(s, γ(s)) as h→ 0.

Since u is a viscosity solution of (1.53) and (ξh,it , ξh,ix ) ∈ D∗t,xu(sh, yh), we have

−ξh,it +H(sh, yh, ξ
h,i
x ) = 0 .

Therefore ξht =
∑
i

λh,iξh,it =
∑
i

λh,iH(sh, yh, ξ
h,i
x ) converges to H(s, γ(s), Du(s, γ(s)) as h→ 0.

Then, dividing (1.59) by h and letting h→ 0+ we get

d

ds
u(s, γ(s)) = H(s, γ(s), Du(s, γ(s)) +Du(s, γ(s)) · γ̇(s) .

Since γ̇(s) = −Hp(s, γ(s), Du(s, γ(s))), this implies that

d

ds
u(s, γ(s)) = −L(s, γ(s), γ̇(s)) a.e. in (t, T ) .

Integrating the above inequality over [t, T ] we finally obtain, since u(T, y) = uT (y),

u(x, t) =

∫ T

t

L(s, γ(s), γ̇(s)) ds+ uT (γ(T )) .

which means that γ is optimal. The last statement of the Lemma is a direct consequence of Lemma 11-(2). �

The next step is a key result by Ambrosio (the so-called superposition principle) on the probabilistic representation
of weak solutions to the continuity equation

∂tµ+ div(µb(t, x)) = 0 . (1.60)

For this let us define for any t ∈ [0, T ] the map et : C0([0, T ],Td)→ Td by et(γ) = γ(t) for γ ∈ C0([0, T ],Td).

Theorem 9 ([16]) Let b : [0, T ] × Td → Rd be a given Borel vector field and µ be a solution to (1.60) such that∫
QT
|b|2 dµ < ∞. Then there exists a Borel probability measure η on C0([0, T ],Td) such that µ(t) = et]η for any t

and, for η−a.e. γ ∈ C0([0, T ],Td), γ is a solution to the ODE{
γ̇(s) = b(s, γ(s)) a.e. in [0, T ]
γ(0) = x .

(1.61)

We will also need the notion of disintegration of a measure and the following well-known disintegration theorem,
see for instance [19, Thm 5.3.1].
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Theorem 10 LetX and Y be two Polish spaces and λ be a Borel probability measure onX×Y . Let us set µ = πX]λ,
where πX is the standard projection fromX×Y ontoX . Then there exists a µ-almost everywhere uniquely determined
family of Borel probability measures (λx) on Y such that

1. the function x 7→ λx is Borel measurable, in the sense that x 7→ λx(B) is a Borel-measurable function for each
Borel-measurable set B ⊂ Y ,

2. for every Borel-measurable function f : X × Y → [0,+∞],∫
X×Y

f(x, y)dλ(x, y) =

∫
X

∫
Y

f(x, y) dλx(y)dµ(x).

We are finally ready to prove the uniqueness result:
Proof of Lemma 10. Letm be a solution of the transport equation (1.54). We set Γ := C0([0, T ],Td). From Ambrosio
superposition principle, there exists a Borel probability measure η on Γ such thatm(t) = et]η for any t and, for η−a.e.
γ ∈ Γ , γ is a solution to the ODE γ̇ = −Hp(t, γ(t), Du(t, γ(t))). We notice that, sincem ∈ L1(QT ), for any subset
E ⊂ QT of zero measure we have ∫ T

0

∫
Γ

1{γ(t)∈E}dη =

∫ T

0

∫
Td

1E dmt = 0

which means that γ(t) ∈ Ec for a.e. t ∈ (0, T ) and η−a.e. γ ∈ Γ . In particular, since u is a.e. differentiable, this
implies that u(t, ·) is differentiable at γ(t) for a.e. t ∈ (0, T ) and η−a.e. γ ∈ Γ . As m0 = e0]η, we can disintegrate
the measure η into η =

∫
Td ηxdm0(x), where γ(0) = x for ηx−a.e. γ and m0−a.e. x ∈ Td. Therefore, since m0 is

absolutely continuous, for m0−a.e. x ∈ Td, ηx−a.e. map γ is a solution to the ODE starting from x. By Lemma 12
we know that such a solution γ is optimal for the calculus of variation problem (1.55). As, moreover, for a.e. x ∈ Td
the solution of this problem is reduced to a singleton {γ̄x}, we can conclude that dηx(γ) = δγ̄x for m0−a.e. x ∈ Td.
Hence, for any continuous map φ : Td → R, one has∫

Td
φ(x)m(t, x))dx =

∫
Td
φ(γ̄x(t))m0(x)dx

which definesm uniquely. �

1.3.5 Second order MFG system with local couplings

We now consider the case that the coupling functions F,G depend on the local density of the measure m(t, x). Thus
we assume that F ∈ C0(QT × R) and G ∈ C0(Td × R) and we consider the system

−∂tu− ε∆u+H(t, x,Du) = F (t, x,m(t, x))

u(T ) = G(x,m(T, x))

∂tm− ε∆m− div(mHp(t, x,Du)) = 0

m(0) = m0 .

(1.62)

We assume that both nonlinearities are bounded below:

∃ c0 ∈ R : F (t, x,m) ≥ c0 , G(x,m) ≥ c0 ∀(t, x,m) ∈ QT × R+ (1.63)

where R+ = [0,∞). We observe that F,G could be allowed to be measurable with respect to t and x, and bounded
when the real variablem lies in compact sets. However, we simplify here the presentation by assuming continuity with
respect to all variables.
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Existence and uniqueness of solutions

For local couplings, there are typically two cases where the existence of solutions can be readily proved, namely
whenever F,G are bounded, or H(t, x, p) is globally Lipschitz in p. We give a sample result in this latter case. We
warn the reader that, in the study of system (1.62) with local couplings, the notion of solution to be used may strongly
depend on the regularity of (u,m) which is available. As a general framework, both equations will be understood in
distributional sense, and a basic notion of weak solution will be discussed later.

In this first result that we give, assumingm0 andHp(t, x, p) to be bounded, the functionm turns out to be globally
bounded and regular for t > 0. Then (u,m) is a solution of (1.62) in the sense thatm ∈ L∞(QT )∩L2(0, T ;H1(Td))
is a weak solution of the Fokker-Planck equation, with m ∈ C0([0, T ], L1(Td)) and m(0) = m0, whereas u ∈
C(QT ) ∩ L2(0, T ;H1(Td)), with u(T ) = G(x,m(T )), and is a weak solution of the first equation.

Theorem 11 Let m0 ∈ L∞(Td), m0 ≥ 0 with
∫
Td m0 = 1. Assume that H(t, x, p) is a Carathéodory function such

that H is convex and differentiable with respect to p and satisfies

∃ β > 0 : |Hp(t, x, p)| ≤ β ∀(t, x, p) ∈ QT × Rd . (1.64)

Then there exists a solution (u,m) to (1.62) with Du,m ∈ Cα(QT ) for some α ∈ (0, 1). If F (t, x,m) is a locally
Hölder continuous function and H(t, x, p), Hp(t, x, p) are of class C1, then (u,m) is a classical solution in (0, T ).

Finally, if F (t, x, ·), G(x, ·) are nondecreasing, then the solution is unique.

Proof. For simplicity, we fix the diffusion coefficient ε = 1. We set

K = {m ∈ C0([0, T ];L2(Td)) ∩ L∞(QT ) : ‖m‖∞ ≤ L} (1.65)

where L will be fixed later. For any µ ∈ K, defining uµ ∈ L2(0, T ;H1(Td)) the (unique) bounded solution to{
−∂tuµ −∆uµ +H(t, x,Duµ) = F (t, x, µ)

uµ(T ) = G(x, µ(T )) ,

one setsm := Φ(µ) as the solution to{
∂tm−∆m− div(mHp(t, x,Duµ)) = 0 ,

m(0) = m0 .

Due to the global bound onHp, there exists L > 0, depending only on β and ‖m0‖∞, such that ‖m‖∞ ≤ L. This fixes
the value of L in (1.65), so that K is an invariant convex subset of C0([0, T ];L2(Td)). Continuity and compactness
of Φ are an easy exercise, so Schauder’s fixed point theorem applies which yields a solution. By parabolic regularity
for Fokker-Planck equations with bounded drift, m is Cα(QT ) for some α > 0, and so is Du from the first equation.
Finally, if the nonlinearity F preserves the Hölder regularity of m, and if H,Hp are of class C1, then the Schauder’s
theory can be applied exactly as in Theorem 4, so u and m will belong to C1+α

2 ,2+α(QT ) for some α ∈ (0, 1) and
they will be classical solutions.

The uniqueness follows by the time monotonicity estimate (1.28), which still holds for any two possible solutions
(u1,m1), (u2,m2) of system (1.62), because they are bounded. The convexity ofH and the monotonicity ofF,G imply
thatF (t, x,m1) = F (t, x,m2) andG(x,m1(T )) = G(x,m2(T )). This readily yields u1 = u2 by standard uniqueness
of the Bellman equation with Lipschitz Hamiltonian and bounded solutions. Since Hp(t, x,Du1) = Hp(t, x,Du2),
from the Fokker-Planck equation we deducem1 = m2. �

Let us stress that the global Lipschitz bound forH implies a global L∞ bound form andDu, which is independent
of the time horizon T as well. We will come back to that in Section 1.3.6.

Remark 8 The existence of solutions would still hold assuming the minimal condition that the initial distribution
m0 ∈ P(Td). The proof remains essentially the same up to using the smoothing effect in the Fokker-Planck equation,
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where ‖m(t)‖∞ ≤ Ct−
d
2 for some C only depending on the constant β in (1.64). However, it is unclear how to prove

uniqueness when m0 is just a probability measure, unless some restriction is assumed on the growth of the coupling
F . Of course one can combine the growth of F with respect to m and the integrability assumption of m0 in order to
get uniqueness results for some class of unbounded initial data, but this is not surprising.

Remark 9 The monotonicity condition on F andG can be slightly relaxed, depending on the diffusive coefficient ε and
on ‖m0‖∞. In particular, if H satisfies (1.64) and is locally uniformly convex with respect to p, there exists a positive
value γ, depending on H,F , ε and ‖m0‖∞, such that (1.62) admits a unique solution whenever F (x,m) + γ m is
nondecreasing in m. The value of γ tends to zero if ‖m0‖∞ →∞ or if ε→ 0. Indeed, this is an effect of diffusivity,
which could be understood in the theory as the impact of the independent noise in the players’ dynamics against a
mild aggregation cost. This phenomenon was observed first in [149] and recently addressed in [91] in relation with the
long-time stabilization of the system.

When the Hamiltonian has not linear growth in the gradient, the existence and uniqueness of solutions with local
couplings is no longer a trivial issue. The main problem is that solutions can hardly be proved to be smooth unless the
growth of the coupling functions F,G or the growth of the Hamiltonian are restricted (see Remark 12 below).

On one hand, unbounded solutions of the Bellman equation may be not unique. On another hand, if the drift
Hp(t, x,Du) has not enough integrability, the standard parabolic estimates (including boundedness and strict positivity
of the solution) are not available for the Fokker-Planck equation. This kind of questions are discussed in [165], where
a theory of existence and uniqueness of weak solutions is developed using arguments from renormalized solutions and
L1-theory. We give a sample result of this type, assuming here that the Hamiltonian H(t, x, p) satisfies the following
coercivity and growth conditions in QT × Rd:

H(t, x, p) ≥ α|p|2 − γ (1.66)

|Hp(t, x, p)| ≤ β (1 + |p|) (1.67)

Hp(t, x, p) · p−H(t, x, p) ≥ α |p|2 − γ (1.68)

for some constants α, β, γ > 0.
We stress that, under conditions (1.66)-(1.68), and for couplings F,G with general growth, the existence of smooth

solutions is not known.

Definition 5 Assume (1.66)-(1.68). A couple (u,m) is a weak solution to system (1.62) if

• F (t, x,m) ∈ L1(QT ), G(x,m(T )) ∈ L1(Td) and u ∈ L2(0, T ;H1(T)) is a distributional solution of{
−∂tu− ε∆u+H(t, x,Du) = F (t, x,m(t, x))

u(T ) = G(x,m(T, x))

• m ∈ C0([0, T ];L1(Td)),m |Du|2 ∈ L1(QT ) andm is a distributional solution of{
∂tm− ε∆m− div(mHp(t, x,Du)) = 0

m(0) = m0 .

Let us stress that the terminal condition for u is understood in L1(Td), because u ∈ C0([0, T ];L1(Td)) as a
consequence of the equation itself.

The following result is essentially taken from [165], although the uniqueness statement that we give below generalizes
the original result, by establishing that the uniqueness of u always holds m-almost everywhere. This seems to be the
most general well-posedness result available so far for system (1.62), in terms of the conditions allowed on H and
F,G. Later we discuss the issue of smooth solutions, some special cases, and several related results, including other
possible approaches to weak solutions.

Theorem 12 [[165]] Assume thatH(t, x, p) is convex in p and satisfies conditions (1.66)-(1.68), and that F,G satisfy
(1.63) and G(x, ·) is nondecreasing. Then, for anym0 ∈ L∞(Td), there exists a weak solution to (1.62).
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If we assume in addition that F (x, ·) is nondecreasing, then F (x,m) = F (x, m̃) and G(x,m(T )) = G(x, m̃(T ))
for any two couples of weak solutions (u,m), (ũ, m̃). Moreover, if at least one of the following two assumptions holds:

(i) F (x, ·) is increasing
(ii) H(t, x, p)−H(t, x, q)−Hp(t, x, q) · (p− q) = 0⇒ Hp(t, x, p) = Hp(t, x, q) ∀p, q ∈ Rd

thenm = m̃ and u = ũ m-almost everywhere.

In particular, there is at most one weak solution (u,m) with m > 0 and, if m0 > 0 and log(m0) ∈ L1(Td), there
exists one and only one weak solution.

Remark 10 We stress that if (u,m) is a weak solution such that u,m ∈ L∞(QT ), then both u and m belong to
L2(0, T ;H1(Td)) and the two equations hold in the usual formulation of finite energy solutions, e.g. against test
functions ϕ ∈ L2(0, T ;H1(Td))∩L∞(QT ) with ∂tϕ ∈ L2(0, T ;H1(Td)′) +L1(QT ). This fact can be deduced, for
instance, from the characterization that weak solutions in the sense of Definition 5 are also renormalized solutions (see
[165, Lemma 4.2]).

In addition, if (u,m) are bounded weak solutions, further results in the literature can be applied: since F (x,m) is
bounded andH has at most quadratic growth, it turns out thatDu is also bounded for t < T , which is enough to ensure
that m ∈ Cα(QT ) and m(t) > 0 for t > 0. In other words, bounded weak solutions are regularized with standard
bootstrap arguments. In particular, under the assumptions of Theorem 12, bounded weak solutions are unique.

The existence part of Theorem 12 requires many technical tools which we will only sketch here, referring to [165]
for the details. It is instructive first to recall the basic a priori estimates of the system (1.62), which explain the natural
framework of weak solutions. We stress that the estimates below are independent of the diffusion constant ε.

Lemma 13 Assume that (u,m) are bounded weak solutions to system (1.62) and F,G are continuous functions
satisfying (1.63). There exists a constantK, independent on ε, such that∫ T

0

∫
Td
m{Hp(t, x,Du)Du−H(t, x,Du)}+

∫ T

0

∫
Td
H(t, x,Du) +

∫ T

0

∫
Td
F (t, x,m)m+

∫
Td
G(x,m)m ≤ K .

(1.69)
The constantK depends on ‖m0‖∞, T, ‖H(t, x, 0)‖∞, c0 and sup

m≤2‖m0‖∞
[F (t, x,m) +G(x,m)].

Proof. We omit the dependence on t of the nonlinearities, which plays no role. Since u and m are bounded, they can
be used as test functions in the usual weak formulations of both equations. This yields the energy equality∫

Td
G(x,m(T ))m(T ) +

∫ T

0

∫
Td
F (x,m)m+

∫ T

0

∫
Td
m [Hp(x,Du) ·Du−H(x,Du] =

∫
Td
m0 u(0) (1.70)

which implies∫
Td
G(x,m(T ))m(T ) +

∫ T

0

∫
Td
F (x,m)m+

∫ T

0

∫
Td
m [Hp(x,Du) ·Du−H(x,Du] ≤ ‖m0‖∞

∫
Td
u(0)+

≤ ‖m0‖∞

{∫ T

0

∫
Td

(F (x,m)) +

∫
Td
G(x,m(T ))−

∫ T

0

∫
Td
H(x,Du)

}
+ ‖m0‖∞

∫
Td
u(0)−

where we used that
∫
Td u(0) =

∫ T
0

∫
Td F (x,m) +

∫
Td G(x,m(T ))−

∫ T
0

∫
Td H(x,Du).

Nowwe estimate the right-hand side of the previous inequality. From assumption (1.63) and the maximum principle,
we have that u is bounded below by a constant depending on c0 and the L∞- bound ofH(x, 0), so last term is bounded.
We also have F (x,m) ≤ 1

2‖m0‖∞F (x,m)m + C, for some constant C depending on sup
m≤2‖m0‖∞

F (x,m). Similarly

we estimate G(x,m). Therefore, we conclude that (1.69) holds true. �

Proof of Theorem 12 (sketch).
Without loss of generality, we fix the diffusion coefficient ε = 1.
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Existence. To start with, one can build a sequence of smooth solutions, e.g. by defining Fn(t, x,m) = ρn ?
F (t, ·, ρn ? m))(x), Gn(x,m) = ρn ? G(·, ρn ? m))(x), where ? denotes the convolution with respect to the spatial
variable and ρn is a standard symmetric mollifier, i.e. ρn(x) = nNρ(nx) for a nonnegative function ρ ∈ C∞c (Rd) such
that

∫
Rd ρ(x)dx = 1.

The existence of a bounded solution un,mn is given, for instance, by Theorem 4. From assumption (1.63) and the
maximum principle, we have that un is bounded from below. Due to the a priori estimates (1.69), applied to (un,mn),
and thanks to (1.68) and (1.66), we have that

un is bounded in L2((0, T );H1(Td), andmn |Dun|2 is bounded in L1(QT ).

In addition, we have that

F (t, x,mn), G(x,mn(T )) are bounded and equi-integrable in L1(QT ) and L1(Td), respectively. (1.71)

The heart of the existence proof consists then in considering both the stability properties of the viscous HJ equation

− ∂tun −∆un +H(t, x,Dun) = fn (1.72)

for some fn converging in L1(QT ), and the compactness of the Fokker-Planck equation

∂tm
n −∆mn − div(mn bn) = 0 (1.73)

wheremn |bn|2 is bounded (or eventually, converging) in L1(QT ).
Indeed, as a first step one uses (1.73) to show that mn is relatively compact in L1(QT ), as well as in

C0([0, T ];W−1,q(Td)) for some dual Sobolev space W−1,q(Td), and for every t we have that mn(t) is relatively
compact in P(Td). Using the extra estimates (1.71), mn(T ) is relatively compact in the weak L1 topology and
F (t, x,mn) is compact in L1(QT ). If we turn the attention to the Bellman equation (1.72), the L1 convergence of fn
is enough to ensure that un, Dun are relatively compact in L1(QT ) and, thanks to existing results of the L1-theory for
divergence form operators, one concludes that un → u which solves

−∂tu−∆u+H(t, x,Du) = F (t, x,m) .

The convergence of Dun now implies that mnHp(t, x,Du
n) → mHp(t, x,Du) in L1(QT ) and m can be proved

to be a weak solution of the limit equation. The proof of the existence would be concluded if not for the coupling in
the terminal condition u(T ); in fact, to establish that u(T ) = G(x,m(T )) some extra work is needed, and this can be
achieved by using the monotonicity ofG(x, ·). For the full proof of this stability argument, we refer to [165][Thm 4.9].

Uniqueness. To shortness notations, we omit here the dependence on t of the nonlinearities H,F . A key point for
uniqueness is to establish that both u andm are renormalized solutions of their respective equations (see [165, Lemma
4.2]). This means that if (u,m) is any weak solution, then u satisfies

− ∂tSh(u)−∆Sh(u) + S′h(u)H(x,Du) = F (x,m)S′h(u)− S′′h(u)|Du|2 (1.74)

where Sh(r) is the sequence of functions (an approximation of the identity function) defined as

Sh(r) = hS
( r
h

)
, where S(r) =

∫ r
0
S′(r)dr, S′(r) =


1 if |s| ≤ 1

2− |s| if 1 < |s| ≤ 2

0 if |s| > 2

(1.75)

Notice that Sh(r)→ r as h→∞ and since S′h has compact support the renormalized equation (1.74) is restricted to
a set where u is bounded. Similarlym is also a renormalized solution, in particular it satisfies

∂tSn(m)−∆Sn(m)− div(S′n(m)mHp(x,Du)) = ωn , for some ωn
n→∞−→ 0 in L1(QT ). (1.76)
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We recall that the renormalized formulations are proved to hold for all weak solutions, since F (x,m) ∈ L1(QT ) and
since m|Du|2 ∈ L1(QT ). In addition, it is proved in [165, Lemma 4.6] that, for any couple of weak solutions (u,m)
and (ũ, m̃), the following crossed regularity holds: m|Dũ|2, m̃|Du|2 ∈ L1(QT ). This is what is needed in order to
perform first the Lasry-Lions’ argument on the renormalized formulations, and then letting n→∞ and subsequently
h→∞ to conclude the usual monotonicity inequality:∫ T

0

∫
Td

(F (x,m)− F (x, m̃))(m− m̃) +

∫
Td

[G(x,m(T ))−G(x, m̃(T ))][m(T )− m̃(T )]

+

∫ T

0

∫
Td
m [H(x,Dũ)−H(x,Du)−Hp(x,Du)(Dũ−Du)]

+

∫ T

0

∫
Td
m̃ [H(x,Du)−H(x,Dũ)−Hp(x,Dũ)(Du−Dũ)] ≤ 0 .

This implies, because F (x, ·), G(x, ·) are nondecreasing,

F (x,m) = F (x, m̃) , G(x,m(T )) = G(x, m̃(T )) (1.77)

and, from the convexity of H(x, ·),

H(x,Dũ)−H(x,Du) = Hp(x,Du)(Dũ−Du) in {(t, x) : m(t, x) > 0}
H(x,Du)−H(x,Dũ) = Hp(x,Dũ)(Du−Dũ) in {(t, x) : m̃(t, x) > 0} .

(1.78)

We warn the reader that (1.77) does not imply alone that u = ũ, because unbounded weak solutions to the Bellman
equation may be not unique. So we need to use some extra information.

We first want to show that m = m̃. This is straightforward if F (x, ·) is increasing. Otherwise, suppose that (1.25)
holds true. Then we deduce that

mHp(x,Du) = mHp(x,Dũ) m̃Hp(x,Du) = m̃Hp(x,Dũ) a.e. in QT . (1.79)

We take now the difference of the renormalized equations ofm, m̃, namely

∂t (Sn(m)− Sn(m̃))−∆ (Sn(m)− Sn(m̃))− div(S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ)) = ωn − ω̃n

and we aim at showing that, roughly speaking, ‖m(t) − m̃(t)‖L1(Td) is time contractive. To do it rigorously, we
consider the function Θε(s) =

∫ r
0
Tε(r)
ε dr, with Tε(r) = min(ε, r); then Θε(s) approximates |s| as ε → 0. Using

Tε(Sn(m)−Sn(m̃))
ε as test function in the previous equality we get∫
Td
Θε[Sn(m(t))− Sn(m̃(t))] +

1

ε

∫ T

0

∫
Td
|DTε(Sn(m)− Sn(m̃))|2 ≤ ‖ωn‖L1(QT ) + ‖ω̃n‖L1(QT )

− 1

ε

∫ T

0

∫
Td

(S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ))DTε(Sn(m)− Sn(m̃))

where we used that the test function is smaller than one. Thanks to Young’s inequality we deduce∫
Td
Θε[Sn(m(t))− Sn(m̃(t))] ≤ 1

4ε

∫ T

0

∫
Td
|S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ)|2 1{|Sn(m)−Sn(m̃)|<ε}

+ ‖ωn‖L1(QT ) + ‖ω̃n‖L1(QT ).

(1.80)

Now we use (1.79): if one betweenm, m̃ is positive, then Hp(x,Du) = Hp(x,Dũ), so
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∫ T

0

∫
Td
|S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ)|2 1{|Sn(m)−Sn(m̃)|<ε}

=

∫ T

0

∫
Td
|S′n(m)m− S′n(m̃)m̃|2 |Hp(x,Du)|2 1{|Sn(m)−Sn(m̃)|<ε}

and since
|S′n(m)m− S′n(m̃)m̃|2 |Hp(x,Du)|2 1{|Sn(m)−Sn(m̃)|<ε} ≤ C ε (m+ m̃)(1 + |Du|2)

we can let n → ∞ using Lebesgue’s theorem since m|Du|2, m̃|Du|2 ∈ L1(QT ). Therefore, letting n → ∞, from
(1.80) we obtain (for a.e. ε > 0):∫

Td
Θε[m(t)− m̃(t)] ≤ 1

4ε

∫ T

0

∫
Td
|m− m̃|2 |Hp(x,Du)|2 1{m−m̃|<ε}

≤ 1

4

∫ T

0

∫
Td
|m− m̃| |Hp(x,Du)|21{m−m̃|<ε} .

(1.81)

Last term converges to zero as ε → 0 (using again Lebesgue’s theorem), whereas the first integral converges to
‖m(t) − m̃(t)‖L1(Td). Hence, by letting ε → 0 we get ‖m(t) − m̃(t)‖L1(Td) = 0. This concludes the proof of the
uniqueness ofm.

Now we show that u is uniquem−a.e.; to this purpose, we are going to show that∫
Td
m(t)(u− ũ)+(t) ≤ 0 for a.e. t < T . (1.82)

To prove (1.82), we subtract the renormalized formulations (1.74) for u, ũ. By using the convexity of H , we have

− ∂t(Sh(u)− Sh(ũ))−∆(Sh(u)− Sh(ũ)) + S′h(u)Hp(x,Dũ)D(u− ũ) + (S′h(u)− S′h(ũ))H(x,Dũ)

≤ F (x,m)(S′h(u)− S′h(ũ))− S′′h(u)|Du|2 + S′′h(ũ)|Dũ|2 .

We multiply this equation by ϕε := Tε(Sh(u)−Sh(ũ))+
ε ; denoting as before Θε the primitive of Tε(t)

t , using that
0 ≤ ϕε ≤ 1 we get, in weak sense,

− ∂tΘε[(Sh(u)− Sh(ũ))+]−∆Θε[(Sh(u)− Sh(ũ))+] + ϕεS
′
h(u)Hp(x,Dũ)D(u− ũ)

≤ |S′h(u)− S′h(ũ)| |H(x,Dũ) + F (x,m)|+ |S′′h(u)| |Du|2 + |S′′h(ũ)| |Dũ|2 .

Now we multiply by Sn(m) this equation, we integrate in (t, T ), we use that u(T ) = ũ(T ) and (1.76). We obtain∫
Td
Sn(m(t))Θε[(Sh(u(t))− Sh(ũ(t)))+]−

∫ T

t

∫
Td
S′n(m)mHp(x,Du)ϕεD(Sh(u)− Sh(ũ))

+

∫ T

t

∫
Td
Sn(m)ϕεS

′
h(u)Hp(x,Dũ)D(u− ũ) ≤

∫ T

t

∫
Td
Sn(m) |S′h(u)− S′h(ũ)| |H(x,Dũ) + F (x,m)|

+

∫ T

t

∫
Td
Sn(m)[|S′′h(u)| |Du|2 + |S′′h(ũ)| |Dũ|2] +

∫ T

t

∫
Td
Θε[(Sh(u(t))− Sh(ũ(t)))+]ωn

where we used thatDΘε[(Sh(u(t))−Sh(ũ(t)))+] = ϕεD(Sh(u)−Sh(ũ)). Now we let n, h→∞, which is allowed
using that F (x,m)m,m|Du|2,m|Dũ|2 ∈ L1(QT ). First we let n → ∞, so that we can use the L1-convergence to
zero of ωn (whereas Sh(u), Sh(ũ) are bounded functions). Once n has gone to infinity, we let h→∞, so that S′h → 1;
using dominated convergence in each term and Fatou’s lemma in the first integral, we get∫

Td
m(t)Θε[(u(t)− ũ(t))+]−

∫ T

t

∫
Td
mHp(x,Du)ϕεD(u− ũ) +

∫ T

t

∫
Td
mϕεHp(x,Dũ)D(u− ũ) ≤ 0
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for a.e. t ∈ (0, T ). Since mHp(x,Du)D(u − ũ) = mHp(x,Dũ)D(u − ũ) from (1.78) (where now m̃ = m), we
deduce that

∫
Td m(t)Θε[(u(t) − ũ(t))+] ≤ 0. Letting ε → 0 yields (1.82). Reversing the roles of u, ũ, we conclude

that u = ũ m-a.e.
Finally, it is proved in [165] that, if logm0 ∈ L1(Td), then we havem > 0 a.e., in which case we deduce that u = ũ

almost everywhere. �

Several comments and remarks are in order as far as the previous result and MFG systems with local couplings are
concerned.

Remark 11 (extensions of Theorem 12)

(i) The result of Theorem 12 also holds with homogeneous Dirichlet or Neumann boundary conditions; this extension
already appears in [165]. Let us stress that this is one of the main advantage for the use of renormalized solutions,
which arewell adapted to boundary conditions. Indeed, through the use of renormalization onewishes to approximate
a weak solution with its own truncations, which often preserve natural boundary conditions. By contrast, the
approximation of weak solutions through mollification introduces many technical problems when dealing with
boundary conditions.
Results on the whole spaceRd are also available in [166], assumingm0 ∈ L1(Td)∩L∞(Td); in that case u belongs
to L∞((0, T )× Rd) + L∞(0, T ;L1(Rd)) andm ∈ L∞(0, T ;L1(Rd)).

(ii) Similar results hold by assuming the Hamiltonian coercive with q-growth, namely replacing |p|2 with |p|q in
(1.66), (1.68) and a q − 1-growth for Hp, where 1 < q < 2. However, general uniqueness results in this case have
been proved so far only for the periodic case or for the whole space ([165], [166]).

