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Introduction
We consider here various questions related to the behavior, as e goes to 0, of

the solution %° of the following Hamilton-Jacobi equation

du T oy . N
(1) 5 + H (E,Du ) =0 in R"X]0,00]

together with the initial condition
(2) ue{t:O =upfz)  in RY.

Here and below u®, up are scalar, ug is prescribed and the Hamiltonian H(z, p)E
C(RYN x RM) is periodic in « (i.e., periodic in z; for 1 < ¢ < N of period 1).
Finally, D or V denotes the spatial gradient.

Such an asymptotic problem falls into the scope of homogenization theory
and ‘e refer the reader to A. Bensoussan, J. L. Lions and G. Papanicolaou [2],
E. DeGiorgi [9], L. Tartar [18] (and their references) for similar problems. How-
ever, to the knowledge, our work is the first one concerning nonlinear first order
equations (of hyperbolic type) and which is global in time.

Asgsuming only that uo € BUC(R™) *) and that
(3) H(z,p) = +o0 as |p| =+ co, uniformly for z € BY

then we will prove below that u* converges uniformly on RY x[0, T (for all T < 0o)
to the solution u of

(4) g—: +H(Du)=0  in RN x]0,00]

satisfying (2), where I ~the effective Hamiltonian— is given via the solution of a
cell problem (ergodic stationary Hamilton-Jacobi equation) that we solve in details

below.

*) BUC(X) ={v € C(X) | v: bounded uniformly continuous on X}
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Up to now, we have been vague on the meaning of (1), (4). Let us only
indicate for the moment that we will deal exclusively with viscosity solutions of
Hamilton-Jacobi equations (which roughly speaking are limits of the solutions of
the approximated equations with vanishing viscosity). Viscosity solutions were
introduced in M. G. Crandall and P. L. Lions {4] and we refer the reader to
M. G. Crandall, L. C. Evans and P. L. Lions [3}, P. L. Lions [12}, {13], G. Barles
[1], H. Ishii [10], [11], M. G. Crandall and P. L. Lions (5}, [6], [7], M. G. Crandall
and P. E. Souganidis [8] for further works and references on viscosity solutions.

Let us explain now our motivations on two examples.
Ezample 1. H{z,p) = |p|* — V(z).

This is of course the standard Hamiltonian in classical mechanics. In this case,
(1) is the Cauchy problem for the oscillatory Hamiltonian He(z,p) = |p|* ~ V(z/e)
(recall that H and thus V is periodicin #). Recall — to see the physical motivation

— that (1) in this case is known as the Hikonal equation and is obtained by

considering solutions of

1
=V (;3) ¢=0 in RNx]0,o00|

7,—6? — KA+
of the following form ¢ = &5/ hzf and letting & — 0.

A case of particular interest is the case when V = 0 on &, V = 400 on
IT — w where w is an open set of II and IT is the unit cube (I = [0,1]%). Such
a V is highly discontinuous and is not, strictly speaking, covered by our results.
Nevertheless, this case may be treated by variants of the method introduced here

and we will come back on this problem in a future publication.
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Ezample 2. H(z,p) = 21\321 ai;pip;-

The matrix (a;;) is supposed to be symmetric and uniformly positive definite.
The family of Hamiltonians H.(z,p) = ij,__l ai;(x/e)pip; then defines a sequence
of Riemannian metrics on the torus TN = RY/Z". And, we will recall, (1) is
closely related to the determination of the associated distance functions d,(z, ).

It is clear that the convergence theorem we mentioned above covers those two
examples and therefore we explain below how to identify the effective HHamiltonian
H. In both cases, we also prove some qualitative properties of H; in particular,
we will observe a surprising phenomenon in Example 1: for many potentials ¥V (all
exept trivial ones in dimension 1) H is no more strictly convex in p and in fact IT
vanishes in a neighborhood of the origin.

Let us also mention that the Cauchy problem (1)-(2) is very much related to

classical problems in the Calculus of Variations such as: find a path £(¢) in RV

minimizing
Lt =t { [z (26)) asfec0) = w660 = o}

where ¢,y € BN, t > 0 and L{z,p) (the Lagrangean) is convex in p, periodic
in . We will see that our main convergence theorem enables us to prove the
convergence of L. as ¢ goes to 0 and o determine the limit.

Another relation that we wish to point out here is with the theory of scalar
conservation lows: indeed if u® is the (viscosity) solution of (1}, (2} when N = 1,

then v® = duf/dx is the (entropy) solution of

8;:+5%(H (;E,Le)) =0  in Rx]0, 00|

dug
. .
) lt:o = - in It

de



Thus, our convergence resulls yield results on the homogenization of scalar
convservation laws.
Acknowledgement: The first author would like to thank Luc Tartar for

helpful computations concerning the one dimensional case (Example 1).



I. Main convergence result

I.1 Main results

We consider, for any initial condition ug in BUC(R"), the unique viscosity
solution «* of (1)-(2) in BUC(R" x [0,T}) (VT < o).

