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THE NONCONVEX MULTI-DIMENSIONAL RIEMANN PROBLEM FOR
HAMILTON-JACOBI EQUATIONS*

MARTINO BARDI" AND STANLEY OSHER$

Abstract. Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation
in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave). The
initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables
and a concave function in the remaining variables, therefore including the nonconvex Riemann problem.
The inequalities become equalities wherever a "maxmin" equals a "minmax" and .thus a representation
formula for this problem is then obtained, generalizing the classical Hopf’s formulas.

Key words. Hamilton-Jacobi equations, viscosity solutions, Riemann problem, Godunov’s scheme,
Hopf’s representation formulas
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1. Introduction. We are concerned with viscosity solutions (see Crandall and Lions
[3], Crandall, Evans, and Lions [2], Lions [12]) to the following partial differential
equation:

(H-J) (t,-[-- H(Dx)=0 in RN x (0, c),

satisfying the initial data

(IC) (x, 0)= Co(X) in R
where H C(N), Dx (Ox,, , xN) is the spatial gradient of , and ro is at least
uniformly continuous. This Cauchy problem has, for any T> 0, a unique viscosity
solution o(x, t) in the space UC,(Nx [0, T]) of the continuous functions which are
uniformly continuous in x ffn uniformly in [0, T], see Ishii [10] or Crandall and
Lions [5].

We are interested in giving explicit pointwise upper and lower bounds for the
solution, providing in some cases a representation formula for , for some special
initial data but without extra assumptions on the Hamiltonian H.

Some general representation formulas for viscosity solutions of Cauchy problems
for Hamilton-Jacobi equations are due to Evans [6] and Evans and Souganidis [7].
However, they either involve an infinite number of max-min operations over n [6],
or a single max-min operation over infinite-dimensional sets of "controls" and
"strategies" [7]. Two simpler formulas solving almost everywhere (H-J)(IC), one dual
of the other, were derived by Hopf [9] for two special cases. The first one holds for
convex Hamiltonians and general (Lipschitz) initial data, and it is well known in the
theory of conservation laws in the case N- 1 (it is often called the Lax formula). It
was shown to give the viscosity solution to the problem by Lions [12], Evans [6], Bardi
and Evans [1], with different proofs and slightly different assumptions. The second
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NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM 345

Hopf’s formula is valid for general Hamiltonians and convex or concave (Lipschitz)
initial data qo, and it is

(1.1)

for qo convex, and

o(X, t)= Seuap {x" v- q*o (V)- tH(v)}

(1.2) q(x, t) inf {x. v q*o(-V) tH(v)}
vR

for Co concave, where Co* is the Legendre transform (or Fenchel conjugate) of Co, that
is

qo*(V) := sup {x. v-qo(X)} =<
xR

for qo convex, while for qo concave it is

qo*(V):=-(-qo)*(v) inf {-x. v-co(X)}_>--.
l

Osher [14] rederived for the viscosity solution of (H-J) the special case of formula
(1.1) occurring when the initial data are of Riemann type (and convex), i.e., they are
piecewise affine with one jump in the derivative across a plane. Bardi and Evans [1]
showed the connection between Osher’s formulas for convex Riemann data and Hopf’s
formulas, and proved that (1.1) and (1.2) give the viscosity solution of (H-J)(IC) in
the general case. Lions and Rochet [13] gave a different proof under slightly more
general assumptions.

We are now going to describe our main result. Let j be an integer, 0 =<j =< N, and
for any v RN set

I)-"(1)A, VB) /)A :’" (/)1,""" l.)j)@Rj, DB :---(/)j+l, VN)@N-j.

THEOREM 1. Assume H C(N), c1"W uniformly Lipschitz and convex,
qz’N-J uniformly Lipschitz and concave. Then the unique viscosity solution
UC,,(N [0, T]) of (H-J) taking on the initial data

(0 (X, 0)--- (I(XA)3t- (02(XB)

satisfies for all x N and >- 0

(1.3) sup inf G(v, x, t) -< q(x, t) <= inf sup. G(v,x,t),
DAGff I)BG[N-j I)BIN-j I)A[

where

G(v, x, t):= x. V--Cp* (VA)--cp*2(--VB)-- tH(v).