(iii) The same results hold for more general diffusion coefficients, namely if the Laplacian is replaced by the divergence
form operator div(A(t, x)D(·)) with A(t, x) ∈ L∞(0, T ;W 1,∞). In particular, this includes the case where ∆u
is replaced by Tr(σ(t, x)σ∗(t, x)D2u) for a bounded, Lipschitz and elliptic matrix σ(t, ·), modeling diffusion
processes associated to stochastic dynamics with Lipschitz diffusion coefficients.

Remark 12 (smoothness of solutions) Solutions of system (1.62) with local couplings can be proved to be more regular
under growth restrictions on H(t, x, p) and/or on F (t, x,m).

An easy case occurs when

|Hp(t, x, p)| ≤ C(1 + |p|q−1) with q < d+2
d+1 . (1.83)

Indeed, since F (t, x,m) ∈ L1(QT ) (regardless of the growth of F , see estimate (1.69)) then any weak solution u
belongs toLs(0, T ;W 1,s(T)) for any s < d+2

d+1 . If (1.83) holds, this implies thatHp(t, x,Du) ∈ Lr for some r > d+2;
in turn, by standard parabolic results, the solution of the Fokker-Planck equation becomes bounded in this case, and
actually even Hölder continuous. One concludes that u is bounded as well, from the first equation, and actually Du is
Hölder continuous as well. Smoothness up to C2 regularity then follows according to the smoothness required on the
coefficients.

A somewhat similar situation occurs if F has restricted growth, namely if

|F (t, x,m)| ≤ C(1 +mγ)

with γ < 2
d ; in this case estimate (1.69) implies that F (t, x,m) ∈ Lr(QT ) for some r > 2+d

2 , and the standard
parabolic regularity immediately gives the boundedness, and then smoothness, of u,m.

The above two situations are straightforward applications, using parabolic regularity, of the a priori estimates (1.69);
in particular they do not require any smoothness in the x-dependence of the nonlinearities, and directly apply to weak
solutions in order to obtain their boundedness. We recall that proving boundedness of weak solutions is enough to show
that they are unique, see Remark 10.

However, in order to get smooth solutions, one can go beyond the above conditions up to using refined estimates
on the system. This was addressed first by P.-L. Lions, who showed that F (x,m) ' mγ with γ < 2

d−2 was enough
to ensure smoothness of solutions, standing on second order estimates which further exploit the monotonicity of the
coupling F . This issue has been extensively investigated later in a series of papers by D. Gomes and co-workers (see
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e.g. [117], [118]; most results are encoded in the book [119]), coupling the second order estimates with regularity
estimates for the Fokker-Planck equation obtained through the adjoint method introduced by L.C. Evans. In this series
of contributions, some growth conditions on H and F have been given which allow to have smooth solutions, both
for sub quadratic and for super quadratic Hamiltonians. They are specially important for the case that H(x, p) grows
superquadratically in p, because in that situation the approach through weak solutions as developed in Theorem 12
cannot be used. It must be said that the aforementioned regularity results usually require smoothness of the Hamiltonian
and periodic setting, and the smoothness of solutions remains largely open under general growth assumptions.

Remark 13 (quadratic Hamiltonian and Hopf-Cole reduction) In the special case thatH(t, x, p) = 1
2 |p|

2 + b(t, x) · p,
the system (1.62) can be transformed into a system of semi linear equations. By introducing the two new unknowns:
w = e−

u
2 and ϕ = me

u
2 , then (1.62) (with ε = 1) is equivalent to the system

−∂tw −∆w + b ·Dw + 1
2wF (t, x, ϕw) = 0

∂tϕ−∆ϕ− div(b ϕ) + 1
2ϕF (t, x, ϕw) = 0

w(T ) = e−G(x,ϕ(T )w(T ))/2 , ϕ(0) = m0

w(0)

(1.84)

Notice that the system (1.84) appears to be simplified, compared to (1.62), but the initial-terminal conditions are
both coupled. The initial condition at t = 0 makes sense because w > 0 by strong maximum principle. Still by
maximum principle, the function ϕ is positive as well. Assuming G(x, ·) to be nondecreasing, the condition w(T ) =
e−G(x,ϕ(T )w(T ))/2 definesw(T ) implicitly as a function ofϕ(T ); hence the final condition reads asw(T ) = ψ(x, ϕ(T ))

for a function ψ defined by the implicit relation ψ(r)− e− 1
2G(x,r ψ(r)) = 0, for r ≥ 0.

When b = 0 andG only depends on x, it is proved in [60] that weak solutions to (1.84) are bounded. The proof uses
a Moser iteration scheme, and it can be easily verified that the proof still holds, without additional difficulty, for the case
that b ∈ L∞(0, T ;W 1,∞(Td)) and G(x, ·) is monotone. The equivalence between (1.84) and (1.62) (for this special
H) is easy to verify for bounded solutions, since the maximum principle gives ϕ,w > 0, so u = −2 logw, m = wϕ
defines (u,m) back from (1.84). Once solutions are shown to be bounded, then they are smooth (m,Du ∈ Cα(QT )) by
standard bootstrap arguments, and they are classical solutions inQT ifF is locallyHölder continuous. Therefore, system
(1.62) possesses regular, and even classical, solutions in the special case that H(t, x,Du) = b(t, x) ·Du + 1

2 |Du|
2,

with b Lipschitz continuous in x, and this holds true without any growth restriction on the couplings F,G.

We mention here further related results on weak solutions and on systems with local coupling.

• Under general assumptions, essentially the conditions of Theorem 12 above, it has been proved that the discrete
solutions of finite difference schemes, as defined in [5], converge to weak solutions as the numerical scheme
approximates the continuous equation, i.e. as the mesh size tends to zero. This result is proved in [9] and provides
an independent, alternative proof of the existence of weak solutions.

• A different notion of weak solution was introduced in [104] relying on the theory of motonone operators. In
particular, if F,G are nondecreasing, then problem (1.62) can be rephrased asA(m,u) = 0 whereA is a monotone
operator (on the couple (m,u)) defined as

A(m,u) :=

(
∂tu+∆u+ f(m)−H(x,Du)
∂tm−∆m− div(mHp(x,Du))

)
Since 〈A(m,u) − A(µ, v), (m − µ, u − v)〉 ≥ 0, where the duality is meant in distributional sense, A defines
a monotone operator. Then the Minty-Browder theory of monotone operators suggests the possibility to define a
notion of weak solution (u,m) as a couple satisfying

〈A(ϕ, v), (m− ϕ, u− v)〉 ≥ 0 ∀(ϕ, v) ∈ C2(QT )2 . (1.85)

This notion requires even less regularity on (m,u) than in Definition 5, and of course the existence of a couple (m,u)
satisfying (1.85) is readily proved by weak stability and monotonicity, as in Minty-Browder’s theory. However, the
uniqueness of a solution of this kind is unclear, and has not been proved so far.
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• The study of non monotone couplings F (x,m) in (1.62) leads to different kind of questions and results. This
direction has been mostly exploited for the stationary system ([81], [87]) and in special examples for the evolution
case. We refer the reader to [92].
In a different direction, it is worth pointing out that the assumption that F (x,m) be bounded from below could be
relaxed by allowing F (x,m) → −∞ as m → 0+ as in the model case F (x,m) ∼ logm for m → 0. Results on
this model can be found e.g. in [116], [127].

We conclude this Section by mentioning the case of a general Hamiltonian functionH(t, x,Du,m), as in problem
(1.29), where now H : QT × Rd × [0,+∞) → R is a continuous function depending locally on the density m. In
his courses at Collége de France, P.-L. Lions introduced structure conditions in order to have uniqueness of solutions
(u,m) to the local MFG system: −∂tu− ε∆u+H(t, x,Du,m) = 0 in (0, T )× Td

∂tm− ε∆m− div(mHp(t, x,Du,m)) = 0 in (0, T )× Td
m(0) = m0, u(x, T ) = G(x,m(T ))) in Td

(1.86)

Assuming H(t, x, p,m) to be C1 in m and C2 in p, the condition introduced by P.-L. Lions can be stated as the
requirement that the following matrix be positive semi-definite:

m ∂2
ppH

1

2
m ∂2

pmH

1

2
m (∂2

pmH)T −∂mH

 ≥ 0 ∀(t, x, p,m) . (1.87)

Notice that condition (1.87) implies that H is convex with respect to p and nonincreasing with respect to m. In
particular, whenH has a separate form:H = H̃(t, x, p)− f(x,m), condition (1.87) reduces to H̃pp ≥ 0 and fm ≥ 0.
As usual, this condition needs to be taken in a strict form, so that Lions’ result would state as follows in terms of smooth
solutions.

Theorem 13 Assume that G(x,m) is nondecreasing inm and that H = H(t, x, p,m) is a C1 function satisfying (we
omit the (t, x) dependence for simplicity)

(H(p2,m2)−H(p1,m1))(m2 −m1)− (m2Hp(p2,m2)−m1Hp(p1,m1)) · (p2 − p1) ≤ 0 , (1.88)

with equality if and only if (m1, p1) = (m2, p2). Then system (1.86) has at most one classical solution.

Proof. The proof is a straightforward extension of the usual monotonicity argument. Let (u1,m1) and (u2,m2) be
solutions to (1.86). We set

m̃ = m2 −m1, ũ = u2 − u1, H̃ = H(t, x,Du2,m2)−H(t, x,Du1,m1) .

Then, subtracting the two equations we get

d

dt

∫
Td

(u2(t)− u1(t))(m2(t)−m1(t))

=

∫
Td

(−ε∆ũ+ H̃)m̃+ ũ(ε∆m̃+ div(m2Hp(t, x,Du2,m2)−m1Hp(t, x,Du1,m1)))

=

∫
Td
H̃ m̃− (m2Hp(t, x,Du2,m2)−m1Hp(t, x,Du1,m1)) ·Dũ ≤ 0

by condition (1.88). Since
∫
Td(u2(t) − u1(t))(m2(t) − m1(t)) vanishes at t = 0 and is nonnegative at t = T (by

monotonicity of G(, ·)), integrating the above equality between 0 and T gives∫ T

0

∫
Td
H̃ m̃− (m2Hp(t, x,Du2,m2)−m1Hp(t, x,Du1,m1)) ·Dũ = 0.
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Since (1.88) is assumed in strict form, this implies that Dũ = 0 and m̃ = 0, so thatm1 = m2 and u1 = u2. �

Remark 14 It is immediate to check that if the matrix in (1.87) is positive definite, then (1.88) holds in the strict form.
Indeed, set p̃ = p2 − p1, m̃ = m2 −m1 and, for θ ∈ [0, 1], pθ = p1 + θ(p2 − p1),mθ = m1 + θ(m2 −m1). Let

I(θ) = (H(x, pθ,mθ)−H(x, p1,m1))m̃− p̃ · (mθHp(x,Duθ,mθ)−m1 .Hp(x,Du1,m1))

Then

I ′(θ) = −
(
p̃T m̃

) mθ ∂
2
ppH

1

2
mθ ∂

2
pmH

1

2
mθ (∂2

pmH)T −∂mH

( p̃m̃
)
.

If condition (1.87) holds with a strict sign, then the function I(θ) is decreasing and, for (p1,m1) 6= (p2,m2), one has

I(0) = 0 > I(1) = (H(p2,m2)−H(p1,m1))(m2 −m1)− (m2Hp(p2,m2)−m1Hp(p1,m1)) · (p2 − p1).

We stress that another way of formulating (1.88) is exactly the requirement that I(θ) be decreasing for every (p1,m1) 6=
(p2,m2).

The main example of Hamiltonian satisfying (1.88) is given by the so-called congestion case.

Example 1 Assume that H is of the form: H(x, p,m) =
1

2

|p|2

(σ +m)α
, where σ, α > 0. Then condition (1.87) holds if

and only if α ∈ [0, 2]. Notice thatH is convex in p and nonincreasing inm if α ≥ 0. Checking condition (1.87) we find(
−∂mH

m

)
∂2
ppH −

1

4
∂2
pmH ⊗ ∂2

pmH =
α|p|2

2mα+2

Id
mα
− α2

4

p⊗ p
m2α+2

=
2α|p|2Id
4m2α+2

− α2

4

p⊗ p
m2α+2

which is positive if and only if α ≤ 2.
This example (in the generalized version H = |p|q

(σ+m)α with α ≤ 4(q−1)
q ) was introduced by P.-L. Lions in [149]

(Lesson 18/12 2009) as a possible mean field game model for crowd dynamics. In this case, the associated Lagrangian
cost of the agents takes the form ofL(x, q) = 1

2 (σ+m)α|q|2, where q represents the velocity chosen by the controllers;
the cost being higher in areas of higher density models the impact of the crowd in the individual motion. The case
σ = 0 is also meaningful in this example and was treated by P.-L. Lions as well, even if it leads to a singular behavior
of the Hamiltonian form = 0.

As explained before, the existence of classical solutions with local couplings only holds in special cases, and this of
course remains true for the general problem (1.86) (see e.g. [113], [121], [123] for a few results on smooth solutions
of the congestion model). Therefore, the statement of Theorem 13 is of very little use. However, a satisfactory result
of existence and uniqueness is proved in [10] for general Hamiltonians H(t, x,Du,m) which include the congestion
case (including the singular model with σ = 0). This is so far the unique general well-posedness result which exists
for the local problem (1.86).

1.3.6 The long time ergodic behavior and the turnpike property of solutions

It is a natural question to investigate the behavior of the MFG system (1.62) as the horizon T tends to infinity. Here
we fix the diffusion constant ε = 1 and we consider nonlinearities F,H independent of t. As explained by Lions in
[149] (see e.g. Lesson 20/11 2009), the limit of the MFG system, as the time horizon T tends to infinity, is given by
the stationary ergodic problem
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λ−∆u+H(x,Du) = F (x,m) in T d

−∆m− div (mHp(x,Du)) = 0 in Td∫
Td
m = 1 ,

∫
Td
u = 0

(1.89)

This system has also been introduced by Lasry and Lions in [143] as the limit, when the number of players tends to
infinity, of Nash equilibria in ergodic differential games. Here the unknowns are (λ, u,m), where λ ∈ R is the so-called
ergodic constant. The interpretation of the system is the following: each player wants to minimize his/her ergodic cost

J (x, α) := inf
α

lim sup
T→+∞

E

[
1

T

∫ T

0

{H∗(Xt,−αt) + F (Xt,m(Xt))} dt

]

where (Xt) is the solution to {
dXt = αtdt+

√
2dBt

X0 = x

It turns out that, if (λ, u,m) is a classical solution to (1.89), then the optimal strategy of each player is given by the
feedback α∗(x) := −Hp(x,Du(x)) and, if Xt is the solution to{

dXt = α∗(Xt)dt+
√

2dBt
X0 = x

(1.90)

thenm(·) is the invariant measure associated with (1.90) and, setting ᾱt := α∗(Xt), then J (x, ᾱ) = λ is independent
of the initial position.

The “convergence” of the MFG system in (0, T ) towards the stationary ergodic system (1.89) was analyzed in [60],
[61] when the Hamiltonian is purely quadratic (i.e.H(x, p) = |p|2), in [65] where the long time behavior is completely
described in case of smoothing coupling and uniformly convex Hamiltonian, and in [167] for the case of local couplings
and globally Lipschitz Hamiltonian. The case of discrete time, finite states system is analyzed in [114].

The “long time stability” takes the form of a turnpike pattern for solutions (uT ,mT ) of system (1.62); namely, the
solutions become nearly stationary for most of the time, which is related to the so-called turnpike property of optimality
systems (see e.g. [170]). This pattern is clearly shown in numerical simulations as one can see in the contribution
by Achdou & Lauriere in this volume. The strongest way to state this kind of behavior is through the proof of the
exponential estimate

‖mT (t)− m̄‖∞ + ‖DuT (t)−Dū‖∞ ≤ K(e−ωt + e−ω(T−t)) ∀t ∈ (0, T ) (1.91)

for someK,ω > 0, where (ū, m̄) is a solution to (1.89).
Notice that a weakest statement is also given by the time-average convergence (which is a consequence of (1.91), if

this holds true)

lim
T→+∞

1

T

∫ T

0

∫
Td

(
|DuT −Dū|2 + |mT − m̄|2

)
dxdt = 0 .

Of course this kind of convergence occurs provided the Lasry-Lions monotonicity condition holds true: in general, the
behavior of the time-dependent problem can be much more complex. For instance it can exhibit periodic solutions. On
that topic, see in particular [63, 88, 90, 153].

In this Section we give a new proof of the turnpike property of solutions, by showing how it is possible to refine the
usual fixed point argument in order to build directly the solution (u,m) embedded with the turnpike estimate (1.91).
For simplicity, we develop this approach in the case of local couplings and globally Lipschitz Hamiltonian although,
roughly speaking, a similar method would work for any case in which a global (in time) Lipschitz estimate is available
for u.

Let us first remark that the stationary system (1.89) is well-defined.
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Proposition 2 Assume that (1.63) and (1.64) hold true and F (x,m) is nondecreasing inm. Then system (1.89) has a
unique classical solution (λ̄, ū, m̄), and moreover m̄ > 0.

The proof can be established by usual fixed point arguments, very similar as in Theorem 11, so we omit it.
Now we prove the exponential turnpike estimate for locally Lipschitz couplings F (without any growth restriction)

and for globally Lipschitz, locally uniformly convex Hamiltonian.

Theorem 14 Letm0 ∈ P(Td). Assume that F (x,m) is a Carathéodory function which is nondecreasing with respect
tom and satisfies

∀K > 0 , ∃ cK , `K > 0 :

{
|F (x,m)| ≤ cK ,
|F (x,m)− F (x,m′)| ≤ `K |m−m′|

∀x ∈ Td ,m,m′ ∈ R : |m|, |m′| ≤ K .

(1.92)
Assume that p 7→ H(x, p) is a C2 function which is globally Lipschitz (i.e. it satisfies (1.64)) and locally uniformly
convex:

∀K > 0 , ∃αK , βK > 0 : αK I ≤ Hpp(x, p) ≤ βKI ∀(x, p) ∈ Td × Rd : |p| ≤ K . (1.93)

Then there exists ω,M > 0 (independent of T ) such that any solution (uT ,mT ) of problem (1.62) (with ε = 1) satisfies

‖mT (t)− m̄‖∞ + ‖DuT (t)−Dū‖∞ ≤M(e−ωt + e−ω(T−t)) ∀t ∈ (1, T − 1) . (1.94)

This kind of result is proved in [167] with a strategy based on the stabilization properties of the linearized system;
an approach which explains the exact exponential rate ω in (1.94) in terms of a Riccati feedback operator. Here we give
a new direct proof of (1.94), mostly based on ideas in [65]. This approach is less precise in the rate ω but requires less
demanding assumptions and avoids the formal use of the linearized system, though some form of linearization appears
in obtaining the following a priori estimate.

Lemma 14 Under the assumptions of Theorem 14, let (λ̄, ū, m̄) be the unique solution of (1.89).
For σ ∈ [0, 1],m0 ∈ L∞(Td) ∩ P(Td), vT ∈ C1,α(Td) for some α ∈ (0, 1), let (µ, v) be a solution of the system

−∂tv −∆v +H(x,Dū+Dv)−H(x,Dū) = F (x, m̄+ µ)− F (x, m̄)

v(T ) = vT

∂tµ−∆µ− div(µHp(x,Dū+Dv)) = σ div(m̄ [Hp(x,Dū+Dv)−Hp(x,Dū)])

µ(0) = σ(m0 − m̄) .

(1.95)

Then there exist constants ω,K > 0 such that

‖µ(t)‖2 + ‖Dv(t)‖2 ≤ K(e−ωt + e−ω(T−t))[‖m0 − m̄‖2 + ‖DvT ‖2] . (1.96)

Proof. We first notice that, using the equation satisfied by m̄, we can derive the equation satisfied by µ + σm̄ and
we deduce immediately that µ + σm̄ ≥ 0. Since

∫
Td µ(t) = 0 for every t, this implies that ‖µ(t)‖L1(Td) ≤ 2σ for

every t > 0. Since Hp is globally bounded, and m̄ ∈ L∞(Td), by standard (local in time) regularizing effect in the
Fokker-Planck equation, we have ‖µ(t)‖∞ ≤ C‖µ(t − 1)‖L1(Td) for every t > 1 (see e.g. [142, Chapter V]). In
addition, sincem0 ∈ L∞(Td), we have that ‖µ(t)‖∞ is bounded for t ∈ (0, 1) as well. From the global L1 bound, we
conclude therefore that ‖µ(t)‖∞ is bounded uniformly, for every t ∈ (0, T ), by a constant independent of the horizon
T . Due to (1.92), this means that the function F (x, ·) in the first equation can be treated as uniformly bounded and
Lipschitz. The global bound on the right-hand side, together with the global Lipschitz character of the Hamiltonian,
and the fact that vT ∈ C1,α(Td) for some α ∈ (0, 1), allow us to deduce the existence of a constant L, independent of
T , such that ‖Dv(t)‖∞ ≤ L for every t ∈ (0, T ). Due to (1.93), this means that H(x, ·) can be treated as uniformly
convex. Therefore, if we set
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h(x, p) := H(x,Dū(x) + p)−H(x,Dū(x))

f(x, µ) := F (x, m̄(x) + µ)− F (x, m̄(x))

B(x, p) := m̄(x) [Hp(x,Dū(x) + p)−Hp(x,Dū(x))] ,

we have that (v, µ) solves the system
−∂tv −∆v + h(x,Dv) = f(x, µ)

v(T ) = vT

∂tµ−∆µ− div(µhp(x,Dv)) = σ div(B(x,Dv))

µ(0) = σ µ0

(1.97)

where µ0 = m0 − m̄, and where h(x, p), f(x, s), B(x, p) satisfy the following conditions for some constants
c0, C0, C1, C2 and for every s ∈ R, p ∈ Rd, x ∈ Td:

h(x, 0) = 0 , |hp(x, p)| ≤ c0 , (1.98)

f(x, s)s ≥ 0 , |f(x, s)| ≤ C0 , |f(x, s)| ≤ C1 |s| (1.99)

B(x, p) · p ≥ C−1
2 |p|2 , |B(x, p)| ≤ C2 |p| . (1.100)

In addition, since µ(t, x) ≥ −σm̄(x), we also have, for some constant γ0,

σB(x, p) · p−µ(t, x)(h(x, p)− hp(x, p) · p) ≥ σB(x, p) · p− σm̄(x)(hp(x, p) · p− h(x, p))

= σm̄(x) [−Hp(x,Dū(x)) · p+H(x,Dū(x) + p)−H(x,Dū(x))]

≥ σ γ0 |p|2 ∀(t, x) ∈ QT ,∀p ∈ Rd : |p| ≤ L ,
(1.101)

where we used the local uniform convexity of H and that m̄ > 0.
We now derive the exponential estimate for system (1.97) under conditions (1.98)-(1.101).
Given T > 0, σ ∈ [0, 1], µ0 ∈ L2(Td) with

∫
Td µ0 = 0, vT ∈ H1(Td), we denote by S(T, σ, µ0, vT ) the solution

(µ, v) of system (1.97). We will denote by 〈v〉 =
∫
Td v and by ṽ = v − 〈v〉. We first prove that there exists a constant

C, independent of σ, T, µ0, vT , such that

‖µ(t)‖2 + ‖Dv(t)‖2 ≤ C(‖µ0‖2 + ‖DvT ‖2) ∀(µ, v) ∈ S(T, σ, µ0, vT ) . (1.102)

To prove (1.102), we observe that, due to (1.101),

− d

dt

∫
Td
µ(t)v(t) =

∫
Td
f(x, µ)µ+ σ

∫
Td
B(x,Dv)Dv −

∫
Td
µ(h(x,Dv)− hp(x,Dv) ·Dv)

≥ σ γ0

∫
Td
|Dv|2 .

(1.103)

From the Fokker-Planck equation we also have (see e.g. [65, Lemma 1.1]) that there exists γ, c > 0:

‖µ(t)‖22 ≤ c e−γt‖µ0‖22 + c σ2

∫ t

0

∫
Td
|B(x,Dv)|2

≤ c e−γt‖µ0‖22 + c σ

∫ t

0

∫
Td
|Dv|2

where we used (1.100). Here and after we denote by c possibly different constants independent of T, σ, µ0, vT . Putting
together the above inequalities we get

‖µ(t)‖22 ≤ c e−γt‖µ0‖22 + c

∫
Td
µ0v(0)− c

∫
Td
µ(T )vT
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which implies
sup
[0,T ]

‖µ(t)‖22 ≤ c [‖µ0‖22 + ‖DvT ‖22] + c ‖µ0‖2‖ṽ(0)‖2 . (1.104)

Since the Hamilton-Jacobi equation implies (using |f(x, µ)| ≤ c |µ| and [65, Lemma 1.2])

‖ṽ(0)‖2 ≤ c e−γT ‖ṽT ‖2 + c

∫ T

0

e−γs‖µ(s)‖2ds ≤ c[‖ṽT ‖2 + sup
[0,T ]

‖µ(t)‖2]

coming back to (1.104) we deduce that

sup
[0,T ]

‖µ(t)‖22 ≤ c [‖µ0‖22 + ‖ṽT ‖22] .

A similar estimate holds for sup[0,T ] ‖ṽ(t)‖2 as well. Finally, using e.g. [65, Lemma 1.2] we have

‖∇v(t)‖22 ≤ c(‖ṽ(t+ 1)‖22 + c

∫ t+1

t

[‖µ(s)‖22 + ṽ(s)2])

hence
‖∇v(t)‖22 ≤ c [‖µ0‖22 + ‖ṽT ‖22] ∀t < T − 1.

Standard parabolic estimates also imply that

‖∇v(t)‖22 ≤ c [ sup
[T−1,T ]

‖µ(t)‖22 + ‖DvT ‖22] ∀t ∈ [T − 1, T ]

so that (1.102) is proved. Now we set

ρ(τ) := sup
T≥2τ

sup
σ,µ0,vT

{
sup

t∈[τ,T−τ ]

∣∣∣∣
∫
Td v(t)µ(t)

[‖µ0‖2 + ‖DvT ‖2]2

∣∣∣∣ , (µ, v) ∈ S(T, σ, µ0, vT )

}
.

We first remark that, by elementary inclusion property, one has ρ(τ + s) ≤ ρ(τ) for every s > 0. Hence ρ(·) is a non
increasing function and we can define

ρ(∞) := lim
τ→∞

ρ(τ) .

As a first step, we shall prove that ρ∞ = 0. To this purpose, we observe that by definition of ρ there exist sequences
τn →∞, Tn ≥ 2τn, tn ∈ [τn, Tn − τn], µn0 ∈ L∞(Td), vnTn ∈W

1,∞(T) and σn ∈ [0, 1] such that

(µn, vn) ∈ S(Tn, σn, µ
n
0 , v

n
Tn) ,

∣∣∣∣
∫
Td µ

n(tn)vn(tn)

[‖µn0‖2 + ‖DvnTn‖2]2

∣∣∣∣ ≥ ρ∞ − 1/n.

We set, for t ∈ [−tn, Tn − tn]:

µ̃n(t, x) = δnµ
n(tn + t, x), ṽn(t, x) = δn(vn(tn + t, x)− 〈vn(tn)〉)

δn := 1
‖µn0 ‖2+‖DvnTn‖2

and we notice that (µ̃n, ṽn) solve the system{
−ṽnt −∆ṽn + δn h(x,Dvn) = δn f(x, µn)

µ̃nt −∆µ̃n − div(µ̃n hp(x,Dv
n)) = δn σn div(B(x,Dvn))

where vn, µn are computed at tn + t. By estimate (1.102), ‖µ̃n(t)‖2 and ‖Dṽn(t)‖2 are uniformly bounded. Hence,
due to (1.98) and (1.99),−∂tṽn−∆ṽn is uniformly bounded in L2(Td), which implies that ṽn is relatively compact in
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C0([a, b];L2(Td)), for every interval [a, b]. In particular, there exists ṽ ∈ L2
loc(R;L2(Td)) such that ṽn(t) → ṽ(t) in

L2(Td) for every t ∈ R, andDṽn → Dv in L2((a, b)× Td) for every bounded interval (a, b). Let us call respectively
µ̃, σ a limit of (a subsequence of) µ̃n, σn; since µ̃n(t) weakly converges to µ(t) in L2(Td), we have that the scalar
product

∫
Td µ̃

n(t)ṽn(t) converges for every t ∈ R. It follows from (1.103) (integrated between tn + t1 and tn + t2)
and from (1.100), that

σ γ0

∫ t2

t1

∫
Td
|Dṽ|2 ≤ lim inf

n→∞
σn γ0 δ

2
n

∫ tn+t2

tn+t1

∫
Td
|Dvn|2 ≤

∫
Td
µ̃(t1)ṽ(t1)−

∫
Td
µ̃(t2)ṽ(t2) (1.105)

for every fixed t1, t2 ∈ R. By construction, we also have

ρ∞ − 1/n ≤
∣∣∣∣

∫
Td µ

n(tn)vn(tn)

[‖µn0‖∞ + ‖DvnTn‖∞]2

∣∣∣∣ ≤ ρ(τn)→ ρ∞ , (1.106)

hence
ρ∞ = lim

n→∞

∣∣∣∣∫
Td
µ̃n(0)ṽn(0)

∣∣∣∣ =

∣∣∣∣∫
Td
µ̃(0)ṽ(0)

∣∣∣∣ .
On another hand, for any t ∈ R and for n large enough, we have that tn + t ∈ [τn − |t|, Tn − (τn − |t|)], so that∣∣∣∣∫

Td
µ̃(t)ṽ(t)

∣∣∣∣ = lim
n

∣∣∣∣
∫
Td µ

n(tn + t)vn(tn + t)

[‖µn0‖∞ + ‖DvnTn‖∞]2

∣∣∣∣ ≤ lim
n
ρ(τn − |t|) = ρ∞. (1.107)

Now suppose that ρ∞ > 0 and σ > 0. If ρ∞ =
∫
Td µ̃(0)ṽ(0) > 0; using (1.105) with t2 = 0 we deduce, due to

(1.107), that
∫ 0

t1

∫
Td |Dṽ|

2 ≤ 0. This implies that |ṽ(0)| = 0. If ρ∞ = −
∫
Td µ̃(0)ṽ(0), we get at the same conclusion

by choosing now t1 = 0 in (1.105). But ṽ(0) = 0 is impossible unless ρ∞ = 0. It remains the case that σ = 0; this
means that µ̃ satisfies

∂tµ̃−∆µ̃− div(µ̃ b) = 0

for a bounded drift b(t, x). But this readily leads to µ̃ = 0 (because ‖µ̃(t)‖ ≤ e−ω(t−t0)‖µ̃(t0)‖ for all t0, t and µ̃ is
uniformly bounded), and again this implies ρ∞ = 0.