In orcier to introduce our results, it is natural to begin with the usual formal
asymptotic expansions (see the book [2] for a systematic presentation of such

ansatz)
{5) u®(z,t) = u®(z,t) + eu’ (g,t) +efu?

where u*(2,y,1) are periodic in y. Plugging (5) into (1) and identifying the terms

in front of powers of ¢, we find

¢l
(6) %‘T(m,t) + H (y, Dou®(z,) + Dyu'(y,1)) =0 in RY x R x]0, oo.

Therfore, we are led to the following “cell problem”: for each p € R, ind A e R

such that there exists v viscosity solution of
(7) H(y,p+ Dyv) = X in RY, v periodic in y.

Of course, A will depend on p and (provided we can solve (7) in a contented way)
we will denote A = H(p). Then u® “should satisfy” (4) and (2).

Our main result shows that all these formal games are correct.

Theorem 1. Let H € (RY x R™) be periodic in  and satisfy (3).
Existence and uniqueness of I For each p € RY, there exists a unique
A € R —that we denote by H(p)— such that there exists v € C(RN), periodic,

viscosity solutionof {7). And H is continuous in p.
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Convergence of u® For any wo € BUC{RY), u* converges uniformly on
RY x[0,T] (WT < o0) to the viscosity solution u of (4) - (2) in BUC(RY x [0,7)
(VT < o0).

Remarks: i) The e;x;istence and uniqueness of H is proved in section II.1
while we give in section I1.2 various qualitative properties of H. _

ii) We give below explicit formula if H(z,p) = |p|*> - V(z), N = 1 and we
will see that except in the trivial case when V is constant, solutions of (7) are
not unique {even up to the addition of constants). Recall that v = u' is the
corrector. Hence, we do not know how to characterize u' and we do not know if
the asymptotic expansion is valid globally in t,

11) Except for very special initial conditions ug, we do not know the rate of

convergence of u¢ to w.

We now treat explicitly (7) when N =1 and H{z,p) = [p]* — V(z). Without
loss of generality, we may always assume that ming V' = 0. Denoting by {¢) the

average of any periodic function ¢ on its period, we claim that H(p) is given by

H(p) = 0if [p| < (v'/?)

8
) A(p) is solution of {p] = ((V + A)1/2), A 2 0 if |p| = (V1/2),

Indeed, we just have to exhibit v € C(R), viscosity solution of (4) for such a A. If
Ipl < (V1/?), one can find 2o € [0,1], % € [0, 1 + z0) such thaf

1t=zg

T
0= V1/2(zq), /Vlfzmpd.:;:/ V2 4 pds.

g T

Then we set

T
v(w)z/ V2 _pds fae L7

it}

14z
v(m):[ V12 4 pds fzgzg14+ 2
xz
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and we extend v periodically. Similarly, if |p| > (V1/2), choosing A as in (8), one

can find zg € [0,1] such that
(V+X) 2 (zo)=p ifp20
and one argues similarly if p £ 0. Then we set

v(w)m/(17+,5s)1/2—pds feg L1420
Z

EH]
and we extend » periodically.

At this stage, two important observations are to be made: first of all, even
if H was strictly convex in p (H(z,p) = |p|> — V{(2)!), the effective Hamiltonian
H(p) satisfies H = 0 for |p| < {(V1/2) and this is not strictly convex in p (except if
V == (). We will come back on this point in section [1.2. Next, except if V =0, vis
not unique in general even up to addition of constants. Indeed, take for example,
p = 0 and assume V vanishes at zq, 2, satisfying 0 < 29 < 21 £ 1. Then, we
already got one solufion v of (7) vanishing at zo. A different one (of V # 0) is

given by
ﬁm/‘V”ﬁh feg<a <3y

5]

Ty
=/ Vids  itm <o <
:/ Vi2ds  ifa; <2 <7
z3

14 zo
m/ V2 ds fmEesl+ta
xz

and one extends ¥ periodically, where T; € [zg,21], T2 € 21,1 + 2¢] satisfy

T Y To 14zg
/ V2 ds = f V12 ds, / V2 s = / V2 gs.
T z3 o Ty

Concerning example 2, if N = 1 and H(z,p) = a(z)|p|* where a > 0, is

continuous, periodic then H{p) = bp? with b = ({a=1/2})~2.
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I.2 Affine deta and exact solutions

Our proof(s) of the convergence result in Theorem 1 relies on a simple ob-

servation we make in this section. It concerns affine initial conditions i.c.,
9) ug(e) =a+p-2

for some o € R, p € R,

For such an initial condition, the solution u of (4)—(2) is given by
(10) u(z,t) =a+p -z —tH(p).