Note that the pointwise estimate (1.3) gives a representation formula for the
solution whenever the first and last terms are equal (as they are for =0). A trivial
case where this occurs is for j= N or j=0, because (1.3) reduces to Hopf’s formulas
(1.1) or (1.2). A more interesting case occurs when the Hamiltonian separates the
variables VA and vB, that is,

H(v)= H,(va)+ H2(vn).

In this case we get

q(x, t)= sup {XA" VA--q*(VA)-- tHI(VA)}+ inf {xs" vn--q*2(--v)-- tH2(vn)},
DA j DB [N--j
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346 MARTINO BARDI AND STANLEY OSHER

which is the superposition of the solutions to the problems

got+H,(D,,go)=O, o(., O) go,

for i- 1, 2.
Next we specialize formula (1.3) to a particular class of (Riemann) initial data.

Let A, u-, u- be constants and define

u-f ifxi>0,
Ui(X):’--

u if xi<0
for i= 1,. ., N. Then take

N

(1.4) po(X) A+ Z xiui(x) A + x u(x).
i=1

These data correspond to a Riemann problem for the system of conservation laws
satisfied (formally) by the spatial gradient of ; see Remark 2.2. Let, for 1, , N,

-i :-- {s ]min (u, u-)-<_ s =< max (u, u-)),

Xi := sign (u- u-),

and reorder the indices, without loss of generality, so that

(1.5) xi=l for i=l,...,j; X,=-I fori=j+l,...,N

(0_-<j-< N). Finally set

’a :-- -1X X -j; -B :-" -j+l X.." X ’N ’’.--’AX’B"
COROLLARY 2. The viscosity solution to (H-J)(IC) with the initial data given by

(1.4) under the convention (1.5) satisfies
(1.6) A+ max min {x. v-tH(v)}<=p(x, t)<-_A+ min max {x. v-tH(v)}.

VA.- 1)BE- I)BE- I)A-

The rest of the paper is organized as follows. In 2, as motivation, we show how
formula (1.6) was first (formally) derived in connection with numerical approximation
schemes for Hamilton-Jacobi equations and for conservation laws. In 3 we give the
proofs of Theorem 1 and Corollary 2, which are quite different from the previous
derivation, and rather simple, in that they make use only of Hopf’s formulas (1.1),
(1.2) and a comparison argument.

2. A derivation of (1.6) by means of Godunov’s Halniltonians. The purpose of this
section is to motivate Corollary 2 and to explain its connection with approximation
schemes for (H-J). The rigorous proofs will be given in 3. We assume that the solutions
of (H-J) have the following properties:
(P1) The solution q(x, t) is a nondecreasing function of the initial data.
(P2) The partial derivatives q% satisfy a maximum principle at points of continuity,

i.e., for i= 1,. ., N:

min (u-, u)_-< x, _-< max (u-, u).
(P3) The speed of propagation is finite.
(P4) If b(x2,’’ ", xN, t) is a viscosity solution of

d/,+H(Vl,x2,’"", Px,) 0

for a constant vl then

((X, t) VlX -Jr- (X2,""" XN, t)

is a viscosity solution to (H-J).
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NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM 347

It is easy to see formally that the solution to the Cauchy problem (H-J)(IC), with
initial data given by (1.4), satisfies

(2.1) o(x, t)= tg(X-.)+a= tg()+a,
\t/

where g satisfies"

(2.2) g sr. Dcg H(Dcg

whenever D;g is continuous.
In (H-J), we let -= t, Yi xi- ’it for " fixed. (H-J) becomes

(H-J1) ,+H(Dy)-Dy=+HI(Dy)=O (defining Hi(Dye))
with the same initial data (1.4).

Thus, by (2.2), to evaluate g(’) we need only evaluate -Hl(Dy(g(y))) at y=0
for any > 0. From (P2) above we know that (Dyg)y=o lies in for > 0. Moreover,
if we integrate (H-J) from -= 0 to " At we have

o(0, At)= A-AtHl((Dyg)y=o)
(2.3) o(0)- At/(D_’o(0), D’Oo(0); O_Oo(0), D_o(0);

D-’qo(0), D- Oo(0)).