So we proved that ρ∞ = 0. We claim now that this implies the existence of t0 such that

‖µ(t)‖2 + ‖Dv(t)‖2 ≤
1

2
[‖µ0‖2 + ‖DvT ‖2] ∀t ∈ [t0, T − t0] . (1.108)

In fact, using the Fokker-Planck equation and (1.103), for every t ∈ [τ, T − τ ] we have

‖µ(t)‖22 ≤ c e−γ(t−τ)‖µ(τ)‖22 + c σ2

∫ T−τ

τ

∫
Td
|B(x,Dv)|2

≤ c e−γ(t−τ)[‖µ0‖22 + ‖DvT ‖2]2 + c

{∣∣∣∣∫
Td
µ(τ)v(τ)

∣∣∣∣+

∣∣∣∣∫
Td
µ(T − τ)v(T − τ)

∣∣∣∣} ,

hence
‖µ(t)‖22 ≤ c[‖µ0‖22 + ‖DvT ‖2]2

(
e−γ(t−τ) + ρ(τ)

)
. (1.109)

Similarly we have, using now the estimate for µ,

‖ṽ(t)‖22 ≤ c e−γ(T−τ−t)‖ṽ(T − τ)‖22 + c

∫ T−τ

t

e−γ(s−t)‖µ(s)‖22ds

≤ c [‖µ0‖2 + ‖DvT ‖2]2
(
e−γ(T−τ−t) + e−γ(t−τ) + ρ(τ)

)
which implies, for every t ∈ (τ, T − τ − 1):

56



‖∇v(t)‖22 ≤ c(‖ṽ(t+ 1)‖22 + c

∫ t+1

t

[‖µ(s)‖22 + ṽ(s)2])

≤ c [‖µ0‖2 + ‖DvT ‖2]2
(
e−γ(T−τ−t) + e−γ(t−τ) + ρ(τ)

)
.

(1.110)

Since ρ(τ)
τ→∞→ 0, from (1.109)-(1.110) we obtain (1.108) by choosing τ and t conveniently. Finally, by iteration of

(1.108), we deduce the exponential estimate (1.96). �

Proof of Theorem 14. Let us first assume thatm0 ∈ Cα(Td). We set X = C0([0, T ];L2(T)) and we introduce the
following norm in X:

|||u|||X := sup
[0,T ]

( ‖u(t)‖L2(Td)

e−ωt + e−ω(T−t)

)
where ω > 0 is given by Lemma 14. It is easy to verify that (X, |||u|||X) is a Banach space and ||| · ||| is equivalent to
the standard norm ‖u‖ = sup[0,T ] ‖u(t)‖L2(Td).

We define the operator T on X as follows: given µ ∈ X , let (v, ρ) be the solution to the system
−vt −∆v +H(x,Dū+Dv)−H(x,Dū) = F (x, m̄+ µ)− F (x, m̄)

v(T ) = G(x, m̄+ µ(T ))− ū
ρt −∆ρ− div(ρHp(x,Dū+Dv)) = −div(m̄ [Hp(x,Dū+Dv)−Hp(x,Dū)])

ρ(0) = m0 − m̄

(1.111)

then we set ρ = Tµ. Since Hp is globally bounded, and m̄,m0 ∈ C0,α, by standard regularity results (see [142,
Chapter V, Thms 1.1 and 2.1]) we notice that the range of T is bounded inCα/2,α(QT ), in particular the range of T lies
in a bounded set of L∞ and its closure is compact inX . As a consequence, due to (1.92), there is no loss of generality
if we consider F (x, ·) to be globally bounded and Lipschitz. Using now the global bound on µ and proceeding as in
Lemma 14, a global bound for ‖Dv(t)‖2 follows, and then, by (local) regularizing effect of parabolic equations, we
deduce that there exists a constant L > 0 such that

‖Dv(t)‖∞ ≤ L ∀t ≤ T − 1 , ∀µ ∈ X . (1.112)

We now check that the operator T is continuous: if µn → µ in X , then µn(T ) is strongly convergent in L2(Td), and
F (x, m̄+ µn)− F (x, m̄) converges in L2(QT ) as well. By standard parabolic theory, we have thatDvn converges in
L2(QT ) to Dv where v is a solution corresponding to µ. The convergence of Dvn in L2 and the boundedness of Hp

imply that the drift and source terms in the equation of ρn converge in Lp(QT ) for every p < ∞. This immediately
implies the convergence of ρn in L2(0, T ;H1(Td)) and then in C0([0, T ];L2(Td)) as well. By uniqueness, we deduce
that ρn converges to Tµ. This concludes the continuity of T . Thus, T is a compact and continuous operator. We are
left with the following claim: there exists a constantM > 0 such that

|||µ||| ≤M for every µ ∈ X and every σ ∈ [0, 1] such that µ = σT (µ). (1.113)

In order to prove (1.113), we use Lemma 14 in the interval (0, T − 1); indeed if µ = σT (µ), then (µ, v) is a solution
to (1.95) with vT−1 = v(T − 1). Therefore, there existsK > 0 (only depending on ‖m0‖∞, and F,H, ū, m̄) such that

‖µ(t)‖2 + ‖Dv(t)‖2 ≤ K(e−ωt + e−ω(T−t)) ∀t ∈ (0, T − 1) .

Since ‖µ(t)‖2 is uniformly bounded for t ∈ (T − 1, T ), we conclude that (1.113) holds true for some M > 0. By
the Schaefer’s fixed point theorem ([110, Thm 11.3]), we conclude that there exists µ ∈ X such that µ = Tµ. Setting
m = m̄+ µ, u = ū+ λ̄(T − t) + v, we have found a solution of the MFG system (1.62) which satisfies the estimate

‖m(t)− m̄‖2 + ‖Du(t)−Dū‖2 ≤ C(e−ωt + e−ω(T−t)) ∀t ∈ (0, T − 1) .
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To concludewith the general case, letm0 ∈ P(Td) and let (u,m) be any solution to system (1.62). Bymass conservation
and the global Lipschitz bound (1.64), there exists α ∈ (0, 1) and a constant C, only depending on β, such that

‖m(t)‖Cα(Td) ≤ C ∀t ≥ 1

2
.

In turn, this implies that
‖Du(t)‖∞ ≤ C ∀t ≤ T − 1

2
.

for a possibly different constant only depending on β, F,G. By monotonicity of F (x, ·), (u,m) is the unique solution
of the MFG system in ( 1

2 , T −
1
2 ) with initial-terminal conditions given by m( 1

2 ) and u(T − 1
2 ) respectively. By the

first part of the proof, we know that this unique MFG solution satisfies the exponential turnpike estimate. Hence there
existsM > 0 such that

‖mT (t)− m̄‖2 + ‖DuT (t)−Dū‖2 ≤M(e−ωt + e−ω(T−t)) ∀t ∈ (1/2, T − 1/2) .

Using the regularizing effect of the two equations, this estimate is upgraded to L∞-norms and yields (1.94). �

Let us stress that the turnpike estimate (1.94) gives an information in a long intermediate time of the interval (0, T ).
A stronger result can also be obtained, by showing the convergence of (uT (t),mT (t)) at any time scale, i.e. for every
t ∈ (0, T ). More precisely, there exists (u,m) solution of the problem in (0,∞):

−∂tu+ λ̄−∆u+H(x,Du) = F (x,m) in (0,∞)× Td,
∂tm−∆m− div(mHp(x,Du)) = 0 in (0,∞)× Td,
m(0) = m0 , Du ∈ Dū+ L2((0,∞)× Td) , u bounded

(1.114)

such that
uT (t) + λ̄(T − t) T→∞→ u(t) ; mT (t)

T→∞→ m(t)

where the convergence is uniform (locally in time). We notice that, since F (x, ·) is nondecreasing, there is a uniquem
which solves problem (1.114), while u is unique up to addition of a constant. Nevertheless the above convergence holds
for the whole sequence T → ∞. i.e. there is a unique solution u of the infinite horizon problem which is selected in
the limit of uT (t) + λ̄(T − t). We also point out that m̄ is the unique invariant measure of the Fokker-Planck equation
(hence m(t) → m̄ as t → ∞). Finally, the same problem (1.114) is obtained as the limit of the discounted MFG
problem when the discount factor vanishes. The discounted (infinite horizon) problem is described by the system

−∂tu+ δu−∆u+H(x,Du) = F (x,m) in (0,∞)× Td,
∂tm−∆m− div(mHp(x,Du)) = 0 in (0,∞)× Td,
m(0) = m0 , u bounded

and corresponds to the following minimization problem for each agent:

J (x, α) = inf
α

E
[∫ +∞

0

e−δt (H∗(Xt,−αt) + F (Xt,m(t))) dt

]
where δ > 0 is a fixed discount rate. In case of monotone couplings, the limit as δ → 0 produces a unique solution
of (1.114) and is, once more, related to the ergodic behavior of the controlled system. We refer to [65] where all the
above mentioned results are proved for smoothing couplings in connection with the long time behavior and the ergodic
properties of the master equation. A different proof is also given in [91] for local couplings and Lipschitz Hamiltonians.

We conclude by mentioning that the aforementioned results, and specifically the exponential convergence, mostly
rely on the presence of the diffusion term in the equations (the individual noise of the agents). Indeed, in case of first
order MFG systems, only partial results are known, even in case of monotone couplings. The typical result proved so
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far consists in the long time average convergence towards the ergodic first order system, see [52], [53] for the case of,
respectively, smoothing and local couplings.

Remark 15 It is well-known that the ergodic behavior of Hamilton-Jacobi equations has strict connections with the
study of homogenization problems. To this respect, the study of MFG systems is still largely open. MFG problems
with fast oscillation in the space variable (homogenization) are studied in [151], [83]. Interestingly, the monotonicity
structure of MFG might be lost after homogenization (although very recent results by Lions show that some structure
is preserved).

1.3.7 The vanishing viscosity limit and the first order system with local couplings.

1.3.7.1 Existence and uniqueness of solutions

We now analyze the vanishing viscosity limit of weak solutions. Compared to the case of smoothing couplings, now
we cannot rely anymore on the semi concavity estimates for u, and the relaxed solutions obtained for the deterministic
problem fall outside the viscosity solutions setting. However, the monotonicity of the couplings, the coercivity of the
Hamiltonian and, eventually, the stability properties of the system, will allow us to handle the two equations in a purely
distributional sense.

To fix the ideas, we still assume that the Hamiltonian H(x, p) is convex and C1 with respect to p and satisfies
assumptions (1.66)-(1.68). We also assume that F,G ∈ C(Td × R+) are nondecreasing functions ofm which verify,
for some constants Ci > 0,

∃ f ∈ C(R+,R+) nondecreasing, with lim
s→+∞

f(s) = +∞ and f(s)s convex, such that

C0 f(m)− C1 ≤ F (x,m) ≤ f(m) + C1 , ∀(x,m) ∈ Td × R+

(1.115)

∃ g ∈ C(R+,R+) nondecreasing, with lim
s→+∞

g(s) = +∞ and g(s)s convex, such that

C2 g(m)− C3 ≤ G(x,m) ≤ g(m) + C3 , ∀(x,m) ∈ Td × R+ .
(1.116)

Of course the simplest example occurs when f(s) and g(s) are power-type functions, as considered e.g. in [58]. Both
nonlinearities F and H could also depend (in a measurable way) on t, but this would not add any change in the
following, so we omit this dependence to shorten notations.

The key point here is to consider the duality between weak sub solutions of Hamilton-Jacobi equation and weak
solutions of the continuity equation. This topic has an independent interest for PDEs especially in connection with the
theory of optimal transport.

Definition 6 Given f ∈ L1(QT ), g ∈ L1(Td), a function u ∈ L2(0, T ;H1(Td)) is a weak sub solution of{
−∂tu+H(x,Du) = f(t, x)

u(T, x) = g(x)
(1.117)

if it satisfies∫ T

0

∫
Td
u ∂tϕ+

∫ T

0

∫
Td
H(x,Du)ϕ ≤

∫ T

0

∫
Td
f ϕ+

∫
Td
gϕ(T ) ∀ϕ ∈ C1

c ((0, T ]× Td) , ϕ ≥ 0 . (1.118)

Hereafter, we will shortly write −∂tu+H(x,Du) ≤ f and u(T ) ≤ g to denote the previous inequality.

Let us point out that, since H is bounded below thanks to condition (1.66), any sub solution u according to the
above definition is time-increasing up to an absolutely continuous function; in particular, u admits a right-continuous
Borel representative and admits one-sided limits at any t ∈ [0, T ]. We refer the reader to [158, Section 4.2] for the
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analysis of trace properties of u. We will use in particular the existence of a trace at time t = 0 for u; this trace should
be understood in the sense of limits of measurable functions (convergence in measure of u(t, x) as t→ 0+).

Definition 7 Let m0 ∈ P(Td). Given a measurable vector field b : QT → R, a function m ∈ L1(QT ) is a weak
solution of the continuity equation {

∂tm− div(mb) = 0

m(0) = m0

(1.119)

ifm ∈ C0([0, T ];P(Td)),
∫ T

0

∫
Td m |b|

2 <∞ and the distributional equality holds:

−
∫ T

0

∫
Td
m∂tϕ+

∫ T

0

∫
Td
mb ·Dϕ =

∫
Td
m0ϕ(0) ∀ϕ ∈ C1

c ([0, T )× Td) . (1.120)

Let us recall that the requirement that
∫ T

0

∫
Td m |b|

2 <∞ is very natural in the framework of weak solutions to the
continuity equation, and this is related with the fact that m(t) is an absolutely continuous curve in P(Td) with L2

metric velocity, see [19].
Standing on the above two definitions, we have a weak setting for the deterministic MFG system. For simplicity, we

restrict hereafter to the case thatm0 ∈ L1(Td).

Definition 8 A pair (u,m) ∈ L2(0, T ;H1(Td))× L1(QT )+ is a weak solution to the first order MFG system{
−∂tu+H(x,Du) = F (x,m)

u(T ) = G(x,m(T ))
(1.121)

{
∂tm− div(mHp(x,Du)) = 0

m(0) = m0

(1.122)

if
(i) F (x,m)m ∈ L1(QT ), G(x,m(T ))m(T ) ∈ L1(Td),m|Du|2 ∈ L1(QT ), and u is bounded below
(ii) u is a weak sub solution of (1.121),m ∈ C0([0, T ];P(Td)) is a weak solution of (1.122)
(iii) u andm satisfy the following identity:∫

Td
m0 u(0) dx =

∫
Td
G(x,m(T ))m(T ) dx+

∫ T

0

∫
Td
F (t, x,m)mdxdt

+

∫ T

0

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)] dxdt

(1.123)

A key point is played by the following lemma, which justifies the duality between weak sub solutions of the
Hamilton-Jacobi equation and weak solutions of the continuity equation. This also gives sense to the first term in
(1.123), where we recall that the value u(0) is the trace of u(t) as explained before.

In the following, for a convex super linear function φ : Rd → R, we denote by φ∗ its Legendre transform defined as
φ∗(q) = supp∈Rd [q · p− φ(p)].

Lemma 15 Let u be a weak sub solution of (1.117) and m be a weak solution of (1.119). Assume that f, g, u are
bounded below and there exist convex increasing and superlinear functions φ1, φ2 such that φ1(m), φ∗1(f) ∈ L1(QT )
and φ2(m(T )), φ∗2(g) ∈ L1(Td).

Then we havem|Du|2 ∈ L1(QT ), u(0)m0 ∈ L1(Td) and∫
Td
m0 u(0) dx ≤

∫
Td
gm(T ) dx+

∫ T

0

∫
Td
f mdxdt+

∫ T

0

∫
Td
m [b ·Du−H(x,Du)] dxdt (1.124)
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Proof. Let ρδ(·) be a sequence of standard symmetric mollifiers in Rd. We set mδ(t, x) = m(t) ? ρδ . We also take a
sequence of 1-d mollifiers ξε(t) such that supp(ξε) ⊂ (−ε, 0), and we set

mδ,ε :=

∫ T

0

ξε(s− t)mδ(s)ds =

∫ T

0

∫
RN

m(s, y)ξε(s− t)ρδ(x− y) dyds .

Notice that this function vanishes near t = 0, so we can take it as test function in (1.118). We get∫ T

0

∫
Td
u ∂tmδ,ε +

∫ T

0

∫
Td
H(x,Du)mδ,ε ≤

∫ T

0

∫
Td
f mδ,ε +

∫
Td
gmδ,ε(T ) . (1.125)

The first integral is equal to
∫ T

0

∫
Td −∂suδ,εm(s, y) dsdy, where uδ,ε(s, y) =

∫ T
0

∫
Td u(t, x)ξε(s − t)ρδ(x − y) dtdx.

Notice that this function vanishes near s = T so it can be used as test function in (1.120). Therefore we have∫ T

0

∫
Td
u(t, x) ∂tmδ,ε(t, x) dxdt = −

∫ T

0

∫
Td
mδ,ε(s, y) ∂suδ,ε(s, y) dsdy

= −
∫ T

0

∫
Td
m(s, y)b(s, y) ·Dyuδ,ε dsdy +

∫
Td
m0(y)uδ,ε(0, y)dy .

We shift the convolution kernels from u tom in the right-hand side and we use this equality in (1.125). We get

−
∫ T

0

∫
Td
Du · wδ,ε +

∫ T

0

∫
Td
H(x,Du)mδ,ε +

∫
Td

(m0 ? ρδ)

(∫ T

0

u(t)ξε(−t) dt

)

≤
∫ T

0

∫
Td
f mδ,ε +

∫
Td
gmδ,ε(T )

(1.126)

where we denote wδ = [(bm) ? ρδ] and wδ,ε(t, x) =
∫ T

0
wδ(s, x) ξε(s− t) ds.

Now we let first ε → 0, and then δ → 0. Since u is time increasing (up to an absolutely continuous function), we
have

lim inf
ε→0

∫
Td

(m0 ? ρδ)

(∫ T

0

u(t)ξε(−t) dt

)
≥
∫
Td

(m0 ? ρδ)u(0)

and since u is bounded below once we let δ → 0 we havem0 u(0) ∈ L1(Td) and

lim inf
δ→0

lim inf
ε→0

∫
Td

(m0 ? ρδ)

(∫ T

0

u(t)ξε(−t) dt

)
≥
∫
Td
m0 u(0) . (1.127)

Using the time continuity ofm into P(Td), we have

‖mδ,ε(T )− (m(T ) ? ρδ)‖∞ ≤ ‖Dρδ‖∞
∫ T

0

ξε(s− T )d1(m(s),m(T ))ds
ε→0→ 0 ,

so we handle the term at t = T :
lim
ε→0

∫
Td
gmδ,ε(T ) =

∫
Td
g(m(T ) ? ρδ) .

Now we can pass to the limit in the last term due to Lebesgue’s theorem, since by the assumptions we dominate

g(m(T ) ? ρδ) ≤ φ∗2(g) + φ2(m(T ) ? ρδ) ≤ φ∗2(g) + φ2(m(T )) ? ρδ

where we used Jensen’s inequality in the last step. Since φ∗2(g), φ2(m(T )) ∈ L1(Td), last term strongly converges in
L1(Td), and since g is also bounded below we deduce that |g(m(T ) ? ρδ)| is dominated in L1(Td). Therefore
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lim
δ→0

lim
ε→0

∫
Td
gmδ,ε(T ) =

∫
Td
gm(T ) . (1.128)

We reason in a similar way for the term with f , which satisfies, for some constant c0,

c0mδ,ε ≤ f mδ,ε ≤ φ∗1(f) + (φ1(m) ? ρδ,ε) .

By dominated convergence again we deduce

lim
δ→0

lim
ε→0

∫ T

0

∫
Td
f mδ,ε =

∫ T

0

∫
Td
f m . (1.129)

Finally, using (1.66) we have

−Du · wδ,ε +H(x,Du)mδ,ε ≥
α

2
mδ,ε|Du|2 − C

[
mδ,ε +

|wδ,ε|2

mδ,ε

]
Now we define the lower semi-continuous function Ψ on RN × R by

Ψ(w,m) =


|w|2
m if m > 0,

0 if m = 0 and w = 0,
+∞ otherwise,

(1.130)

and we observe that Ψ is convex in the couple (w,m). So by Jensen inequality we have |wδ,ε|
2

mδ,ε
≤ ( |w|

2

m )?ρδ,ε. Recalling

that w = bm in our setting (hence |w|
2

m = m |b|2), we deduce that

−Du · wδ,ε +H(x,Du)mδ,ε ≥
α

2
mδ,ε|Du|2 − C

[
mδ,ε + (|b|2m) ? ρδ,ε

]
.

From the previous inequality we are allowed to use Fatou’s lemma as ε, δ → 0, obtaining

lim inf
δ→0

lim inf
ε→0

∫ T

0

∫
Td

[−Du · wδ,ε +H(x,Du)mδ,ε] ≥
∫ T

0

∫
Td
m[−Du · b+H(x,Du)] (1.131)

and we also deduce in between that m|Du|2 ∈ L1(QT ). Finally, collecting (1.127), (1.128), (1.129) and (1.131), we
obtain (1.124). �

We are now able to discuss the vanishing viscosity limit of the MFG system. In the following, we will make use
of the family of Young measures generated by the sequence {mε}. To this purpose, we recall the fundamental result
concerning Young measures ([181]), see e.g. [22], [161]. Here P(R) denotes the space of probability measures on R.

Proposition 3 Let Q be a bounded subset in RN , and let {wn} be a sequence which is weakly converging in L1(Q).
Then there exists a subsequence {wnk} and a weakly∗ measurable function ν : Q 7→ P(R) such that if f(y, s) is a
Carathéodory function and {f(y, wnk(y))} is an equi-integrable sequence in L1(Q), then

f(y, wnk(y)) ⇀ f̄(y) weakly in L1(Q), where f̄(y) =

∫
R
f(y, λ)dνy(λ) .

�

Theorem 15 Assume that F,G satisfy (1.115)-(1.116), and that H(x, p) satisfies (1.66)–(1.68). Let m0 ∈ L∞(Td)
and let (uε,mε) be a solution of (1.62). Then there exists a subsequence, not relabeled, and a couple (u,m) ∈
L2(0, T ;H1(T))×L1(QT ) such that (uε,mε)→ (u,m) in L1(QT ), and (u,m) is a weak solution to (1.121)–(1.122)
in the sense of Definition 8.
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Proof.By Lemma 13, (uε,mε) satisfy the a priori estimates (1.69). On account of conditions (1.66)-(1.68), this implies
that there exists a constant C, independent of ε, such that∫ T

0

∫
Td
F (x,mε)mε +

∫
Td
G(x,mε(T ))mε(T ) +

∫ T

0

∫
Td
mε |Duε|2 +

∫ T

0

∫
Td
|Duε|2 ≤ C .

Hence there exists a subsequence, not relabeled, and a function u ∈ L2(0, T ;H1(Td)) such that uε → u weakly in
L2(0, T ;H1(Td)). Notice that, since ∂tuε is bounded in L2(0, T ; (H1(Td))′) + L1(QT ), by standard compactness
results the convergence of uε to u is strong inL2(QT ). Moreover, sinceF,G are bounded below, by maximum principle
we also have that uε is bounded below.

As formε, from (1.115) we have that f(mε)mε is bounded in L1(QT ). This implies thatmε is equi-integrable and
so, by Dunford-Pettis theorem, it is relatively compact in the weak topology of L1(QT ); there exists a subsequence,
not relabeled, and a function m ∈ L1(QT ) such that mε → m weakly in L1(QT ). Let us denote by ν(t,x)(·) the
family of Young measures generated by mε, according to Proposition 3. Since F (x,mε)mε is bounded in L1(QT ),
then F (x,mε) is equi-integrable and then we have

F (x,mε)→ f̄ weakly in L1(QT ), where f̄ =

∫
R
F (x, λ)dν(t,x)(λ) .

We notice that the bound on F (x,mε)mε implies that
∫
R F (x, λ)λdν(t,x)(λ) ∈ L1(QT ). Indeed, applying Proposition

3 to the function F (x,m)Tk(m), where Tk(m) = min(m, k), implies∫ T

0

∫
Td

∫
R
F (x, λ)Tk(λ) dν(t,x)(λ) = lim

ε→0

∫ T

0

∫
Td
F (x,mε)Tk(mε) ≤ C ,

and then, by letting k →∞, by monotone convergence we get∫ T

0

∫
Td

∫
R
F (x, λ)λ dν(t,x)(λ) <∞ . (1.132)

Similarly we reason for the sequence mε(T ). This is equi-integrable in L1(Td) and then, up to subsequences, it
converges weakly in L1(Td); in addition, denoting {γx(·)} the sequence of Young measures generated bymε(T ), we
have that G(x,mε(T )) is weakly relatively compact in L1(Td) and

G(x,mε)→ ḡ weakly in L1(QT ), where ḡ =

∫
R
G(x, λ)dγx(λ) .

In addition, as before, we deduce that
∫
RG(x, λ)λdγx(λ) ∈ L1(Td).

We can now pass to the limit in the two equations. As for the HJ equation, since p 7→ H(x, p) is convex, then by
weak lower semi-continuity we deduce that u satisfies{

−∂tu+H(x,Du) ≤ f̄
u(T ) ≤ ḡ

(1.133)

in the sense of Definition 6. As formε, we observe that (1.69) and (1.67) imply thatmε |Hp(x,Du
ε)|2 is bounded in

L1(QT ). It follows (see also Remark 6) that d2(mε(t),mε(s)) ≤ C|t − s| 12 , where d2 is the Wasserstein distance in
P(Td). Therefore,mε(t) is equi-continuous and converges uniformly in the weak∗ topology. This implies that the L1−
weak limitm belongs to C0([0, T ];P(Td)), andm(0) = m0. Finally,mεHp(x,Du

ε) is equi-integrable and therefore
weakly converges (up to subsequences) in L1(QT ) to some vector field w. If Ψ is defined in (1.130), we deduce∫ T

0

∫
Td
Ψ(w,m) ≤ lim inf

ε→0

∫ T

0

∫
Td
Ψ(mε, wε) =

∫ T

0

∫
Td
mε |Hp(x,Du

ε)|2 ≤ C
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hence Ψ(w,m) ∈ L1(QT ). In particular we can set b := w
m 1{m>0}, then m is a weak solution of (1.119), with

m |b|2 ∈ L1(QT ). Eventually, since mε weakly converges to m and f(s)s is convex, by lower semicontinuity we
deduce that ∫ T

0

∫
Td
f(m)m ≤ lim inf

ε→0

∫ T

0

∫
Td
f(mε)mε ≤

∫ T

0

∫
Td
F (x,mε)mε + C0 ≤ C .

Similarly we have formε(T ), hence we conclude that

f(m)m ∈ L1(QT ) , g(m(T ))m(T ) ∈ L1(Td) .

Now we observe that, using the monotonicity of F (x, ·) and condition (1.115) we can estimate

f̄ =

∫
R
F (x, λ)dν(t,x)(λ) ≤ F (x, s) +

1

s

∫
R
F (x, λ)λ dν(t,x)(λ)

≤ f(s) + C1 +
1

s

∫
R
F (x, λ)λ dν(t,x)(λ) .

hence
[f̄ − C1]s− f(s)s ≤

∫
R
F (x, λ)λ dν(t,x)(λ) ∀s ≥ 0 .

Recall that f(s)s is convex and the right-hand side belongs to L1(QT ); we deduce from the above inequality that
φ∗1(f̄ −C1) ∈ L1(QT ), where φ∗1 is the convex conjugate of φ1(s) := f(s)s. Similarly we reason for ḡ, obtaining that
φ∗2(ḡ−C3) ∈ L1(QT ) where φ2(s) = g(s)s. Notice that the addition of constants to f̄ , ḡ in (1.133) is totally innocent
up to replacing u with u+ a(T − t) + b. Collecting all the above properties, we can apply Lemma 15 to u andm and
we obtain that the following inequality holds:∫

Td
m0 u(0) ≤

∫
Td
ḡ m(T ) +

∫ T

0

∫
Td
f̄ m+

∫ T

0

∫
Td
m [b ·Du−H(x,Du)] . (1.134)

Now we conclude by identifying the weak limits f̄ , ḡ and b. We start from the equality (1.70)∫
Td
G(x,mε(T ))mε(T ) +

∫ T

0

∫
Td
F (x,mε)mε +

∫ T

0

∫
Td
mε [Hp(x,Du

ε) ·Duε −H(x,Duε] =

∫
Td
m0 u

ε(0) .

We observe that uε(0) is equi-integrable: indeed, (uε − k)+ is a sub solution of the Bellman equation, so that∫
Td

(uε(0)− k)+ +

∫ T

0

∫
Td
H(x,Duε)1{uε>k} ≤

∫ T

0

∫
Td
F (x,mε)1{uε>k} +

∫
Td

(G(x,mε(T ))− k)+ .

Hence the bound from below of H (see (1.66)) and the equi-integrability of F (x,mε), G(x,mε(T )) imply that∫
Td(uε(0) − k)+ → 0 as k → ∞ uniformly with respect to ε. This implies that uε(0) is equi-integrable, and then it
weakly converges in L1(Td) to some function χ. In particular, when we pass to the limit in (1.62), we have∫

Td
ϕ(0)χ +

∫ T

0

∫
Td
uϕt +

∫ T

0

∫
Td
H(x,Du)ϕ ≤

∫ T

0

∫
Td
f̄ ϕ+

∫
Td
ḡ ϕ(T ) ∀ϕ ∈ C1(QT ) , ϕ ≥ 0 .