To be more precise, we recall from [11], [6] that if wp € UC(RY), there exists
a unique viscosity solution of (1)-(2) (or {(4)(2)) in C(RN x [0, 00f), uniformly
continuous in x uniformly in ¢ € [0,T} (VT < co). Then, we choose one solution
v € C(RY) of (7) (with A = H(p)) and we consider as in the formal asymptotic

expansion of the preceding section
~ x
w(x,t) = u(z,t) + ev (~) :
€

One checks easily that #° is a viscosity solution of (1): formally, we have indeed

ou®

ot

® pi) = -7 @ 2Y)
—1—H(E,Du)— H(p)-l—H(g,p—!—Dv(E)) 0
in view of (7). The initial condition satisfied by #* is
(11) i), _ =a+p atev (-Z») in RV

and thus if ¥ is the viscosity solution (in the appropriate class recalled avobe) of
(1)-(2) corresponding to the choice {9), we have by the comparison results of [6],
[11]

sup fu® — u| L esupivl.
RN x[0,c0] RV
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Hence, this yields

(12) sup  Ju® - u| < 2esup |v}.
RN x[0,00] nr¥

In particular, the convergence result in Theorem 1 is proved for affine initial con-

—

ditions, And we will in section III that this is enough to yield the convergence

USRI

for arbitrary initial conditions. It is possible to explain the “sufficienccy” of affine

initial conditions as follows. Denoting S*(t) the semi-group on BUC(RY) (or
UC...) induced by the Cauchy problem (1)-(2). Using properties of viscosity
solutions [4], {6], we know that S°(t) is order preserving, commutes with the ad-
dition of constants. We will also see that 5%(¢) has a uniform (in &) speed of
propagation of the supports of initial conditions and that 5°(t)ug is bounded in
WL RY x (0,T)) (VT < o0) if ug € WH(R™). Therefore, we may extract a
subsequence ¢, —n>0, such that S (t)uy converges uniformly on compaﬁt subsets
of BN x {0, 00[ to S(t)up for all wyg ¢ UC(R™) and S(t) is a semi-group enjoying
all the properties listed above.

In addition, we claim that S(t) commutes with translations. Indeed, let z €
RY and let us denote by 7, the translation by z i.e., T,0(-) = (- + z). Forall
n 2 1, we may find 2, € £, 2", |rn| £ Ce, such that z = 2, +r,. Obviously, 55 (t)
commutes with 7., and passing to the limit we conclude that S{t) commutes with
Ts

But then, by the inverse result of P. L. Lions [15], {14], such a semi-group is

automatically the semi-group of viscosity sclutions of a certain Hamilton-Jacobi

equation of the form

% +F(Duy =0 in B"x]0, cof
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where F' € C(R"). But we already know that if 4o is affine, S BDuo=a+p-z—

tH(p) while the above characterization also yields
S(thug =a+p-a — tF(p).

Therefore, F = H and we conclude.
This scheme of proof may be justified, however we will prefer another one
slightly different. Anyway, it indicates why affine initial conditions are enough

here to determine the behavior of the complete semi-group.
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I1. The cell problem

I1.1 Existence and uniqueness

To prove the existence of v, A satisfying {7), we consider the approximated

equation
(13) H(y,p+ Dyva) + avg =0 in RV,

where @ > 0. Since H € BUC(RY x By), H satisfies (3), we know by [12],
[13] that there exists a unique vy € WH(RY), viscosity solution of {13). The

uniqueness then implies that v, is periodic. Furthermore, we have
(14) —sup H(y,p} £ ava < —inf H(y, p).

¥
And the combination of (13), (14} yields in view of (3)

[Dvalje < €

for some constant C' independent of a.

We then set vy = vo — ming ve, recall that I is the unit cube. Clearly, 4
is periodic, bounded in W*{R"™) and (extracting a subsequence if necessary)
we may assume that (Ta, —av,) converge uniformly on IT (or on R") to some
(v,A) € W 1'°°(RN) X R where v is periodic, By the properties of viscosity solutions
v is a viscosity solutions of (7). And the existence is proved. Notice that we also

proved

(15) inf H(y,p) < H(p) S sup H(y,p), Vpe BY.
¥
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To prove the uniqueness of A, suppose that (v, ), (w,n) € C(RY) x R satisfy
(7). If A # 1, we may assume that A < g and remarking that we may add constants
to v, w we may also assume that v > w on RY, Then, for « small enough we still

have A-+av £ i+ aw. On the other hand, v, w are the unique viscosity solutions

in BUC(R™) of
H{y,p+ Dw) +ow = (g +aw), H(y,p+Dv)+av=XA+av in RV,
Then, by the comparison results for viscosity solutions, we deduce

w=v on RY,

The contradiction proves the uniqueness of A, X

Observe that the uniqueness of A implies easily the continuity of H{p). Ob-
serve also that we proved in fact that if F(y,q) € C(R" x RY), is periodic in Yy
and satisfies (3) then there exists a unique A = MF) € R such that there exists

v € C{R), viscosity solution of
(16) Fly,Dv) =X in RY, v periodic. -

Some properties of A {as a function of F') are given in the next section.
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I1.2 Qualitative properties of the effective Hamiltonian

Proposition 2. Let Fy, Fy € C(R" x R™) be periodic in y and satisfy (3).
Then, we have

)\(tFI)=t’\(F1)) /\(Fl) :)‘(Fl(':'/t))a vt >0,

()
IEfFI(y:O) _S_ ’\(Fl) _S_. SUPFI(%O),
¥

(18)  (A(F) = A(B))” < sup {(Fz(y,q) =Py, q)) |y e BY,|ql £ R}

where R < oo is such that inf{F(y,q) | y € R",|q| 2 R} = sup, Fi(y,0) for
i=1,2

(19)  A(Fy) = MFy) where Fy(y,q) = Fy(y,~# +9),

if Fy(y,q) = Fi(y,—q — z) for some z € RY;

(20)  A(F) s 0A(F) + (1 - 6)MF)

if 6 €]0,1], Fy is convex in q, Fa(y,q) = Fi(y,z + q) for some z € RN and

Fly,q) = Fi(y,0z + q).