Here

(qo(+ he) o(0))
(2.4) D_’Oo(0) + =uh

+ //7, +where e={0,0,...,1,0,...}, the ith unit vector, and H(u, u2,u2; ...;
+uN, u) is determined by (2.3).

This formula can be interpreted as a numerical algorithm. Suppose we are given
a grid

xj, j,h, i= 1,..., N; j, =0, +1,...

and values of a discrete function ff ffh--.. Then for each j, we construct the
piecewise ane function which, in each of the 2 ohants centered at j, interpolates

and its N nearest neighbors, Oe, for i= 1,’’ ", N. From (P3), if

(2.5) (CFL)
At 1

max IHL,[ N1/2,
i=I,-’-,N

where O( is the same as O with each u;, u replaced by D, D, then the
solution to the initial value problem (H-J1) with the above ane initial data in the
diamond centered at j when evaluated at x x and t is independent of the values
of the initial data outside of this diamond.

Thus (2.3) (with o(0) replaced by O and (0, t) by ff+l), gives us a monotone
finite difference scheme approximating (H-J) which is in differenced form with
numerical Hamiltonian . These concepts were introduced in [4]. The scheme is
monotone, which means that the right side of (2.3) is an increasing function of all the
e,, because of propey (P1). The Nnction is called Godunov’s Hamiltonian by
analogy with the definition of Godunov’s scheme for conservation laws in one space
dimension [8]. The scheme is consistent, which means

I(ul, U1; U2, U2;" UN, UN)=HI(ul, U2," .,
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348 MARTINO BARDI AND STANLEY OSHER

Monotonicity implies that

-(+ -. + +n Ul ,t/1 //2,t/-," t/N,t/

is a nonincreasing function of all the u- and a nondecreasing function of all the u,.
In particular, for N 1, this means for any Vl f fl"

sgn (u, (/’/1 u[)-H (Vl)] sgn (u -Vl) (Ul, u?)- (Vl,

(2.6) +sgn (V,- u]-)E/-)l(vl, U) --/"1(Vl, /’)1)]

=<0.

+But, by (P2), ]I(Ul, U?)--H (ffl) for some 1 in . Thus we have
+(2.7) l(ul, u]-) X’l min x1HI()I).

(This formula was obtained earlier in [14].) Now we proceed inductively. Suppose,
for N_-< M- 1, we have

max max min...minH(Vl,V2,...,VN)
1)j+l@-j+ VNG- VlG Vj@-’j

+ +(2.8) =< 1(Ul Ul U2, U2,’’" "’, U+N, U)
min min max max Hl(vl, v2,... VN)
vO vjOj vj+oj+ VNO

where

X/-- l, i=l,’’’,j,

Xi =-1, i=j+l," ", N.

Next we have, N M and for any v "1
+ + + ]_]rl + +(2.9) x1E/-)l(ul u; u2 u-; UM UVI)-- (Vl, I) U 2 U’ UM U/)] <0,----

using the same argument as in (2.6).
Now, for any fixed v, H(v, v u2 u, uM, uTw) is Godunov’s Hamiltonian

when the initial data for (H-J1) has a constant x derivative,

a(
(X) V

aX

Then it follows from (P4) that

() Xl (_. x3 XM),g =- v+ ’t

(where also depends on v).
By the induction hypothesis, this means we have

+ . + -. +xHI(u 2,u2,’" u, u)
+ +x1HI(I, 1, u2, ", UM, U)

(2.10) =-g(0, 0,..., 0)

XlX2 min 2... min XMHI(u1, U2"’" UM)
22 VMM

--x1HI(u1, /.2, /M)
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NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM 349

where the extrema is taken on at /2,’’’,/M, which depends on Vl. The vector
(vl, 2, ", t;N) e 121, where vl e 121 is arbitrary We next take min, of the expression
in (2.10). If all the X 1 or all the X -1 we have equality by (P2). Otherwise, X 1,
1 N Nj, Xi -1, j + 1 N N M, and we have the right-hand inequality in (2.8). Next we
have, for any Vj+l e j+, following the argument above:

+I(Ul Ul U2 U U
+,

(u, u, v+, u, u)
(2.11)

X+z min X+2""X min MI min Xl’’’X
vj+2j+2 v v

min XH1 (/.)1, /’)2, ", /)M)"

We next take the maxvj+ ofthe expression in (P4) which gives us the left-hand inequality
in (2.8).