By choosing a sequence ϕj such that ϕj(0) = 1 and ϕj approximates the Dirac mass at t = 0, we conclude that
χ ≤ u(0), where u(0) is the trace of u at time t = 0 in the sense explained above. Finally, we have∫

Td
G(x,mε(T ))mε(T ) +

∫ T

0

∫
Td
F (x,mε)mε +

∫ T

0

∫
Td
mε [Hp(x,Du

ε) ·Duε −H(x,Duε]

ε→0−→
∫
Td
m0 χ ≤

∫
Td
m0 u(0)

(1.135)
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and using (1.134) we get

lim sup
ε→0

{∫
Td
G(x,mε(T ))mε(T ) +

∫ T

0

∫
Td
F (x,mε)mε +

∫ T

0

∫
Td
mε [Hp(x,Du

ε) ·Duε −H(x,Duε]

}

≤
∫
Td
ḡ m(T ) +

∫ T

0

∫
Td
f̄ m +

∫ T

0

∫
Td
m [b ·Du−H(x,Du)] .

(1.136)

Let us denote wε := mεHp(x,Du
ε). We have called w its weak limit in L1(QT ); since we have∫ T

0

∫
Td
mε [Hp(x,Du

ε) ·Duε −H(x,Duε] =

∫ T

0

∫
Td
mεH∗(x,Hp(x,Du

ε)) =

∫ T

0

∫
Td
mεH∗

(
x,
wε

mε

)
where H∗ is the convex conjugate of H , and since mH∗

(
x, wm

)
is a convex function of (m,w), by weak lower

semicontinuity we have

lim inf
ε→0

∫ T

0

∫
Td
mε [Hp(x,Du

ε) ·Duε −H(x,Duε] ≥
∫ T

0

∫
Td
mH∗

(
x,
w

m

)
. (1.137)

Therefore we deduce from (1.136)

lim sup
ε→0

{∫
Td
G(x,mε(T ))mε(T ) +

∫ T

0

∫
Td
F (x,mε)mε

}
≤
∫
Td
ḡ m(T ) +

∫ T

0

∫
Td
f̄ m

+

∫ T

0

∫
Td
m [b ·Du−H(x,Du)]−

∫ T

0

∫
Td
mH∗

(
x,
w

m

)
≤
∫
Td
ḡ m(T ) +

∫ T

0

∫
Td
f̄ m

(1.138)

where we have used that w = bm. We use now the monotonicity of F,G to identify their limits. Indeed, denoting
Tk(s) = min(s, k), we have (there is no loss of generality here in assuming F,G positive, which is true up to addition
of constants):∫ T

0

∫
Td

[F (x,mε)− F (x,m)] (mε −m) +

∫
Td

[G(x,mε(T ))−G(x,m(T ))] (mε(T )−m(T ))

≤
∫ T

0

∫
Td
F (x,mε)mε +

∫
Td
G(x,mε(T ))mε(T )

−
∫ T

0

∫
Td
F (x,mε)Tk(m)−

∫ T

0

∫
Td
Tk(F (x,m))mε +

∫ T

0

∫
Td
F (x,m)m

−
∫
Td
G(x,mε(T ))Tk(m(T ))−

∫
Td
Tk(G(x,m(T )))mε(T ) +

∫
Td
G(x,m(T ))m(T ) .

Hence, using (1.138) and the weak convergences ofmε, F (x,mε), G(x,mε(T )) we get

65



lim sup
ε→0

{∫ T

0

∫
Td

[F (x,mε)− F (x,m)] (mε −m) +

∫
Td

[G(x,mε(T ))−G(x,m(T ))] (mε(T )−m(T ))

}

≤
∫ T

0

∫
Td
f̄ [m− Tk(m)] +

∫ T

0

∫
Td

[F (x,m)− Tk(F (x,m))]m

+

∫
Td
ḡ [m(T )− Tk(m(T ))] +

∫
Td

[G(x,m(T ))− Tk(G(x,m(T )))]m(T ) .

Letting k →∞ the right-hand side vanishes due to Lebesgue ’s theorem, so we conclude that

lim sup
ε→0

{∫ T

0

∫
Td

[F (x,mε)− F (x,m)] (mε −m) +

∫
Td

[G(x,mε(T ))−G(x,m(T ))] (mε(T )−m(T ))

}
= 0 .

This means that [F (x,mε)−F (x,m)] (mε −m)→ 0 in L1(QT ), and almost everywhere inQT up to subsequences.
In particular, we deduce that F (x,mε) → F (x,m) a.e. in QT up to subsequences, hence f̄ = F (x,m) and the
convergence (of both F (x,mε) and F (x,mε)mε) is actually strong in L1(QT ). Similarly we reason forG(x,mε(T )),
which implies that ḡ = G(x,m(T )). If we come back to (1.138), now the limit of the left-hand side coincides with the
right-hand side, and trapped in between we deduce that∫ T

0

∫
Td
m
[w
m
·Du−H(x,Du)−H∗

(
x,
w

m

)]
= 0

which yields that wm = Hp(x,Du) m− a.e. in QT . This implies that w = mHp(x,Du). Finally, all the weak limits
are identified. Coming back to (1.135), now we know that F (x,mε)mε → F (x,m)m and G(x,mε(T ))mε(T ) →
G(x,m(T ))m(T ), and in addition (1.137) holds with w = mHp(x,Du). Therefore, we have∫

Td
G(x,m(T ))m(T ) +

∫ T

0

∫
Td
F (x,m)m+

∫ T

0

∫
Td
m [Hp(x,Du) ·Du−H(x,Du]

≤ lim inf
ε→0

{∫
Td
G(x,mε(T ))mε(T ) +

∫ T

0

∫
Td
F (x,mε)mε +

∫ T

0

∫
Td
mε [Hp(x,Du

ε) ·Duε −H(x,Duε]

}

≤
∫
Td
u(0)m0 .

Combining this information with (1.134), where f̄ , ḡ, b are now identified, yields the energy equality (1.123). Thus, we
conclude that (u,m) is actually a weak solution of the MFG system in the sense of Definition 8. �

Now we conclude the analysis with a uniqueness result. To this purpose, we need a refined version of Lemma 15, as
follows.

Lemma 16 Assume that F,G satisfy (1.115)-(1.116), and that H(x, p) satisfies (1.66)-(1.68). Let (u,m) be a weak
solution to (1.121)-(1.122). Then u(t)m(t) ∈ L1(Td) for a.e. t ∈ (0, T ), and the following equality holds:∫

Td
m(t)u(t) dx =

∫
Td
G(x,m(T ))m(T ) dx+

∫ T

t

∫
Td
F (t, x,m)mdxdt

+

∫ T

t

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)] dxdt

for a.e. t ∈ (0, T ).

Proof. Let us take t such that m(t) ∈ L1(Td) (this is true for a.e. t ∈ (0, T )). First we apply Lemma 15 in the
time interval (t, T ). Notice that, since F (x,m)m ∈ L1(QT ), G(x,m(T ))m(T ) ∈ L1(Td), then the requirements of
the Lemma hold with φ1(s) = f(s)s and φ2(s) = g(s)s, where f, g are given by (1.115)-(1.116). We obtain that
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u(t)m(t) ∈ L1(Td) (where u(t) is the right-continuous Borel representative of u) and∫
Td
m(t)u(t) dx ≤

∫
Td
G(x,m(T ))m(T ) dx+

∫ T

t

∫
Td
F (x,m)mdxdt

+

∫ T

t

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)] dxdt

=

∫
Td
u(0)m0 −

∫ t

0

∫
Td
F (x,m)mdxdt−

∫ t

0

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)] dxdt

(1.139)

where we used (1.123) in the last equality. Now we wish to apply once more Lemma 15 in the interval (0, t); but this
needs to be done in two steps. First of all, we replace u with uk = min(u, k); uk is itself a sub solution and satisfies
(see e.g. [158, Lemma 5.3])

−∂tuk +H(x,Duk) ≤ F (x,m) 1{u<k} + c 1{u>k}

for some constant c > 0. Since uk(t) ∈ L∞(Td) andm(t) ∈ L1(Td), we can apply Lemma 15 in (0, t) to get∫
Td
u(0)m0 ≤

∫
Td
uk(t)m(t)+

∫ t

0

∫
Td

[F (x,m) 1{u<k}+c 1{u>k}]m+

∫ t

0

∫
Td
m [Hp(x,Du) ·Duk −H(x,Duk)] .

Letting k →∞ is allowed since u(t)m(t) ∈ L1(Td), and we deduce that∫
Td
u(0)m0 ≤

∫
Td
u(t)m(t) +

∫ t

0

∫
Td
F (x,m)m +

∫ t

0

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)] .

Using this information in (1.139) we conclude the proof of the desired equality. �

We are ready for the uniqueness result, where we further invoke the following lemma. This is a particular case of
what proved in [158, Lemma 5.3] for solutions in the whole space; the proof follows the same steps in the setting of
x ∈ Td. A similar statement is also contained in [58, Thm 6.2].

Lemma 17 [[158]] Let u1, u2 be two weak sub solutions of (1.117). Then v := max(u1, u2) is also a sub solution of
the same problem.

We have all ingredients for the uniqueness result.

Theorem 16 Assume that F,G satisfy (1.115)-(1.116), and that H(x, p) satisfies (1.66)-(1.68). Let m0 ∈ L∞(Td),
and let (u,m), (ũ, m̃) be two weak solutions of (1.121)–(1.122), in the sense of Definition 8. Then we have F (x,m) =
F (x, m̃) and, if F (x, ·) is an increasing function, thenm = m̃ and u = ũ m−almost everywhere.
Proof. After condition (1.115), there is no loss of generality in assuming that F (x, s) ≤ f(s) (which is the case up to
addition of a (same) constant to both H ad F ). Therefore, using the monotonicty of F (x, ·), we have

F (x,m)s ≤ F (x,m)m+ F (x, s)s ≤ F (x,m)m+ f(s)s

Hence, if we denote by φ1(s) = f(s)s, we have that φ∗1(F (x,m)) ∈ L1(QT ), while φ1(m) ∈ L1(QT ). This is of
course true for m̃ as well. Similarly we reason for G(x,m(T )) with φ2(s) = g(s)s given by (1.116). Therefore, we
can apply Lemma 15 to u and to m̃ as well as to ũ andm. We obtain∫

Td
u(0)m0 ≤

∫ T

0

∫
Td
F (x,m)m̃+

∫
Td
G(x,m(T ))m̃(T ) +

∫ T

0

∫
Td
m̃[Hp(x,Dũ)Du−H(x,Du)] ,∫

Td
ũ(0)m0 ≤

∫ T

0

∫
Td
F (x, m̃)m+

∫
Td
G(x, m̃(T ))m(T ) +

∫ T

0

∫
Td
m[Hp(x,Du)Dũ−H(x,Dũ)] .
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We use (1.123) in the first inequality, and similarly we use (1.123) written for (ũ, m̃) in the second one. When we add
the two contributions we deduce the usual inequality∫ T

0

∫
Td

(F (x,m)− F (x, m̃))(m− m̃) +

∫
Td

[G(x,m(T ))−G(x, m̃(T ))][m(T )− m̃(T )]∫ T

0

∫
Td
m [H(x,Dũ)−H(x,Du)−Hp(x,Du)(Dũ−Du)]

+

∫ T

0

∫
Td
m̃ [H(x,Du)−H(x,Dũ)−Hp(x,Dũ)(Du−Dũ)] ≤ 0 .

This implies that F (x,m) = F (x, m̃) and G(x,m(T )) = G(x, m̃(T )), and we have

H(x,Dũ)−H(x,Du) = Hp(x,Du)(Dũ−Du) in {(t, x) : m(t, x) > 0}
H(x,Du)−H(x,Dũ) = Hp(x,Dũ)(Du−Dũ) in {(t, x) : m̃(t, x) > 0}.

(1.140)

Of course, if F (x, ·) is increasing, we deduce thatm = m̃ almost everywhere.
Now we use Lemma 17, which says that z := max(u, ũ) is a sub solution of the HJ equation. Then we can apply

Lemma 15 and we obtain, for a.e. t ∈ (0, T ):∫
Td
m(t) z(t) ≤

∫
Td
G(x,m(T ))m(T ) +

∫ T

t

∫
Td
F (x,m)m +

∫ T

t

∫
Td
m [Hp(x,Du) ·Dz −H(x,Dz)] .

(1.141)
Now we have∫ T

t

∫
Td
m [Hp(x,Du) ·Dz −H(x,Dz)] =

∫ T

t

∫
Td
m [Hp(x,Du) ·Dũ−H(x,Dũ)] 1{u≤ũ}

+

∫ T

t

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)] 1{u>ũ}

=

∫ T

t

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)]

thanks to (1.140); thus we deduce from (1.141)∫
Td
m(t) z(t) ≤

∫
Td
G(x,m(T ))m(T ) +

∫ T

t

∫
Td
F (x,m)m +

∫ T

t

∫
Td
m [Hp(x,Du) ·Du−H(x,Du)]

=

∫
Td
m(t)u(t)

where we used Lemma 16. We conclude that ∫
Td
m(t) [z(t)− u(t)] ≤ 0

which implies that u(t) = z(t) (i.e. u(t) ≥ ũ(t)) m-almost everywhere. Reversing the roles of the two functions we
conclude that u = ũ m-almost everywhere. �

Remark 16 There are other approaches to study the first order MFG system (1.121)–(1.122), especially if model cases
are considered. One possible strategy, introduced in [145], consists in transforming the system into a second order
elliptic equation for u in time space. More precisely, using that F is one-to-one and replacing m in the continuity
equation by

m(t, x) = F−1(x,−∂tu+H(x,Du)),
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one finds an elliptic equation in (t, x) for u. This elliptic equation is fully nonlinear and degenerate (at least on the
points (t, x) wherem(t, x) = 0). This strategy is the starting point of regularity results proved by P.-L. Lions in [149]
(Lessons 6-27/11 2009), which in particular lead to uniform bounds for the densitym.

Other regularity results, including L∞- bounds or Sobolev regularity for the density, were obtained by F. Santam-
brogio in [147, 148, 175] using completely different techniques inspired by optimal transport theory. Those results are
just one by-product of the Lagrangian approach developed by F. Santambrogio, for which we refer to his presentation
in this same volume.

1.3.7.2 Variational approach and optimality conditions

Following [144] the MFG system (1.62) can be viewed as an optimality condition for two optimal control problems: the
first one is an optimal control of Hamilton-Jacobi equations and the second one an optimal control of the Fokker-Planck
equation.

In order to be more precise, let us first introduce some assumptions and notations: without loss of generality, we
suppose that F (x, 0) = 0 (indeed we can always subtract F (x, 0) to both sides of (1.62)). Then we set

Φ(x,m) =


∫ m

0

F (x, ρ)dρ if m ≥ 0

0 otherwise .

As F is nondecreasing with respect to the second variable, Φ(x,m) is convex with respect to m, so we denote by
Φ∗ = Φ∗(x, α) = supm∈R (αm− Φ(x,m)) its convex conjugate. Note that Φ∗ is convex and nondecreasing with
respect to the second variable. We also recall the convex conjugate H∗(x, q) = supp∈Rd (q · p−H(x, p)) already
used before. For simplicity, we neglect here the coupling at t = T and we let G = G(x).

The first optimal control problem is the following: the distributed control is α : Td × [0, T ] → R and the state
function is u. The goal is to minimize the functional

JHJ(α) =

∫ T

0

∫
Td
Φ∗ (x, α(t, x)) dxdt−

∫
Td
u(0, x)dm0(x)

over Lipschitz continuous maps α : (0, T ) × Td → Rd, where u is the unique classical solution to the backward
Hamilton-Jacobi equation {

−∂tu− ε∆u+H(x,Du) = α(t, x) in (0, T )× Td
u(T, x) = G(x) in Td . (1.142)

The second is an optimal control problem where the state is the solution m of the Fokker-Planck equation: the
(distributed and vector valued) control is now the drift term v : [0, T ] × Td → Rd. The goal here is to minimize the
functional

J FP (v) =

∫ T

0

∫
Td

[mH∗ (x,−v) + F (x,m)] dxdt+

∫
Td
G(x)m(T )dx,

where the pair (m, v) solves the Fokker-Planck equation

∂tm− ε∆m+ div(mv) = 0 in (0, T )× Td, m(0) = m0. (1.143)

Assuming that F ∗ andH∗ are smooth enough, the equivalence between the MFG system and the optimality conditions
of the previous two problems can be checked with a direct verification.

Theorem 17 [[149]] Assume that (m̄, ū) is of class C2((0, T )×Td), with m̄(0) = m0 and ū(T, x) = G(x). Suppose
furthermore that m̄(t, x) > 0 for any (t, x) ∈ (0, T )× Td. Then the following statements are equivalent:

(i) (ū, m̄) is a solution of the MFG system (1.62).
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(ii) The control ᾱ(t, x) := F (x, m̄(t, x)) is optimal for JHJ and the solution to (1.142) is given by ū.
(iii) The control v̄(t, x) := −Hp(x,Dū(t, x)) is optimal for J FP , m̄ being the solution of (1.143).

Let us stress that the above equivalence holds even for ε = 0, say for the deterministic problem. But of course a
formal equivalence for smooth solutions is of very little help. However, it is possible to exploit the convexity of the
optimal control problems in order to export the equivalence principle to suitably relaxed optimization problems. To
this purpose, observe that the optimal control problem of Hamilton-Jacobi equation can be rewritten as

inf
u

∫ T

0

∫
Td
F ∗ (x,−∂tu(x, t)− ε∆u(x, t) +H(x,Du(x, t))) dxdt−

∫
Td
u(0, x)dm0(x)

under the constraint that u is sufficiently smooth, with u(·, T ) = G(·). Remembering that H is convex with respect to
the last variable and that F is convex and increasing with respect to the last variable, it is clear that the above problem
is convex.

The optimal control problem of the Fokker-Planck equation is also a convex problem, up to a change of variables
which appears frequently in optimal transportation theory since the pioneering paper [28]. In fact, if we set w = mv,
then the problem can be rewritten as

inf
(m,w)

∫ T

0

∫
Td

[m(t, x)H∗
(
x,−w(t, x)

m(t, x)

)
+ F (x,m(t, x))] dxdt+

∫
Td
G(x)m(T, x)dx,

where the pair (m,w) solves the Fokker-Planck equation

∂tm− ε∆m+ div(w) = 0 in (0, T )× Td, m(0) = m0. (1.144)

This problem is convex because the constraint (1.144) is linear and the map (m,w)→ mH∗
(
x,−w

m

)
is convex.

It turns out that the two optimal control problems just defined are conjugate in the Fenchel-Rockafellar sense (see,
for instance, [100]) and they share the same optimality condition. Minimizers of such problems are expected to provide
with weak solutions for (1.62). This approach has been extensively used for first order problems since [53], [57], leading
to weak solutions in the sense of Definition 8. A similar analysis was later extended to second order degenerate MFG
problems in [58], as well as to problems with density constraints, in which case one enforces the constraint that the
density m = m(t, x) is below a certain threshold. In this case, a penalization term appears in the HJ equation as an
extra price to go through the zones where the density saturates the constraint (see [64, 124, 155, 173]).

A similar variational approach was also specially developed for the planning problem in connection with optimal
transportation ([125], [158]).

We do not commentmore on the optimal control approach because this is also extensively recalled in the contributions
by Y. Achdou & M. Lauriere, and in the one by F. Santambrogio, in this volume.

1.3.8 Further comments, related topics and references

Boundary conditions, exit time problems, state constraints, planning problem.

The existence and uniqueness results presented here for second order problems remain valid, with no additional
difficulty, for the case of Neumann boundary conditions, i.e. when the controlled process lives in a bounded domain
Ω ⊂ Rd with reflection on the boundary. Results in this setting can be found e.g. in [165], or in [86]. A similar situation
occurs when the domain happens to be invariant for the controlled process, and the trajectory cannot reach the boundary
because of the degeneracy of the diffusion or due to the direction of the controlled drift. The study of the MFG system
in this situation appears in [168].

By contrast, in many models, players can leave the game before the terminal time and the population is not constant:
this is for instance the case of MFG with exit time, which lead to Dirichlet boundary conditions for the two unknowns
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(u,m) in the system. An interesting problem arises when the agents also control the time they stay in the game. The
optimal control problem then becomes

u(t, x) = inf
τ,α

E
[∫ τ

0

f(Xt, αt,m(t))dt+ g(XT ,m(T ))

]
where (Xt) is driven by the usual controlled diffusion process. Here the controls are α and the stopping time τ . The
measurem(t) can be (depending on the model) either the law ofXt given {τ ≥ t} (in which case the mass ofm(t) is
constant, but the equation form is no longer a simple Fokker-Planck equation) or simply the measurem(t) defined by∫

Rd
φ(x)m(t, dx) = E [φ(Xt)1τ≥t] ∀φ ∈ C∞c (Rd).

In this case the mass ofm(t) is non increasing in time.
Such models have been studied in the framework of bank run in [70] or in exhaustible commodities trade [84, 126].

In [32], the author provides a general PDE framework to study the problem and shows that the players might be led
to use random strategies (see also [38]). An early work on the topic is [112] while surprising phenomena in the mean
field analysis are discussed in [46, 112, 156, 157]. Minimal exit time problems for first order MFG problems are also
studied in [154].

In many applications, the MFG system also involves state constraints. Namely, the optimal control problem for a
small player takes the form

u(t, x) = inf
γ

∫ T

t

L(γ(s), α(s),m(s)ds+G(γ(T ),m(T )),

where the infimum is taken over solution of{
γ̇(s) = b(γ(s),m(s))ds, γ(s) ∈ Ω ∀s ∈ [t, T ],
γ(t) = x

where Ω is an open subset of Rd (in general with a smooth boundary). This is the case of the Aiyagari problem [13]
in economy for instance (see also [3, 7]). The natural set-up of the HJ problem is the so-called viscosity solution with
state-constraints and is well understood. However, the analysis led in this section no longer applies: the measure m
develops singularities (not only on the boundary) and one cannot expect uniqueness of the flow m given the vector
field −Hp(x,Du,m). To overcome this issue one can device a Lagrangian approach (see [47]). The PDE analysis of
this problem is only partially understood (see [48, 49]).

The initial-terminal conditions may also be changed, in what is called the planning problem. In that model one
wishes to prescribe both the initial and the final distribution, while no terminal condition is assumed on u. This variant
of MFG problem fits into the models of optimal transportation theory, since the goal is to transport the density from
m(0) = m0 tom(T ) = m1 in a way which is optimal for the agents’ control. Early results for this problem were given
by P.-L. Lions in [149] (Lessons 4-11/12 2009); the second order case was later studied in [163], [164], [165], and the
deterministic case in [125], [158]. Very recently, the planning problem has been also addressed for the master equation
with finite states, see [35].

Numerical methods.

The topic will be developed in detail in the contribution of Achdou and Lauriere (see the references therein). Let us just
remark here that the computation of the solution of the MFG system is difficult because it involves a forward equation
and a backward equation. Let us just quote on this point the pioneering work [5], where a finite difference numerical
scheme was proposed in a way that the discretized equations preserve the structure of the MFG system. In some cases
one can also take advantage of the fact that the MFG system has a variational structure [29].
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MFG systems with several populations.

MFGmodels may very naturally involve several populations (say, to fix the ideas, I populations). In this case the system
takes the form 

(i) −∂tui −∆ui +Hi(x,Dui,m(t)) = 0 in (0, T )× Td
(ii) ∂tmi −∆mi − div (mi DpHi(x,Dui(t, x),m(t))) = 0 in (0, T )× Td

(iii) mi(0) = mi,0 , ui(T, x) = Gi(x,m(T )) in Td

where i = 1, . . . , I , ui denotes the value function of each player in population i and m = (m1, . . . ,mI) denotes the
collection of densitiesmi of the population i. The coupling functionsHi andGi depend on all the densities. Existence
of solutions can be proved by fixed point arguments as in Theorem 5. Uniqueness, however, is a difficult issue.

The MFG models with several populations were introduced in the early paper by Caines, Huang and MalhamÃ©
[132] and revisited by Cirant [86] (for Neumann boundary conditions, see also [24, 155]) and by Kolokoltsov, Li and
Yang [137] (for very general diffusions, possibly with jumps). Analysis of segregation phenomena is pursued in [2],
[93].

MFG of control.

In most application in economics, the coupling between the agents is not only through the distribution of their positions
but also of their instantaneous controls. This kind of problem is more subtle than the classical MFG system since it
requires, in its general version, a new constraint explaining how to derive the distribution of controls. For instance this
new system can take the form (for problems with a constant diffusion):

(i) −∂tu(t, x)−∆u(t, x)) +H(t, x,Du(t, x), µ(t)) = 0 in (0, T )× Rd
(ii) ∂tm(t, x)−∆m(t, x)− div (m(t, x)Hp(t, x,Du(t, x), µ(t))) = 0 in (0, T )× Rd
(iii) µ(t) = (id,−Hp(t, x,Du, µ))]m(t) in (0, T )
(iv) m(0, x) = m0(x), u(T, x) = g(x,m(T )) in Rd

Here µ(t) is the distribution of states and controls of the players. Its first marginal m(t) is the usual distribution of
players. The new relation (iii) explains how to compute µ(t) from the distribution of the states m(t) and the optimal
feedback−Hp(t, x,Du, µ). Note that (iii) is itself a fixed point problem. In many applications, the players only interact
through some moments of the distribution of controls, which simplifies the system. Existence of a solution for MFG of
controls can be achieved under rather general conditions (some structure condition, ensuring (iii) to have a solution, is
however required). Uniqueness is largely open.

Analysis of such problems can be found, among many other references, in [8, 34, 62, 72, 115, 122].

MFG with common noise and with a major player.

Throughout this section we have discussed models in which the agents are subject to individual noises (“idiosyncratic
noise") which are independent. However, it is also important to be able to deal with problems in which some random
perturbation affects all the players. This perturbation can be quite rough (a white noise) or simply the (random) position
of a single player (who, since he/she cannot be considered as an infinitesimal player in this game, is often called a
major player). In these setting, the MFG system becomes random. For instance, in the case of MFG with a Brownian
common noise, it takes the form
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du(t, x) =

[
−2∆u(t, x)) +H(x,Du(t, x),m(t))

−
√

2div(v(t, x))
]
dt+ v(t, x) · dWt in (0, T )× Rd,

dm(t, x) =
[
2∆m(t, x)) + div

(
m(, x)DpH(x,Du(t, x),m(t))

)]
dt

−div(m(t, x)
√

2dWt

)
, in (0, T )× Rd,

u(T, x) = G(x,m(T )), m(0) = m0, in Rd

Here W is the common noise (a Brownian motion). The new variable v is an unknown function which ensures the
solution u to the backward HJ to be adapted to the filtration generated by W . Another formulation of this problem
involves the master equation and will be discussed below, at the end of Section 1.4. Let us just mention now that the
analysis of MFG with common noise goes back to [149] (Lessons 12-26/11 2010), where in particular the structure of
the master equation with common noise is described. The probabilistic approach of the MFG system is studied in [69]
(see also [11, 141]) while the first results on the PDE system above and on the associated master equation are in [56].

MFG problems with a major player have been introduced by Huang in [130]. In a series of papers, Carmona and
al. introduced a different notion of solution for the problem [77, 75, 76], mainly in a finite state space framework,
and they showed that this notion actually corresponds to a Nash equilibrium for infinitely many players. This result
is confirmed in [54] where the Nash equilibria for the N−player problem is shown to converge to the corresponding
master equation. The master equation for the major problem is also studied in [146] (mostly in finite time horizon and
in a finite state space) and in [55] (short-time existence in continuous space). Variants on the major player problem are
discussed in [30] (MFG with a dominating player in a Stackelberg equilibrium), [101] (for a principal-agent problem)
and in [36].

Miscellaneous.

Other MFG systems. Let us first mention other variations on the MFG system. Besides the standard continuous-time,
continuous-spaces models, the most relevant class of MFG models is probably the MFG on finite state space: see,
among main other works, [27, 34, 78, 114]. In these problems the state of a typical player jumps from one state to
another. The coupling between the HJ and the FP equations takes a much simpler form of a “forward-backward”
system of ordinary differential equations. Another class of MFG problems are MFG on networks [6, 45], in which the
state space is a (one dimensional) network. Motivated by knowledge growth models [152], some authors considered
MFGs in which the interaction between players leads to a Boltzmann type equation or a Fisher-KPP equation for the
distribution function [42, 43, 160, 169]. MFGs involving jump processes, where the diffusion term becomes a fractional
Laplacian, have been studied in [44, 82, 89, 103, 137], while MFGs involving dynamics with deterministic jumps have
been investigated in [33].

MFGs vs Agent Based Models. In MFG theory, agents are assumed to be rational. On the contrary, in Agent Based
Models, the agents are supposed to adopt an automatic behavior. The link between the two approach has been discussed
in [23, 34, 99] where it is shown that MFG models degenerate into Agent Based Models as the agents become more
and more myopic or more and more impatient.

Learning. A natural question in Mean Field Games, in view of the complexity of the notion of MFG equilibria, is how
players can achieve in practice to play a MFG Nash equilibrium. This kind of problem, also related to the concept of
adaptative control [136], has been discussed in particular in the following references: [59, 62, 73, 74, 102, 129].

Efficiency of MFGs. In game theory, a classical question is the (in)efficiency of Nash equilibria (the so-called “price of
anarchy”): to what extent are Nash equilibria doing socially worse than a global planner? This question has also been
addressed for Mean Field Games in [21, 66, 71].
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1.4 The master equation and the convergence problem

In Section 1.3 we have explained in detail how the mean field game problem can often be reduced to a system of PDEs,
the MFG system. If this MFG system is suitable for the analysis of problems in which players have only independent
individual noises (the so-called idiosyncratic noises), it is no longer satisfactory to investigate more complex models
(for instance models in which the players are subject to a common randomness, the so-called “MFG models with a
common noise”). Nor does it allow to understand the link betweenN−player differential games and mean field games.
To proceed, we need to introduce another equation: the master equation. The master equation is an infinite dimensional
hyperbolic equation stated in the space of probability measures. As explained below, it is helpful for the following
reasons:

• for standard MFG models, it allows to write the optimal control of a player in feedback form in function of the
current time, the current position and the current distribution of the other players. This is meaningful since one can
expect in practice that players adapt their behavior in function of these data;

• it provides a key tool to investigate the convergence of the N−player game to the MFG system;
• it allows to formalize and investigate more complex MFG models, as MFG with a common noise or MFG with a

major player.