Finally, if for some A ¢ R, one can find w € C{R™), periodic, viscosity subsolution

or supersolution of (18) then A = A(F).

Remarks: i) We deduce in particular from (18) that if Iy < Fy then \(F}) <
A(Fy).

ii) If H(z,p) is even in p, then Fi(y,q) = H{y,p + q) satisfies Fi(y,q) =
Fi(y,—q — #) with z = 2p, and thus H{p) is even.

iii) If H(w,p) is convex in p, then (20) implies that H(p) is convex.

Proof of Proposition 2: We already proved (18), while (17) is obvious, and

{19) is easily deduced from the case of %(z) = v(—=z). To prove (18), we claim that
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if off, v§ are the viscosity solutions of
Fi(y, Dvi) + av® =0 in RY
then —avf < sup, Fi(y,0) and thus [[Dvf|le £ R. Next, we know from [4), that

(o5 = v5)” < Zowp {(B(0) - Boln,0)* v € BV, Jol S R}

And we obtain (18) since —avf* converges to );{F)} as o goes $o 0.
Next, the properties of AM(F) with viscosity subsolutions or supersolutions of
(16) is proved exactly as we proved the uniqueness of A. And (20) is deduced from

this properties since
F(y,6Dvg + (1 - 8)Dvy ) = Fi(y, 8z + 8Dvsy + (1 — 6)Dv;)
S0F (y,z + Dvg) + (1 — ) Fi(y, Dvy )
= 0F;(y, Dvs) + (1 — 8)Fi{y, Dvy )

= OA(F) + (1 - O)A(F)

where v1, vy solve (16) for 14, Fy. X
Let us now review what we know on the effective Hamiltonian "Ii_’(p) for the
two examples mentioned in the Introduction.
Ezample 2. We consider H(z,p) = Eﬁ'f:l aij(z)pip; where a;;(z) = aji is

continuous, periodic and
pIy 2 (aij(2)) 2 vIy on RY

for some i, v > 0. Then, by the remarks above, H is convex, even, homogeneous
of order 2 (use (17)) and
ulpl* 2 H{p) 2 vipl*.

16



We do not know if this is a characterization of H.

Ezample 1. We consider H(z,p) = [p}> — V(z) where V is continuous peri-

odic. Then, we know that I is convex, even and
|pl* — maxV < H(p) < |pI* —minV, V¥pe RV

Recall that in section 1.1, we gave explicit formula when N = 1 and we
observed that
H(p)=-—minV if |p| < ((V - min V)1/2),
We want now to discuss a similar property of H if N > 2. Without loss of
generality (adding constants), we may normalize in such a way that minV = 0.

Then, we claim that if V satisfies
(21) Vilws) = min{V(es, ... 00) [2; € (0,15 £} #0 on [0,1, VISi <N

then H vanishes in a neighborhood of 0. Indeed, we have V > > Vi(z;) and it
is then casy to check that H(p) < 3, H(p;) (use (18)), where H; is the effective
Hamiltonian corresponding to [p;|* — Vi(2;). Since H; vanishes for |p;] < (Vil/ %,

we deduce
(22) Hp)=0 ifpi < (V/?), vigi< N,

On the other hand, if V satisfies

(23)
3¢ € BV ([0,1}; RY)nC([0,1]; BRY),£(1),£(0) € R¥\{0}, V(£(t)) =0 for ¢ € [0,1]

then H{p) does not vanish in a neighborhood of the origin. We argue by contra-
diction and thus we assume that there exists v ¢ WH(RY) viscosity solution
of

p+Dof2 =V in R, v periodic
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for some p € RY such that (1, &(1) — €(0)) # 0. Formally, we observe that on the
path £(t) we have
Du{§(2)) = —p

and thus 0 = v(¢(1)) — v(£(0)) = —(p,£(1) — £(0)) # 0! Since v is not C!, this
computation has to be justified as in P. L. Lions [12]: by convolution, we may find

ve € CY(RY) such that
lp+Dv.l* SV +e in RY, Jfv. — vl S e

Then, the argument above yields

(5,€(1) — £(0)) < vE f de|

and letting & go to 0 we conclude, X

Let us conclude by pointing out the consequences of I vanishing say in a ball

By let up € UC(R™) satisfy | Duglleo < r then the solution u(z,r) of (1)-(2)

converges as € goes to 0 up{z) for all r = (!
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IIL. Proof of the convergence

III.1 Convergence of the semi-groups

In this section, we prove the convergence result in Theoreml, assuming H
smooth (at reast locally Lipschitz in p, uniformly in x}. We recall from [6], [10],
[11] that for each ug € UC(RY), there exists a unique viscosity solution u® of
(1)~(2) in C(RN x {0,00]), uniformly continuous in =z uniformly for ¢ € [0, T
(VT' < o00). The unique solution thus yields a semi-group S¢(t) on UC(RY)
(which maps BUC(R™) on BUC(R™) ...) and S%(t) is a contraction (in sup
norm} semi-group, which is order preserving and commutes with the addition of

constants (see [4], [3], [6]).
Next, if up € C(R"), Duy € L=(R"), one knows from [12] that

Jus

(24) Y

<|# (G w0, g, 21
Lo { R¥ x(0,00)) € Lo (RV)

for some constant C independent of &. Then, we deduce from (1) and (3)
(25) “D“E“Lw(m'x(o,oo)) £ Gy

for some constant Cs independent of .