We have now obtained formula (2.8) for any N; using (2.1) and (2.2) gives us
our intuitive derivation of (1.6).

Remark 2.1. We note that (2.8) validates the conjecture about Godunov’s Hamil-
tonian in 15] when the inequalities in (2.10) and (2.11) become equalities. That paper
also discusses the high-order accurate nonoscillatory numerical solution of (H-J) in
some detail. See also [16] for a further discussion of these issues.

Remark 2.2 If we take the space gradient of (H-J) and call ul qx,, U2 (4x2 etc.,
we arrive at the system of conservation laws

0
(2.12) (ui), +-x H(Ul" UN)---0, i= 1,’’’, N

with initial data:

ifxi>Oui(x, O)
uT, ifxi<O, l, N.

Thus (1.6) gives us information about the solution to this special Riemann problem
for a special system of conservation laws.

3. Proofs.
Proof of Theorem 1. Since q2 can be written as the Legendre transform of its

Legendre transform

q2(xB) inf {-xB’v-,,O*z(V)},

we will first solve (H-J) with the initial data

(3.1) qo(Vn, x)-- (.I(XA) XB "1)B

and then take the infimum as v varies in R N-j. Since the initial data q’o are convex
in x for each choice of vB, we can write Hopf’s formula for the solution q,(vB, x, t)
of (H-J) plus

q,(v, x, 0) o(V, x) for all x R.
To do this we compute the Legendre transform with respect to x of qo"

ffo*(vn, y) sup {xA yA + XB (yB + VB)--qgl(XA)+ qg*2 (1)B) }
x

f+o if yn vn,
q*l(YA)+ q*(Vn) if yB =--Vn,
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350 MARTINO BARDI AND STANLEY OSHER

and then apply (1.1) to get

(VB, X t) sup {XA yA XB
YA R

sup G(-v, x, t).
I]

Since (vn, ",’) UCx(v x [0, T]) for all vn and (vn, x, 0) => (x, 0), a standard
comparison theorem for unbounded viscosity solutions [10], [5] gives

d/(vB, x, t) >--_ q(x, t) forall (x,t)RNx[0, T],

Then

inf sup G(v,x,t)= inf O(v,, x, t)-> p(x, t),
DBE[N-j DA E[I I)B[]N-j

which is the second inequality in (1.3).
The first inequality is proved in a similar way. We apply Hopf’s formula (1.2) to

compute the solution d/(Va, x, t) of (H-J) with the concave initial condition

cl( Va, X, 0) 2(XB) + Xa Va (VA) (X, 0).

Since

II$( VA, y, O)=

we get

d/( Va, X, t) inf G(v,x,t),
DBN-j

and, as before, we conclude by means of a comparison theorem. M
Remark 3.1. The first and the third member of (1.3) coincide with at =0, but

in general it is not clear whether they are continuous. However, they are anyway
respectively a subsolution and a supersolution of (H-J) in the generalized viscosity
sense of Ishii [11]. This follows from Proposition 2.4 in [11], because they are,
respectively, a supremum and an infimum of solutions of (H-J).

Proof of Corollary 2. We set

(I(XA) A+ Xa U(XA)
and compute the Legendre transforms

((/)A) -A + sup XA (I)A U(XA)
[l

_+ ifv>uor
-A ifui <-vi<--u

_+ ifvAfA,
-A ifvAOA;

if Vnfn,
*(--Vn)

0 if Vnn;
which substituted in (1.3) give immediately (1.6).

,)_(x,) x,,. u(x,,),

for some 1 <- _-<j,

for all 1, , j
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