In order to discuss the master equation, we first need to have a closer look at the space of probability measures
(Subsection 1.4.1) and then understand the notion of derivative in this space (Subsection 1.4.2). Then we present the
master equation and state, almost without proof, the existence and the uniqueness of the solution (Subsection 1.4.3).
We then discuss the convergence of N−player differential games by using the master equation (Subsection 1.4.4).

1.4.1 The space of probability measures (revisited)

We have already seen the key role of the space of probability measures in the mean field game theory. It is now time to
investigate the basic properties of this space more thoroughly. The results are given mostly without proofs, which can
be found, for instance, in the monographs [19, 174, 178, 179].

1.4.1.1 The Monge-Kantorovich distances

Let X be a Polish space (i.e., a complete separable metric space) and P(X) be the set of Borel probability measures
onX . There are several ways to metricize the topology of narrow convergence, at least on some subsets of P(X). Let
us denote by d the distance on X and, for p ∈ [1,+∞), by Pp(X) the set of probability measuresm such that∫

X

dp(x0, x)dm(x) < +∞ for some (and hence for all) point x0 ∈ X .

The Monge-Kantorowich distance on Pp(X) is given by

dp(m,m
′) = inf

γ∈Π(m,m′)

[∫
X2

d(x, y)pdγ(x, y)

]1/p

(1.145)

whereΠ(m,m′) is the set of Borel probabilitymeasures onX×X such that γ(A×X) = m(A) and γ(X×A) = m′(A)
for any Borel set A ⊂ X . In other words, a Borel probability measure γ onX ×X belongs toΠ(m,m′) if and only if∫

X2

ϕ(x)dγ(x, y) =

∫
X

ϕ(x)dm(x) and

∫
X2

ϕ(y)dγ(x, y) =

∫
X

ϕ(y)dm′(y) ,
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for any Borel and bounded measurable map ϕ : X → R. Note that Π(m,m′) is non-empty, because for instance
m⊗m′ always belongs to Π(m,m′). Moreover, by Hölder inequality, Pp(X) ⊂ Pp′(X) for any 1 ≤ p′ ≤ p and

dp′(m,m
′) ≤ dp(m,m

′) ∀m,m′ ∈ Pp(X) .

We now explain that there exists at least an optimal measure in (1.145). This optimal measure is often referred to as
an optimal transport plan fromm tom′.

Lemma 18 (Existence of an optimal transport plan) For any m,m′ ∈ Pp(X), there is at least one measure
γ̄ ∈ Π(m,m′) with

dp(m,m
′) =

[∫
X2

d(x, y)pdγ̄(x, y)

]1/p

.

Proof.We first show thatΠ(m,m′) is tight and therefore relatively compact for the weak-* convergence. For any ε > 0
there exists a compact setKε ⊂ X such thatm(Kε) ≥ 1− ε/2 andm′(Kε) ≥ 1− ε/2. Then, for any γ ∈ Π(m,m′),
we have

γ(Kε ×Kε) ≥ γ(Kε ×X)− γ(Kε × (X\Kε))
≥ m(Kε)− γ(X × (X\Kε))
≥ 1− ε/2−m′(X\Kε) ≥ 1− ε .

Thismeans thatΠ(m,m′) is tight. It is also closed for theweak-* convergence. Since themap γ →
∫
X2 |x−y|pdγ(x, y)

is lower semi-continuous for the weak-* convergence, it has a minimum on Π(m,m′). �

Let us now check that dp is a distance.

Lemma 19 For any p ≥ 1, dp is a distance on Pp.

The proof uses the notion of disintegration of a measure, see Theorem 10.
Proof. Only the triangle inequality presents some difficulty. Let m,m′,m′′ ∈ Pp and γ, γ′ be optimal transport
plans from m to m′ and from m′ to m′′ respectively. We disintegrate the measures γ and γ′ with respect to m′:
dγ(x, y) = dγy(x)dm′(y) and dγ′(y, z) = dγ′y(z)dm′(y) and we define the measure π on X ×X by∫

X×X
ϕ(x, z)dπ(x, z) =

∫
X×X×X

ϕ(x, z)dγy(x)dγ′y(z)dm′(y) ∀φ ∈ C0
b (X ×X) .

Then one easily checks that π ∈ Π(m,m′′) and we have, by Hölder inequality,[∫
X×X

dp(x, z)dπ(x, z)

]1/p

≤
[∫

X×X×X
(d(x, y) + d(y, z))pdγy(x)dγ′y(z)dm′(y)

]1/p

≤
[∫

X×X
dp(x, y)dγy(x)dm′(y)

]1/p

+

[∫
X×X

dp(y, z)dγy(z)dm′(y)

]1/p

= dp(m,m
′) + dp(m

′,m′′)

So dp(m,m′′) ≤ dp(m,m
′) + dp(m

′,m′′). �

In these notes, we are mainly interested in two Monge-Kantorovich distances, d1 and d2. The distance d2, which is
often called the Wasserstein distance, is particularly useful when X is a Euclidean or a Hilbert space. Its analysis will
be the object of the next subsection.

As for the distance d1, which often takes the name of the Kantorovich-Rubinstein distance, we have already
encountered it several times. Let us point out the following equivalent representation, which explains the link with the
notion introduced in Subsection 1.2.2:

Theorem 18 (Kantorovich-Rubinstein Theorem) For anym,m′ ∈ P1(X),

d1(m,m′) = sup

{∫
X

f(x)dm(x)−
∫
X

f(x)dm′(x)

}

75



where the supremum is taken over the set of all 1−Lipschitz continuous maps f : X → R.

Remark 17 In fact the above “Kantorovich duality result” holds for much more general costs (i.e., it is not necessary
to minimize the power of a distance). The typical assertion in this framework is, for any lower semicontinuous map
c : X ×X → R+ ∪ {+∞}, the following equality holds:

inf
γ∈Π(m,m′)

∫
X×X

c(x, y)dγ(x, y) = sup
f,g

∫
X

f(x)dm(x) +

∫
X

g(y)dm′(y) ,

where the supremum is taken over the maps f ∈ L1
m(X), g ∈ L1

m′(X) such that

f(x) + g(y) ≤ c(x, y) form−a.e. x andm′−a.e y.

The proof of this result exceeds the scope of these notes and can be found in several textbooks (see [178] for instance).

Let us finally underline the link between convergence for the dp distance and narrow convergence:

Proposition 4 A sequence of measures (mn) ofPp(X) converges tom for dp if and only if if (mn) narrowly converges
tom and

lim
n→+∞

∫
X

dp(x, x0)dmn(x) =

∫
X

dp(x, x0)dm(x) for some (and thus any) x0 ∈ X .

The proof for p = 1 is a simple consequence of Proposition 1 and Theorem 18. For the general case, see [178].

1.4.1.2 The Wasserstein space of probability measures on Rd

From now on we work in X = Rd. Let P2 = P2(Rd) be the set of Borel probability measures on Rd with a finite
second order moment: m belongs to P2 if m is a Borel probability measure on Rd with

∫
Rd |x|

2m(dx) < +∞. The
Wasserstein distance is just the Monge-Kankorovich distance when p = 2:

d2(µ, ν) = inf
γ∈Π(µ,ν)

[∫
R2d

|x− y|2dγ(x, y)

]1/2

(1.146)

where Π(µ, ν) is the set of Borel probability measures on R2d such that γ(A× Rd) = µ(A) and γ(Rd ×A) = ν(A)
for any Borel set A ⊂ Rd.

An important point, that we shall use sometimes, is the fact that the optimal transport plan can be realized as an
optimal transport map whenever µ is absolutely continuous.

Theorem 19 (Existence of an optimal transport map) If µ ∈ P2 is absolutely continuous, then, for any ν ∈ P2,
there exists a convex map Φ : RN → R such that the measure (idRd , DΦ)]µ is optimal for d2(µ, ν). In particular
ν = DΦ]µ.

Conversely, if the convex map Φ : RN → R satisfies ν = DΦ]µ, then the measure (idRd , DΦ)]µ is optimal for
d2(µ, ν).

The proof of this result, due to Y. Brenier [39], exceeds the scope of these notes. It can be found in various places,
such as [178].
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1.4.2 Derivatives in the space of measures

In this section, we discuss different notions of derivatives in the space of probability measures and explain how they
are related. This part is, to a large extent, borrowed from [56, 68]. For simplicity, we work in the whole space Rd and
set P2 = P2(Rd).

1.4.2.1 The flat derivative

Definition 9 Let U : P2 → R. We say that U is of class C1 if there exists a jointly continuous and bounded map
δU
δm : P2 × Rd → R such that

U(m′)− U(m) =

∫ 1

0

∫
Rd

δU

δm
((1− h)m+ hm′, y)(m′ −m)(dy)dh ∀m,m′ ∈ P2.

Moreover we adopt the normalization convention∫
Rd

δU

δm
(m, y)m(dy) = 0 ∀m ∈ P2. (1.147)

Remark 18 If U : P2(Td)→ R, then the derivative is defined in the same way, with δU
δm : P2(Td)×Td → R such that

U(m′)− U(m) =

∫ 1

0

∫
Td

δU

δm
((1− h)m+ hm′, y)(m′ −m)(dy)dh ∀m,m′ ∈ P2(Td).

If U is of class C1, then the following equality holds for anym ∈ P2 and y ∈ Rd

δU

δm
(m, y) = lim

h→0+

1

h
(U((1− h)m+ hδy)− U(m)) .

Here is a kind of converse.

Proposition 5 Let U : P2 → R and assume that the limit

V (m, y) := lim
h→0+

1

h
(U((1− h)m+ hδy)− U(m))

exists and is jointly continuous and bounded on P2 × Rd. Then U is C1 and δU
δm (m, y) = V (m, y).

Proof. Although the result can be expected, the proof is a little involved and can be found in [55]. �

Let us recall that, if φ : Rd → Rd is a Borel measurable map andm is a Borel probability measure on Rd, the image
ofm by φ is the Borel probability measure φ]m defined by∫

Rd
f(x)φ]m(dx) =

∫
Rd
f(φ(y))m(dy) ∀f ∈ C0

b (Rd).

Proposition 6 Let U beC1 and be such thatDy
δU
δm exists and is jointly continuous and bounded on P2×Rd. Then, for

any Borel measurable map φ : Rd → Rd with at most a linear growth, the map s→ U((idRd +sφ)]m) is differentiable
at 0 and

d

ds
U((idRd + sφ)]m)|s=0

=

∫
Rd
Dy

δU

δm
(m, y) · φ(y)m(dy).

Proof. Indeed
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U((idRd + sφ)]m)− U(m) =

∫ 1

0

∫
Rd

δU

δm
(mh,s, y)((idRd + sφ)]m)−m)(dy)dh

=

∫ 1

0

∫
Rd

(
δU

δm
(mh,s, y + sφ(y))− δU

δm
(mh,s, y))m(dy)dh

= s

∫ 1

0

∫ 1

0

∫
Rd
Dy

δU

δm
(mh,s, y + sτφ(y)) · φ(y)m(dy)dhdτ,

where
mh,s = (1− h)m+ h(idRd + sφ)]m.

Dividing by s and letting s→ 0+ gives the desired result. �

Let us recall that, ifm,m′ ∈ P2, the setΠopt(m,m′) denotes the set of optimal transport plans betweenm andm′
(see Lemma 18).

Proposition 7 Under the assumptions of the previous Proposition, letm,m′ ∈ P2 and π ∈ Πopt(m,m′). Then∣∣∣∣U(m′)− U(m)−
∫
R2d

Dy
δU

δm
(m,x) · (y − x)π(dx, dy)

∣∣∣∣ ≤ o(d2(m,m′)).

Remark 19 The same proof shows that, if π is a transport plan betweenm andm′ (not necessarily optimal), then∣∣∣∣U(m′)− U(m)−
∫
R2d

Dy
δU

δm
(m,x) · (y − x)π(dx, dy)

∣∣∣∣ ≤ o
((∫

R2d

|x− y|2π(dx, dy)

)1/2
)
.

Proof. Let φt(x, y) = (1 − t)x + ty and mt = φt]π. Then m0 = m and m1 = m′ and, for any t ∈ (0, 1) and any s
small we have

U(φt+s]π)− U(φt]π) =

∫ 1

0

∫
Rd

δU

δm
(ms,h, y)(φt+s]π − φt]π)(dy)dh

=

∫ 1

0

∫
R2d

δU

δm
(ms,h, (1− t− s)x+ (t+ s)y)− δU

δm
(ms,h, (1− t)x+ ty) π(dx, dy)dh

= s

∫ 1

0

∫ 1

0

∫
R2d

Dy
δU

δm
(ms,h, (1− t− τs)x+ (t+ τs)y) · (y − x) π(dx, dy)dhdτ,

wherems,h = (1− h)φt+s]π + hφt]π. So, dividing by s and letting s→ 0 we find:

d

dt
U(φt]π) =

∫
R2d

Dy
δU

δm
(φt]π, (1− t)x+ ty) · (y − x) π(dx, dy).

As Dy
δU
δm is continuous and bounded by C, for any ε,R > 0, there exists r > 0 such that, if d2(m,m′) ≤ r and

|x|, |y| ≤ R, then

|Dy
δU

δm
(φt]π, (1− t)x+ ty)−Dy

δU

δm
(m,x)| ≤ ε+ 2C1|y−x|≥r.

So ∣∣∣∣∫
R2d

Dy
δU

δm
(φt]π, (1− t)x+ ty) · (y − x) π(dx, dy)−

∫
R2d

Dy
δU

δm
(m,x) · (y − x)π(dx, dy)

∣∣∣∣
≤ δR +

∫
(BR)2

(ε+ 2C1|x−y|≥r)|y − x|π(dx, dy) ≤ δR + εd2(m,m′) +
2C

r
d2

2(m,m′).

where
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δR :=

∫
R2d\(BR)2

|Dy
δU

δm
(φt]π, (1− t)x+ ty) · (y − x)|+ |Dy

δU

δm
(m,x) · (y − x)|π(dx, dy)

≤ C
∫
R2d\(BR)2

|y − x|π(dx, dy) ≤ Cd2(m,m′)π1/2(R2d\(BR)2) = d2(m,m′)oR(1).

This proves the result. �

1.4.2.2 W−differentiability

Next we turn to a more geometric definition of derivative in the space of measures. For this, let us introduce the notion
of tangent space to P2.

Definition 10 (Tangent space) The tangent space Tanm(P2) of P2 atm ∈ P2 is the closure in L2
m(Rd) of {Dφ, φ ∈

C∞c (Rd)}.

Following [18] we define the super and the subdifferential of a map defined on P2:

Definition 11 Let U : P2 → R,m ∈ P2 and ξ ∈ L2
m(Rd,Rd). We say that ξ belongs to the superdifferential ∂+U(m)

of U atm if, for anym′ ∈ P2 and any transport plan π fromm tom′,

U(m′) ≤ U(m) +

∫
Rd×Rd

ξ(x) · (y − x)π(dx, dy) + o

((∫
R2d

|x− y|2π(dx, dy)

)1/2
)
.

We say that ξ belongs to the subdifferential ∂−U(m) of U at m if −ξ belongs to D+(−U)(m). Finally, we say that
the map U isW−differentiable atm if ∂+U(m) ∩ ∂−U(m) is not empty.

One easily checks the following:

Proposition 8 IfU isW−differentiable atm, then ∂+U(m) and ∂−U(m) are equal and reduce to a singleton, denoted
{DmU(m, ·)}.

Remark 20 On can actually check that DmU(m, ·) belongs to Tanm(P2).

Proof. Let ξ1 ∈ D+U(m) and ξ2 ∈ D−U(m). We have, for anym′ ∈ P2 and any transport plan π fromm tom′,∫
Rd×Rd

ξ2(x) · (y − x)π(dx, dy) + o

((∫
R2d

|x− y|2π(dx, dy)

)1/2
)

≤ U(m′)− U(m) ≤
∫
Rd×Rd

ξ1(x) · (y − x)π(dx, dy) + o

((∫
R2d

|x− y|2π(dx, dy)

)1/2
)
.

In particular, if we choosem′ = (1 + hφ)]m and π = (Id, Id+ hφ)]m for some φ ∈ L2
m(Rd,Rd) and h > 0 small,

we obtain

h

∫
Rd
ξ2(x) · φ(x)m(dx) + o (h) ≤ U(m′)− U(m) ≤ h

∫
Rd
ξ1(x) · φ(x)m(dx) + o (h) ,

from which we easily infer that ξ1 = ξ2 in L2
m(Rd). �

Remark 19 implies that, if U is C1 with DyδU/δm continuous and bounded, then U is W-differentiable. In this
case it is obvious that DyδU/δm belongs to Tanm(P2) by definition and that DmU(m, ·) = DyδU/δm. From now
on we systematically use the notation DmU(m, ·) = DyδU/δm in this case.
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1.4.2.3 Link with the L− derivative

Another possibility for the notion of derivative is to look at probability measures as the law of random variables with
values in Rd and to use the fact that the set of random variables, under suitable moment conditions, is a Hilbert space.

Let (Ω,F ,P) an atomless probability space (meaning that, for any E ∈ F with P[E] > 0, there exists E′ ∈ F with
E′ ⊂ E and 0 < P[E′] < P[E]). Given a map U : P2 → R, we consider its extension Ũ to the set of random variables
L2(Ω,Rd):

Ũ(X) = U(L(X)) ∀X ∈ L2(Ω,Rd).

(recall that L(X) is the law ofX , i.e., L(X) := X]P. Note that L(X) belongs to P2 becauseX ∈ L2(Ω)). The main
point is that L2(Ω,F ,P) is a Hilbert space, in which the notion of Frechet differentiability makes sense.

For instance, if U is a map of the form

U(m) =

∫
Rd

φ(x)m(dx) ∀m ∈ P2, (1.148)

where φ ∈ C0
c (Rd) is given, then

Ũ(X) = E[φ(X)] ∀X ∈ L2(Ω,Rd).

Definition 12 ThemapU : P2 → R isL−differentiable atm ∈ P2 if there existsX ∈ L2(Ω,Rd) such thatL(X) = m
and the extension Ũ of U is Frechet differentiable at X .

The following result says that the notion of L−differentiability coincides with that of W−differentiability and is
independent of the probability space and of the representative X . The first statement in that direction goes back to
Lions [149] (Lesson 31/10 2008), the version given here can be found in [109] (see also [15], from which the sketch
of proof of Lemma 21 is largely inspired).

Theorem 20 The map U is W−differentiable at m ∈ P2 if and only if Ũ is Frechet differentiable at some (or thus
any) X ∈ L2(Ω,Rd) with L(X) = m. In this case

∇Ũ(X) = DmU(m,X).

The result can be considered as a structure theorem for the L-derivative.
For instance, if U is as in (1.148) for some map φ ∈ C1

c (Rd), then it is almost obvious that

∇Ũ(X) = Dφ(X)

and thus
DmU(m,x) = Dφ(x).

The proof of Theorem 20 is difficult and we only sketch it briefly. Complete proofs can be found in [109] or [15].
The first step is the fact that, if X and X ′ have the same law, then so do ∇Ũ(X) and ∇Ũ(X ′):

Lemma 20 Let U : P2 → R and Ũ be its extension. Let X,X ′ be two random variables in L2(Ω,Rd) with L(X) =
L(X ′). If Ũ is Frechet differentiable at X , then Ũ is differentiable at X ′ and (X,∇Ũ(X)) has the same law as
(X ′,∇Ũ(X ′)).

(Sketch of) proof. The idea behind this fact is that, if X and X ′ have the same law, then one can “almost" find a
bi-measurable and measure-preserving transformation τ : Ω → Ω such thatX = X ′ ◦ τ . Admitting this statement for
a while, we have, for any H ′ ∈ L2 small,

Ũ(X ′ +H ′) = Ũ((X ′ +H ′) ◦ τ) = Ũ(X +H ′ ◦ τ) = Ũ(X) + E
[
∇Ũ(X) ·H ′ ◦ τ

]
+ o(‖H ′ ◦ τ‖2)

= Ũ(X ′) + E
[
∇Ũ(X) ◦ τ−1 ·H ′

]
+ o(‖H ′‖2).
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This shows that Ũ is differentiable atX ′with differential given by∇Ũ(X)◦τ−1. Thus (X ′,∇Ũ(X ′)) = (X,∇Ũ(X))◦
τ−1, which shows that (X,∇Ũ(X)) and (X ′,∇Ũ(X ′)) have the same law.

In fact the existence of τ does not hold in general. However, one can show that, for any ε > 0, there exists τ : Ω → Ω
bi-measurable and measure preserving and such that ‖X ′ − X ◦ τ‖∞ ≤ ε. A (slightly technical) adaptation of the
proof above then gives the result (see [51] or [68] for the details). �

Next we show that ∇Ũ(X) is a function of X:

Lemma 21 Assume that Ũ is differentiable atX ∈ L2(Ω,Rd). Then there exists a Borel measurable map g : Rd → Rd
such that ∇Ũ(X) = g(X) a.s..

(Sketch of) proof. To prove the claim, we just need to check that ∇Ũ(X) is σ(X)−measurable (see Theorem
20.1 in [37]), which can be recasted into the fact that ∇Ũ(X) = E

[
∇Ũ(X)|X

]
. Let µ = L(X,∇Ũ(X)) and let

µ(dx, dy) = (δx ⊗ νx(dy))PX(dx) be its disintegration with respect to its first marginal PX . Let λ be the restriction
of the Lebesgue measure to Q1 := [0, 1]d. Then, as λ has an L1 density, the optimal transport from λ to νx is unique
and given by the gradient of a convex map ψx(·) (Brenier’s Theorem, see [179]). So we can find2 a measurable map
ψ : Rd × Rd → Rd such that, for PX−a.e. x ∈ Rd, ψx(·)]λ = νx. Let Z be a random variable with law λ and
independent of (X,∇Ũ(X)).

Note that µ = L(X,∇Ũ(X)) = L(X,ψX(Z)) because, for any f ∈ C0
b (Rd × Rd),

E [f(X,ψX(Z))] =

∫
Rd

∫
Q1

f(x, ψx(z))λ(dz)PX(dx) =

∫
Rd

∫
Rd
f(x, y)(ψx]λ)(dy)PX(dx)

=

∫
Rd

∫
Rd
f(x, y))νx(dy)PX(dx) =

∫
R2d

f(x, y)µ(dx, dy).

So, for any ε,
Ũ(X + ε∇Ũ(X)) = Ũ(X + εψX(Z)),

from which we infer, taking the derivative with respect to ε at ε = 0:

E
[∣∣∣∇Ũ(X)

∣∣∣2] = E
[
∇Ũ(X) · ψX(Z)

]
.

Note that, as Z is independent of (X,∇Ũ(X)), we have

E
[
∇Ũ(X) · ψX(Z)

]
= E

[
∇Ũ(X) · E [ψx(Z)]x=X

]
,

where, for PX−a.e. x,

E [ψx(Z)] =

∫
Q1

ψx(z)λ(dz) =

∫
Q1

y (ψx]λ)(dy) =

∫
Rd
y νx(dy) = E

[
∇Ũ(X)|X = x

]
.

So, by the tower property of the conditional expectation, we have

E
[∣∣∣∇Ũ(X)

∣∣∣2] = E
[
∇Ũ(X) · E

[
∇Ũ(X)|X

]]
= E

[∣∣∣E [∇Ũ(X)|X
]∣∣∣2] .

Using again standard properties of the conditional expectation we infer the equality∇Ũ(X) = E
[
∇Ũ(X)|X

]
, which

shows the result. �

Proof of Theorem 20. Let us first assume that U is W−differentiable at some m ∈ P2. Then there exists ξ :=
DmU(m, ·) ∈ L2

m(Rd) such that, for anym′ ∈ P2 and any transport plan π betweenm andm′ we have

2 Warning: here the proof is sloppy and the possibility of a measurable selection should be justified.
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∣∣∣∣U(m′)− U(m)−
∫
Rd×Rd

ξ(x) · (y − x)π(dx, dy)

∣∣∣∣ ≤ o
((∫

R2d

|x− y|2π(dx, dy)

)1/2
)
.

Therefore, for any X ∈ L2 such that L(X) = m, for any H ∈ L2, if we denote bym′ the law of X +H and by π the
law of (X,X +H), we have∣∣∣ Ũ(X +H)− Ũ(X)− E [ξ(X) ·H]

∣∣∣ =

∣∣∣∣ U(m′)− Ũ(m)−
∫
R2d

ξ(x) · (y − x)π(x, y)

∣∣∣∣
≤ o

((∫
R2d

|x− y|2π(dx, dy)

)1/2
)

)

= o
(
E
[
|X − Y |2

]1/2)
.

This shows that U is L-differentiable.

Conversely, let us assume that U is L-differentiable atm. We know from Lemma 21 that, for anyX ∈ L2 such that
L(X) = m, Ũ is differentiable at X and ∇Ũ(X) = ξ(X) for some Borel measurable map ξ : Rd → Rd. In view of
Lemma 20, the map ξ does not depend on the choice of X . So, for any ε > 0, there exists r > 0 such that, for any X
with L(X) = m and any H ∈ L2 with ‖H‖ ≤ r, one has∣∣∣ Ũ(X +H)− Ũ(X)− E [ξ(X) ·H]

∣∣∣ ≤ ε.
Let nowm′ ∈ P2 and π be a transport plan betweenm andm′ such that

∫
R2d |x− y|2π(dx, dy) ≤ r2. Let (X,Y ) with

law π. We set H = Y −X and note that ‖H‖2 ≤ r. So we have∣∣∣∣ U(m′)− Ũ(m)−
∫
R2d

ξ(x) · (y − x)π(x, y)

∣∣∣∣ =
∣∣∣ Ũ(X +H)− Ũ(X)− E [ξ(X) ·H]

∣∣∣ ≤ ε.
This proves the W-differentiability of U . �

1.4.2.4 Higher order derivatives

We say that U is partially C2 if U is C1 and if DyδU/δm and D2
yyδU/δm exist and are continuous and bounded on

P2 × Rd.
We say that U is C2 if δU

δm is C1 in m with a continuous and bounded derivative: namely δ2U
δm2 = δ

δm ( δUδm ) :
P2 × Rd × Rd → R is continuous in all variables and bounded. We say that U is twice L−differentiable if the map
DmU is L−differentiable with respect to m with a second order derivative D2

mmU = D2
mmU(m, y, y′) which is

continuous and bounded on P2×Rd×Rd with values in Rd×d. One can check that this second order derivative enjoys
standard properties of derivatives, such as the symmetry:

D2
mmU(m, y, y′) = D2

mmU(m, y′, y).

See [56, 68].

1.4.2.5 Comments

For a general description of the notion of derivatives and the historical background, we refer to [68], Chap. V. The
notion of flat derivative is very natural and has been introduced in several contexts and under various assumptions. We
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follow here [56]. Let us note however that these notions of derivatives can be traced back to [14], while the construction
of Proposition 5 has already a counterpart in [159].

The initial definition of sub and super differential in the space P2, introduced in [19], is the following: ξ belongs to
∂+U(m) if ξ ∈ Tanm(P2) and

U(m′) ≤ U(m) + inf
π∈Πopt(m,m′)

∫
Rd×Rd

ξ(x) · (y − x)π(dx, dy) + o(d2(m,m′)).

It is proved in [109] that this definition coincides with the one introduced in Definition 11.
The notion of L-derivative and the structure of this derivative has been first discussed by Lions in [149] (see also

[51] for a proof of Theorem 20 in which the function is supposed to be continuously differentiable). The proof of
Theorem 20, without the extra continuity condition, is due to Gangbo and Tudorascu [109] (see also [15], revisited
here in a loose way).

1.4.3 The Master equation

In this section we investigate the partial differential equation:
−∂tU −∆xU +H(x,DxU)−

∫
Td

divyDmU(t, x,m, y) dm(y)

+

∫
Td
DmU(t, x,m, y) ·Hp(y,DxU) dm(y) = F (x,m)

in (0, T )× Td × P2

U(T, x,m) = G(x,m) in Td × P2

(1.149)

In this equation, U = U(t, x,m) is the unknown. As explained below, U(t, x,m) can be interpreted as the minimal
cost, in the mean field problem, for a small player at time t in position x, if the distribution of the other players is
m. Equation (1.149) is often called the first order master equation since it only involves first order derivatives with
respect to the measure. This is in contrast with what happens for MFG problems with a common noise, for which the
corresponding master equation also involves second order derivatives (see Subsection 1.4.3.3). After explaining the
existence of the uniqueness of a solution for (1.149) (Subsection 1.4.3.1), we discuss other frameworks for the master
equation: the case of finite state space (Subsection 1.4.3.2) and the MFG problem with a common noise (Subsection
1.4.3.3).

Throughout this part, we work in the torus Td and in the space P2 = P2(Td) of Borel probability measures on Td
endowed with the Wasserstein distance d2. The notion of derivative is the one discussed in the previous part (with the
minor difference explained in Remark 18).

1.4.3.1 Existence and uniqueness of a solution for the master equation

Definition 13 We say that a map V : [0, T ]× Td × P2 → R is a classical solution to the Master equation (1.149) if

• V is continuous in all its arguments (for the d1 distance on P2), is of class C2 in x and C1 in time,
• V is of class C1 with respect to m with a derivative δV

δm = δV
δm (t, x,m, y) having globally continuous first and

second order derivatives with respect to the space variables.
• The following relation holds for any (t, x,m) ∈ (0, T )× Td × P2:

−∂tV (t, x,m)−∆xV (t, x,m) +H(x,DxV (t, x,m))−
∫
Td

divyDmV (t, x,m, y) dm(y)

+

∫
Td
DmV (t, x,m, y) ·Hp(y,DxV (t, y,m)) dm(y) = F (x,m)
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and V (T, x,m) = G(x,m) in Td × P2.

Throughout the section, H : Td × Rd → R is smooth, globally Lipschitz continuous and satisfies the coercivity
condition:

C−1 Id
1 + |p|

≤ Hpp(x, p) ≤ CId for (x, p) ∈ Td × Rd. (1.150)

We also always assume that the maps F,G : Td × P1 → R are globally Lipschitz continuous and monotone:

F and G are monotone. (1.151)

Note that assumption (1.151) implies that δFδm and δG
δm satisfy the following monotonicity property (explained for F ):∫

Td

∫
Td

δF

δm
(x,m, y)µ(x)µ(y)dxdy ≥ 0

for any smooth map µ : Td → R with
∫
Td µ = 0.