The last property of $¢ we will be using is the finite speed of propagation
of the support (cf. [4]). Let o, vo € C(RY), Duo, Dvg € L=(RY). We know
from (25) that Du®, Dv® are bounded in L®(RY x (0,00)) by a constant Cj
independent of &, Then if we denotes by Co = sup{|0H/8p| | y € RY,|p| £ C:}

we have the following property:

(&) — v* (O roo (B(zo. o) S 10 — Voll Loo Bz RY)
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for all t < R/Cy where zg, R are arbitrary in RY, (0, 00).

Using these properties of S(t), it is easy exercise to extract a subsequence
€ 0 such that S°(tjup converges uniformly to S(thuo sets of RN % [0,00] to
S(r)uo, for all ug € UC(RY) where § () is a semi-group on UC(RN) safisfying

Vug € UC(RY), S(tyuo(z) € C(RY x [, oof)
) {Vuo € BUC(R"Y), S(tyuo(z) € BUC(RY x [0,T)) (VT < o)
@) | (S0 - Styo) | < o~ 10)* uw < o0,
Vt 2 0,Yuo,vo € UC(RN)

and in addition if uo, vo € C(R"), Duo, Dvo € L°(R™) and if we denote by
u(z,t) == S(t)uo(x), v(z,t) = S(t)vo(x), there exists constants ¢, Cy depending
only on {|Duglles, | Dvojfleo such that

Ou

(28) 5

20, Dullpeomn xo,00n £ C
Lo (R %(0,00))

(29} Hulz,t) — v(z, )220 (Blro,R-Coty) < |0 voll oo (Bzo,m))s  VE < 00

where 2o € RN,_R < ©o are arbifrary.
Of course, we have to identify 5(t) as the semi-group corresponding to the
effective Hamiltonian i.e., equation (4). By the simple observation of section 1.2,

we already know that S(t) is the right semi-group on affine initial conditions i.e.,
(30) [S(uol(z) =a+tp -z —~tH(p) if up(z) =+ p - a.

We are going to show now that this, conbined with the above properties of S(t),
is enough to guarantee that S(2) is indeed the right semi-group. In view of the
verification result of P. L. Lions and M. Nisio [16], it is enough to show that for

any @o € RBY, p € C2(R") we have

(31) % {(S{t)uo) (o) — uo{wo) } — —H(Dug(zo)), ast— 0,
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uniformly for ug bounded in CI,Z(RN ).
"To show (31), we introduce fig(x) = ug(z) + Dug(e) - (z — xo) and we use

(23) to obtain
[(S(t)uo) (z0) - S(t)ito(x0)] < fluo — tolli=(B(z0,C0t))
where Cp depends oniy on [ Dutg|| pes(prvy. We now use (30) to deduce
|S(tyuo(za) ~ (wo(wo) tH (Duo(mo)))| £ C

where C' depends only on [Jul| ¢z And this proves (31).

At this stage, we have proved that if ug € UC(RY ) then «*(z,1) converges
uniformly on compact sets of R x [0, oo[ to u(, ) the viscosity solution of (4)—(2)
as € goes to 0. In addition the uniform convergence on Bg x [0, TI (VR,T < o0)
is uniform on bounded sets of initial conditions ug € BU C(R™) which have a
uniform modulus of continuity. By an easy translation argument, this yields the

uniform convergence on R x [0, T} (VT < ©0). And Theorem 1 is proved for

smooth H. x

I11.2 Approximation of Hamiltonians

To conclude the proof of Theorem 1, we are going to deduce the convergence
results for a general Hamiltonian from the particular case of a smooth one {that we
treated above). To do so, we consider H,(z, p) converging uniformly to H(z,p) on
RY % Bg (VR < ¢0), H, periodic in @, H,, smooth and H, satisfies (3) uniformly
in 2. We denote by S%, S, the semi-groups corresponding to Hy(2/e,p), Hp(p)
while we still denote by 5¢, $ the semi-groups corresponding to H(xz/e), H(p).