Let us fix n ∈ N∗ and α ∈ (0, 1/2). We set

Lipn(
δF

δm
) := sup

m1 6=m2

(d1(m1,m2))
−1

∥∥∥∥ δFδm (·,m1, ·)−
δF

δm
(·,m2, ·)

∥∥∥∥
Cn+2α×Cn−1+2α

and use the symmetric notation for G. We call (HF(n)) the following regularity conditions on F :

(HF(n)) sup
m∈P1

(
‖F (·,m)‖Cn+2α +

∥∥∥∥δF (·,m, ·)
δm

∥∥∥∥
Cn+2α×Cn+2α

)
+ Lipn(

δF

δm
) < ∞.

and (HG(n)) the symmetric condition on G:

(HG(n)) sup
m∈P1

(
‖G(·,m)‖Cn+2α +

∥∥∥∥δG(·,m, ·)
δm

∥∥∥∥
Cn+2α×Cn+2α

)
+ Lipn(

δG

δm
) < ∞.

In order to explain the existence of a solution to the master equation, we need to introduce the solution of the MFG
system: for any (t0,m0) ∈ [0, T )× P2, let (u,m) be the solution to:−∂tu−∆u+H(x,Du) = F (x,m(t))

∂tm−∆m− div(mHp(x,Du)) = 0
u(T, x) = G(x,m(T )), m(t0, ·) = m0

(1.152)

Thanks to the monotonicity condition (1.151), we know that the system admits a unique solution, see Theorem 4. Then
we set

U(t0, x,m0) := u(t0, x) (1.153)

Theorem 21 Assume that (HF(n)) and (HG(n)) hold for some n ≥ 4. Then the map U defined by (1.153) is the unique
classical solution to the master equation (1.149).
Moreover, U is globally Lipschitz continuous in the sense that

‖U(t0, ·,m0)− U(t0, ·,m1)‖Cn+α ≤ Cnd1(m0,m1) (1.154)

with Lipschitz continuous derivatives:

‖DmU(t0, ·,m0, ·)−DmU(t0, ·,m1, ·)‖Cn+α×Cn+α ≤ Cnd1(m0,m1) (1.155)

for any t0 ∈ [0, T ],m0,m1 ∈ P1.
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Relation (1.153) says that the solutions of the MFG system (1.152) can be considered as characteristics of the master
equation (1.149). As it will be transparent in the analysis of the MFG problem on a finite state space (Subsection 1.4.3.2
below), this means that the master equation is a kind of transport in the space of measures. The difficulty is that it is
nonlinear, nonlocal (because of the integral terms) and without a comparison principle.

The proof of Theorem 21, although not very difficult in its principle, is quite technical and will be mostly omitted
here. The main issue is to check that the map U defined by (1.153) satisfies (1.154), (1.155). This exceeds the scope of
these notes andwe refer the reader to [56] for a proof. Oncewe know thatU is quite smooth, the conclusion follows easily:

Sketch of proof of Theorem 21 (existence). Let m0 ∈ P(Td) with a C1, positive density. Let t0 > 0, (u,m) be the
solution of the MFG system (1.152) starting fromm0 at time t0. Then

U(t0 + h, x,m0)− U(t0, x,m0)

h
=
U(t0 + h, x,m0)− U(t0 + h, x,m(t0 + h))

h

+
U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
.

As
∂tm− div[m(D(ln(m)) +Hp(x,Du))] = 0,

Lemma 22 below says that
d1(m(t0 + h), (id− hΦ)]m0) = o(h)

where
Φ(x) := D(ln(m0(x))) +Hp(x,Du(t0, x))

and o(h)/h→ 0 as h→ 0. So, by Lipschitz continuity of U and then differentiability of U ,

U(t0 + h, x,m(t0 + h)) = U(t0 + h, x, (id− hΦ)]m0) + o(h)

= U(t0 + h, x,m0)− h
∫
Td
DmU(t0 + h, x,m0, y) · Φ(y)m0(y)dy + o(h),

and therefore, by continuity of U and DmU ,

lim
h→0

U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m0)

h

= −
∫
Td

(DmU(t0, x,m0, y) · [D(ln(m0)) +Hp(y,Du(t0))])m0(y)dy.

On the other hand, for h > 0,

U(t0 + h, x,m(t0 + h))− U(t0, x,m0) = u(t0 + h, x)− u(t0, x) = h∂tu(t0, x) + o(h),

so that
lim
h→0+

U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
= ∂tu(t0, x).

Therefore ∂tU(t0, x,m0) exists and is equal to
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∂tU(t0, x,m0) =

∫
Td

(DmU(t0, x,m0, y) · [D(ln(m0)) +Hp(y,Du(t0))])m0(y)dy + ∂tu(t0, x)

= −
∫
Td

divyDmU(t0, x,m0, y)m0(y)dy

+

∫
Td
DmU(t0, x,m0, y) ·Hp(y,Du(t0))m0(y)dy

−∆u(t0, x) +H(x,Du(t0, x))− F (x,m0)

= −
∫
Td

divyDmU(t0, x,m0, y)m0(y)dy

+

∫
Td
DmU(t0, x,m0, y) ·Hp(y,DxU(t0, y,m0))m0(y)dy

−∆xxU(t0, x,m0) +H(x,DxU(t0, x,m0))− F (x,m0)

This means that U satisfies (1.149) at (t0, x,m0). By continuity, U satisfies the equation everywhere. �

Lemma 22 Let V = V (t, x) be a C1 vector field,m0 ∈ P2 andm be the weak solution to{
∂tm+ div(mV ) = 0
m(0) = m0 .

Then
lim
h→0+

d1(m(h), (id+ hV (0, ·))]m0)/h = 0.

Proof. Recall thatm(h) = X ·(h)]m0, where Xx(h) is the solution to the ODE{
d
dtX

x(t) = V (t,Xx(t))
Xx(0) = x .

Let φ be a Lipschitz test function. Then∫
Td
φ(x)(m(h)− (id+ hV (0, ·))]m0)(dx) =

∫
Td

(φ(Xx(h))− φ(x+ hV (0, x)))m0(dx)

≤ ‖Dφ‖∞
∫
Td
|Xx(h)− x− hV (0, x)|m0(dx) = ‖Dφ‖∞o(h),

which proves that d1(m(h), (id+ hV (0, ·))]m0) = o(h). �

Proof of Theorem 21 (uniqueness).We use a technique introduced in [149] (Lesson 5/12/2008), consisting at looking
at the MFG system (1.152) as a system of characteristics for the master equation (1.149). We reproduce here this
argument for the sake of completeness. Let V be another solution to the master equation. The main point is that, by
definition of solution D2

xy
δV
δm is bounded, and therefore DxV is Lipschitz continuous with respect to the measure

variable.
Let us fix (t0,m0). In view of the Lipschitz continuity ofDxV , one can easily uniquely solve the PDE (by standard

fixed point argument): {
∂tm̃−∆m̃− div(m̃Hp(x,DxV (t, x, m̃)) = 0
m̃(t0) = m0

Then let us set ũ(t, x) = V (t, x, m̃(t)). By the regularity properties of V , ũ is at least of class C2,1 with
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∂tũ(t, x) = ∂tV (t, x, m̃(t)) + 〈 δV
δm

(t, x, m̃(t), ·), ∂tm̃(t)〉C2,(C2)′

= ∂tV (t, x, m̃(t)) + 〈 δV
δm

(t, x, m̃(t), ·), ∆m̃+ div(m̃Hp(·, DxV (t, ·, m̃))〉C2,(C2)′

= ∂tV (t, x, m̃(t)) +

∫
Td

divyDmV (t, x, m̃(t), y) dm̃(t)(y)

−
∫
Td
DmV (t, x, m̃(t), y) ·Hp(y,DxV (t, y, m̃)) dm̃(t)(y)

Recalling that V satisfies the master equation we get

∂tũ(t, x) = −∆xV (t, x, m̃(t)) +H(x,DxV (t, x, m̃(t)))− F (x, m̃(t))
= −∆ũ(t, x) +H(x,Dũ(t, x))− F (x, m̃(t))

with terminal condition ũ(T, x) = V (T, x, m̃(T )) = G(x, m̃(T )). Therefore the pair (ũ, m̃) is a solution of the MFG
system (1.152). As the solution of this system is unique, we get that V (t0, x,m0) = U(t0, x,m0) is uniquely defined.
�

1.4.3.2 The master equation for MFG problems on a finite state space

We consider here a MFG problem on a finite state space: let I ∈ N, I ≥ 2 be the number of states. Players control
their jump rate from one state to another; their cost depends on the jump rate they choose and on the distribution of the
other players on the states. In this finite state setting, this distribution is simply an element of the simplex SI−1 with

SI−1 :=

{
m ∈ RI , m = (mi)i=1,...,I , mi ≥ 0, ∀i,

∑
i

mi = 1

}
.

Givenm = (mi) ∈ SI−1,mi is the proportion of players in state i.

The MFG system. In this setting the MFG system takes the form of a coupled system of ODEs: for i = 1, . . . , I ,

− d

dt
ui(t) +Hi((uj(t)− ui(t))j 6=i,m(t)) = 0 in (0, T )

d

dt
mi(t)−

∑
j 6=i

mj(t)
∂Hj

∂pi
((uk(t)− uj(t))k 6=j ,m(t))

+mi(t)
∑
j 6=i

∂Hi

∂pj
((uk(t)− ui(t))k 6=i,m(t)) = 0 in (0, T )

mi(t0) = mi,0, u
i(T ) = gi(m(T )).

(1.156)

In the above system, the unknown is (u,m) = (ui(t),mi(t)), where ui(t) is the value function of a player at
time t and in position i while m(t) is the distribution of players at time t, with m(t) ∈ SI−1 for any t. The map
Hi : RI−1 × SI−1 → R is the Hamiltonian of the problem in state i while m0 = (mi,0) ∈ SI−1 is the initial distri-
bution at time t0 ∈ [0, T ) and gi : SI−1 → R is the terminal cost in state i. As usual, this is a forward-backward system.

The structure for uniqueness. As for standard MFG systems, the existence of a solution is relatively easy; the
uniqueness relies on a specific structure of the coupling and on a monotonicity condition which become here:

Hi(z,m) = hi(z)− f i(m) (1.157)

where hi is strictly convex in z and
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I∑
i=1

(f i(m)− f i(m′))(mi − (m′)i) ≥ 0,

I∑
i=1

(gi(m)− gi(m′))(mi − (m′)i) ≥ 0, ∀m,m′ ∈ SI−1. (1.158)

The master equation. To find a solution of this MFG problem in feedback form (i.e., such that the control of a players
depends on the state of this player and on the distribution of the other players), one can proceed as in the continuous
space case and set U i(t,m0) = ui(t0), where m0 is the initial distribution of the players at time t0 and (u,m) is the
solution to (1.156). Then U solves the following hyperbolic system, for i = 1, . . . , I ,
−∂tU i(t,m) +Hi((U j(t,m)− U i(t,m))j 6=i,m)−

I∑
j=1

∂U i

∂pj
(t,m)

(∑
k 6=j

mk
∂Hk

∂pj
((U l(t,m)− Uk(t,m))l 6=k,m)

−mj

∑
k 6=j

∂Hj

∂pk
((U l(t,m)− U j(t,m))l 6=j ,m)

)
= 0 in (0, T )× SI−1

U i(T,m) = gi(m) in SI−1

This is the master equation in the framework of the finite state space problem. It can be rewritten in a more compact
way in the form

∂tU + (F (m,U) ·D)U = G(m,U) (1.159)

where F,G : SI−1 × RI → RI are defined by

F (m,U) =
(∑
k 6=j

mk
∂Hk

∂pj
((U l − Uk)l 6=k,m)−mj

∑
k 6=j

∂Hj

∂pk
((U l − U j)l 6=j ,m)

)
j

and G(m,U) = −(Hj(U,m))j . Equation (1.159) has to be understood as follows: for any i ∈ {1, . . . , I},

∂tU
i + (F (m,U) ·D)U i = −Hi(U,m).

Link between two notions of monotonicity. The monotonicity condition stated in (1.158) is equivalent with the fact
that the pair (G,F ) is monotone (in the classical sense) from R2d into itself. Indeed, recalling the structure condition
(1.157), we have

〈(G,F )(m,U)− (G,F )(m′, U ′), (m,U)− (m′, U ′)〉

=
∑
j

(hj((Uk − U j)k 6=j)− hj((U
′k − U

′j)k 6=j))(mj −m′j)−
∑
j

(f j(m)− f j(m′))(mj −m′j)

+
∑
j 6=k

(
mk

∂hk

∂pj
((U l − Uk)l 6=k)−m′k

∂hk

∂pj
((U

′l − U
′k)l 6=k)

)
(U j − U

′j)

−
I∑
j=1

(
mj

∑
k 6=j

∂hj

∂pk
((U l − U j)l 6=j)−m′j

∑
k 6=j

∂hj

∂pk
((U

′l − U
′j)l 6=j)

)
(U j − U

′j)

= −
∑
j

(f j(m)− f j(m′))(mj −m′j)

−
I∑
j=1

mj

(
hj((U

′k − U
′j)k 6=j)− hj((Uk − U j)k 6=j)−

∑
k 6=j

∂hj

∂pk
((U l − U j)l 6=j)(U

′k − Uk − U
′j − U j)

)

−
I∑
j=1

m′j

(
hj((Uk − U j)k 6=j)− hj((U

′k − U
′j)k 6=j)−

∑
k 6=j

∂hj

∂pk
((U

′l − U
′j)l 6=j)(U

k − U
′k − U j − U

′j)
)
,

which is nonnegative since (1.158) holds and h is convex.
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The finite state space is very convenient in the analysis of MFGs: it makes complete sense in terms of modeling
and, in addition, it simplifies a lot the analysis of the master equation. First of all, this is a finite dimensional problem.
Secondly, under the monotonicity condition, the solution of the master equation is also monotone and it is known that
monotone maps are BV in open sets in which they are finite: so some regularity is easily available.

1.4.3.3 The MFG problem with a common noise

The aim of this part is to say a few words about the MFGs in which all agents are subject to a common source of
randomness. This kind of models are often met in macro-economy, after the pioneering work of Krusell-Smith [138].
We start with a toy example, in which the agents are subject to a single shock. Then we describe the more delicate
model where the shock is a Brownian motion.

An illustrative example.
We consider here a problem in which the agents face a common noise which, in this elementary example, is a

random variable Z on which the coupling costs F and G depend: F = F (x,m,Z) and G = G(x,m,Z). The game is
played in finite horizon T and the exact value of Z is revealed to the agents at time T/2 (to fix the ideas).

To fix the ideas, we assume that the agents directly control their drift:

dXt = αtdt+
√

2dBt

(where (αt) is the control with values in Rd and B a Brownian motion). In contrast with the previous discussions, the
control αt is now adapted to the filtration generated by B and to the noise Z when t ≥ T/2. The cost is now of the
form

J(α) = E

[∫ T

0

1

2
|αt|2 + F (Xt,m(t), Z) dt+G(XT ,m(T ), Z)

]
,

where F and G depend on the position of the player, on the distribution of the agents and on the common noise Z.
As all the agents will choose their optimal control in function of the realization of Z (of course after time T/2), one
expect the distribution of players to be random after T/2 and to depend on the noise Z.

On the time interval [T/2, T ], the agents have to solve a classical control problem (which depends on Z and on
(m(t))):

u(t, x) := inf
α

E

[∫ T

t

1

2
|αt|2 + F (Xt,m(t), Z) dt+G(XT ,m(T )) | Z

]
which depends on the realization of Z and solves the HJ equation (with random coefficients):{

−∂tu−∆u+
1

2
|Du|2 = F (x,m(t), Z) in (T/2, T )× Rd

u(T, x, Z) = G(x,m(T ), Z) in Rd.
(1.160)

On the other hand, on the time interval [0, T/2), the agent has no information on Z and, by dynamic programming,
one expects to have

u(t, x) := inf
α

E

[∫ T/2

t

1

2
|αt|2 + F̄ (Xt,m(t)) dt+ u(T/2+, XT/2)

]
,

where F̄ (x,m) = E [F (x,m,Z)] (recall thatm(t) is deterministic on [0, T/2]). Thus, on the time interval [0, T/2], u
solves {

−∂tu−∆u+
1

2
|Du|2 = F̄ (x,m(t)) in (0, T/2)× Rd

u(T/2−, x) = E
[
u(T/2+, x)

]
in Rd

(1.161)
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As for the associated Kolmogorov equation, on the time interval [0, T/2] (where the optimal feedback −Du is purely
deterministic) we have as usual:

∂tm−∆m− div (mDu(t, x)) = 0 in (0, T/2)× Rd, m(0) = m0. (1.162)

while on the time interval [T/2, T ],m becomes random (as the control −Du) and solves

∂tm−∆m− div (mDu(t, x, Z)) = 0 in (T/2)× Rd, m(T/2−) = m(T/2+). (1.163)

Note the relation:m(T/2−) = m(T/2+), which means that the dynamics of the crowd is continuous in time.
Let us point out some remarkable features of the problem. Firstly, the pairs (u,m) are no longer deterministic, and

are adapted to the filtration generated by the common noise (here this filtration is trivial up to time T/2 and is the
σ−algebra generated by Z after T/2). Secondly, the map u is discontinuous: this is due to the shock of information at
time T/2.

The existence of a solution to the MFG system (1.160)-(1.163) can be obtained in two steps. First one solves the
MFG system on [T/2, T ]: given any measurem0 ∈ P1(Rd), let (u,m) be the solution to

−∂tu(t, x, Z)−∆u(t, x, Z) +
1

2
|Du(t, x, Z)|2 = F (x,m(t), Z) in (T/2, T )× Rd

∂tm(t, x, Z)−∆m(t, x, Z)− div(m(t, x, Z)Du(t, x, Z)) = 0 in (T/2, T )× Rd
m(T/2, dx, Z) = m0(dx), u(T, x, Z) = G(x,m(T, x, Z), Z) in Rd

Note that u and m depend of course on m0. If we require F and G to be monotone, then this solution is unique and
we can set U(x,m0, Z) = u(T/2, x, Z) (with the notation of Section 1.4.3.1, it should be U(T/2+, x,m0, Z), but we
omit the T/2 for simplicity). It is not difficult to check that, if the couplings F,G are smoothing, then U is continuous
in m (uniformly in (x, Z)), measurable in Z and C2 in x uniformly in (m,Z). In addition, it is a simple exercise to
prove that U is monotone as well. Therefore, if we set Ū(x,m) = E[U(x,m,Z)], then Ū is also continuous inm and
C2 in x and monotone. So the system

−∂tu(t, x)−∆u(t, x) +
1

2
|Du(t, x)|2 = F̄ (x,m(t)) in (0, T/2)× Rd

∂tm(t, x)−∆m(t, x)− div(m(t, x)Du(t, x)) = 0 in (0, T/2)× Rd
m(0, dx) = m0(dx), u(T, x) = Ū(x,m(T/2)) in Rd

has a unique solution. Note that u is a discontinuous function of time, but the discontinuity

u(T/2+, x)− u(T/2−, x) = u(T/2+, x)− E
[
u(T/2+, x)

]
has zero mean, that is, it is a “one-step martingale”.

Common noise of Brownian type.
In general, MFG with a common noise involve much more complex randomness than a single shock that occurs at

a given time. We discuss here very briefly a case in which the common noise is a Brownian motion. As before, we just
consider an elementary model in order to fix the ideas.

The game is played in finite horizon T . The agents control directly their drift: their state solves therefore the SDE

dXt = αtdt+
√

2dBt +
√

2βdWt,

where (αt) is the control with values inRd,B the idiosyncratic noise (a Brownian motion, independent for each player)
andW is the common noise (a Brownian motion, the same for each player), β ≥ 0 denoting the intensity of this noise.
The control αt is now adapted to the filtration generated by B andW . The cost is of the (standard) form

J(α) = E

[∫ T

0

1

2
|αt|2 + F (Xt,m(t)) dt+G(XT ,m(T ))

]
,
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where F and G depend on the the position of the player and on the distribution of the agents.
The main difference with the classical case is that now the flow of measuresm is random and adapted to the filtration

generated byW . To understand why it should be so, let us come back to the setting with finitely many agents (in which
one sees better the difference between B andW ). If there are N agents, controlling their state with a feedback control
α = αt(x) (possibly random), then the state of player i, for i ∈ {1, . . . , N}, solves

dXi
t = αt(X

i
t)dt+

√
2dBit +

√
2βdWt.

Note that the Bi are independent (idiosyncratic noise) and independent of the common noise W . Let mN
t be the

empirical measure associated to the Xi:

mN
t =

1

N

N∑
i=1

δXit .

Let us assume that mN converges to some m (formally) and let us try to guess the equation for m. We have, for any
smooth test function φ = φ(t, x) with a compact support,∫

Rd
φ(t, x)mt(dx) = lim

N

∫
Rd
φ(t, x)mN

t (dx),

where, by ItÃ´’s formula,∫
Rd
φ(t, x)mN

t (dx) =
1

N

N∑
i=1

φ(t,Xi
t)

=
1

N

N∑
i=1

φ(t,Xi
0) +

1

N

N∑
i=1

∫ t

0

(∂tφ(s,Xi
s) +Dφ(s,Xi

s) · αt(Xi
s) + (1 + β)∆φ(s,Xi

s))ds

+
1

N

N∑
i=1

∫ t

0

Dφ(s,Xi
s) · (dBis + dWs)

=

∫
Rd
φ(t, x)mN (0, dx) +

∫ t

0

∫
Rd

(∂tφ(s, x) +Dφ(s, x) · αt(x) + (1 + β)∆φ(s, x))mN
s (dx)ds

+ β

∫ t

0

(

∫
Rd
Dφ(s, x)mN

s (dx)) · dWs +
1

N

N∑
i=1

∫ t

0

Dφ(s,Xi
s) · dBis.

As N → +∞, the last term vanishes because, by ItÃ´’s isometry,

lim
N→+∞

E

∣∣∣∣∣ 1

N

N∑
i=1

∫ t

0

Dφ(s,Xi
s) · dBis

∣∣∣∣∣
2
 = lim

N→+∞

1

N2

N∑
i=1

E
[∫ t

0

|Dφ(s,Xi
s)|2ds

]
= 0.

So we find∫
Rd
φ(t, x)mt(dx) =

∫
Rd
φ(t, x)m(0, dx) +

∫ t

0

∫
Rd

(∂tφ(s, x) +Dφ(s, x) · αt(x) + (1 + β)∆φ(s, x))ms(dx)ds

+ β

∫ t

0

(

∫
Rd
Dφ(s, x)ms(dx)) · dWs.

This means thatm solves in the sense of distributions the stochastic Kolmogorov equation:

dmt = [(1 + β)∆mt − div(mtα)] dt−
√

2βdiv(mtdWt).
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As the flowm is stochastic and adapted to the filtration generated byW , the value function u is stochastic as well and
is adapted to the filtration generated byW . It turns out that u solves a backward Hamilton-Jacobi equation. The precise
form of this equation is delicate because, as it is random and backward, it has to involve an extra unknown vector
field v = vt(x) which ensures the solution u to be adapted to the filtration generated by W (see, on that subject, the
pioneering work by Peng [162] and the discussion in [56] (Chapter 4) or in [68] (Part II, Section 1.4.2)). The stochastic
MFG system associated with the problem becomes (if the initial distribution of the players is m̄0):

dut =

[
−(1 + β)∆ut +

1

2
|Dut|2 − F (x,mt)−

√
2βdiv(vt)

]
dt−

√
2βvt · dWt

dmt = [(1 + β)∆mt + div(mtDut)] dt−
√

2βdiv(mtdWt)
m0 = m̄0, uT = G(·,mT )

Finally, one can associate with the problem a master equation, which plays the same role as without common noise. It
takes the form of a second order (in measure) equation on the space of measures:

−∂tU − (1 + β)∆xU +
1

2
|DxU |2 − (1 + β)

∫
Rd

divyDmU(t, x,m, y) m(dy)

+

∫
Rd
DmU(t, x,m, y) ·DxU(t, y,m)m(dy)− 2β

∫
Rd

divxDmU(t, x,m, y) m(dy)

−β
∫
Rd×Rd

Tr(D2
mmU(t, x,m, y, y′))m(dy)m(dy′) = F (x,m)

in (0, T )× Rd × P2

U(T, x,m) = G(x,m) in Rd × P2

where the unknown is U = U(t, x,m).

1.4.3.4 Comments

Most formal properties of theMaster equation have been introduced and discussed by Lions in [149] (Lesson 5/12/2008
and the Course 2010-’11), including of course the representation formula (1.153). The actual proof of the existence of a
solution of the master equation is a tedious verification that (1.153) actually gives a solution. This has required several
steps: the first paper in this direction is [41], where a master equation is studied for linear Hamiltonian and without
coupling terms (F = G = 0); [108] analyzes the master equation in short time and without the diffusion term; [85]
obtains the existence and uniqueness for the master equation (1.149); [56] establishes the existence and uniqueness of
solutions for the master equation with common noise under the Lasry-Lions monotonicity condition (see also [68]).
There has been few works since then on the subject outside the above references and the analysis on finite state space
in [34, 26]: see [11, 12, 55]. Another approach, not discussed in these notes, is the so-called “Hilbertian approach”
developed by Lions in [149] (see e.g. Lesson 31/10 2008, and later the seminar 08/11/2013): the idea is to write the
master equation (or, more precisely, its space derivative) in the Hilbert space of square integrable random variables
and use this Hilbert structure to obtain existence and uniqueness results.

The reader may notice that we have worked here under the monotonicity assumption. We could have also considered
the problem in short time, or with a “small coupling”. All these settings correspond to situation in which the MFG
system has a unique solution for any initial measure. When this does not hold, the solution of the master equation is
expected to be discontinuous. One knows almost nothing on the definition of the master equation outside of the smooth
set-up: this remains one of the major issues of the topic. To overcome this difficulty, an idea would be to add a common
noise to smoothen the solution. Although this approach is not understood in the whole space, there are now a few
results in this direction in the finite state space: we discuss this point now.

The MFG problem on finite state space has been first described by Lions [149] (Lesson 14/1 2011 and the Course
2011-’12). The probabilistic interpretation is carefully explained in [78], while the well-posedness of the master
equation (and its use for the convergence of the Nash system) is discussed in this setting in [27] and [79]. The addition
of a common noise to the master equation in finite state space is described in [34] and [26]. In particular, [26] provides
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the existence of smooth solutions even without the monotonicity assumption (see also [146], on problems with a major
player). Finally, for the master equation on finite state space we definitively refer to the contribution by F. Delarue in
the present volume.

1.4.4 Convergence of the Nash system

In this section, we study the convergence of Nash equilibria in differential games with a finite number of players, as
the number of players tends to infinity. We would like to know if the limit is a MFG model. Let us recall that, in
Subsection 1.3.3 we explained how to use the MFG system to find an ε−Nash equilibrium in a N−player game. So
here we consider the converse problem. As we will see, this question is much more subtle and, in fact, not completely
understood.

On one hand, this problem depends on the structure of information one allows to the players in the finite player
game. If in this game players observe only their own position (but they are aware of the controls played by the other
players and hence their average distribution), then the limit problem is (almost always) a MFG game (see the notes
below). On the other hand, if players observe each other closely and remember all the past actions, the convergence
cannot be expected because a deviating player can always be punished in the game with finitely many players (this is
the so-called Folk Theorem), while it is not the case in Mean Field Games. This kind of strategy, however, is not always
convincing because a player is often led to punish him/herself in order to punish a deviation. So the most interesting
case is when players play in closed loop strategies (in function of the current position of the other players): indeed,
this kind of strategy is time consistent (and is associated with a PDE, the Nash system). However, the answer to the
convergence problem is then much more complicated and we only have a partial picture.

We consider here a very smooth case, in which the Nash equilibrium in the N−player game satisfies a time-
consistency condition. More precisely, we assume that the Nash equilibrium is given through the solution (vN,i) of the
so-called Nash system:

−∂tvN,i −
∑
j

∆xjv
N,i +H(xi, Dxiv

N,i)

+
∑
j 6=i

Hp(xj , Dxjv
N,j) ·Dxjv

N,i = F (xi,m
N,i
X ) in (0, T )× TNd

vN,i(T, x) = G(xi,m
N,i
X ) in TNd

(1.164)

wherewe set, forX = (x1, . . . , xN ) ∈ (Td)N ,mN,i
X =

1

N − 1

∑
j 6=i

δxj .We explain below how this system is associated

with a Nash equilibrium.
Assuming that the coupling functions F andG are monotone, our aim is to show that the solution (vN,i) converges,

in a suitable sense, to the solution of the master equation without a common noise.
Throughout this part we denote by U = U(t, x,m) the solution of the master equation built in Theorem 21 which

satisfies (1.154) and (1.155). It solves
−∂tU −∆xU +H(x,DxU)−

∫
Td

divyDmU dm(y)

+

∫
Td
DmU(t, x,m, y) ·Hp(y,DxU(t, y,m)) dm(y) = F (x,m)

in (0, T )× Td × P2

U(T, x,m) = G(x,m) in Td × P2

(1.165)

Throughout the section, we suppose that the assumptions of the previous section are in force.
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1.4.4.1 The Nash system

Let us first explain the classical interpretation of the Nash system (1.164):
The game consists, for each player i = 1, . . . , N and for any initial position x0 = (x1

0, . . . , x
N
0 ), in minimizing

Ji(t0, x0, (α
j)) = E

[∫ T

t0

L(Xi
t , α

i
t) + F (Xi

t ,m
N,i
Xt

) dt+G(Xi
t ,m

N,i
Xt

)

]

where, for each i = 1, . . . , N ,
dXi

t = αitdt+
√

2dBit, Xi
t0 = xi0

We have setXt = (X1
t , . . . , X

N
t ). The Brownian motions (Bit) are independent, but the controls (αi) are supposed to

depend on the filtration F generated by all the Brownian motions.