We already know that for any ug € BUC(RM) S2(t)uo converges uniformly on
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RY x [0,T) (vT < o) to Sp(thus. Since S%, 8., S, S are contraction semi-

groups, we only have to consider uy € W L RY). For such an initial condition,

we deduce from the fact that H n satisfies (3) uniformly in n that

1255 (Duo)(z)] o (RYx)0,00) = Cho

where C' does not depend on 1. Then by the result of [77]

1% (o — S*()uoll poo vy < ¢ sup [Hn(2,p) — H{z,p)|
. l:le_,c'o

for all ¢ 2 0. Using Proposition 2, we remark that H,(p) converges uniformly on

compact sets to H(p) as n goes to co and thus a similar estimate holds for the

difference between S, (t) and § (t). We may now easily conclude, X
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1V, Calculus of Variations

IV.1 Relations with ITamilton-Jacobi semi-groups

Let L(z,p) € BUC(RY x Bg) (VR < o0} be convex in p. We consider the
following classical problem in the Caleulus of Variations: let z,y€ R t>0, we

set
(32)
Stavu,t) = inf { [ 1600, 600)ds € € W10, 0 B, £(0) = 3, 6(0) - ).
Clearly, S(z,y,t) is finite if (for example)
(33) L{z,p) > ~C + VW(z)-p

for some C > 0, W € CY(RY). Observe also that if L{z,p) = L{p) then

(34) S(e,y,8) = 11 (m;—y)

and the infimum is achieved for £(s) = y + s(z — y)/t.
Asin P. L. Lions [12}, we need to investigate the continuity of S in (x,y,t)

Lemma 3, We assume (33) and
8L

(35) ap (P) P Cil(e,p) + G
for some positive constants Cy, ¢y =1, Then, for any § > 0, S(z,3 i) €
Whee(Ag x (6,1/8)) where As = {(z,y) € RY x RN | |2 — yl £ 1/6} and
the W' bound depends only on 8, C, C, C, in (83), (35) and bounds of L(z, p)
on RV x Bp for B < oo,

Proof. For any path ¢ addmissible for (z,y, t) we get g(s) =¢s)for0<s< ¢
=+ (s~ t)h/lh], for t £ s <t + || where h € RY. This choice yields
(36) Sz + hyy,t o+ |h) < S(a,y,0) + ClAl, Vz,y,h € BV, Vi > 0.
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Similarly, considering for any path ¢ addmissible for S{z,y,t) the path ( ) =£&(s)
for 0 <5 £t {(s) =2 for t £ s £1, we obtain

(37) S(z,4,3) < S(2,4,8) + C(E—1), Va,ye RN ¥izt>o,

Finally, let ¢, A > 0, we consider for every addmissible path ¢ for S (z,y,t+h) the

hf’(s)) ds.

path &(s) = &((t + h)s/t) for 0 < s £ t. And we have

S0t < [ 2 (56 F0) do = e A COR

Observe next that (35) implies

(35") L{z,Ap) £ A% L{z,p) + & (,\Gl —1). VYa,pe R, ¥A 21

Therefore, we find

S(z,9,7) < (tjh)CWI/OHhL(g,g)dHc{(f;’i)c; —1}

or taking the infimum over all ¢

(38) S(mz,t)g( —{;h)cl_IS(a:,z,t+h)+(j{(t_:z~{£)clF_l}

for all z, y € RY F, ¢, h > 0. To conclude we observe that we have in view of (33)
(39) S(z,2,t) 2 —Ct, S(z,z,1) L(z,0)t

while clearly

(40) S(z,y,t) < Cg if le -yl < R.

The combination of (36)-(40) yields Lemma 3. n
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Let us also observe the following easy property {equivalent to the optimality

principle of dynamic programming in optimal control theory)
(41) S@rt+9) = inf {S(e,,0)+ S(z,p,5))

forallz, ye RN, ¢, s > 0.

We may now recall the relations between S (@,9,¢) and Hamilton-Jacobi equa-

tions: we will assume in all that follows (35) and
(42) L{z,p)lp|™ —= 400 as Jp| — o0, uniformly in z € RV,

In particular, this implies (33) (with W = 0). We denote by H(z,p) the dual

convex function (in p) of L{z, )} i.e.,

(43) H(z,p) = sup [p- g~ L(z,q)),
gERY

so that L is the cual convex function of H and H € BU C(RY x Bg) for all
R < oo, H satisfies (42) and thus (3). We denote by 5(t) the viscosity semi-group
(on UC(RM), or on BU C(R™)) corresponding to the Hamiltoni-Jacobi equation

Ou

5r TH(@:Du) =0 in BN x (0, c0).

(44)

With those assumptions and notations, we deduce from Lemma 2 and from the
results and methods of P. L. Lions [12] the following properties: for any fixed

ye RN, Sz, y,t) is a viscosity solution of (44) which satisfies

(45) S{zya,t) = 0ast — 0y, S(z,y,t) = 400 as t — 0.

uniformly |y —z| > 4 > 0.
In addition, for any wo € UC(RY), we have
(48) [S(t)uo)(z) = inf {vo(y) + S(z,9,0)}, ¥t>0, Ve RV,
ye
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Remarks: i) It is possible to relax (35), however since we need below the
particular dependence on Lipschitz bounds of § we have in Lemma 3, we will skip
such extensions,

ii} Let us mention that for fixed 2 € RV » S(2,4,1) is a viscosity solution of

(44") %;‘3 +H{y,~Du) =0 in BV x (0, c0).