Proposition 9 (Verification Theorem) Let (vN,i) be a classical solution to the above system. Then the N−uple of
maps (αi,∗)i=1,...,d := (−Hp(xi, Dxiv

N,i))i=1,...,d is a Nash equilibrium in feedback form of the game: for any
i = 1, . . . , d, for any initial condition (t0, x0) ∈ [0, T ] × TNd, for any control αi adapted to the whole filtration F ,
one has

Ji(t0, x0, (α
j,∗)) ≤ Ji(t0, x0, α

i, (αj,∗)j 6=i)

Proof. The proof relies on a standard verification argument and is left to the reader. �

1.4.4.2 Finite dimensional projections of U

Let U be the solution to the master equation (1.165). For N ≥ 2 and i ∈ {1, . . . , N} we set

uN,i(t,X) = U(t, xi,m
N,i
X ) where X = (x1, . . . , xN ) ∈ (Td)N , mN,i

X =
1

N − 1

∑
j 6=i

δxj . (1.166)

Note that the uN,i are at least C2 with respect to the xi variable because so is U . Moreover, ∂tuN,i exists and is
continuous because of the equation satisfied by U . The next statement says that uN,i is actually globally C1,1 in the
space variables:

Proposition 10 For any N ≥ 2, i ∈ {1, . . . , N}, uN,i is of class C1,1 in the space variables, with

Dxju
N,i(t,X) =

1

N − 1
DmU(t, xi,m

N
X , xj) (j 6= i)

and ∥∥Dxk,xju
N,i(t, ·)

∥∥
∞ ≤

C

N
(k 6= i, j 6= i).

Proof. LetX = (xj) ∈ (Td)N be such that xj 6= xk for any j 6= k. Let ε := minj 6=k |xj−xk|. For V = (vj) ∈ (Rd)N
with vi = 0, we consider a smooth vector field φ : Td → Rd such that

φ(x) = vj if x ∈ B(xj , ε/4).

Then, asU satisfies (1.154), (1.155), we can apply Proposition 6 which says that, (omitting the dependence with respect
to t for simplicity)

uN,i(X + V )− uN,i(X) = U((id+ φ)]mN,i
X )− U(mN,i

X )

=

∫
Td
DmU(mN,i

X , y) · φ(y) dmN,i
X (y) +O(‖φ‖2

L2(mN,iX )
)

=
1

N − 1

∑
j 6=i

DmU(mN,i
X , xj) · vj +O(

∑
j 6=i

|vj |2)
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This shows that uN,i has a first order expansion at X with respect to the variables (xj)j 6=i and that

Dxju
N,i(t,X) =

1

N − 1
DmU(t, xi,m

N
X , xj) (j 6= i).

AsDmU is continuous with respect to all its variables, uN,i is C1 with respect to the space variables in [0, T ]× TNd.
The second order regularity of the uN,i can be established in the same way. �

We now show that (uN,i) is “almost" a solution to the Nash system (1.164). More precisely, next Proposition states
that the (uN,i) solve the Nash system (1.164) up to an error of size 1/N .

Proposition 11 One has, for any i ∈ {1, . . . , N},

−∂tuN,i −
∑
j

∆xju
N,i +H(xi, Dxiu

N,i)

+
∑
j 6=i

Dxju
N,i(t,X) ·Hp(xj , Dxju

N,j(t,X)) = F (xi,m
N,i
X ) + rN,i(t,X)

in (0, T )× TNd

uN,i(T,X) = G(xi,m
N,i
X ) in TNd

(1.167)

where rN,i ∈ L∞((0, T )× TdN ) with

‖rN,i‖∞ ≤
C

N
.

Proof. As U solves (1.165), one has at a point (t, xi,m
N,i
X ):

−∂tU −∆xU +H(xi, DxU)−
∫
Td

divyDmU(t, xi,m
N,i
X , y) dmN,i

X (y)

+

∫
Td
DmU(t, xi,m

N,i
X , y) ·Hp(y,DxU(t, y,mN,i

X )) dmN,i
X (y) = F (xi,m

N,i
X )

So uN,i satisfies:

−∂tuN,i −∆xiu
N,i +H(xi, Dxiu

N,i)− 1

N − 1

∑
j 6=i

divyDmU(t, xi,m
N,i
X , yj)

+
1

N − 1

∑
j 6=i

Dxju
N,i(t,X) ·Hp(xj , DxU(t, xj ,m

N,i
X )) = F (xi,m

N,i
X )

By the Lipschitz continuity of DxU with respect tom, we have∣∣∣DxU(t, xj ,m
N,i
X )−DxU(t, xj ,m

N,j
X )

∣∣∣ ≤ Cd1(mN,i
X ,mN,j

X ) ≤ C

N − 1
,

so that, by Proposition 10, ∣∣∣∣ 1

N − 1
DxU(t, xj ,m

N,i
X )−Dxju

N,j(t,X)

∣∣∣∣ ≤ C

N2

and
1

N − 1

∑
j 6=i

Dxju
N,i(t,X) ·Hp(xj , DxU(t, xj ,m

N,i
X ))

=
∑
j 6=i

Dxju
N,i(t,X) ·Hp(xj , Dxju

N,j(t,X)) +O(1/N).

On the other hand, ∑
j

∆xju
N,i = ∆xiu

N,i +
∑
j 6=i

∆xju
N,i
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where, using Proposition 10 and the Lipschitz continuity of DmU with respect tom,∑
j 6=i

∆xju
N,i =

∫
Td

divyDmU(t, xi,m
N,i
X , y)dmN,i

X (y) +O(1/N) a.e.

Therefore
−∂tuN,i −

∑
j

∆xju
N,i +H(xi, Dxiu

N,i)

+
∑
j 6=i

Dxju
N,i(t,X) ·Hp(xj , Dxju

N,j(t,X)) +O(1/N) = F (xi,m
N,i
X ).

�

1.4.4.3 Convergence

We are now ready to state the main convergence results of [56]: the convergence of the value function and the
convergence of the optimal trajectories. Let us strongly underline that we have to work here under the restrictive
assumption that there exists a classical solution to the master equation. This solution is known to exist only on short
time intervals or under the Lasry-Lions monotonicity assumption. Outside this framework, a recent (and beautiful)
result of Lacker [140]Â states that the limit problem is a weak solution of a MFG model (i.e., involving some extra
randomness), provided the idiosyncratic noise is non degenerate.

Let us start with the convergence of the value function:

Theorem 22 Let (vN,i) be the solution to (1.164) and U be the classical solution to the master equation (1.165). Fix
N ≥ 1 and (t0,m0) ∈ [0, T ]× P1.

(i) For any x ∈ (Td)N , letmN
x := 1

N

∑N
i=1 δxi . Then

sup
i=1,··· ,N

∣∣vN,i(t0,x)− U(t0, xi,m
N
x )
∣∣ ≤ CN−1.

(ii)For any i ∈ {1, . . . , N} and xi ∈ Td, let us set

wN,i(t0, xi,m0) :=

∫
Td
. . .

∫
Td
vN,i(t0,x)

∏
j 6=i

m0(dxj),

where x = (x1, . . . , xN ). Then,

∥∥wN,i(t0, ·,m0)− U(t0, ·,m0)
∥∥
L1(m0)

≤


CN−1/d if d ≥ 3
CN−1/2 log(N) if d = 2
CN−1/2 if d = 1

.

In (i) and (ii), the constant C does not depend on t0,m0, i nor N .

Theorem 22 says, in two different ways, that the (vN,i)i∈{1,··· ,N} are close to U . In the first statement, one com-
pares vN,i(t,x) with the solution of the master equation evaluated at the empirical measure mN

x while, in the second
statement, the averaged quantity wN,i can directly be compared with the solution of the MFG system (1.152) thanks to
the representation formula (1.153) for the solution U of the master equation.

The proof of Theorem 22 consists in comparing the “optimal trajectories" for vN,i and for uN,i, for any i ∈
{1, . . . , N}. For this, let us fix t0 ∈ [0, T ), m0 ∈ P2 and let (Zi)i∈{1,...,N} be an i.i.d family of N random
variables of law m0. We set Z = (Zi)i∈{1,...,N}. Let also ((Bit)t∈[0,T ])i∈{1,...,N} be a family of N independent
d-dimensional Brownian motions which is also independent of (Zi)i∈{1,...,N}. We consider the systems of SDEs with

96



variables (Xt = (Xi,t)i∈{1,...,N})t∈[0,T ] and (Yt = (Yi,t)i∈{1,...,N})t∈[0,T ](the SDEs being set on Rd with periodic
coefficients): 

dXi,t = −Hp

(
Xi,t, Dxiu

N,i(t,Xt)
)
dt

+
√

2dBit, t ∈ [t0, T ],
Xi,t0 = Zi,

(1.168)

and 
dYi,t = −Hp

(
Yi,t, Dxiv

N,i(t,Yt)
)
dt

+
√

2dBit, t ∈ [t0, T ],
Yi,t0 = Zi.

(1.169)

Note that the (Yi) are the optimal solutions for the Nash system, while, by the mean field theory, the (Xi) are close to
the optimal solutions in the mean field limit.

Since the (uN,i)i∈{1,...,N} are symmetrical, the processes ((Xi,t)t∈[t0,T ])i∈{1,...,N} are exchangeable. The same
holds for the ((Yi,t)t∈[t0,T ])i∈{1,...,N} and, actually, the N R2d-valued processes ((Xi,t, Yi,t)t∈[t0,T ])i∈{1,...,N} are
also exchangeable.

Theorem 23 We have, for any i ∈ {1, . . . , N},

E
[

sup
t∈[t0,T ]

|Yi,t −Xi,t|
]
≤ C

N
, ∀t ∈ [t0, T ], (1.170)

E
[∫ T

t0

|Dxiv
N,i(t,Yt)−Dxiu

N,i(t,Yt)|2dt
]
≤ CN−2, (1.171)

and, P−almost surely, for all i = 1, . . . , N ,

|uN,i(t0,Z)− vN,i(t0,Z)| ≤ CN−1, (1.172)

where C is a (deterministic) constant that does not depend on t0,m0 and N .

The main step of the proof of Theorem 22 and Theorem 23 consists in comparing the maps vN,i and uN,i along the
optimal trajectory Yi. Using the presence of the idiosyncratic noises Bi and Proposition 11 gives (1.171), from which
one derives that the Xi and the Yi solve almost the same SDE, whence (1.170). We refer to [56] for details.

1.4.4.4 Comments

The question of the convergence of N−player games to the MFG system has been and is still one of the most
puzzling questions of the MFG theory (together with the notion of discontinuous solution for the master equation). In
their pioneering works [143, 144, 145] Lasry and Lions first discussed the convergence for open-loop problems in a
Markovian setting, because in this case the Nash equilibrium system reduces to a coupled system ofN equations in Rd
(instead of N equations in RNd), and in short time, where the estimates on the derivatives of the vN,i propagate from
the initial condition.

The convergence of open-loop Nash equilibria (in a general setting) is now completely understood thanks to the
works of Fischer [105] and Lacker [139], who identified completely the possible limits: these limits are always MFG
equilibria. If these results are technically subtle, they are not completely surprising because at the limit players actually
play open-loop controls: so there is not a qualitative difference between the game with finitely many players and the
mean field game.

The question of convergence of closed-loop equilibria is more subtle. As shows a counter-example in [68, I.7.2.5],
this convergence does not hold in full generality: however, the conditions under which it holds are still not clear. We
have presented above what happens in MFG problems for monotone coupling and nondegenerate idiosyncratic noise.
The result also holds for MFG problems with a common noise: see [56]. The convergence is quite strong, and there is
a convergence rate. In that same setting, [95] and [96] study the central limit theorem and the large deviation. Lacker’s
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result [140], on the other hand, allows to prove the convergence towards (weak) solutions of MFG equilibria without
using the master equation, under the assumption of nondegeneracy of the idiosyncratic noise only. The result relies on
the fact that, in some average sense, the deviation of a player barely affects the distribution of the players when N is
large. Heuristically, this is due to the presence of the noise, which prevents the players to guess if another player has
deviated or not. One of the drawbacks of Lacker’s paper is that there might be a lot of (weak) MFG equilibria, outside
of the monotone case where it is unique. It is possible that actually only one of these equilibria is selected at the limit:
this is what happens in the examples discussed in [80, 97].

1.5 Appendix: P.-L. Lions’ courses on Mean Field Games at the Collège de France

Mean Field Game theory has been largely developed from Lions’s ideas on the topic as presented in his courses at the
Collège de France during the period 2007-2012. These courses have been recorded and can be found at the address:
http://www.college-de-france.fr/site/pierre-louis-lions/_course.htm
To help the reader to navigate between the different years, we collect here some informal notes on the organization

of the courses. We will use brackets to link some of the topics below to the content of the previous Sections.

1.5.1 Organization 2007-2008

(Symmetric functions of many variables; differentiability on the Wasserstein space)

• 09/11/2007
Behavior as N →∞ of symmetric functions of N variables. Distances on spaces of measures. Eikonal equation in
the space of measures (by Lax-Oleinik formula). Monomial on the space of measures. Hewitt-Savage theorem.

• 16/11/2007
A proof of Hewitt-Savage theorem by the use of monomials on the space of measures.

• 23/11/2007
1st hour: A remark on quantum mechanics (antisymmetric functions of N variables).
2nd hour: extensions on the result about the behavior as N →∞ of symmetric functions of N variables.
- other moduli of continuity (|uN (X)− uN (Y )| ≤ C infσ maxi |xi − yσ(i)|).
- relaxation of the symmetry assumption: symmetry by blocs.
- distances with weights (replacing 1/N by weights (λi)).
Discussion on the differential calculus on P2: functions C1 over P2 defined through conditions on their restriction
to measures with finite support.

• 07/12/2007
1st hour: Back to the differential calculus on P2; application to linear transport equation, to 1st order HJ equations
(discussion on scaling (1/N)

∑
iH(NDxiu

N ) - discussion on the restriction to subquadratic hamiltonians).
2nd hour: second order equations. Heat equations (independent noise, common noise); case of diffusions depending
on the measure.

• 14/12/2007
Discussion about differentiability, C1, C1,1 on the Wasserstein space [cfr. Section 1.4.2]. Wasserstein distance
computed by random variables.

1.5.2 Organization 2008-2009

(Hamilton-Jacobi equation in the Wasserstein space - Derivation and analysis of the MFG system)
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• 24/10/08
Nash equilibria in one shot symmetric games as the number of players tends to infinity (example of the towel on the
beach).
Characterization of the limit of Nash equilibria.
Existence - Discussion on the uniqueness through an example.
Nash equilibria (in the game with infinitely many players) as optima of a functional (efficiency principle).

• 31/10/2008
Differentiability on P2 through the representation as a function of random variables. Definition of C1, link with
the differentiability of functions of many variables. Structure of the derivative: law independent of the choice of the
representative, derivative as a function of the random variable [cfr. Section 1.4.2].
First order Hamilton-Jacobi equations in the space of measures. Definition with test functions inL2(Ω). Lax-Oleinik
formula. Uniqueness of the solution.

• 07/11/2008
First order Hamilton-Jacobi equations in the space of measures: comparison. Limit of HJ with many variables:
Eikonal equation, extension to general Hamiltonians, weak coupling.
Discussion about the choice of the test function: is it possible to take test functions on L2(Ω) which depend on the
law only?

• 14/11/2008
1st hour: 2nd order equations in probability spaces. Back to the limit of equations (A) ∂tuN −∆uN = 0 and (B)
∂tu

N −
∑
i,j

∂2uN

∂xi∂xj
= 0: different expressions for the limit.

2nd hour: strategies for the proof of uniqueness for the limit equation (A): (1) by verification—restricted to linear
eq, (2) in L2(Rd)—requires coercivity conditions which are missing here, (3) Feng-Katsoulakis technique—works
mostly for the heat equation and relies on the contracting properties of the heat eq in the Wasserstein space.

• 21/11/2008
(Digression: Back to the family of polynomials: restriction to U(m) = Πk

∫
Rd φk(x)m(x).)

Analysis of the “limit heat equation" in the Wasserstein space (case (A)): explanation of the fact that it is a first order
equation - interpretation as a geometric equation.
Back to uniqueness: use of HJ in Hilbert spaces (cf. Lions, Swiech). Key point: diffusion almost in finite dimension.
Proof of uniqueness by using formulation in L2(Ω).
Nonlinear equations of the form

(∗) ∂tu
N − 1

N

∑
i

F (N D2uNi ) = 0.

Heuristics for the limit by polynomials.
Limit equation of (*): ∂tU − E1[F (E2[U ′′(G,G)])] = 0. Uniqueness: as before.
Beginning of the analysis of the case of complete correlation.

• 28/11/2008
Analysis of “limit heat equation" in the Wasserstein space (case (B)). Discussion on the well-posedness.
Remark on the dual equation.

• 05/12/2008
Derivation of the MFG system from the N-player game [cfr Section 1.4.4].
Back to the system of N equations and link with Nash equilibria. Ref. Bensoussan-Frehse. Uniqueness of smooth
solutions; existence: more difficult, requires conditions in x of the Hamiltonian (growth of ∂H∂x ).
Problem: understand what happens as N → +∞.
Key point: one needs to have |∂u

N
j

∂xj
| ≤ C and |∂u

N
j

∂xi
| ≤ C/N . Known for T small or special structure ofH . Open in

general.
One then expects that uNi → U(xi,m, t). Derivation of the Master equation for U (without common noise, [cfr.
Section 1.4.3]).
Discussion on the Master equation; uniqueness. No maximum principle.
Derivation of the MFG system from the Master equation.
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Direct derivation of theMFG system from the Nash system: evolution of the density of the players in theRNd system
for the Nash equilibrium with N players when starting from an initial density m0; cost of a player with respect to
the averaged position of the other players. Propagation of chaos under the assumption | ∂

2uNj
∂xj∂xk

| ≤ C/N2.
• 19/12/2008

Analysis of the MFG system for time dependent problems: second order [cfr. Thm 4 and Thm 11].
Existence: H Lipschitz or regularizing coupling.
Discussion on the coupling: local or nonlocal, regularizing.
Case H Lipschitz + coupling of the form g = g(m,∇m) with a polynomial growth in ∇m. A priori estimates for
(m,u) and its derivatives.
Case of a regularizing coupling F = F (m) without condition on H (here H = H(∇u)): a priori estimates by
Bernstein method.

• 09/01/2009
Existence of solutions for the MFG system: by strategy of fixed point and approximation.
Starting point: H Lipschitz and regularizing coupling.
Other cases by approximation.
Description of “la ola".
Discussion on the uniqueness for the system MFG. Two regimes: monotone coupling versus small time horizon.

• Â 16/01/2009
1st hour: Interpretation of the MFG system (with a local coupling and planning problem setting) as an optimal
control problem of the Fokker-Planck equation [cfr. Thm 17].
Comment on the existence of a minimum, on the uniqueness (counter-example to uniqueness when the monotonicity
is lost).
Loss of uniqueness by analysis of the linearized system (when existence of a trivial solution): the linearized problem
is well-posed only if the horizon is small.
2nd hour: Use of the Hopf-Cole transform for quadratic Hamiltonians [cfr. Remark 13].
Back on the existence of the solution to the MFG system [cfr. Remark 12]:{

−∂tu−∆u+H(p) = f(m)
∂tm−∆m− div(mHp(Du)) = 0

- if f is bounded and H is subquadratic, existence of smooth solutions (e.g., H(p) = pα, α ≤ 2). (works also for
f(m) = c0m

p for p small).
- if H is superquadratic and f is nonincreasing: open problem.
- if f(m) = cmβ with c > 0, H(p) = c0|p|γ with γ > 1. First a priori estimate on

∫ ∫
m1+β + m|Du|γ ≤ C.

Second a priori estimate obtained by multiplying by ∆m the equation for u, and by ∆u the equation of m and
adding the resulting quantities (computation for γ = 2): one gets d

dt

∫
DuDm =

∫
|D2u|2m+ f ′(m)|Dm|2.

1.5.3 Organization 2009-2010

(Analysis of the MFG system: the local coupling - Variational approach to MFGs)

• 06/11/2009
Presentation of the MFG system.
1st hour: Maximum principle in the deterministic case for smooth solutions: if u0 ≤ v0, then u ≤ v.
Proof by reduction to a time-space elliptic equation with boundary conditions Dirichlet and nonlinear Neumann (+
discussion on the link with Euler equation). Proof that this is an elliptic equation.
2nd hour: generalization to the case where the initial condition on u is a function ofm. Discussion of the maximum
principle when the running cost f grows: not true in general.
Discussion of the maximum principle when the continuity equation has a right-hand side.
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• 13/11/2009
Comparison principle in the second order setting with a quadratic hamiltonian.
Quadratic Hamiltonian: change of variable (Hopf-Cole transform, [cfr. Remark 13]) and algorithm to build solutions.
Conjecture: no comparison principle for more general Hamiltonians.

• 20/11/2009
Comparison principle: second order setting with a quadratic Hamiltonian and stationary MFG systems.
Comments on the convergence of the MFG system as T → +∞ [cfr. Section 1.3.6]: convergence of mT (t),
uT (t)− < uT (t) >, and < uT (t) > /T . Claim that uT (t)− λ̄(T − t) converges.
Ergodic problem: comparison in the deterministic setting: if f1 ≤ f2, then λ̄1 ≤ λ̄2. When H(x, ξ) ≥ H(x, 0) for
all ξ, thenm = [f−1(x, λ)]+ where λ is such that

∫
m = 1. Then u = constant in {m > 0}; solveH(x,Du) = λ

in {m = 0} with boundary conditions. Justification by ν → 0+ for instance.
Comparison in the second order setting: quadratic H .
Planification problems. Approach by penalization. Link with Wasserstein.

• 27/11/2009
Link between MFG with optimal control of (backward) Fokker-Plank equation:

∂tm+∆m+ div(mα) = 0, m(T, x) = m1(x)

where α = α(x, t) and the cost is of the form∫ T

0

∫
Q

mL(x, α)dxdt+ Ψ(m) +

∫
Q

Φ(x,m(0, x))dx

Planing pb: Φ = 1
2ε‖m−m0‖22.

Derivation of the optimality conditions. Generalization to the case L(x, α,m) which is a functional ofm. Approach
by optimal control to the planning problem. Leads to controllability issues. Discussion of the polynomial case.
2nd hour: First order planning problem: existence of a smooth solution.
Step 1: link with quasilinear elliptic equations with nonlinear boundary conditions [cfr. Remark 16].
Step 2: L∞ estimates on w := ∂tu+H(x,Du) (i.e., estimate onm): extension of Bernstein method by looking at
the equation satisfied by w.
Step 3: L∞ estimate on u. Indeed u is smooth and solves ∂tu+H(Du) = f(m) where f(m) is bounded. So it is a
forward and backward solution which gives the result.

• 04/12/2009
Planning problem (without diffusion): link with quasilinear elliptic equation (in time-space) with nonlinear boundary
conditions. Lipschitz estimates on u: Bernstein method again. Difficulties: constants are subsolutions and boundary
conditions.

• 11/12/2009
First hour: Back to the first order planning problem.
Dual problem, i.e., optimal control of HJ equation [cfr. Section 1.3.7.2]. Namely

inf
u

∫ ∫
G(
∂u

∂t
+H(Du))−

∫
(m1u(T )−m0u(0)).

Computation of the first variation, and link with the MFG system. Comment on the fact that f = f(m) has to be
strictly increasing. Generalization to second order problems.
Counter-examples:

(i) (reminder whenH at most linear (first or second order): existence of solutions). In this case there is no existence
of solution for the dual problem (at least for small time).

(ii)Regularity? Normalization: H(0) = 0, H ′(0) = 0, f(1) = 0, A = H ′′(0) > 0, f ′(1) = a > 0. Then m = 1,
u = 0 is the unique solution form0 = mT = 0. One linearizes to get ∂tv−ν∆v = an, ∂tn+ν∆n+div(ADv) =
0 with n(0) = n0 and n(T ) = nT where

∫
n0 =

∫
n1. Stability requires that A > 0. Proposition: the linearized
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(periodic) problem is well-posed iif A > 0, a ≥ 0, ν ≥ 0. Proof for first order, straightforward; for second order,
Fourier.

Second hour: end of the proof.
Second order planning problem. Approach by optimization (optimal control of Fokker-Planck equation) yields the
existence and uniqueness of very weak solutions. Main issue: regularity. Understood when H = 1

2 |p|
2. Theorem:

when H = 1
2 |p|

2, and f non decreasing with polynomial growth, then there is a unique smooth solution. General-
ization to the case |H ′′(p) − I| ≤ C√

1+|p|2
(conj. could be generalized to the case cI ≤ H ′′ ≤ CI). Proof by the

Hopf-Cole transformation.
• 18/12/2009

MFG problems with congestion terms [cfr. Example 1]: minimizeE
[ ∫ T

t
q−1|αs|q(m(s,Xs))

ads+ u0(XT )
]
with

dXs = σdWs − αsds where q > 1 and a > 0. Leads to the MFG system of the form
∂tu− ν∆u+ 1

p
|Du|p
mb

= 0

−∂tm− ν∆m+ div( |Du|
p−2Du
mb

m) = 0
m(T ) = mT , u(0) = u0

(1.173)

Discussion of the (lack of) link with the optimal control of the Fokker-Planck equation. Uniqueness condition for
the MFG system (for p = 2 and 0 < b ≤ 2).

• 08/01/2010
Back to the congestion problem. Uniqueness of the solution of (1.173) in the case (1) where the Hamiltonian is of
the form |Du|2/(2f(m)) (and the term in the divergence bymDu/f(m) and (2) p > 1 and 0 < b ≤ 4/p′).
Discussion on the existence of a solution for ν = 0 by using the fact that the equation of u is an elliptic equation in
time-space: bounds on u,m and on Du. Regularity issue ifm vanishes.
Analysis of the case ν > 0, p = 2, 0 < b(≤ 2): a priori estimates and notion of solution.

• 15/01/2010
Back to to the congestion problem (1.173) when p = 2, b = 1. A priori estimates continued (bounds on u, on∫ ∫
|Du|2(1 + m−1), on

∫ ∫
|D2u|2 and on

∫ ∫
|Du|2|Dm|2/m2). Existence of a solution by approximation

(replacing |Du|2/m by |Du|2/(δ +m) for δ > 0).

1.5.4 Organization 2010-2011

(the master equation in infinite and finite dimension)

• 05/11/2010
Uniqueness for the MFG system whenH = H(Du,m) [cfr. Thm 13]. Different approaches: monotonicity, contin-
uation, reduction to an elliptic equation.

• 12/11/2010
Uniqueness for the MFG system whenH = H(Du,m) (continued): linearization, problems with actualization rate.
On the Master equation (MFGf)3:

1. Heuristics: Master equation as a limit system of Nash equilibria with N players as N → +∞
2. The Master Equation contains the MFG equation (when β = 0)
3. Back to the uniqueness proof: U is monotone
4. Back to N → +∞: MFGf contains the Nash system without individual noise.

• 19/11/2010

3 Warning: missing term in the MFGf.
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1st hour: Back to the Master equation4. Check that when ν 6= 0 the equation does not match with Nash eq for N
players. Link with optimal control problems in the case of separate variables (discussion of the case of non separate
variables).
2nd hour: Hamilton-Jacobi equation associated with an optimal control of Fokker-Planck equation. Derivation of
the master equation by taking the derivative of the Hamilton-Jacobi equation.

• 26/11/2010
Erratum on the master equation. Interpretation of the Master Equation as a limit as N → +∞: explanation of the
second order terms [cfr. Section 1.4.3.3].
1) Interpretation in terms of optimal control problem (β = 0)
2) Uniqueness related to the convexity of F and Φ
3) General principle for the link between optimal control and the Master Equation in infinite dimension.

• 03/12/2010
System derived from Hamilton-Jacobi: propagation of monotonicity.

• 10/12/2010
System derived from Hamilton-Jacobi:
- Propagation of monotonicity for second order systems.
- Propagation of smoothness, method of characteristics.

• 17/12/2010
Propagation of monotonicity for ∂U∂t + (H ′(DU)D)U = f(x) +

∑
aα,β

∂2U
∂xαxβ

.
• 07/01/2011

Existence and uniqueness of a monotone solution for ∂U∂t + (H ′(DU)D)U = f(x).
Remarks on semi-concavity for HJ equations.

• 14/01/2011
1st hour: Structure of the master equation in the discrete setting (without diffusion):

∂tUi + (
∑
j

xjH
′
j(x,∇U)∇)Ui +Hi(x,∇U) = 0.

Propagation of monotonicity.
2nd hour: Propagation ofmonotonicity for independent noises (in the infinite dimensional setting). Finite dimensional
setting, in which the noise yields a term of the form

∑
k,l aklxl∂kUi +

∑
k akiUk.

Monotonicity for the common noise (in the infinite dimensional setting; the finite dimensional setting being open).

1.5.5 Organization 2011-2012

(Analysis of the master equation for MFG in the finite state space, [cfr Section 1.4.3.2])

• 28/10/2011
Analysis of equation: ∂U∂t + (U.∇)U = 0 (where U : Rn × (0,+∞)→ Rn).
- case U0 = ∇φ0: then U = ∇φ with φ sol of HJ equation.
- case U0 monotone, bounded and Lipschitz continuous: existence and uniqueness of a monotone, bounded and
Lipschitz continuous sol, which is smooth if U0 is smooth.
Generalization to ∂V

∂t + (F (V ).∇)V = 0, provided F and V0 monotone (since U = F (V ) the initial equation)
Explicit formula: linear case, method of characteristics: solution is given by U = (U−1

0 + tId)
−1 as long as there

is no shock. Quid in general?
Propagation of the condition ∂Ui

∂xj
≤ 0, j 6= i.

• 04/11/2011
Back to the system ∂U

∂t + (U.∇)U = 0.

4 Warning: missing term in the MFGf.
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Propagation of the condition ∂Ui
∂xj
≤ 0, j 6= i. Consequence: ∂Ui∂xi

is a bounded measure.
A striking identity: ifU is a classical solution of ∂U∂t +(F (U).∇)U = 0, then ∂

∂t det(∇U)+div(F (U) det(∇U)) =
0.

• 25/11/2011
Application to non-convex HJ equations: examples of smooth solutions.

• 09/12/2011
Propagation of monotonicity with second order terms.

• 16/12/2011
Analysis of ∂U∂t + (F (U).∇)U = 0.
Following Krylov idea: introduceW (x, η, t) = U(x, t) · η.

• 06/01/2012
Analysis of ∂U∂t + (F (U).∇)U = f(x): existence of a smooth global solution under monotonicity assumptions.
A priori estimates when U0 satisfies U ′0(z)ξ · ξ ≥ α|U ′0(z)ξ|2 for some α > 0 and any z, ξ.