IV.2 Convergence result

We now turn to the homogenization problems we are introduced in: we thus
assume that L (and thus ) is periodic in 2 and we introduce S%(z,y,t) which
corresponds (as in (32)) to the Lagrangean Lz /e, p). We thus deduce from (46),
for any ug € UC(RN)

(A7) 15%(Juol(e) = inf {uo(y) + $*(s,5,8)}, V¢ >0, Vo € B,
yERN

Furthermore, Lemma3 (and its proof) implies that §¢(z, y, t) is bounded in W Leol Asgx
(,1/6)) independently of ¢ (for all § > 0). Then, we deduce easily from Theorem

1 the

Corollary 4. Let L(z, p) € C(RY x RN ) be convex in p, periodic in z. We
assume that I satisfies (35) and (42). Then, 5%(z,y, t) converges uniformly on
As % [6,1/8] (V6 > 0) to S(x, 3 ) =tL((z - y)/t) as e goes to 0, where T is the

dual convex function of . .
We next conclude this section by giving another proof of the convergence

result in Theorem 1 on above, using only the observation in section 1.2 that is

(48) i:;f{p-y—f—S‘(m,y,t)} ﬂp-wutﬁ(p), ase— 0
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uniformly in z € RY ; ¢ 2 0. By the bounds proposed in Lemma 3, we may find a

sequence €, — 0 such that
n
S (a2, y,t) - S(z,y,t)

uniformly on compact subsets of RY x RV %]0, oo,
First of all, considering the convex functions i (p) = maxzey H(z, p), E(p) =

(I} ) (p), we remark that
(49) Sz, y,t) = t1 (m—;—y) , Va,u,€ RY, vi> o,

Since Z(p)|p|~t — 400 as [p| = oo, we deduce from (42) and (41) the following

relations
(50) pro—tH(p)=inf {p-y+5(e,5,9)} Va,pe RN, V>0

(51)  S(z,y,t+s) =inf {?(m,z,t) + S(z,1 ,8)}, Va,ye RY, Vi, s > 0,

We now introduce the following quantities (closely related to I'_-limits in

DeGiorgi’s sence [9]): let ¢ > 0, £ C([0,1); R™), we set

B(t,¢) = inf{liminf / I (f—fn) ds
n 0 n

€n € Wh(0,4; RY), £, — ¢ uniformly on [O,t]} < +4oo0.

Because of (42), we see that if L(£) ¢ L0, ¢) (in particular if ¢ ¢ WHi(0,¢; RM))

then E(t,£) = +o00. Again because of (42), one shows easily that

(2 Steypt) = inf {B0,) [€0) = 1,6() = .6 € C(0,4 BY))

for all w, y € R, t > 0. Notice that the infimum is infact restricted to ¢ e

Wh1(0,4 RY) and that B(t,-) is lower semi continuous for the uniform conver-
gence (Vi > 0),
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Using easy translations arguments (similar to those we did several times} we

observe that

(53) E(t,8) = E(t,6) if &) = ¢() + o, for some o ¢ BY

(34) B(t,{) = B(s,&1)+ B(r — 5,6,) H0<s<t, 6 = £los}s &2 = Eljs, -
We see that (53) implies obviously
(55) Sz, y,t) = Sz - ¥,0,t), Vz,ye RY, vi>0

And we denote by S(z,t) = S(z,0,¢).
We are going to prove now that the infimum in (562) is achieved when ¢ is the

straight line that is

z, Ve ¢ RY, vi> 0.

i)

{56) S(#,1) = E(,£) where &olt) =

To prove the claim, we consider any minimizing { such that E(1,£) < oo and
thus £ € WH(0,7; RY). And we introduce a family of transformations 7 on
such £ defined though sets F composed of an integer m 2 1, a partition of [0,7]
0 <t <-v <itm =1, and a permutation & of {1,...,m}. Then, £ = ¢ is

defined as follows (where 15 = 0)

£(s) = {ar)—1 +8) — E(toy—1), 0L s < to(1) = ta(r)—1 = Iy

g(s) = &{to(zy—1 + 5 — 1) ~&(to(2)-1) +§(¥1), if ) < s <7 +to(2) ~ ta)—1 = L2

&(s) = Eatmy-1+ 5 = Tom)) — Eltatmy—1) -+ E(Fme), ffmy <s< to(my = L

Observe that we still have £(0) = 0, & (f) =% and that (53), (54) yield



We now leave to the reader (as an exercise!) to prove that it is possible to find a se-
quence of transformations r#» such that the resulting path £, converges uniformly

to the straight line {o(r) = (t/2)%. Using the lower semicontinuity, we conclude. g

We next claim that we have

x f

(57) S(z,t) = AS (X’ T) , Vze& RN, vt,A>0.

Indeed, we first remark that the combination of (83), (54), (56) yields
S(z,t) = mS (i, —t~) , Vze RY Vi>0, Vm =1
m’m
and thus (57) holds with A € @ and by density (57) is proved. "
Denoting by S(z) = 5(z, 1), we deduce from (57)
(57") S(2,y,t) = tS((x —y)/t), z,ye RY, Vi>o.