• 13/01/2012
Analysis of ∂U∂t + (F (U).∇)U = 0 with U0 and F monotone (continued). A priori estimates on ∇U under the
assumption that there exists α > 0 such that F ′(z)ξ · ξ ≥ α|F ′(z)ξ|2 for any z, ξ.
Generalization to the case with a right-hand side of the form akl∂klU

i + bikl∂lU
k where aαβ symmetric ≥ 0.

1.5.6 Additional notes

• 08/11/2013
Seminar: on the differentiability inWasserstein space, point of view of the random variables. MFGs in the finite state
case: the master equation as a first order hyperbolic system. Back to the infinite dimensional case, the Hilbertian
approach: if U(t, x,X) is the solution of the classical master equation, one sets V (t,X) = U(t,X,L(X)).
Discussion of the monotonicity in the Hilbertian framework.

References

1. Y. Achdou, Finite difference methods for mean field games, Hamilton-Jacobi equations: approximations, numerical analysis and
applications (P. Loreti and N. A. Tchou, eds.), Lecture Notes in Math., vol. 2074, Springer, Heidelberg, 2013, pp. 1–47.

2. Y. Achdou, M. Bardi and M. Cirant, Mean field games models of segregation, Mathematical Models and Methods in Applied
Sciences, 27 (2017), pp. 75–113.

3. Y. Achdou, F. J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, Partial differential equation models in macroeconomics, Phil.
Trans. R. Soc. A, 372 (2014), p. 20130397.

4. Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: numerical methods for the planning problem, SIAM J.
Control Opt. 50 (2012) 77-109.

5. Y. Achdou and I. Capuzzo Dolcetta, Mean field games: numerical methods, SIAM J. Numer. Anal. 48 (2010), 1136-1162.
6. Y. Achdou, M. K. Dao, O. Ley and N. Tchou A class of infinite horizon mean field games on networks, Netw. Heterog. Media 14

(2019), 537–566.
7. Y. Achdou, J. Han, J.-M. Lasry, P.-L. Lions and B. Moll, Income and wealth distribution in macroeconomics: A continuous-time

approach. Technical report, National Bureau of Economic Research, 2017.
8. Y. Achdou and Z. Kobeissi Mean Field Games of Controls: Finite Difference Approximations. (2020) arXiv preprint

arXiv:2003.03968.
9. Y. Achdou andA. Porretta,Convergence of a finite difference scheme to weak solutions of the system of partial differential equation

arising in mean field games, SIAM J. Numer. Anal. 54 (2016), 161–186.
10. Y. Achdou and A. Porretta, Mean field games with congestion, Ann. I. H. Poincaré -AN- 35 (2018), pp. 443–480.
11. S. Ahuja, Well-posedness of mean field games with common noise under a weak monotonicity condition, SIAM Journal on Control

and Optimization, 54 (2016), pp. 30–48.
12. S. Ahuja, W. Ren and T.-W. Yang, Asymptotic analysis of mean field games with small common noise, Asymptotic Analysis, 106

(2018), pp. 205–232.
13. S. R. Aiyagari, Uninsured idiosyncratic risk and aggregate saving, The Quarterly Journal of Economics, 109 (1994), pp. 659–684.

104



14. S. Albeverio, Y. G. Kondratiev and M. Röckner, Analysis and geometry on configuration spaces, Journal of functional analysis,
154 (1998), pp. 444–500.

15. A. Alfonsi and B. Jourdain, Lifted and geometric differentiability of the squared quadratic Wasserstein distance, arXiv preprint
arXiv:1811.07787, (2018).

16. L. Ambrosio, Transport equation and cauchy problem for BV vector fields, Inventiones mathematicae, 158 (2004), pp. 227–260.
17. L. Ambrosio, Transport equation and cauchy problem for non-smooth vector fields. Calculus of Variations and nonlinear partial

differential equations, pp. 1–41. Lecture Notes in Math. 1927, Springer Berlin, 2008.
18. L. Ambrosio and W. Gangbo, Hamiltonian odes in the Wasserstein space of probability measures, Communications on Pure and

Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 61 (2008), pp. 18–53.
19. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer, 2006.
20. R. J. Aumann, Markets with a continuum of traders, Econometrica: Journal of the Econometric Society, (1964), pp. 39–50.
21. M.BalandatandC.J. Tomlin,On efficiency inmean field differential games. In 2013AmericanControl Conference (pp. 2527-2532).

(2013, June) IEEE.
22. J.M. Ball, A version of the fundamental theorem for Young measures, PDE’s and continuum models of phase transitions. Lecture

Notes in Physics, 344, (Rascle, M., Serre, D., and Slemrod, M., eds.) Springer 1989, 207–215.
23. M. Bardi and P. Cardaliaguet, Convergence of some Mean Field Games systems to aggregation and flocking models. (2020) arXiv

preprint arXiv:2004.04403.
24. M. Bardi and M. Cirant, Uniqueness of solutions in mean field games with several populations and neumann conditions, in PDE

models for multi-agent phenomena, Springer, 2018, pp. 1–20.
25. M. Bardi and M. Fischer, On non-uniqueness and uniqueness of solutions in finite-horizon mean field games, ESAIM: Control,

Optimisation and Calculus of Variations, 25 (2019), p. 44.
26. E. Bayraktar, A. Cecchin, A. Cohen and F. Delarue, Finite state mean field games with wright-fisher common noise, arXiv

preprint arXiv:1912.06701, (2019).
27. E. Bayraktar and A. Cohen, Analysis of a finite state many player game using its master equation, SIAM Journal on Control and

Optimization, 56 (2018), pp. 3538–3568.
28. J-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer.

Math. 84 (2000) 375-393.
29. J.D. Benamou, G. Carlier and F. Santambrogio Variational mean field games. In Active Particles, Volume 1 (pp. 141-171). (2017)

BirkhÃ¤user, Cham.
30. A. Bensoussan, M. Chau and S. Yam, Mean field games with a dominating player, Applied Mathematics &amp; Optimization, 74

(2016), pp. 91–128.
31. A. Bensoussan, J. Frehse and P. Yam, Mean field games and mean field type control theory, vol. 101, Springer, 2013.
32. C. Bertucci, Optimal stopping in mean field games, an obstacle problem approach, Journal de Mathématiques Pures et Appliquées,

120 (2018), pp. 165–194.
33. C. Bertucci, Fokker-Planck equations of jumping particles and mean field games of impulse control. In Annales de l’Institut Henri

PoincarÃ© C, Analyse non linÃ©aire (2020).
34. C. Bertucci, J.-M. Lasry and P.-L. Lions, Some remarks on mean field games, Communications in Partial Differential Equations,

44 (2019), pp. 205–227.
35. C. Bertucci, J.-M. Lasry and P.-L. Lions, Master equation for the finite state space planning problem, preprint arXiv:2002.09330

(2020).
36. C. Bertucci, J.-M. Lasry and P.-L. Lions, Strategic advantages in mean field games with a major player, preprint arXiv:2002.07034

(2020).
37. P. Billingsley, Probability and measure, John Wiley & Sons, 2008.
38. G. Bouveret, R. Dumitrescu, and P. Tankov,Mean-field games of optimal stopping: a relaxed solution approach, Siam J. Control

Optim. 58 (2020), 1795–1821.
39. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on pure and applied

mathematics, 44 (1991), pp. 375–417.
40. A. Briani and P. Cardaliaguet, Stable solutions in potential mean field game systems, Nonlinear Differential Equations and

Applications NoDEA, 25 (2018), p. 1.
41. R. Buckdahn, J. Li, S. Peng, and C. Rainer, Mean-field stochastic differential equations and associated pdes, The Annals of

Probability, 45 (2017), pp. 824–878.
42. M. Burger, A. Lorz, and M. T. Wolfram, On a Boltzmann mean field model for knowledge growth, SIAM Journal on Applied

Mathematics, 76(5), (2016), 1799-1818.
43. M. Burger, A. Lorz, and M. T. Wolfram, Balanced growth path solutions of a Boltzmann mean field game model for knowledge

growth, Kinet. Relat. Models, 10(1) (2017),117-140.
44. F. Camilli and R. De Maio A time-fractional mean field game. Advances in Differential Equations, 24(9/10) (2019), 531-554.
45. F. Camilli and C. Marchi, Stationary mean field games systems defined on networks, SIAM Journal on Control and Optimization,

54(2), (2016) 1085-1103.
46. L. Campi and M. Fischer, n-player games and mean-field games with absorption, The Annals of Applied Probability, 28 (2018),

pp. 2188–2242.
47. P. Cannarsa and R. Capuani, Existence and uniqueness for mean field games with state constraints, in PDE models for multi-agent

phenomena, Springer, 2018, pp. 49–71.

105



48. P. Cannarsa, R. Capuani, and P. Cardaliaguet, C1,1-smoothness of constrained solutions in the calculus of variations with
application to mean field games, arXiv preprint arXiv:1806.08966, (2018).

49. P. Cannarsa, R. Capuani, and P. Cardaliaguet, Mean field games with state constraints: from mild to pointwise solutions of the
pde system, arXiv preprint arXiv:1812.11374, (2018).

50. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations and optimal control. Birkhauser, Boston, 2004.
51. P. Cardaliaguet, Notes on mean field games, Technical report, 2010.
52. P. Cardaliaguet, Long time average of first order mean field games and weak kam theory, Dynamic Games and Applications, 3

(2013), pp. 473–488.
53. P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, in Analysis and geometry in control theory

and its applications, Springer, 2015, pp. 111–158.
54. P. Cardaliaguet, M. Cirant and A. Porretta, Remarks on nash equilibria in mean field game models with a major player, arXiv

preprint arXiv:1811.02811, (2018).
55. P. Cardaliaguet, M. Cirant and A. Porretta, Splitting methods and short time existence for the master equations in mean field

games, arXiv preprint arXiv:2001.10406, (2020).
56. P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field

Games:(AMS-201), vol. 201, Princeton University Press, 2019.
57. P. Cardaliaguet and P. J. Graber, Mean field games systems of first order, ESAIM: Control, Optimisation and Calculus of

Variations, 21 (2015), pp. 690–722.
58. P. Cardaliaguet, P. J. Graber, A. Porretta, and D. Tonon, Second order mean field games with degenerate diffusion and local

coupling, Nonlinear Differential Equations and Applications NoDEA, 22 (2015), pp. 1287–1317.
59. P. Cardaliaguet and S. Hadikhanloo, Learning in mean field games: the fictitious play. ESAIM: Control, Optimisation and

Calculus of Variations, 23(2) (2017), 569-591.
60. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta, Long time average of mean field games., Networks & Heterogeneous

Media, 7 (2012).
61. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta, Long time average of mean field games with a nonlocal coupling,

SIAM Journal on Control and Optimization, 51 (2013), pp. 3558–3591.
62. P. Cardaliaguet and C.-A. Lehalle,Mean field game of controls and an application to trade crowding, Mathematics and Financial

Economics, 12 (2018), pp. 335–363.
63. P. Cardaliaguet andM.Masoero,Weak kam theory for potential mfg, Journal of Differential Equations, 268 (2020), pp. 3255–3298.
64. P. Cardaliaguet, A. R. Mészáros, and F. Santambrogio, First order mean field games with density constraints: pressure equals

price, SIAM Journal on Control and Optimization, 54 (2016), pp. 2672–2709.
65. P. Cardaliaguet and A. Porretta, Long time behavior of the master equation in mean field game theory, Analysis & PDE, 12

(2019), pp. 1397–1453.
66. P. Cardaliaguet and C. Rainer, On the (in) efficiency of MFG equilibria. SIAM Journal on Control and Optimization, 57(4)

(2019), 2292-2314.
67. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM Journal on Control and Optimization, 51 (2013),

pp. 2705–2734.
68. R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications, Springer Verlag, 2017.
69. R. Carmona, F. Delarue, and D. Lacker, Mean field games with common noise, The Annals of Probability, 44 (2016), pp. 3740–

3803.
70. R. Carmona, F. Delarue, and D. Lacker, Mean field games of timing and models for bank runs, Applied Mathematics &

Optimization, 76 (2017), pp. 217–260.
71. R. Carmona, C.V. Graves and Z. Tan, Price of anarchy for mean field games. ESAIM: Proceedings and Surveys, 65, 349-383

(2019).
72. R. Carmona, and D. Lacker, A probabilistic weak formulation of mean field games and applications, The Annals of Applied

Probability, 25 (2015), pp. 1189–1231.
73. R. Carmona, M. LauriÃ¨re and Z. Tan Linear-quadratic mean-field reinforcement learning: convergence of policy gradient

methods. (2019) arXiv preprint arXiv:1910.04295.
74. R. Carmona, M. LauriÃ¨re and Z. TanModel-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning.

(2019) arXiv preprint arXiv:1910.12802.
75. R. Carmona and P. Wang, Finite state mean field games with major and minor players, arXiv preprint arXiv:1610.05408, (2016).
76. R. Carmona and P. Wang, An alternative approach to mean field game with major and minor players, and applications to herders

impacts, Applied Mathematics & Optimization, 76 (2017), pp. 5–27.
77. R. Carmona, and X. Zhu, A probabilistic approach to mean field games with major and minor players, The Annals of Applied

Probability, 26 (2016), pp. 1535–1580.
78. A. Cecchin and M. Fischer, Probabilistic approach to finite state mean field games, Applied Mathematics & Optimization, (2018),

pp. 1–48.
79. A. Cecchin and G. Pelino, Convergence, fluctuations and large deviations for finite state mean field games via the master equation,

Stochastic Processes and their Applications, 129 (2019), pp. 4510–4555.
80. A. Cecchin, P. D. Pra, M. Fischer, and G. Pelino, On the convergence problem in mean field games: a two state model without

uniqueness, SIAM Journal on Control and Optimization, 57 (2019), pp. 2443–2466.
81. A. Cesaroni and M. Cirant, Concentration of ground states in stationary MFG systems, Analysis PDE (2019).

106



82. A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga and E. Valdinoci On stationary fractional mean field games. Journal de
MathÃ©matiques Pures et AppliquÃ©es (2019), 122, 1-22.

83. A. Cesaroni, N. Dirr, and C. Marchi, Homogenization of a mean field game system in the small noise limit, SIAM Journal on
Mathematical Analysis, 48 (2016), pp. 2701–2729.

84. P. Chan, and R. Sircar, Fracking, renewables, and mean field games, SIAM Review, 59(3) (2017), 588-615.
85. J.-F. Chassagneux, D. Crisan, and F. Delarue, Classical solutions to the master equation for large population equilibria, arXiv

preprint arXiv:1411.3009.
86. M. Cirant, Multi-population mean field games systems with neumann boundary conditions, Journal de Mathématiques Pures et

Appliquées, 103 (2015), pp. 1294–1315.
87. M. Cirant, Stationary focusing mean-field games, Communications in Partial Differential Equations, 41 (2016), pp. 1324–1346.
88. M. Cirant,On the existence of oscillating solutions in non-monotone mean-field games, Journal of Differential Equations, 266 (2019),

pp. 8067–8093.
89. M. Cirant and A. Goffi On the existence and uniqueness of solutions to time-dependent fractional MFG. SIAM Journal on

Mathematical Analysis, 51(2) (2019), 913-954.
90. M. Cirant and L. Nurbekyan, The variational structure and time-periodic solutions for mean-field games systems, Minimax Theory

Appl. 3 (2018), 227–260.
91. M. Cirant and A. Porretta, Long time behavior and turnpike solutions in mildly non monotone mean field games, preprint.
92. M. Cirant and D. Tonon, Time-Dependent Focusing Mean-Field Games: The Sub-critical Case J. Dyn. Diff. Eq. 31 (2019), 49-79.
93. M. Cirant and G. Verzini, Bifurcation and segregation in quadratic two-populations mean field games systems, ESAIM: Control,

Optimisation and Calculus of Variations, 23 (2017), pp. 1145–1177.
94. F.H. Clarke, Optimization and nonsmooth analysis. Second edition. Classics in Applied Mathematics, 5. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1990.
95. F. Delarue, D. Lacker and K. Ramanan, From the master equation to mean field game limit theory: Large deviations and

concentration of measure, Ann. Probab. 48 (2020), 211–263.
96. F. Delarue, D. Lacker and K. Ramanan, From the master equation to mean field game limit theory: a central limit theorem,

Electronic J. of Probability, 24 (2019), 54pp.
97. F. Delarue and R. F. Tchuendom, Selection of equilibria in a linear quadratic mean-field game, Stochastic Processes and their

Applications, 130 (2020), pp. 1000–1040.
98. R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and sobolev spaces, Inventiones mathematicae, 98

(1989), pp. 511–547.
99. P. Degond, J.G. Liu and C. Ringhofer Large-scale dynamics of mean-field games driven by local Nash equilibria. Journal of

Nonlinear Science, 24(1) (2014), 93-115.
100. I. Ekeland and R. TÃ©mam, R. Convex analysis and variational problems, english ed., vol. 28 of Classics in Applied Mathematics.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. Translated from the French.
101. R. Elie, T. Mastrolia, and D. Possamaï, A tale of a principal and many, many agents, Mathematics of Operations Research, 44

(2019), pp. 440–467.
102. R. Elie, J. PÃ©rolat, M. LauriÃ¨re, M. Geist and O. Pietquin, Approximate fictitious play for mean field games. (2019) arXiv

preprint arXiv:1907.02633.
103. O. Ersland and E.R. Jakobsen, On Classical Solutions Of Time-Dependent Fractional Mean Field Game Systems. (2020) arXiv

preprint arXiv:2003.12302.
104. R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities, SIAM J.

Math. Anal. 50 (2018), 5969-6006.
105. M. Fischer, On the connection between symmetric n-player games and mean field games, The Annals of Applied Probability, 27

(2017), pp. 757–810.
106. W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, vol. 1, Springer Science &amp; Business Media,

2012.
107. W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, vol. 25, Springer Science &amp; Business

Media, 2006.
108. W. Gangbo and A. Swiech, Existence of a solution to an equation arising from the theory of mean field games, Journal of Differential

Equations, 259 (2015), pp. 6573–6643.
109. W. Gangbo and A. Tudorascu, On differentiability in the wasserstein space and well-posedness for hamilton–jacobi equations,

Journal de Mathématiques Pures et Appliquées, 125 (2019), pp. 119–174.
110. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, springer, 2015.
111. F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and Large Scale Phenomena: Coarse

Graining, Mean Field Limits and Ergodicity, Springer, 2016, pp. 1–144.
112. D. Gomes and S. Patrizi, Obstacle mean-field game problem, Interfaces Free Bound. 17 (2015), 55-68.
113. D. A. Gomes and H. Mitake, Existence for stationary mean-field games with congestion and quadratic hamiltonians, Nonlinear

Differential Equations and Applications NoDEA, 22 (2015), pp. 1897–1910.
114. D. A. Gomes, J. Mohr, and R. R. Souza, Discrete time, finite state space mean field games, Journal de mathématiques pures et

appliquées, 93 (2010), pp. 308–328.
115. D. A. Gomes, S. Patrizi, and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games,

Nonlinear Analysis: Theory, Methods &amp; Applications, 99 (2014), pp. 49–79.

107



116. D. A. Gomes and E. A. Pimentel, Time dependent mean-field games with logarithmic nonlinearities, SIAM J.Math. Anal. 47 (2015),
3798-3812.

117. D. A. Gomes, E. A. Pimentel, and H. Sànchez-Morgado, Time-dependent mean-field games in the subquadratic case, Commun
Partial Differ Eq. 40 (2015), 40-76.

118. D. A. Gomes, E. A. Pimentel, and H. Sànchez-Morgado, Time-dependent mean-field games in the superquadratic case, ESAIM
Control. Optim. Calc. Var. 22 (2016), 562-580.

119. D. A. Gomes, E. A. Pimentel, and V. Voskanyan, Regularity theory for mean-field game systems, Springer Berlin, 2016.
120. Gomes, D., Saùde, J., Mean field games models - a brief survey, Dyn. Games Appl. 4 (2014), 110–154.
121. D. A. Gomes and V. K. Voskanyan, Short-time existence of solutions for mean-field games with congestion, Journal of the London

Mathematical Society, 92 (2015), pp. 778–799.
122. D. A. Gomes and V. K. Voskanyan, Extended deterministic mean-field games, SIAM Journal on Control and Optimization, 54

(2016), pp. 1030–1055.
123. P. J. Graber, Weak solutions for mean field games with congestion, ArXiv e-print 1503.04733, (2015).
124. P. J. Graber and A. R. Mészáros, Sobolev regularity for first order mean field games, in Annales de l’Institut Henri Poincaré C,

Analyse non linéaire, vol. 35, Elsevier, 2018, pp. 1557–1576.
125. P. J. Graber, A. R. Mészáros, F. J. Silva, and D. Tonon, The planning problem in mean field games as regularized mass transport,

Calculus of Variations and Partial Differential Equations, 58 (2019), p. 115.
126. P. J. Graber, and C. Mouzouni, On mean field games models for exhaustible commodities trade, ESAIM: Control, Optimisation

and Calculus of Variations, 26 (2020), 11.
127. O. Gueant, A reference case for mean field games models, J. Math. Pures Appl. (9) 92, pp. 276-294 (2009).
128. O. Gueant, J.-M. Lasry and P.-L. Lions. Mean field games and applications. In Paris-Princeton lectures on mathematical finance

2010 (pp. 205-266). Springer, Berlin, Heidelberg.
129. S. Hadikhanloo and F.J. Silva, Finite mean field games: fictitious play and convergence to a first order continuous mean field

game. Journal de MathÃ©matiques Pures et AppliquÃ©es, 132 (2019), 369-397.
130. M. Huang, Large-population lqg games involving a major player: the nash certainty equivalence principle, SIAM Journal on Control

and Optimization, 48 (2010), pp. 3318–3353.
131. M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control

problems: centralized and nash equilibrium solutions, in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 1,
IEEE, 2003, pp. 98–103.

132. M. Huang, R. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: closed-loop mckean-vlasov systems and
the nash certainty equivalence principle, Communications in Information & Systems, 6 (2006), pp. 221–252.

133. M. Huang, R. P. Malhamé and P. E. Caines, An invariance principle in large population stochastic dynamic games, Journal of
Systems Science and Complexity, 20 (2007), pp. 162–172.

134. M. Huang, R. P. Malhamé and P. E. Caines, Large-population cost-coupled lqg problems with nonuniform agents: individual-mass
behavior and decentralized varepsilon−nash equilibria, IEEE transactions on automatic control, 52 (2007), pp. 1560–1571.

135. M. Huang, R. P. Malhamé and P. E. Caines, The Nash certainty equivalence principle and mckean-vlasov systems: an invariance
principle and entry adaptation, in Decision and Control, 2007 46th IEEE Conference on, IEEE, 2007, pp. 121–126.

136. A.C. Kizilkale and P.E. Caines Mean field stochastic adaptive control. IEEE Transactions on Automatic Control, 58(4) (2012),
905-920.

137. V. N. Kolokoltsov, J. Li, andW. Yang,Mean field games and nonlinear markov processes, arXiv preprint arXiv:1112.3744, (2011).
138. P. Krusell and A. A. Smith, Jr, Income and wealth heterogeneity in the macroeconomy, Journal of political Economy, 106 (1998),

pp. 867–896.
139. D. Lacker, A general characterization of the mean field limit for stochastic differential games, Probability Theory and Related Fields,

165 (2016), pp. 581–648.
140. D. Lacker,On the convergence of closed-loop nash equilibria to the mean field game limit, arXiv preprint arXiv:1808.02745, (2018).
141. D. Lacker and K. Webster, Translation invariant mean field games with common noise, Electronic Communications in Probability,

20 (2015).
142. O.A. Ladyzhenskaia, V. A. Solonnikov andN.Uraltseva, Linear and quasi-linear equations of parabolic type, vol. 23, American

Mathematical Society, Providence, R.I., 1998.
143. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I –le cas stationnaire, Comptes Rendus Mathématique, 343 (2006), pp. 619–625.
144. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II –horizon fini et contrôle optimal, Comptes Rendus Mathématique, 343 (2006),

pp. 679–684.
145. J.-M. Lasry and P.-L. Lions, Mean field games, Japanese journal of mathematics, 2 (2007), pp. 229–260.
146. J.-M. Lasry and P.-L. Lions, Mean-field games with a major player, Comptes Rendus Mathematique, 356 (2018), pp. 886–890.
147. H. Lavenant and F. Santambrogio, Optimal density evolution with congestion: l∞ bounds via flow interchange techniques and

applications to variational mean field games, Communications in Partial Differential Equations, 43 (2018), pp. 1761–1802.
148. H. Lavenant and F. Santambrogio, New estimates on the regularity of the pressure in density-constrained mean field games,

Journal of the London Mathematical Society, 100 (2019), pp. 644–667.
149. P.-L. Lions, Cours au college de france, 2007–2012.
150. P.-L. Lions and J.-M. Lasry, Large investor trading impacts on volatility, in Paris-Princeton Lectures on Mathematical Finance

2004, Springer, 2007, pp. 173–190.
151. P.-L. Lions and P. E. Souganidis, Homogenization of the backward-forward mean-field games systems in periodic environments,

arXiv preprint arXiv:1909.01250, (2019).

108



152. R. E. Lucas Jr and B. Moll, Knowledge growth and the allocation of time, Journal of Political Economy, 122(1) (2014), 1-51.
153. M.Masoero,On the long time convergence of potential MFG, Nonlinear Differential Equations and Applications NoDEA, 26 (2019),

p. 15.
154. G. Mazanti and F. Santambrogio, Minimal-time mean field games, arXiv preprint arXiv:1804.03246, (2018).
155. A. R. Mészáros and F. J. Silva, On the variational formulation of some stationary second-order mean field games systems, SIAM

Journal on Mathematical Analysis, 50 (2018), pp. 1255–1277.
156. M. Nutz, A mean field game of optimal stopping, SIAM Journal on Control and Optimization, 56 (2018), pp. 1206–1221.
157. M. Nutz, J. San Martin and X. Tan, Convergence to the mean field game limit: a case study, The Annals of Applied Probability,

30 (2020), pp. 259–286.
158. C. Orrieri, A. Porretta, andG. Savaré, A variational approach to the mean field planning problem, Journal of Functional Analysis,

277 (2019), pp. 1868–1957.
159. L. Overbeck, M. Rockner, and B. Schmuland, An analytic approach to fleming-viot processes with interactive selection, The

Annals of Probability, (1995), pp. 1–36.
160. G. Papanicolaou, L. Ryzhik, and K. Velcheva Travelling waves in a mean field learning model. (2020) arXiv preprint

arXiv:2002.06287.
161. P. Pedregal, Optimization, relaxation and Young measures, Bull. of the American Math. Soc. 36 (1999), 27–58.
162. S. Peng, Stochastic Hamilton–Jacobi–Bellman equations, SIAM Journal on Control and Optimization, 30 (1992), pp. 284–304.
163. A. Porretta, On the planning problem for a class of Mean Field Games, C. R. Acad. Sci. Paris, Ser. I 351 (2013) 457–462.
164. A. Porretta, On the Planning Problem for the Mean Field Games System, Dyn. Games Appl. 4 (2014), 231–256.
165. A. Porretta, Weak solutions to fokker–planck equations and mean field games, Archive for Rational Mechanics and Analysis, 216

(2015), pp. 1–62.
166. A. Porretta, On the weak theory for mean field games systems, Boll. Unione Mat. Ital. 10 (2017), 411-439.
167. A. Porretta, On the turnpike property in mean field games, Minimax Theory and Appl. 3 (2018), 285-312.
168. A. Porretta and M. Ricciardi, Mean field games under invariance conditions for the state space, Comm. Partial Differential

Equations 45 (2020), 146-190.
169. A. Porretta and L. Rossi, Traveling waves for a nonlocal KPP equation and mean-field game models of knowledge diffusion,

preprint arXiv:2010.10828.
170. A. Porretta and E. Zuazua, Long time versus steady state optimal control, Siam J. Control Optimization 51 (2013), 4242–4273.
171. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems: Volume I: Theory, vol. 1, Springer Science &amp; Business

Media, 1998.
172. D. Revuz and M. Yor, Continuous martingales and Brownian motion, vol. 293, Springer Science &amp; Business Media, 2013.
173. F. Santambrogio, A modest proposal for MFG with density constraints, Netw. Heterog. Media 7 (2012), 337–347.
174. F. Santambrogio, Optimal transport for applied mathematicians, Birkäuser, NY, (2015), pp. 99–102.
175. F. Santambrogio, Regularity via duality in calculus of variations and degenerate elliptic pdes, Journal of Mathematical Analysis

and Applications, 457 (2018), pp. 1649–1674.
176. H. Spohn, Large scale dynamics of interacting particles, Springer Science &amp; Business Media, 2012.
177. A.-S. Sznitman, Topics in propagation of chaos, in Ecole d’été de probabilités de Saint-Flour XIX—1989, Springer, 1991, pp. 165–

251.
178. C. Villani, Topics in optimal transportation, no. 58, American Mathematical Soc., 2003.
179. C. Villani, Optimal transport: old and new, vol. 338, Springer Science &amp; Business Media, 2008.
180. J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, vol. 43, Springer Science &amp; Business

Media, 1999.
181. L. C. Young, Lectures on Calculus of Variations and Optimal Control Theory, W. B. Saunders 1969 (reprinted by Chelsea, 1980).

109


	An introduction to Mean Field Game theory
	Pierre Cardaliaguet and Alessio Porretta
	Introduction
	Preliminaries
	Optimal control
	The space of probability measures
	Mean field limits

	The mean field game system
	Heuristic derivation of the MFG system
	Second order MFG system with smoothing couplings
	Application to games with finitely many players
	The vanishing viscosity limit and the first order system with smoothing couplings.
	Second order MFG system with local couplings
	The long time ergodic behavior and the turnpike property of solutions
	The vanishing viscosity limit and the first order system with local couplings.
	Further comments, related topics and references

	The master equation and the convergence problem
	The space of probability measures (revisited)
	Derivatives in the space of measures
	The Master equation
	Convergence of the Nash system

	Appendix: P.-L. Lions' courses on Mean Field Games at the Collège de France
	Organization 2007-2008
	Organization 2008-2009
	Organization 2009-2010
	Organization 2010-2011
	Organization 2011-2012
	Additional notes

	References
	References