In order to conclude, we just need to prove that S(z) is convex. Indeed, (50)
implies that (3)* = H and thus if § is convex then § — (_I?)* = I and we
conclude. The convexity of § follows from (51) since (51) yields for z, y € RN,
g€ (0,1)

S0z 4 (1 — 8)y) = 5(fz + (1-8)y,0,1)
é 3‘_(0"7 + (1 - 9)3/: (1 - B)y: 6) + §((1 - B)y:U) 1- ’9)

= 05(z) + (1 - )5 (y).
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1V. Extensions

IV.1 General Hamiltonians

We now consider a more general Hamiltonian & (z,3,p) € BUC{RY x RN x

Bgr) (YR < o), periodic in y, satisfying
(39 H(z,y,p) - +o0  as [p] o +oo, uniformly in z, y ¢ RY,

For any ug € BUC(R"), we denote by u* the unique viscosity solution in BU C(R" x

(0,T]) (VT < 00) of

& 3
(58) a(;; +H ('cg«Du) =0 in RY x (0,00)
(2) uelfzo =up in RV,

Then, with the notations of section II, we consider H(z,p) = MH (2, y, p+q)).

In view of Proposition 2, H{z,p) € BU C(RY x Bp) (VR < co) and H satisfies
(59) H(z,p) = +co  as |p] —+ oo, uniformly in @ € RY.

Hence, there exists a unique viscosity solution 7 in BUC (R x [0,T]) (VT < 00)
of

ou

T H(z,D7)=0 m RV x {0, 00}

(60)

satisfying the initial condition (2). We then have
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Theorem 5. Let H(z,y,p) € BUC(RY x Br) (VR < ), periodic in Y,
satisly (3') and let uo € BUC(RY ). Then w* converges uniformly on RY x R x
[0,7] (VT < ) to 7.

Remark: In fact, by the methods which follow, we can treat more general

equations of the form

(58" S H (5200, Du) =0 in B x (0,00

where H(z,y,1,5,p) € BUC(RY x RN x [0,T] x [-R,R] x Bp) (VR < o) is
periodic in y and satisfies

( H(z,y,t,5,p) = 400 as |p| oo, uniformly inz, y € RN, ¢ ¢ [0, T}, s bounded
J Jvy > —0G, H(:B) y)t:slap) - H(.{?},y, 3 52:p) 2 '}'(31 -82) if 51 2 8y

VR < 0o, 3Cr >0 H{z,y,81,8,p) — H{z,y,t2,3,p) = Cr{t; —1a)

l'ftl g fg, IS’ g R,

In this case, the same result as above holds wi th the effective Hamiltonian Hz,t, 2, ?)

given by
H(z,t,5,p) = \(H(z,y,1,5,p -+ 7)), VYe,ye RY, vie(0,T), ¥se R,

Proof of Theorem 5: By the same argument as in section I11,2, it is enough
to prove Theorem & when H is smooth i.e., at least locally Lipschitz in p, uniformly
in (z,y) € R x RV, Next, estimates like (24), (25) still hold and as in section
HI.1, we may find a sequence &, ;}0 such that 5 (t)uy converges uniformly on
compact sets of RY x [0, oo[ to S{t)ug for all up € UC(RY) and S(t} is a semi-group
on UC(RY), mapping BUC(R") into BUC(R™) such that [S{t)uol(z) € C(RN x
(0, 00[), ${t)ug has a uniform modulus of continuity for ¢ € [0,T] (VT < o0) and
[S()uol(zo) € BUC(RN x[0,T)) (VT < c0) if ug € BUC(R"). Furthermore, 5(¢)
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preserves order and the finite speed of propagation property (29} holds. Hence, in

view of [16], we just have to prove that if ug ¢ CHRN) then for all zg ¢ RN
1
;{{S(t)'tm](’ﬂo) — uo(i’o)} — *—H(&?o,DHo(lBo)) as t - 0_;.

uniformly if uo belongs to a bounded set of CZ(RM).

To this end, we consider the Hamiltonians H (wo,y,p) and H(zo,p). We
denote by S§(t}, So(t) the viscosity semi-groups corresponding to H(wo,z/e, p),
H(zo,p). By Theorem 1, we know that 56(%)uo converges uniformly on RV x [0, T]
(VT < co) to So(t)uo. Furthermore, we also deduce from the fnite speed of prop-
agation of supports (see [4]) that if vg € C(R"), Dvo € L®(RY), then

|[5¢(£)vo) (o) — [S5(t)vo](zo)|
gtsup{EH(m, yﬁp) - H(:ﬂo,y,p)[ ' l.’lf - :Bol < Ct)y € RN) ipl < C}

for some C' depending only on |[Dgfjes and H. Sending & to 0, we deduce
1 1
E{[Sg(t)ug](:co) —uo(we)} — ;{[SO(t)ug](wo) —up{eo)}| L e(t) =0 ast—»0y

here £(-) depends only on [{Duglfeo. But now, we do have for So(t) the property

we wish to prove and this enable us to conclude. "

V.2 Random Hamiltonians

We adapt the setting of G. Papanicolaou and S. R. S. Varadhan [17].
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